The flowering world: a tale of duplications
Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or...
Saved in:
Published in | Trends in plant science Vol. 14; no. 12; pp. 680 - 688 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
01.12.2009
[Kidlington, Oxford, UK]: Elsevier Science Ltd Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or merging events occurred early during the evolution of the flowering plants, and that many lineages have since undergone additional, independent and more recent duplication events. Here, we review the difficulties in determining the number of genome duplications and discuss how the completion of some additional genome sequences of species occupying key phylogenetic positions has led to a better understanding of the timing of certain duplication events. This is important if we want to demonstrate the significance of genome duplications for the evolution and radiation of (different groups of) flowering plants. |
---|---|
AbstractList | Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or merging events occurred early during the evolution of the flowering plants, and that many lineages have since undergone additional, independent and more recent duplication events. Here, we review the difficulties in determining the number of genome duplications and discuss how the completion of some additional genome sequences of species occupying key phylogenetic positions has led to a better understanding of the timing of certain duplication events. This is important if we want to demonstrate the significance of genome duplications for the evolution and radiation of (different groups of) flowering plants.Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or merging events occurred early during the evolution of the flowering plants, and that many lineages have since undergone additional, independent and more recent duplication events. Here, we review the difficulties in determining the number of genome duplications and discuss how the completion of some additional genome sequences of species occupying key phylogenetic positions has led to a better understanding of the timing of certain duplication events. This is important if we want to demonstrate the significance of genome duplications for the evolution and radiation of (different groups of) flowering plants. Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications. Paleo-polyploidy events, in particular, have been the subject of much recent research. There is a growing consensus that one or more genome doubling or merging events occurred early during the evolution of the flowering plants, and that many lineages have since undergone additional, independent and more recent duplication events. Here, we review the difficulties in determining the number of genome duplications and discuss how the completion of some additional genome sequences of species occupying key phylogenetic positions has led to a better understanding of the timing of certain duplication events. This is important if we want to demonstrate the significance of genome duplications for the evolution and radiation of (different groups of) flowering plants. |
Author | Vandepoele, Klaas Sterck, Lieven Fawcett, Jeffrey A. Proost, Sebastian Van de Peer, Yves |
Author_xml | – sequence: 1 givenname: Yves surname: Van de Peer fullname: Van de Peer, Yves email: Yves.vandepeer@psb.vib-ugent.be organization: Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium – sequence: 2 givenname: Jeffrey A. surname: Fawcett fullname: Fawcett, Jeffrey A. organization: Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium – sequence: 3 givenname: Sebastian surname: Proost fullname: Proost, Sebastian organization: Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium – sequence: 4 givenname: Lieven surname: Sterck fullname: Sterck, Lieven organization: Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium – sequence: 5 givenname: Klaas surname: Vandepoele fullname: Vandepoele, Klaas organization: Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), 9052 Gent, Belgium |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22194493$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/19818673$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gJwC5AAeUZRw7_oADQhVfUiUOtGfLcSbFK2-8tb1U_HscdumBA5VG9kh-3pnxvKfkaI4zEvKUwooCFW_Wq7INdi551QHo1RJAH5ATqqRqOZPdUc2ZgJYy1R-T05zXACCpEo_IMdWqJpKdkNeXP7CZQrzF5Ofr5jamML5tbFNswCZOzbjbBu9s8XHOj8nDyYaMTw73Gbn69PHy_Et78e3z1_MPF63raV_aYeiV5ppKTe0A_dh3yLgVoATjiJMdnJJiZGhhGDjXzqIegFmYRuE4dpydkVf7utsUb3aYi9n47DDU72LcZSMZExLqUcmX_yW5qA1AyQo-O4C7YYOj2Sa_semX-buICrw4ADY7G6ZkZ-fzHdd1VNdSC_duz7kUc044GefLn_WUZH0wFMxij1mbgz1msccsAbSq-3_Ud4Pco3u-1002Gnud6mRX37v6AFSCFqqvxPs9gdWYnx6Tyc7j7HD0CV0xY_T39PgNkvW0OA |
CitedBy_id | crossref_primary_10_1186_1471_2164_13_641 crossref_primary_10_1093_bib_bbr022 crossref_primary_10_3390_life12091453 crossref_primary_10_1002_ajb2_1239 crossref_primary_10_1371_journal_pone_0232736 crossref_primary_10_3390_biology12020303 crossref_primary_10_1016_j_xplc_2022_100431 crossref_primary_10_1186_1471_2105_12_102 crossref_primary_10_1007_s12374_017_0391_6 crossref_primary_10_1016_j_flora_2017_07_010 crossref_primary_10_1016_j_ympev_2012_07_015 crossref_primary_10_1104_pp_111_189514 crossref_primary_10_1016_j_pbi_2012_01_001 crossref_primary_10_1105_tpc_111_089573 crossref_primary_10_1093_nar_gkr955 crossref_primary_10_1017_S0960258523000107 crossref_primary_10_1371_journal_pone_0171361 crossref_primary_10_1007_s00438_015_1080_0 crossref_primary_10_1007_s11295_012_0492_9 crossref_primary_10_1098_rstb_2013_0353 crossref_primary_10_1111_tpj_12026 crossref_primary_10_3835_plantgenome2015_10_0099 crossref_primary_10_1093_gbe_evab077 crossref_primary_10_1111_nph_15820 crossref_primary_10_1111_nph_13884 crossref_primary_10_1371_journal_pone_0101051 crossref_primary_10_3389_fpls_2016_00772 crossref_primary_10_1093_molbev_msac074 crossref_primary_10_1146_annurev_genet_110410_132514 crossref_primary_10_1016_j_pbi_2022_102254 crossref_primary_10_1101_gr_168997_113 crossref_primary_10_12705_623_13 crossref_primary_10_1038_s41598_017_15911_7 crossref_primary_10_1371_journal_pone_0029762 crossref_primary_10_1093_gbe_evw035 crossref_primary_10_1038_srep44948 crossref_primary_10_1038_ng_2987 crossref_primary_10_1186_s12870_022_03720_8 crossref_primary_10_1186_1471_2229_14_151 crossref_primary_10_3389_fpls_2015_01102 crossref_primary_10_1073_pnas_1016631108 crossref_primary_10_1186_s12864_019_5618_0 crossref_primary_10_1089_omi_2015_0148 crossref_primary_10_1186_s12864_015_1906_5 crossref_primary_10_1093_aob_mcac027 crossref_primary_10_1111_tpj_15879 crossref_primary_10_1016_j_ympev_2016_11_020 crossref_primary_10_1104_pp_114_252338 crossref_primary_10_1038_s41467_023_36247_z crossref_primary_10_1186_1471_2229_13_173 crossref_primary_10_1093_gbe_evs066 crossref_primary_10_1186_1471_2105_12_11 crossref_primary_10_1093_molbev_mss214 crossref_primary_10_1093_pcp_pcw178 crossref_primary_10_1093_molbev_msq150 crossref_primary_10_1038_ng_2371 crossref_primary_10_1038_s41559_018_0787_9 crossref_primary_10_1016_j_tplants_2011_06_003 crossref_primary_10_1016_j_pbi_2016_02_005 crossref_primary_10_1007_s11295_012_0576_6 crossref_primary_10_3732_ajb_1500459 crossref_primary_10_1002_ajb2_16139 crossref_primary_10_1111_j_1365_3040_2012_02517_x crossref_primary_10_1038_nrg3374 crossref_primary_10_3390_plants12162926 crossref_primary_10_1007_s10535_015_0522_1 crossref_primary_10_1073_pnas_1300127110 crossref_primary_10_1111_nph_13579 crossref_primary_10_1111_nph_13217 crossref_primary_10_1002_aps3_1156 crossref_primary_10_1111_j_1567_1364_2012_00820_x crossref_primary_10_1002_tax_602004 crossref_primary_10_1016_j_plantsci_2010_07_019 crossref_primary_10_1007_s11634_019_00361_y crossref_primary_10_1016_j_tplants_2014_03_004 crossref_primary_10_1002_tax_602005 crossref_primary_10_1038_nature09916 crossref_primary_10_3389_fgene_2020_00687 crossref_primary_10_1186_1471_2164_15_548 crossref_primary_10_3389_fgene_2022_1060546 crossref_primary_10_1093_dnares_dsac008 crossref_primary_10_1111_nph_20095 crossref_primary_10_1111_tpj_14882 crossref_primary_10_1016_j_tplants_2010_11_005 crossref_primary_10_1371_journal_pone_0163024 crossref_primary_10_1111_j_1365_313X_2011_04521_x crossref_primary_10_1186_s12864_017_3517_9 crossref_primary_10_1534_genetics_111_137349 crossref_primary_10_1073_pnas_1110552108 crossref_primary_10_1007_s00425_024_04586_w crossref_primary_10_1111_j_1365_3040_2011_02364_x crossref_primary_10_1093_aob_mcr122 crossref_primary_10_1093_jxb_ers181 crossref_primary_10_1371_journal_pone_0200149 crossref_primary_10_1016_j_ppees_2011_09_001 crossref_primary_10_1016_j_plantsci_2021_110906 crossref_primary_10_1186_1471_2148_13_202 crossref_primary_10_1186_s12864_020_6604_2 crossref_primary_10_1534_g3_120_401493 crossref_primary_10_1186_1471_2148_10_357 crossref_primary_10_3390_ijms20184623 crossref_primary_10_1199_tab_0144 crossref_primary_10_1101_gr_216226_116 crossref_primary_10_1016_j_tplants_2017_09_011 crossref_primary_10_1111_tpj_12565 crossref_primary_10_1073_pnas_2109204118 crossref_primary_10_1007_s11103_012_9959_1 crossref_primary_10_1186_1471_2164_14_608 crossref_primary_10_1016_j_pbi_2012_03_006 crossref_primary_10_3389_fpls_2019_00534 crossref_primary_10_1093_nar_gkt1137 crossref_primary_10_1093_nar_gkq811 crossref_primary_10_1111_nph_13491 crossref_primary_10_3732_ajb_1400008 crossref_primary_10_1186_2041_9139_2_14 crossref_primary_10_3389_fpls_2016_01347 crossref_primary_10_1371_journal_pone_0145385 crossref_primary_10_1038_nature11241 crossref_primary_10_1111_j_1365_313X_2011_04516_x crossref_primary_10_1111_boj_12226 crossref_primary_10_1038_nature12211 crossref_primary_10_1093_bioinformatics_btr008 crossref_primary_10_3389_fpls_2020_560096 crossref_primary_10_1038_ng_654 crossref_primary_10_3390_ijms25063306 crossref_primary_10_1038_s41438_021_00616_w crossref_primary_10_1111_bij_12318 crossref_primary_10_3389_fpls_2016_01219 crossref_primary_10_1186_1471_2229_10_101 crossref_primary_10_1371_journal_pone_0197392 crossref_primary_10_1038_srep31586 crossref_primary_10_3835_plantgenome2014_05_0019 crossref_primary_10_1111_nph_12399 crossref_primary_10_3389_fpls_2022_1003835 crossref_primary_10_1038_nrg_2017_26 crossref_primary_10_3389_fpls_2018_00906 crossref_primary_10_1007_s00412_011_0331_z crossref_primary_10_1155_2010_862516 crossref_primary_10_1007_s11033_022_08007_7 crossref_primary_10_1186_s12862_018_1153_x crossref_primary_10_1016_j_pbi_2017_09_010 crossref_primary_10_1016_j_tplants_2016_01_024 crossref_primary_10_1186_1471_2229_10_219 crossref_primary_10_1002_ajb2_16077 crossref_primary_10_3390_plants9010010 crossref_primary_10_1007_s11427_018_9455_2 crossref_primary_10_1016_j_cpb_2014_09_002 crossref_primary_10_3390_ijms19020483 crossref_primary_10_1016_j_pbi_2012_03_011 crossref_primary_10_1016_j_molp_2017_05_007 crossref_primary_10_3390_cells9020437 crossref_primary_10_1080_07352689_2019_1682791 crossref_primary_10_1016_j_pbi_2019_01_001 crossref_primary_10_1007_s11103_014_0211_z crossref_primary_10_1111_nph_13911 crossref_primary_10_1093_dnares_dsu021 crossref_primary_10_3389_fpls_2015_00931 crossref_primary_10_1186_1471_2164_13_92 crossref_primary_10_1186_s12870_020_02461_w crossref_primary_10_1186_gb_2011_12_5_r48 crossref_primary_10_1007_s10709_018_0010_6 crossref_primary_10_1186_s12862_019_1398_z crossref_primary_10_1111_mec_13538 crossref_primary_10_3732_ajb_1400178 crossref_primary_10_1111_mec_17457 crossref_primary_10_1007_s11103_013_0169_2 crossref_primary_10_1007_s00122_018_3233_0 crossref_primary_10_1371_journal_pone_0010065 crossref_primary_10_1186_1471_2229_14_149 crossref_primary_10_1093_g3journal_jkac147 crossref_primary_10_1007_s11103_017_0663_z crossref_primary_10_1186_s12864_021_07384_w crossref_primary_10_1111_j_1365_313X_2010_04142_x crossref_primary_10_1093_genetics_iyad029 crossref_primary_10_1186_1471_2164_15_187 crossref_primary_10_1073_pnas_1014138108 crossref_primary_10_1371_journal_pone_0083844 crossref_primary_10_1038_s41438_021_00599_8 crossref_primary_10_1534_genetics_110_113910 crossref_primary_10_1007_s00344_023_11151_4 crossref_primary_10_1038_srep18662 crossref_primary_10_1016_j_tplants_2012_01_006 crossref_primary_10_1093_dnares_dsae022 crossref_primary_10_1007_s13258_016_0455_x crossref_primary_10_1111_jse_12708 crossref_primary_10_3389_fgene_2022_979902 crossref_primary_10_1111_jeb_12308 crossref_primary_10_1186_1471_2148_11_113 crossref_primary_10_1007_s00497_011_0175_y crossref_primary_10_3390_ijms23136906 crossref_primary_10_1104_pp_16_01177 crossref_primary_10_3390_biology2041465 crossref_primary_10_3732_ajb_1600130 crossref_primary_10_1093_nar_gku986 crossref_primary_10_1371_journal_pone_0141866 crossref_primary_10_1111_plb_13218 crossref_primary_10_1093_aob_mct252 crossref_primary_10_1111_tpj_13951 crossref_primary_10_7717_peerj_4172 crossref_primary_10_1002_ajb2_1060 crossref_primary_10_1105_tpc_109_071506 crossref_primary_10_1016_j_xplc_2021_100247 crossref_primary_10_1038_cr_2017_124 crossref_primary_10_1111_tpj_16553 crossref_primary_10_1038_s41438_020_0253_0 crossref_primary_10_1093_gbe_evz185 crossref_primary_10_3732_ajb_1700225 crossref_primary_10_1016_j_jplph_2011_02_004 crossref_primary_10_1093_aob_mcz123 crossref_primary_10_3389_fpls_2021_748252 crossref_primary_10_1016_j_gene_2014_01_082 crossref_primary_10_1111_tpj_12197 crossref_primary_10_1111_tpj_12073 crossref_primary_10_1016_j_ympev_2013_01_005 crossref_primary_10_1111_pbi_12051 crossref_primary_10_1098_rstb_2011_0252 crossref_primary_10_1371_journal_pone_0220257 |
Cites_doi | 10.1038/nature01521 10.1080/10635150590945359 10.1101/gr.4825606 10.1631/jzus.2005.B0087 10.1186/gb-2006-7-5-r43 10.1016/j.tig.2005.07.008 10.1098/rspb.2001.1782 10.1101/gr.1589103 10.1126/science.1153917 10.1146/annurev.arplant.043008.092122 10.1101/gr.3681406 10.1111/j.1469-8137.2005.01347.x 10.1016/j.pbi.2007.01.004 10.1073/pnas.0507782103 10.1093/molbev/msn187 10.1104/pp.104.054700 10.1073/pnas.212522399 10.1073/pnas.0501102102 10.1196/annals.1438.005 10.1016/j.palaeo.2005.07.006 10.1007/s12042-008-9017-y 10.1038/nature06856 10.1101/gr.080978.108 10.1105/tpc.014019 10.3732/ajb.0800126 10.1038/nature01771 10.1105/tpc.021410 10.1371/journal.pone.0001326 10.1073/pnas.0901994106 10.1016/S0378-1119(02)00689-3 10.1038/nature06148 10.1101/gr.4708406 10.1186/1471-2148-6-32 10.1186/1471-2164-9-58 10.1101/gr.2179004 10.1093/molbev/msl197 10.1105/tpc.021345 10.1101/gr.081026.108 10.1146/annurev.arplant.043008.092039 10.1073/pnas.0900906106 10.1105/tpc.106.041111 10.1073/pnas.0708072104 10.3732/ajb.0800079 10.1016/j.tig.2004.07.008 10.1111/j.0014-3820.2005.tb01775.x 10.1139/g04-047 10.1038/nrg2600 10.1142/S0219720009004199 10.1073/pnas.0603228103 10.1093/dnares/dsn008 10.1534/genetics.104.037770 10.1093/bioinformatics/btm449 10.1073/pnas.0709121104 10.1016/S0168-9525(02)02796-8 10.1093/nar/gkm965 10.1038/nrg1449 10.1016/j.tree.2005.07.008 10.1073/pnas.0307901101 10.1016/j.cell.2007.04.004 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1016/j.tplants.2009.09.001 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Botany |
EISSN | 1878-4372 |
EndPage | 688 |
ExternalDocumentID | 19818673 22194493 10_1016_j_tplants_2009_09_001 US201301709685 S1360138509002283 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GeographicLocations | World |
GroupedDBID | --- --K --M -DZ .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIWK ACPRK ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFRAH AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RCE RIG ROL RPZ SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TWZ VQA XPP Y6R ZCA ~G- ~KM ABPIF ABPTK FBQ AAHBH AAMRU AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c515t-bb589491791ab05d52e34a608634eefabc876d3ea0bb449cae9b03a0fd6c4e243 |
IEDL.DBID | .~1 |
ISSN | 1360-1385 1878-4372 |
IngestDate | Fri Jul 11 05:37:12 EDT 2025 Fri Jul 11 08:45:39 EDT 2025 Mon Jul 21 05:36:34 EDT 2025 Mon Jul 21 09:11:12 EDT 2025 Tue Jul 01 00:57:50 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Wed Dec 27 18:55:56 EST 2023 Fri Feb 23 02:28:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Duplication Flowering Plant sciences |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-bb589491791ab05d52e34a608634eefabc876d3ea0bb449cae9b03a0fd6c4e243 |
Notes | http://dx.doi.org/10.1016/j.tplants.2009.09.001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 19818673 |
PQID | 46449087 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_733670336 proquest_miscellaneous_46449087 pubmed_primary_19818673 pascalfrancis_primary_22194493 crossref_citationtrail_10_1016_j_tplants_2009_09_001 crossref_primary_10_1016_j_tplants_2009_09_001 fao_agris_US201301709685 elsevier_sciencedirect_doi_10_1016_j_tplants_2009_09_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-12-01 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: England |
PublicationTitle | Trends in plant science |
PublicationTitleAlternate | Trends Plant Sci |
PublicationYear | 2009 |
Publisher | Elsevier Ltd [Kidlington, Oxford, UK]: Elsevier Science Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: [Kidlington, Oxford, UK]: Elsevier Science Ltd – name: Elsevier |
References | Veron (bib11) 2007; 24 Simillion (bib61) 2008; 24 Cui (bib22) 2006; 16 Krylov (bib60) 2003; 13 Sato (bib48) 2008; 15 Simillion (bib8) 2002; 99 Jaillon (bib12) 2007; 449 Lyons (bib25) 2008; 1 Paterson (bib19) 2005; 165 Zhang (bib20) 2005; 6B Davis, Petrov (bib57) 2005; 21 Zheng (bib40) 2009; 7 Chapman (bib54) 2006; 103 Ming (bib13) 2008; 452 Vandepoele, Van de Peer (bib51) 2005; 137 Paterson (bib31) 2004; 101 Tang (bib17) 2008; 18 Schlueter (bib27) 2004; 47 Vandepoele (bib34) 2002; 18 Tanaka (bib50) 2008; 36 Fawcett (bib29) 2009; 106 Cannon (bib41) 2006; 103 Van de Peer (bib35) 2004; 5 Velasco (bib18) 2007; 2 Freeling (bib33) 2008; 18 Van de Peer (bib44) 2009; 10 Bell (bib23) 2005; 59 Barker (bib24) 2008; 25 Blanc, Wolfe (bib53) 2004; 16 Wikström (bib14) 2001; 268 Papp (bib59) 2003; 424 Soltis (bib5) 2009; 96 Sterck (bib49) 2007; 10 Schranz, Mitchell-Olds (bib55) 2006; 18 Bowers (bib7) 2003; 422 Soltis, Burleigh (bib32) 2009; 106 Seoighe, Gehring (bib52) 2004; 20 Tang (bib36) 2008; 320 Soltis, Soltis (bib38) 2009; 60 Simillion (bib37) 2004; 14 Crepet, Niklas (bib3) 2009; 96 Freeling (bib6) 2009; 60 Swarbreck (bib47) 2008; 36 Vandepoele (bib21) 2003; 15 Zahn (bib9) 2005; 169 Moore (bib2) 2007; 104 Tuskan (bib30) 2006; 313 Jansen (bib16) 2007; 104 Friis (bib1) 2006; 232 Blanc, Wolfe (bib26) 2004; 16 Soltis (bib46) 2008; 1133 Van de Peer (bib43) 2002; 295 Thomas (bib39) 2006; 16 Bowman (bib45) 2007; 129 Lescot (bib28) 2008; 9 Pfeil (bib42) 2005; 54 Maere (bib10) 2005; 102 Blomme (bib56) 2006; 7 Freeling, Thomas (bib58) 2006; 16 De Bodt (bib4) 2005; 20 Jansen (bib15) 2006; 6 Fawcett (10.1016/j.tplants.2009.09.001_bib29) 2009; 106 Tang (10.1016/j.tplants.2009.09.001_bib17) 2008; 18 Tuskan (10.1016/j.tplants.2009.09.001_bib30) 2006; 313 Tanaka (10.1016/j.tplants.2009.09.001_bib50) 2008; 36 Cui (10.1016/j.tplants.2009.09.001_bib22) 2006; 16 Soltis (10.1016/j.tplants.2009.09.001_bib32) 2009; 106 Tang (10.1016/j.tplants.2009.09.001_bib36) 2008; 320 Crepet (10.1016/j.tplants.2009.09.001_bib3) 2009; 96 Pfeil (10.1016/j.tplants.2009.09.001_bib42) 2005; 54 Bowers (10.1016/j.tplants.2009.09.001_bib7) 2003; 422 Krylov (10.1016/j.tplants.2009.09.001_bib60) 2003; 13 Van de Peer (10.1016/j.tplants.2009.09.001_bib44) 2009; 10 Seoighe (10.1016/j.tplants.2009.09.001_bib52) 2004; 20 Bowman (10.1016/j.tplants.2009.09.001_bib45) 2007; 129 Simillion (10.1016/j.tplants.2009.09.001_bib8) 2002; 99 Veron (10.1016/j.tplants.2009.09.001_bib11) 2007; 24 Wikström (10.1016/j.tplants.2009.09.001_bib14) 2001; 268 Jansen (10.1016/j.tplants.2009.09.001_bib16) 2007; 104 Lescot (10.1016/j.tplants.2009.09.001_bib28) 2008; 9 Freeling (10.1016/j.tplants.2009.09.001_bib6) 2009; 60 Blomme (10.1016/j.tplants.2009.09.001_bib56) 2006; 7 Blanc (10.1016/j.tplants.2009.09.001_bib53) 2004; 16 Zheng (10.1016/j.tplants.2009.09.001_bib40) 2009; 7 Bell (10.1016/j.tplants.2009.09.001_bib23) 2005; 59 Moore (10.1016/j.tplants.2009.09.001_bib2) 2007; 104 Thomas (10.1016/j.tplants.2009.09.001_bib39) 2006; 16 Vandepoele (10.1016/j.tplants.2009.09.001_bib51) 2005; 137 Freeling (10.1016/j.tplants.2009.09.001_bib33) 2008; 18 Van de Peer (10.1016/j.tplants.2009.09.001_bib35) 2004; 5 Soltis (10.1016/j.tplants.2009.09.001_bib5) 2009; 96 Papp (10.1016/j.tplants.2009.09.001_bib59) 2003; 424 Lyons (10.1016/j.tplants.2009.09.001_bib25) 2008; 1 Paterson (10.1016/j.tplants.2009.09.001_bib31) 2004; 101 Vandepoele (10.1016/j.tplants.2009.09.001_bib21) 2003; 15 Maere (10.1016/j.tplants.2009.09.001_bib10) 2005; 102 Jansen (10.1016/j.tplants.2009.09.001_bib15) 2006; 6 Velasco (10.1016/j.tplants.2009.09.001_bib18) 2007; 2 Barker (10.1016/j.tplants.2009.09.001_bib24) 2008; 25 Soltis (10.1016/j.tplants.2009.09.001_bib46) 2008; 1133 Friis (10.1016/j.tplants.2009.09.001_bib1) 2006; 232 Paterson (10.1016/j.tplants.2009.09.001_bib19) 2005; 165 Simillion (10.1016/j.tplants.2009.09.001_bib61) 2008; 24 Soltis (10.1016/j.tplants.2009.09.001_bib38) 2009; 60 Chapman (10.1016/j.tplants.2009.09.001_bib54) 2006; 103 Vandepoele (10.1016/j.tplants.2009.09.001_bib34) 2002; 18 Ming (10.1016/j.tplants.2009.09.001_bib13) 2008; 452 De Bodt (10.1016/j.tplants.2009.09.001_bib4) 2005; 20 Schranz (10.1016/j.tplants.2009.09.001_bib55) 2006; 18 Simillion (10.1016/j.tplants.2009.09.001_bib37) 2004; 14 Sato (10.1016/j.tplants.2009.09.001_bib48) 2008; 15 Schlueter (10.1016/j.tplants.2009.09.001_bib27) 2004; 47 Zhang (10.1016/j.tplants.2009.09.001_bib20) 2005; 6B Van de Peer (10.1016/j.tplants.2009.09.001_bib43) 2002; 295 Freeling (10.1016/j.tplants.2009.09.001_bib58) 2006; 16 Blanc (10.1016/j.tplants.2009.09.001_bib26) 2004; 16 Jaillon (10.1016/j.tplants.2009.09.001_bib12) 2007; 449 Cannon (10.1016/j.tplants.2009.09.001_bib41) 2006; 103 Swarbreck (10.1016/j.tplants.2009.09.001_bib47) 2008; 36 Zahn (10.1016/j.tplants.2009.09.001_bib9) 2005; 169 Davis (10.1016/j.tplants.2009.09.001_bib57) 2005; 21 Sterck (10.1016/j.tplants.2009.09.001_bib49) 2007; 10 |
References_xml | – volume: 18 start-page: 606 year: 2002 end-page: 608 ident: bib34 article-title: Detecting the undetectable: uncovering duplicated segments in publication-title: Trends Genet. – volume: 101 start-page: 9903 year: 2004 end-page: 9908 ident: bib31 article-title: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 320 start-page: 486 year: 2008 end-page: 488 ident: bib36 article-title: Synteny and collinearity in plant genomes publication-title: Science – volume: 106 start-page: 5455 year: 2009 end-page: 5456 ident: bib32 article-title: Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 127 year: 2008 end-page: 128 ident: bib61 article-title: i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles publication-title: Bioinformatics – volume: 16 start-page: 1667 year: 2004 end-page: 1678 ident: bib26 article-title: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes publication-title: Plant Cell – volume: 129 start-page: 229 year: 2007 end-page: 234 ident: bib45 article-title: Green genes-comparative genomics of the green branch of life publication-title: Cell – volume: 102 start-page: 5454 year: 2005 end-page: 5459 ident: bib10 article-title: Modeling gene and genome duplications in eukaryotes publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 20 start-page: 461 year: 2004 end-page: 464 ident: bib52 article-title: Genome duplication led to highly selective expansion of the publication-title: Trends Genet. – volume: 232 start-page: 251 year: 2006 end-page: 293 ident: bib1 article-title: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction publication-title: Palaeogeogr. Palaeocl. – volume: 16 start-page: 934 year: 2006 end-page: 946 ident: bib39 article-title: Following tetraploidy in an publication-title: Genome Res. – volume: 268 start-page: 2211 year: 2001 end-page: 2220 ident: bib14 article-title: Evolution of the angiosperms: calibrating the family tree publication-title: Proc. R Soc. Lond. B – volume: 103 start-page: 14959 year: 2006 end-page: 14964 ident: bib41 article-title: Legume genome evolution viewed through the publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 9 start-page: 58 year: 2008 ident: bib28 article-title: Insights into the publication-title: BMC Genomics – volume: 20 start-page: 591 year: 2005 end-page: 597 ident: bib4 article-title: Genome duplication and the origin of angiosperms publication-title: Trends Ecol. Evol. – volume: 169 start-page: 2209 year: 2005 end-page: 2223 ident: bib9 article-title: The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history publication-title: Genetics – volume: 16 start-page: 805 year: 2006 end-page: 814 ident: bib58 article-title: Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity publication-title: Genome Res. – volume: 99 start-page: 13627 year: 2002 end-page: 13632 ident: bib8 article-title: The hidden duplication past of publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 10 start-page: 199 year: 2007 end-page: 203 ident: bib49 article-title: How many genes are there in plants (… and why are they there)? publication-title: Curr. Opin. Plant Biol. – volume: 6B start-page: 87 year: 2005 end-page: 90 ident: bib20 article-title: Two ancient rounds of polyploidy in rice genome publication-title: J. Zhejiang Univ. Sci. – volume: 15 start-page: 227 year: 2008 end-page: 239 ident: bib48 article-title: Genome Structure of the Legume publication-title: Lotus japonicus. DNA Res. – volume: 106 start-page: 5737 year: 2009 end-page: 5742 ident: bib29 article-title: Plants with double genomes might have had a better chance to survive the Cretaceous- Tertiary extinction event publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 104 start-page: 19369 year: 2007 end-page: 19374 ident: bib16 article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 738 year: 2006 end-page: 749 ident: bib22 article-title: Widespread genome duplications throughout the history of flowering plants publication-title: Genome Res. – volume: 137 start-page: 31 year: 2005 end-page: 42 ident: bib51 article-title: Exploring the plant transcriptome through phylogenetic profiling publication-title: Plant Phys. – volume: 5 start-page: 752 year: 2004 end-page: 763 ident: bib35 article-title: Computational approaches to unveiling ancient genome duplications publication-title: Nat. Rev. Genet. – volume: 36 start-page: D1028 year: 2008 end-page: 1033 ident: bib50 article-title: The Rice Annotation Project Database (RAP-DB): 2008 update publication-title: Nucleic Acids Res. – volume: 103 start-page: 2730 year: 2006 end-page: 2735 ident: bib54 article-title: Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 18 start-page: 1944 year: 2008 end-page: 1954 ident: bib17 article-title: Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps publication-title: Genome Res. – volume: 1 start-page: 181 year: 2008 end-page: 190 ident: bib25 article-title: The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids publication-title: Tropical Plant Biol. – volume: 54 start-page: 441 year: 2005 end-page: 454 ident: bib42 article-title: Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families publication-title: Syst. Biol. – volume: 18 start-page: 1152 year: 2006 end-page: 1165 ident: bib55 article-title: Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae publication-title: Plant Cell – volume: 10 start-page: 725 year: 2009 end-page: 732 ident: bib44 article-title: The evolutionary significance of ancient genome duplications publication-title: Nat. Rev. Genet. – volume: 16 start-page: 1679 year: 2004 end-page: 1691 ident: bib53 article-title: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution publication-title: Plant Cell – volume: 313 start-page: 1596 year: 2006 end-page: 1604 ident: bib30 article-title: The genome of black cottonwood publication-title: Populus trichocarpa (Torr. & Gray). Science – volume: 1133 start-page: 3 year: 2008 end-page: 25 ident: bib46 article-title: Origin and early evolution of angiosperms publication-title: Ann. NY Acad. Sci. – volume: 60 start-page: 433 year: 2009 end-page: 453 ident: bib6 article-title: Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition publication-title: Annu. Rev. Plant. Biol. – volume: 452 start-page: 991 year: 2008 end-page: 996 ident: bib13 article-title: The draft genome of the transgenic tropical fruit tree papaya ( publication-title: Nature – volume: 96 start-page: 336 year: 2009 end-page: 348 ident: bib5 article-title: Polyploidy and angiosperm diversification publication-title: Am. J. Bot. – volume: 6 start-page: 32 year: 2006 ident: bib15 article-title: Phylogenetic analyses of publication-title: BMC Evol. Biol. – volume: 165 start-page: 658 year: 2005 end-page: 661 ident: bib19 article-title: Ancient duplication of cereal genomes publication-title: New Phytol. – volume: 25 start-page: 2445 year: 2008 end-page: 2455 ident: bib24 article-title: Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years publication-title: Mol. Biol. Evol. – volume: 47 start-page: 868 year: 2004 end-page: 876 ident: bib27 article-title: Mining EST databases to resolve evolutionary events in major crop species publication-title: Genome – volume: 18 start-page: 1924 year: 2008 end-page: 1937 ident: bib33 article-title: Many or most genes in publication-title: Genome Res. – volume: 36 start-page: D1009 year: 2008 end-page: 1014 ident: bib47 article-title: The publication-title: Nucleic Acids Res. – volume: 60 start-page: 561 year: 2009 end-page: 588 ident: bib38 article-title: The role of hybridization in plant speciation publication-title: Annu. Rev. Plant Biol. – volume: 24 start-page: 670 year: 2007 end-page: 678 ident: bib11 article-title: Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins publication-title: Mol. Biol. Evol. – volume: 15 start-page: 2192 year: 2003 end-page: 2202 ident: bib21 article-title: Evidence that rice and other cereals are ancient aneuploids publication-title: Plant Cell – volume: 449 start-page: 463 year: 2007 end-page: 467 ident: bib12 article-title: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla publication-title: Nature – volume: 7 start-page: 499 year: 2009 end-page: 520 ident: bib40 article-title: Gene loss under neighborhood selection following whole genome duplication and the reconstruction of the ancestral publication-title: J. Bioinform. Comput. Biol. – volume: 295 start-page: 205 year: 2002 end-page: 211 ident: bib43 article-title: Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes publication-title: Gene – volume: 13 start-page: 2229 year: 2003 end-page: 2235 ident: bib60 article-title: Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution publication-title: Genome Res. – volume: 14 start-page: 1095 year: 2004 end-page: 1106 ident: bib37 article-title: Building genomic profiles for uncovering segmental homology in the twilight zone publication-title: Genome Res. – volume: 96 start-page: 366 year: 2009 end-page: 381 ident: bib3 article-title: Darwin's second “abominable mystery”: why are there so many angiosperm species? publication-title: Amer. J. Bot. – volume: 7 start-page: R43 year: 2006 ident: bib56 article-title: The gain and loss of genes during 600 million years of vertebrate evolution publication-title: Genome Biol. – volume: 2 start-page: e1326 year: 2007 ident: bib18 article-title: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety publication-title: PLoS ONE – volume: 104 start-page: 19363 year: 2007 end-page: 19368 ident: bib2 article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 422 start-page: 433 year: 2003 end-page: 438 ident: bib7 article-title: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events publication-title: Nature – volume: 59 start-page: 1245 year: 2005 end-page: 1258 ident: bib23 article-title: The age of the angiosperms: a molecular timescale without a clock publication-title: Evolution – volume: 21 start-page: 548 year: 2005 end-page: 551 ident: bib57 article-title: Do disparate mechanisms of duplication add similar genes to the genome? publication-title: Trends Genet. – volume: 424 start-page: 194 year: 2003 end-page: 197 ident: bib59 article-title: Dosage sensitivity and the evolution of gene families in yeast publication-title: Nature – volume: 422 start-page: 433 year: 2003 ident: 10.1016/j.tplants.2009.09.001_bib7 article-title: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events publication-title: Nature doi: 10.1038/nature01521 – volume: 54 start-page: 441 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib42 article-title: Placing paleopolyploidy in relation to taxon divergence: a phylogenetic analysis in legumes using 39 gene families publication-title: Syst. Biol. doi: 10.1080/10635150590945359 – volume: 16 start-page: 738 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib22 article-title: Widespread genome duplications throughout the history of flowering plants publication-title: Genome Res. doi: 10.1101/gr.4825606 – volume: 6B start-page: 87 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib20 article-title: Two ancient rounds of polyploidy in rice genome publication-title: J. Zhejiang Univ. Sci. doi: 10.1631/jzus.2005.B0087 – volume: 7 start-page: R43 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib56 article-title: The gain and loss of genes during 600 million years of vertebrate evolution publication-title: Genome Biol. doi: 10.1186/gb-2006-7-5-r43 – volume: 21 start-page: 548 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib57 article-title: Do disparate mechanisms of duplication add similar genes to the genome? publication-title: Trends Genet. doi: 10.1016/j.tig.2005.07.008 – volume: 268 start-page: 2211 year: 2001 ident: 10.1016/j.tplants.2009.09.001_bib14 article-title: Evolution of the angiosperms: calibrating the family tree publication-title: Proc. R Soc. Lond. B doi: 10.1098/rspb.2001.1782 – volume: 13 start-page: 2229 year: 2003 ident: 10.1016/j.tplants.2009.09.001_bib60 article-title: Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution publication-title: Genome Res. doi: 10.1101/gr.1589103 – volume: 320 start-page: 486 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib36 article-title: Synteny and collinearity in plant genomes publication-title: Science doi: 10.1126/science.1153917 – volume: 60 start-page: 433 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib6 article-title: Bias in plant gene content following different sorts of duplication: tandem, whole-genome segmental, or by transposition publication-title: Annu. Rev. Plant. Biol. doi: 10.1146/annurev.arplant.043008.092122 – volume: 16 start-page: 805 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib58 article-title: Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity publication-title: Genome Res. doi: 10.1101/gr.3681406 – volume: 165 start-page: 658 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib19 article-title: Ancient duplication of cereal genomes publication-title: New Phytol. doi: 10.1111/j.1469-8137.2005.01347.x – volume: 10 start-page: 199 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib49 article-title: How many genes are there in plants (… and why are they there)? publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2007.01.004 – volume: 103 start-page: 2730 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib54 article-title: Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0507782103 – volume: 25 start-page: 2445 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib24 article-title: Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msn187 – volume: 137 start-page: 31 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib51 article-title: Exploring the plant transcriptome through phylogenetic profiling publication-title: Plant Phys. doi: 10.1104/pp.104.054700 – volume: 99 start-page: 13627 year: 2002 ident: 10.1016/j.tplants.2009.09.001_bib8 article-title: The hidden duplication past of Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.212522399 – volume: 102 start-page: 5454 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib10 article-title: Modeling gene and genome duplications in eukaryotes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0501102102 – volume: 1133 start-page: 3 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib46 article-title: Origin and early evolution of angiosperms publication-title: Ann. NY Acad. Sci. doi: 10.1196/annals.1438.005 – volume: 232 start-page: 251 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib1 article-title: Cretaceous angiosperm flowers: innovation and evolution in plant reproduction publication-title: Palaeogeogr. Palaeocl. doi: 10.1016/j.palaeo.2005.07.006 – volume: 1 start-page: 181 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib25 article-title: The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates the rosids publication-title: Tropical Plant Biol. doi: 10.1007/s12042-008-9017-y – volume: 452 start-page: 991 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib13 article-title: The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) publication-title: Nature doi: 10.1038/nature06856 – volume: 18 start-page: 1944 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib17 article-title: Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps publication-title: Genome Res. doi: 10.1101/gr.080978.108 – volume: 15 start-page: 2192 year: 2003 ident: 10.1016/j.tplants.2009.09.001_bib21 article-title: Evidence that rice and other cereals are ancient aneuploids publication-title: Plant Cell doi: 10.1105/tpc.014019 – volume: 96 start-page: 366 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib3 article-title: Darwin's second “abominable mystery”: why are there so many angiosperm species? publication-title: Amer. J. Bot. doi: 10.3732/ajb.0800126 – volume: 424 start-page: 194 year: 2003 ident: 10.1016/j.tplants.2009.09.001_bib59 article-title: Dosage sensitivity and the evolution of gene families in yeast publication-title: Nature doi: 10.1038/nature01771 – volume: 16 start-page: 1679 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib53 article-title: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution publication-title: Plant Cell doi: 10.1105/tpc.021410 – volume: 2 start-page: e1326 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib18 article-title: A high quality draft consensus sequence of the genome of a heterozygous grapevine variety publication-title: PLoS ONE doi: 10.1371/journal.pone.0001326 – volume: 106 start-page: 5455 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib32 article-title: Surviving the K-T mass extinction: new perspectives of polyploidization in angiosperms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0901994106 – volume: 295 start-page: 205 year: 2002 ident: 10.1016/j.tplants.2009.09.001_bib43 article-title: Dealing with saturation at the amino acid level: a case study based on anciently duplicated zebrafish genes publication-title: Gene doi: 10.1016/S0378-1119(02)00689-3 – volume: 449 start-page: 463 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib12 article-title: The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla publication-title: Nature doi: 10.1038/nature06148 – volume: 16 start-page: 934 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib39 article-title: Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes publication-title: Genome Res. doi: 10.1101/gr.4708406 – volume: 6 start-page: 32 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib15 article-title: Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids publication-title: BMC Evol. Biol. doi: 10.1186/1471-2148-6-32 – volume: 36 start-page: D1028 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib50 article-title: The Rice Annotation Project Database (RAP-DB): 2008 update publication-title: Nucleic Acids Res. – volume: 9 start-page: 58 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib28 article-title: Insights into the Musa genome: syntenic relationships to rice and between Musa species publication-title: BMC Genomics doi: 10.1186/1471-2164-9-58 – volume: 14 start-page: 1095 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib37 article-title: Building genomic profiles for uncovering segmental homology in the twilight zone publication-title: Genome Res. doi: 10.1101/gr.2179004 – volume: 24 start-page: 670 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib11 article-title: Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl197 – volume: 16 start-page: 1667 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib26 article-title: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes publication-title: Plant Cell doi: 10.1105/tpc.021345 – volume: 18 start-page: 1924 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib33 article-title: Many or most genes in Arabidopsis transposed after the origin of the order Brassicales publication-title: Genome Res. doi: 10.1101/gr.081026.108 – volume: 60 start-page: 561 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib38 article-title: The role of hybridization in plant speciation publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.043008.092039 – volume: 106 start-page: 5737 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib29 article-title: Plants with double genomes might have had a better chance to survive the Cretaceous- Tertiary extinction event publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0900906106 – volume: 18 start-page: 1152 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib55 article-title: Independent ancient polyploidy events in the sister families Brassicaceae and Cleomaceae publication-title: Plant Cell doi: 10.1105/tpc.106.041111 – volume: 104 start-page: 19363 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib2 article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0708072104 – volume: 96 start-page: 336 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib5 article-title: Polyploidy and angiosperm diversification publication-title: Am. J. Bot. doi: 10.3732/ajb.0800079 – volume: 20 start-page: 461 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib52 article-title: Genome duplication led to highly selective expansion of the Arabidopsis thaliana proteome publication-title: Trends Genet. doi: 10.1016/j.tig.2004.07.008 – volume: 59 start-page: 1245 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib23 article-title: The age of the angiosperms: a molecular timescale without a clock publication-title: Evolution doi: 10.1111/j.0014-3820.2005.tb01775.x – volume: 47 start-page: 868 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib27 article-title: Mining EST databases to resolve evolutionary events in major crop species publication-title: Genome doi: 10.1139/g04-047 – volume: 10 start-page: 725 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib44 article-title: The evolutionary significance of ancient genome duplications publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2600 – volume: 313 start-page: 1596 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib30 article-title: The genome of black cottonwood publication-title: Populus trichocarpa (Torr. & Gray). Science – volume: 7 start-page: 499 year: 2009 ident: 10.1016/j.tplants.2009.09.001_bib40 article-title: Gene loss under neighborhood selection following whole genome duplication and the reconstruction of the ancestral Populus genome publication-title: J. Bioinform. Comput. Biol. doi: 10.1142/S0219720009004199 – volume: 103 start-page: 14959 year: 2006 ident: 10.1016/j.tplants.2009.09.001_bib41 article-title: Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0603228103 – volume: 15 start-page: 227 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib48 article-title: Genome Structure of the Legume publication-title: Lotus japonicus. DNA Res. doi: 10.1093/dnares/dsn008 – volume: 169 start-page: 2209 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib9 article-title: The evolution of the SEPALLATA subfamily of MADS-box genes: a preangiosperm origin with multiple duplications throughout angiosperm history publication-title: Genetics doi: 10.1534/genetics.104.037770 – volume: 24 start-page: 127 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib61 article-title: i-ADHoRe 2.0: an improved tool to detect degenerated genomic homology using genomic profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm449 – volume: 104 start-page: 19369 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib16 article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709121104 – volume: 18 start-page: 606 year: 2002 ident: 10.1016/j.tplants.2009.09.001_bib34 article-title: Detecting the undetectable: uncovering duplicated segments in Arabidopsis by comparison with rice publication-title: Trends Genet. doi: 10.1016/S0168-9525(02)02796-8 – volume: 36 start-page: D1009 year: 2008 ident: 10.1016/j.tplants.2009.09.001_bib47 article-title: The Arabidopsis Information Resource (TAIR): gene structure and function annotation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm965 – volume: 5 start-page: 752 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib35 article-title: Computational approaches to unveiling ancient genome duplications publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1449 – volume: 20 start-page: 591 year: 2005 ident: 10.1016/j.tplants.2009.09.001_bib4 article-title: Genome duplication and the origin of angiosperms publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2005.07.008 – volume: 101 start-page: 9903 year: 2004 ident: 10.1016/j.tplants.2009.09.001_bib31 article-title: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0307901101 – volume: 129 start-page: 229 year: 2007 ident: 10.1016/j.tplants.2009.09.001_bib45 article-title: Green genes-comparative genomics of the green branch of life publication-title: Cell doi: 10.1016/j.cell.2007.04.004 |
SSID | ssj0007186 |
Score | 2.4465475 |
SecondaryResourceType | review_article |
Snippet | Flowering plants contain many genes, most of which were created during the past 200 or so million years through small- and large-scale duplications.... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 680 |
SubjectTerms | Biological and medical sciences classification Evolution, Molecular flowering Fundamental and applied biological sciences. Psychology Gene Duplication genetics Genome, Plant Genome, Plant - genetics literature reviews Magnoliopsida Magnoliopsida - classification Magnoliopsida - genetics Models, Genetic Phylogeny Polyploidy Time Factors |
Title | The flowering world: a tale of duplications |
URI | https://dx.doi.org/10.1016/j.tplants.2009.09.001 https://www.ncbi.nlm.nih.gov/pubmed/19818673 https://www.proquest.com/docview/46449087 https://www.proquest.com/docview/733670336 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VwgEOiBZoA3TxgWt2HdtxYm6larUF0UtZqTfLTmzUarVZ0d1DL_3tzOSjSw-rSki5JIole2byPM7MvAH44kUdvYoydc7JVAkfUlcIn7rAdRRVmcmKfuj_vNDTmfp-lV_twMlQC0NplT32d5jeonX_ZNJLc7K8vp5cZlJTmA13vI7EhSrYVUFWPr7fpHkg9uqu9ooT316-qeKZ3IxXyzllm_S0lS1z5bb96Vl0DSVOuluUXeyaXmz3Stvd6ewNvO7dSnbczXwPdsJiH158a9D1u9uHV_-wDr4FyrJgcU7t0fCetZypX5lj6IYH1kRWrzcx7XcwOzv9dTJN-54JaYWeySr1Pi-NMkQ66jzP61wEqZzGg4tUIUTnK4S_WgbHvVfKVC4Yz6XjsdaVCkLJ97C7aBbhEJjMVSxKL0WBxyjnCxO1lDFTlc4N8RAmoAZJ2aonFKe-FnM7ZI7d2F7A1OzSWLp4lsD4YdiyY9R4akA5qME-Mg2LqP_U0ENUm3W_ETDt7FJQmDYr8NRW4uxHj3T5MBeBGI6SkQl8HpRr8ZOjOIpbhGZ9axX6kIaXRQJsyxvEMYlQKnUCB51ZbJZqWg5B-eH_V_URXoq-iwXPPsHu6s86HKFrtPKj1vZH8Pz4_Mf04i-EPgqV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3xJbU9VC0tkH6AD1yz69iOE_cGqGhpgQusxM2yExuBVptV2T1w4bd3nDhsOayQKuWSKJacGft5nBm_B3BoWe2t8Dw1xvBUMOtSUzCbGkelZ1WZ8Sr80L-4lKOx-HWT36zBSX8WJpRVRuzvML1F6_hkGK05nN3dDa8yLkOaDVe8jsRlHTYFTt8gYzB4WtZ5IPjK7vAVDYR7-fIYz_B-MJ9NQrlJ5K1sqStXLVDr3jShctI8oPF8p3qxOixtl6fTD_A-xpXkqOv6R1hz023YOm4w9nvchnf_0A5-glBmQfwk6KPhPWlJU38QQzAOd6TxpF4sk9qfYXz68_pklEbRhLTC0GSeWpuXSqjAOmoszeucOS6MxJ0LF855YyvEv5o7Q60VQlXGKUu5ob6WlXBM8B3YmDZTtweE58IXpeWswH2UsYXyknOfiUrmKhARJiB6S-kqMooHYYuJ7kvH7nU0cFC7VDpcNEtg8Nxs1lFqvNag7N2gX4wNjbD_WtM9dJs2t4iYenzFQp42K3DbVmLv91_48rkvDEEcLcMTOOidq3HOhUSKmbpm8aAFBpGKlkUCZMUbgWQSsZTLBHa7YbH8VNWSCPIv__9VB_BmdH1xrs_PLn9_hbcsSlrQ7BtszP8s3HeMk-Z2v50HfwGBwQwj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+flowering+world%3A+a+tale+of+duplications&rft.jtitle=Trends+in+plant+science&rft.au=Van+de+Peer%2C+Yves&rft.au=Fawcett%2C+Jeffrey+A&rft.au=Proost%2C+Sebastian&rft.au=Sterck%2C+Lieven&rft.date=2009-12-01&rft.issn=1878-4372&rft.eissn=1878-4372&rft.volume=14&rft.issue=12&rft.spage=680&rft_id=info:doi/10.1016%2Fj.tplants.2009.09.001&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1360-1385&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1360-1385&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1360-1385&client=summon |