On Laguerre-Hahn affine orthogonal polynomials on the unit circle from matrix Sylvester equations

In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations . The technique is based on the knowledge of the first-order differential equation for the Carathéodory functio...

Full description

Saved in:
Bibliographic Details
Published inIntegral transforms and special functions Vol. 27; no. 2; pp. 78 - 93
Main Author Rebocho, M.N.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.02.2016
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations . The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials.
AbstractList In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations . The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials.
In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painleve equations [Image omitted.]. The technique is based on the knowledge of the first-order differential equation for the Caratheodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials.
In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations [Formula omitted.] . The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials.
Author Rebocho, M.N.
Author_xml – sequence: 1
  givenname: M.N.
  surname: Rebocho
  fullname: Rebocho, M.N.
  email: mneves@ubi.pt
  organization: CMUC, Apartado, EC Santa Cruz
BookMark eNp9kEFr3DAQhUVIoUman1AQ5NKLE0nWWNatJTRNYSGHNmcxluWsgixtJLvN_vtq2fTSQ08zDN97zHvn5DSm6Aj5yNk1Zz274awDITt9LRiHetJCd_qEnHGpuqYXmp_WvTLNAXpPzkt5Zoy3oOCM4EOkG3xaXc6uucdtpDhNPjqa8rJNTylioLsU9jHNHkOhKdJl6-ga_UKtzzY4OuU00xmX7F_pj3345criMnUvKy4-xfKBvJuq0l2-zQvyePf15-19s3n49v32y6axwGFpBhyFlQP2DjqwgBakGrUVHDTXclDQKgYjH2tiq7AfQXEYehRj34uBSd5ekE9H311OL2t9wsy-WBcCRpfWYrjSreh6kKKiV_-gz2nNNeqBAi1b6JSsFBwpm1Mp2U1ml_2MeW84M4fizd_izaF481Z81X0-6nycUp7xd8phNAvuQ8pTxmh9Me3_Lf4A--SL3A
CitedBy_id crossref_primary_10_1142_S2010326320400018
Cites_doi 10.1088/1751-8113/42/45/454019
10.1016/0377-0427(95)00125-5
10.1016/j.jat.2009.07.010
10.1016/j.jat.2008.11.017
10.1007/BF02433038
10.1016/j.jat.2009.05.005
10.1016/j.aml.2005.09.005
10.1016/j.laa.2010.11.037
10.1007/978-3-0348-8081-7
10.36045/bbms/1274896211
10.2307/121101
10.1016/S0024-3795(02)00728-0
10.1016/0377-0427(93)E0247-J
10.1016/j.cam.2009.02.031
10.1090/S0002-9939-04-07566-5
10.1007/s00365-005-0616-7
10.1006/jath.2000.3540
10.1088/0951-7715/18/5/010
10.1088/1751-8113/44/46/465204
10.1007/s002200100525
ContentType Journal Article
Copyright 2015 Taylor & Francis 2015
2015 Taylor & Francis
Copyright_xml – notice: 2015 Taylor & Francis 2015
– notice: 2015 Taylor & Francis
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/10652469.2015.1092969
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1476-8291
EndPage 93
ExternalDocumentID 3931776211
10_1080_10652469_2015_1092969
1092969
Genre Original Articles
Feature
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
AAAVI
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABBKH
ABCCY
ABFIM
ABHAV
ABJVF
ABLIJ
ABPEM
ABPTK
ABQHQ
ABTAI
ABXUL
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEGYZ
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFOLD
AFWLO
AGDLA
AGMYJ
AHDLD
AIJEM
AIRXU
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
FUNRP
FVPDL
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TEJ
TFL
TFT
TFW
TTHFI
TWF
UT5
UU3
V1K
ZGOLN
~S~
07G
1TA
5VS
AAIKQ
AAKBW
AAYXX
ABJNI
ABPAQ
ABXYU
ACAGQ
ACGEE
AEUMN
AGCQS
AGLEN
AGROQ
AHDZW
AHMOU
ALCKM
AMXXU
AWYRJ
BCCOT
BPLKW
C06
CAG
CITATION
COF
CRFIH
DMQIW
DWIFK
IVXBP
LJTGL
NUSFT
QCRFL
TAQ
TBQAZ
TDBHL
TFMCV
TOXWX
TUROJ
UB9
UU8
V3K
V4Q
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c515t-bad2c4ba8e565c5ac547d9c2159194b753705d1d108c7a8d5715b8a2d882b0413
ISSN 1065-2469
IngestDate Fri Oct 25 11:45:37 EDT 2024
Thu Oct 10 20:01:23 EDT 2024
Thu Sep 12 16:40:27 EDT 2024
Tue Jun 13 19:49:16 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-bad2c4ba8e565c5ac547d9c2159194b753705d1d108c7a8d5715b8a2d882b0413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://hdl.handle.net/10400.6/9059
PQID 1759435674
PQPubID 176153
PageCount 16
ParticipantIDs proquest_journals_1759435674
proquest_miscellaneous_1793268542
informaworld_taylorfrancis_310_1080_10652469_2015_1092969
crossref_primary_10_1080_10652469_2015_1092969
PublicationCentury 2000
PublicationDate 2016-02-01
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Integral transforms and special functions
PublicationYear 2016
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Cachafeiro A (CIT0001) 2004; 6
CIT0010
Erdélyi T (CIT0024) 1991; 29
CIT0012
CIT0023
CIT0011
Branquinho A (CIT0019) 2010; 17
CIT0003
CIT0014
CIT0025
CIT0013
CIT0005
CIT0027
CIT0004
CIT0015
CIT0026
CIT0007
CIT0018
CIT0006
CIT0028
CIT0009
Szegö G (CIT0021) 1975
Simon B (CIT0022) 2005
CIT0008
References_xml – ident: CIT0011
  doi: 10.1088/1751-8113/42/45/454019
– ident: CIT0026
  doi: 10.1016/0377-0427(95)00125-5
– ident: CIT0007
  doi: 10.1016/j.jat.2009.07.010
– volume: 6
  start-page: 107
  year: 2004
  ident: CIT0001
  publication-title: J Comput Anal Appl
  contributor:
    fullname: Cachafeiro A
– ident: CIT0006
  doi: 10.1016/j.jat.2008.11.017
– ident: CIT0025
  doi: 10.1007/BF02433038
– ident: CIT0014
  doi: 10.1016/j.jat.2009.05.005
– ident: CIT0028
  doi: 10.1016/j.aml.2005.09.005
– ident: CIT0005
  doi: 10.1016/j.laa.2010.11.037
– volume-title: Orthogonal polynomials
  year: 1975
  ident: CIT0021
  contributor:
    fullname: Szegö G
– ident: CIT0027
  doi: 10.1007/978-3-0348-8081-7
– volume: 17
  start-page: 355
  year: 2010
  ident: CIT0019
  publication-title: Bull Belg Math Soc
  doi: 10.36045/bbms/1274896211
  contributor:
    fullname: Branquinho A
– volume: 29
  start-page: 41
  year: 1991
  ident: CIT0024
  publication-title: Atti Sem Mat Fis Univ Modena
  contributor:
    fullname: Erdélyi T
– ident: CIT0012
  doi: 10.2307/121101
– volume-title: Orthogonal polynomials on the unit circle – part 1
  year: 2005
  ident: CIT0022
  contributor:
    fullname: Simon B
– ident: CIT0004
  doi: 10.1016/S0024-3795(02)00728-0
– ident: CIT0010
  doi: 10.1016/0377-0427(93)E0247-J
– ident: CIT0003
  doi: 10.1016/j.cam.2009.02.031
– ident: CIT0013
  doi: 10.1090/S0002-9939-04-07566-5
– ident: CIT0008
  doi: 10.1007/s00365-005-0616-7
– ident: CIT0009
  doi: 10.1006/jath.2000.3540
– ident: CIT0015
  doi: 10.1088/0951-7715/18/5/010
– ident: CIT0018
  doi: 10.1088/1751-8113/44/46/465204
– ident: CIT0023
  doi: 10.1007/s002200100525
SSID ssj0013575
Score 2.0701606
Snippet In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Publisher
StartPage 78
SubjectTerms Compatibility
Differential equations
discrete Painlevé equations
Formalism
Functions (mathematics)
Hermitian linear functionals
Laguerre-Hahn affine class
Mathematical analysis
OPUC
Polynomials
Reflection coefficient
Sylvester equations
Transforms
Title On Laguerre-Hahn affine orthogonal polynomials on the unit circle from matrix Sylvester equations
URI https://www.tandfonline.com/doi/abs/10.1080/10652469.2015.1092969
https://www.proquest.com/docview/1759435674
https://search.proquest.com/docview/1793268542
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVguoEFanmIgbYyErsoIcnYk2RZ8dAI0XZBKyo2kV-ZgkpSMglqWfEP_CFf0nvjvEoroGyiURLbGd_j62P7Pgh5LoSRAAPtzlTGXZYE2o3jQLiJ4txIlUVMoTfy7t58ccjeHvGjwSSo8S6ppKe-X-tX8j9ShXsgV_SSvYFk-0rhBvwG-cIVJAzXf5Lxfu68E8valKXpjBZmC3GMmb8zZI94JlMsm72-0-LkHD2Qm2jJ1rSxhtHsqE8lVGq9TL5guP4z5_35ybcmfoJjvtajDb3Pg9H7smxs1FvOa8M8r2wmewdnyqEQnuWASgMl22y9enveeJ8h6E2Te9Xooz0cs4lVPGPvsWjuxqHNt9XpU-vr3-ImHClHm6unnWZtXsQrCtxaPGJb2BSa3nGMeBUmXbvjgNm_TWS9eWHQxj3tqkmxmrSt5jZZC0EpxROytrN49fHDcObEm7DM_f_s_L1i_8W133OJyVyKc3tlXm_IysE6udeuMuiOhcwGuWXy--Tubh-id_WAqP2cduD59eMnwoZa2NABNnQEG1rkFMpThA21sKEIG2phQ3vY0B42D8nhm9cHLxdum3HDVcBrK1cKHSomRWyA5ysuFGeRThTQwiRImISlbeRzHWjoFBWJWPMo4DIWoYZ1mvSBDz0ik7zIzWNCs1mkJecyZFkAnEckPmNAxufwFrD6LJsSr-u99NQGVkn_KLcpScZ9nFbNjlZm08-ks7-U3ewEkrbjd5UCcU5gsTCP2JQ86x-DdsUjM5GbosZ3cH0TcxY-uen3PiV3hmG0SSZVWZstILCV3G6RdwEc4pV7
link.rule.ids 315,783,787,27938,27939,60220,61009
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHXgWxUMCVevVqk7WT-FhVVEu7uxxopd4sPwuiJGU3QZRfz0wepQVVHHrKwRknHj_mG3vmM8COMcHiMPB86qLkQiWeF0ViuHJSButiLhxlIy-W2exYHJzIkyu5MBRWST507Igi2rWaJjdtRg8hcfjMZIp-HUVmSSJESlWm7sK9jNJGKY1jsvxzkiBbsl0S4SQzZPHcVM01-3SNvfSf1bo1QfuPwQ0_30WefB03tR27X3_xOt6udU_gUY9Q2W43pJ7CnVA-g4eLS3rX9SaYjyWbm9MmrFaBz8znkpkY8UuMDoGqUwL37Lw6u6CUZxzerCoZSrMGlw_mvqywWkZpLewb3Q_wk326OPvREjaw8L1jHl8_h-P990d7M97f1cAdIqKaW-NTJ6wpAiJEJ42TIvfKIaBQiRIWnaJ8In3isYUuN4WXeSJtYVKPCN9O0JK-gI2yKsNLYHGaeyulTUVM0FoaNUEXckokMqgLGeMIxkMP6fOOkkMnPdPpoDtNutO97kagrvajrtu9kNhdXKKn_5HdGjpd97N7rRFyKYSZWS5GsH1ZjPOSDltMGaqG3iFkXEiRvrrF59_B_dnRYq7nH5aHr-EBFvUh41uwUa-a8AYRUW3ftkP-Nwu9_hE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceCMWChiJq1d52Jv4WNGuFmgXJKjEzfKzRZRk2U1Qy69nJo9CQYhDTzk4tuPx2PNNPPMZ4KUxwaIaeJ67KLlQqedlmRqunJTBulgIR9nIB8vZ4lC8-STHaMLNEFZJPnTsiSK6vZoW98rHMSIOnzOZoVtHgVmS-JAyNVNX4RoigYQUO0-Wvw4SZMe1S1U41RmTeP7VzAXzdIG89K_NurNA89tgx2_vA0--TNvGTt2PP2gdLzW4O3BrwKdsp1eou3AlVPfg5sE5uevmPph3Fds3R21YrwNfmOOKmRixI0ZHQPURQXu2qk_OKOEZlZvVFcParMXNg7nPa2yWUVIL-0q3A5yyD2cn3zu6Bha-9bzjmwdwON_7-GrBh5sauEM81HBrfOaENWVAfOikcVIUXjmEEypVwqJLVCTSpx5H6ApTelmk0pYm84jvbYJ29CFsVXUVHgGLeeGtlDYTMUVbaVSCDmROFDIoCxnjBKbjBOlVT8ih04HndJSdJtnpQXYTUL9Po266PyGxv7ZE5_-puz3OuR7W9kYj4FIIMmeFmMCL82JclXTUYqpQt_QO4eJSiuzxJbp_Dtff7871_uvl2ydwA0uGePFt2GrWbXiKcKixzzqF_wka1fzH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Laguerre%E2%80%93Hahn+affine+orthogonal+polynomials+on+the+unit+circle+from+matrix+Sylvester+equations&rft.jtitle=Integral+transforms+and+special+functions&rft.au=Rebocho%2C+M.N.&rft.date=2016-02-01&rft.issn=1065-2469&rft.eissn=1476-8291&rft.volume=27&rft.issue=2&rft.spage=78&rft.epage=93&rft_id=info:doi/10.1080%2F10652469.2015.1092969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10652469_2015_1092969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-2469&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-2469&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-2469&client=summon