On Laguerre-Hahn affine orthogonal polynomials on the unit circle from matrix Sylvester equations
In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations . The technique is based on the knowledge of the first-order differential equation for the Carathéodory functio...
Saved in:
Published in | Integral transforms and special functions Vol. 27; no. 2; pp. 78 - 93 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
01.02.2016
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations
. The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials. |
---|---|
AbstractList | In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations
. The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials. In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painleve equations [Image omitted.]. The technique is based on the knowledge of the first-order differential equation for the Caratheodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials. In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of the discrete Painlevé equations [Formula omitted.] . The technique is based on the knowledge of the first-order differential equation for the Carathéodory function, combined with a re-interpretation, in the formalism of matrix Sylvester equations, of compatibility conditions for the differential systems satisfied by the polynomials. |
Author | Rebocho, M.N. |
Author_xml | – sequence: 1 givenname: M.N. surname: Rebocho fullname: Rebocho, M.N. email: mneves@ubi.pt organization: CMUC, Apartado, EC Santa Cruz |
BookMark | eNp9kEFr3DAQhUVIoUman1AQ5NKLE0nWWNatJTRNYSGHNmcxluWsgixtJLvN_vtq2fTSQ08zDN97zHvn5DSm6Aj5yNk1Zz274awDITt9LRiHetJCd_qEnHGpuqYXmp_WvTLNAXpPzkt5Zoy3oOCM4EOkG3xaXc6uucdtpDhNPjqa8rJNTylioLsU9jHNHkOhKdJl6-ga_UKtzzY4OuU00xmX7F_pj3345criMnUvKy4-xfKBvJuq0l2-zQvyePf15-19s3n49v32y6axwGFpBhyFlQP2DjqwgBakGrUVHDTXclDQKgYjH2tiq7AfQXEYehRj34uBSd5ekE9H311OL2t9wsy-WBcCRpfWYrjSreh6kKKiV_-gz2nNNeqBAi1b6JSsFBwpm1Mp2U1ml_2MeW84M4fizd_izaF481Z81X0-6nycUp7xd8phNAvuQ8pTxmh9Me3_Lf4A--SL3A |
CitedBy_id | crossref_primary_10_1142_S2010326320400018 |
Cites_doi | 10.1088/1751-8113/42/45/454019 10.1016/0377-0427(95)00125-5 10.1016/j.jat.2009.07.010 10.1016/j.jat.2008.11.017 10.1007/BF02433038 10.1016/j.jat.2009.05.005 10.1016/j.aml.2005.09.005 10.1016/j.laa.2010.11.037 10.1007/978-3-0348-8081-7 10.36045/bbms/1274896211 10.2307/121101 10.1016/S0024-3795(02)00728-0 10.1016/0377-0427(93)E0247-J 10.1016/j.cam.2009.02.031 10.1090/S0002-9939-04-07566-5 10.1007/s00365-005-0616-7 10.1006/jath.2000.3540 10.1088/0951-7715/18/5/010 10.1088/1751-8113/44/46/465204 10.1007/s002200100525 |
ContentType | Journal Article |
Copyright | 2015 Taylor & Francis 2015 2015 Taylor & Francis |
Copyright_xml | – notice: 2015 Taylor & Francis 2015 – notice: 2015 Taylor & Francis |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/10652469.2015.1092969 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1476-8291 |
EndPage | 93 |
ExternalDocumentID | 3931776211 10_1080_10652469_2015_1092969 1092969 |
Genre | Original Articles Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY AAAVI AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABBKH ABCCY ABFIM ABHAV ABJVF ABLIJ ABPEM ABPTK ABQHQ ABTAI ABXUL ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEGYZ AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFOLD AFWLO AGDLA AGMYJ AHDLD AIJEM AIRXU AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS EJD E~A E~B FUNRP FVPDL GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SNACF TEJ TFL TFT TFW TTHFI TWF UT5 UU3 V1K ZGOLN ~S~ 07G 1TA 5VS AAIKQ AAKBW AAYXX ABJNI ABPAQ ABXYU ACAGQ ACGEE AEUMN AGCQS AGLEN AGROQ AHDZW AHMOU ALCKM AMXXU AWYRJ BCCOT BPLKW C06 CAG CITATION COF CRFIH DMQIW DWIFK IVXBP LJTGL NUSFT QCRFL TAQ TBQAZ TDBHL TFMCV TOXWX TUROJ UB9 UU8 V3K V4Q 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c515t-bad2c4ba8e565c5ac547d9c2159194b753705d1d108c7a8d5715b8a2d882b0413 |
ISSN | 1065-2469 |
IngestDate | Fri Oct 25 11:45:37 EDT 2024 Thu Oct 10 20:01:23 EDT 2024 Thu Sep 12 16:40:27 EDT 2024 Tue Jun 13 19:49:16 EDT 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-bad2c4ba8e565c5ac547d9c2159194b753705d1d108c7a8d5715b8a2d882b0413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://hdl.handle.net/10400.6/9059 |
PQID | 1759435674 |
PQPubID | 176153 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1759435674 proquest_miscellaneous_1793268542 informaworld_taylorfrancis_310_1080_10652469_2015_1092969 crossref_primary_10_1080_10652469_2015_1092969 |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Integral transforms and special functions |
PublicationYear | 2016 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Cachafeiro A (CIT0001) 2004; 6 CIT0010 Erdélyi T (CIT0024) 1991; 29 CIT0012 CIT0023 CIT0011 Branquinho A (CIT0019) 2010; 17 CIT0003 CIT0014 CIT0025 CIT0013 CIT0005 CIT0027 CIT0004 CIT0015 CIT0026 CIT0007 CIT0018 CIT0006 CIT0028 CIT0009 Szegö G (CIT0021) 1975 Simon B (CIT0022) 2005 CIT0008 |
References_xml | – ident: CIT0011 doi: 10.1088/1751-8113/42/45/454019 – ident: CIT0026 doi: 10.1016/0377-0427(95)00125-5 – ident: CIT0007 doi: 10.1016/j.jat.2009.07.010 – volume: 6 start-page: 107 year: 2004 ident: CIT0001 publication-title: J Comput Anal Appl contributor: fullname: Cachafeiro A – ident: CIT0006 doi: 10.1016/j.jat.2008.11.017 – ident: CIT0025 doi: 10.1007/BF02433038 – ident: CIT0014 doi: 10.1016/j.jat.2009.05.005 – ident: CIT0028 doi: 10.1016/j.aml.2005.09.005 – ident: CIT0005 doi: 10.1016/j.laa.2010.11.037 – volume-title: Orthogonal polynomials year: 1975 ident: CIT0021 contributor: fullname: Szegö G – ident: CIT0027 doi: 10.1007/978-3-0348-8081-7 – volume: 17 start-page: 355 year: 2010 ident: CIT0019 publication-title: Bull Belg Math Soc doi: 10.36045/bbms/1274896211 contributor: fullname: Branquinho A – volume: 29 start-page: 41 year: 1991 ident: CIT0024 publication-title: Atti Sem Mat Fis Univ Modena contributor: fullname: Erdélyi T – ident: CIT0012 doi: 10.2307/121101 – volume-title: Orthogonal polynomials on the unit circle – part 1 year: 2005 ident: CIT0022 contributor: fullname: Simon B – ident: CIT0004 doi: 10.1016/S0024-3795(02)00728-0 – ident: CIT0010 doi: 10.1016/0377-0427(93)E0247-J – ident: CIT0003 doi: 10.1016/j.cam.2009.02.031 – ident: CIT0013 doi: 10.1090/S0002-9939-04-07566-5 – ident: CIT0008 doi: 10.1007/s00365-005-0616-7 – ident: CIT0009 doi: 10.1006/jath.2000.3540 – ident: CIT0015 doi: 10.1088/0951-7715/18/5/010 – ident: CIT0018 doi: 10.1088/1751-8113/44/46/465204 – ident: CIT0023 doi: 10.1007/s002200100525 |
SSID | ssj0013575 |
Score | 2.0701606 |
Snippet | In this paper are derived recurrences for the reflection coefficients of Laguerre-Hahn affine orthogonal polynomials on the unit circle, including a form of... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Publisher |
StartPage | 78 |
SubjectTerms | Compatibility Differential equations discrete Painlevé equations Formalism Functions (mathematics) Hermitian linear functionals Laguerre-Hahn affine class Mathematical analysis OPUC Polynomials Reflection coefficient Sylvester equations Transforms |
Title | On Laguerre-Hahn affine orthogonal polynomials on the unit circle from matrix Sylvester equations |
URI | https://www.tandfonline.com/doi/abs/10.1080/10652469.2015.1092969 https://www.proquest.com/docview/1759435674 https://search.proquest.com/docview/1793268542 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVguoEFanmIgbYyErsoIcnYk2RZ8dAI0XZBKyo2kV-ZgkpSMglqWfEP_CFf0nvjvEoroGyiURLbGd_j62P7Pgh5LoSRAAPtzlTGXZYE2o3jQLiJ4txIlUVMoTfy7t58ccjeHvGjwSSo8S6ppKe-X-tX8j9ShXsgV_SSvYFk-0rhBvwG-cIVJAzXf5Lxfu68E8valKXpjBZmC3GMmb8zZI94JlMsm72-0-LkHD2Qm2jJ1rSxhtHsqE8lVGq9TL5guP4z5_35ybcmfoJjvtajDb3Pg9H7smxs1FvOa8M8r2wmewdnyqEQnuWASgMl22y9enveeJ8h6E2Te9Xooz0cs4lVPGPvsWjuxqHNt9XpU-vr3-ImHClHm6unnWZtXsQrCtxaPGJb2BSa3nGMeBUmXbvjgNm_TWS9eWHQxj3tqkmxmrSt5jZZC0EpxROytrN49fHDcObEm7DM_f_s_L1i_8W133OJyVyKc3tlXm_IysE6udeuMuiOhcwGuWXy--Tubh-id_WAqP2cduD59eMnwoZa2NABNnQEG1rkFMpThA21sKEIG2phQ3vY0B42D8nhm9cHLxdum3HDVcBrK1cKHSomRWyA5ysuFGeRThTQwiRImISlbeRzHWjoFBWJWPMo4DIWoYZ1mvSBDz0ik7zIzWNCs1mkJecyZFkAnEckPmNAxufwFrD6LJsSr-u99NQGVkn_KLcpScZ9nFbNjlZm08-ks7-U3ewEkrbjd5UCcU5gsTCP2JQ86x-DdsUjM5GbosZ3cH0TcxY-uen3PiV3hmG0SSZVWZstILCV3G6RdwEc4pV7 |
link.rule.ids | 315,783,787,27938,27939,60220,61009 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAHXgWxUMCVevVqk7WT-FhVVEu7uxxopd4sPwuiJGU3QZRfz0wepQVVHHrKwRknHj_mG3vmM8COMcHiMPB86qLkQiWeF0ViuHJSButiLhxlIy-W2exYHJzIkyu5MBRWST507Igi2rWaJjdtRg8hcfjMZIp-HUVmSSJESlWm7sK9jNJGKY1jsvxzkiBbsl0S4SQzZPHcVM01-3SNvfSf1bo1QfuPwQ0_30WefB03tR27X3_xOt6udU_gUY9Q2W43pJ7CnVA-g4eLS3rX9SaYjyWbm9MmrFaBz8znkpkY8UuMDoGqUwL37Lw6u6CUZxzerCoZSrMGlw_mvqywWkZpLewb3Q_wk326OPvREjaw8L1jHl8_h-P990d7M97f1cAdIqKaW-NTJ6wpAiJEJ42TIvfKIaBQiRIWnaJ8In3isYUuN4WXeSJtYVKPCN9O0JK-gI2yKsNLYHGaeyulTUVM0FoaNUEXckokMqgLGeMIxkMP6fOOkkMnPdPpoDtNutO97kagrvajrtu9kNhdXKKn_5HdGjpd97N7rRFyKYSZWS5GsH1ZjPOSDltMGaqG3iFkXEiRvrrF59_B_dnRYq7nH5aHr-EBFvUh41uwUa-a8AYRUW3ftkP-Nwu9_hE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceCMWChiJq1d52Jv4WNGuFmgXJKjEzfKzRZRk2U1Qy69nJo9CQYhDTzk4tuPx2PNNPPMZ4KUxwaIaeJ67KLlQqedlmRqunJTBulgIR9nIB8vZ4lC8-STHaMLNEFZJPnTsiSK6vZoW98rHMSIOnzOZoVtHgVmS-JAyNVNX4RoigYQUO0-Wvw4SZMe1S1U41RmTeP7VzAXzdIG89K_NurNA89tgx2_vA0--TNvGTt2PP2gdLzW4O3BrwKdsp1eou3AlVPfg5sE5uevmPph3Fds3R21YrwNfmOOKmRixI0ZHQPURQXu2qk_OKOEZlZvVFcParMXNg7nPa2yWUVIL-0q3A5yyD2cn3zu6Bha-9bzjmwdwON_7-GrBh5sauEM81HBrfOaENWVAfOikcVIUXjmEEypVwqJLVCTSpx5H6ApTelmk0pYm84jvbYJ29CFsVXUVHgGLeeGtlDYTMUVbaVSCDmROFDIoCxnjBKbjBOlVT8ih04HndJSdJtnpQXYTUL9Po266PyGxv7ZE5_-puz3OuR7W9kYj4FIIMmeFmMCL82JclXTUYqpQt_QO4eJSiuzxJbp_Dtff7871_uvl2ydwA0uGePFt2GrWbXiKcKixzzqF_wka1fzH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Laguerre%E2%80%93Hahn+affine+orthogonal+polynomials+on+the+unit+circle+from+matrix+Sylvester+equations&rft.jtitle=Integral+transforms+and+special+functions&rft.au=Rebocho%2C+M.N.&rft.date=2016-02-01&rft.issn=1065-2469&rft.eissn=1476-8291&rft.volume=27&rft.issue=2&rft.spage=78&rft.epage=93&rft_id=info:doi/10.1080%2F10652469.2015.1092969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10652469_2015_1092969 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-2469&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-2469&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-2469&client=summon |