Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells

Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In th...

Full description

Saved in:
Bibliographic Details
Published inExperimental cell research Vol. 323; no. 1; pp. 178 - 188
Main Authors Thayanithy, Venugopal, Babatunde, Victor, Dickson, Elizabeth L., Wong, Phillip, Oh, Sanghoon, Ke, Xu, Barlas, Afsar, Fujisawa, Sho, Romin, Yevgeniy, Moreira, André L., Downey, Robert J., Steer, Clifford J., Subramanian, Subbaya, Manova-Todorova, Katia, Moore, Malcolm A.S., Lou, Emil
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.04.2014
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. •Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes.•Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes.•Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation.•Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes.•Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.
AbstractList Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48 hours; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells.
Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells.
Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. •Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes.•Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes.•Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation.•Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes.•Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.
Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24–48 h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3–1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. - Highlights: • Exosomes derived from malignant cells can stimulate an increased rate in the formation of tunneling nanotubes. • Tunneling nanotubes can serve as conduits for intercellular transfer of these exosomes. • Most notably, exosomes derived from benign mesothelial cells had no effect on nanotube formation. • Cells forming nanotubes were enriched in lipid rafts at a greater number compared with cells not forming nanotubes. • Our findings suggest causal and potentially synergistic association of exosomes and tunneling nanotubes in cancer.
Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected cells. The mechanisms of nanotube formation and the effects of the tumor microenvironment and cellular signals on TnT formation are unknown. In the present study, we explored exosomes as potential mediators of TnT formation in mesothelioma and the potential relationship of lipid rafts to TnT formation. Mesothelioma cells co-cultured with exogenous mesothelioma-derived exosomes formed more TnTs than cells cultured without exosomes within 24-48h; and this effect was most prominent in media conditions (low-serum, hyperglycemic medium) that support TnT formation (1.3-1.9-fold difference). Fluorescence and electron microscopy confirmed the purity of isolated exosomes and revealed that they localized predominantly at the base of and within TnTs, in addition to the extracellular environment. Time-lapse microscopic imaging demonstrated uptake of tumor exosomes by TnTs, which facilitated intercellular transfer of these exosomes between connected cells. Mesothelioma cells connected via TnTs were also significantly enriched for lipid rafts at nearly a 2-fold higher number compared with cells not connected by TnTs. Our findings provide supportive evidence of exosomes as potential chemotactic stimuli for TnT formation, and also lipid raft formation as a potential biomarker for TnT-forming cells. [PUBLICATION ABSTRACT]
Author Moreira, André L.
Thayanithy, Venugopal
Babatunde, Victor
Steer, Clifford J.
Downey, Robert J.
Oh, Sanghoon
Fujisawa, Sho
Moore, Malcolm A.S.
Barlas, Afsar
Ke, Xu
Lou, Emil
Dickson, Elizabeth L.
Manova-Todorova, Katia
Wong, Phillip
Romin, Yevgeniy
Subramanian, Subbaya
AuthorAffiliation 7 Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
2 Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
4 Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
6 Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
5 Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
3 Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota 55455, USA
1 Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
8 Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
AuthorAffiliation_xml – name: 4 Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
– name: 2 Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
– name: 7 Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
– name: 8 Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455, USA
– name: 1 Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota 55455, USA
– name: 6 Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
– name: 3 Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota 55455, USA
– name: 5 Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, 10021, USA
Author_xml – sequence: 1
  givenname: Venugopal
  surname: Thayanithy
  fullname: Thayanithy, Venugopal
  organization: Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 2
  givenname: Victor
  surname: Babatunde
  fullname: Babatunde, Victor
  organization: Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 3
  givenname: Elizabeth L.
  surname: Dickson
  fullname: Dickson, Elizabeth L.
  organization: Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 4
  givenname: Phillip
  surname: Wong
  fullname: Wong, Phillip
  organization: Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 5
  givenname: Sanghoon
  surname: Oh
  fullname: Oh, Sanghoon
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 6
  givenname: Xu
  surname: Ke
  fullname: Ke, Xu
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 7
  givenname: Afsar
  surname: Barlas
  fullname: Barlas, Afsar
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 8
  givenname: Sho
  surname: Fujisawa
  fullname: Fujisawa, Sho
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 9
  givenname: Yevgeniy
  surname: Romin
  fullname: Romin, Yevgeniy
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 10
  givenname: André L.
  surname: Moreira
  fullname: Moreira, André L.
  organization: Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 11
  givenname: Robert J.
  surname: Downey
  fullname: Downey, Robert J.
  organization: Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 12
  givenname: Clifford J.
  surname: Steer
  fullname: Steer, Clifford J.
  organization: Departments of Medicine and Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 13
  givenname: Subbaya
  surname: Subramanian
  fullname: Subramanian, Subbaya
  organization: Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
– sequence: 14
  givenname: Katia
  surname: Manova-Todorova
  fullname: Manova-Todorova, Katia
  organization: Molecular Cytology, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 15
  givenname: Malcolm A.S.
  surname: Moore
  fullname: Moore, Malcolm A.S.
  organization: Moore Laboratory, Department of Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
– sequence: 16
  givenname: Emil
  surname: Lou
  fullname: Lou, Emil
  email: emil-lou@umn.edu
  organization: Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24468420$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22395889$$D View this record in Osti.gov
BookMark eNp9UU1r3DAQFSWh2aT9BYUi6NlbjSz549BCCU1bCOSyd2FL47UWW9pKckj-feVsmraXwsAgzZs3b-ZdkjPnHRLyDtgWGFQfD9tHfNBhyxmILYMc4hXZAGtZwQXnZ2TD8lchGl5fkMsYD4yxpoHqNbngQlSN4GxDzG6ZfaD44KOfMVLrzKKRpsU5nKzbU9c5n5b-qUQne7SGhm5IBbpg9Yj5hXvrXaR-oOMyd45mGp_G3O3njmqcpviGnA_dFPHtc74iu5uvu-vvxe3dtx_XX24LLUGmoq-l0Aw6ZmBAM0iAujU566odsMRKyqaXUmAtTdVAzw3qUgyiFAimNXV5RT6faI9LP6PR6FLoJnUMdu7Co_KdVf9WnB3V3t8rAbKFimeCDycCH5NVUduEetQ-n0InxXnZyqZp_6COwf9cMCZ18EtweTEFWTNrJWtWrvKE0sHHGHB40QFMrf6pg3ryT63-KQY5RO56__cKLz2_DcuATycA5jveWwyrTHQajQ2rSuPtfwf8AuIJsW8
CitedBy_id crossref_primary_10_1186_s13014_019_1416_8
crossref_primary_10_1038_s41598_017_08950_7
crossref_primary_10_3389_fonc_2020_559548
crossref_primary_10_1155_2017_6917941
crossref_primary_10_1021_acsami_9b20990
crossref_primary_10_1242_jcs_223321
crossref_primary_10_1515_nipt_2022_0015
crossref_primary_10_3389_fphys_2014_00400
crossref_primary_10_1016_j_lfs_2021_119750
crossref_primary_10_1111_febs_13946
crossref_primary_10_3390_ijms22094770
crossref_primary_10_3390_cancers11091370
crossref_primary_10_1098_rsob_160057
crossref_primary_10_1038_s41598_019_42161_6
crossref_primary_10_3389_fnmol_2023_1240959
crossref_primary_10_3390_cancers14030659
crossref_primary_10_1016_j_trecan_2017_08_001
crossref_primary_10_1016_j_trsl_2014_05_011
crossref_primary_10_1189_jlb_4VMR0915_395R
crossref_primary_10_3390_cells13060495
crossref_primary_10_1016_j_bbcan_2023_189028
crossref_primary_10_1074_jbc_RA118_005659
crossref_primary_10_1371_journal_pone_0224800
crossref_primary_10_1101_mcs_a000893
crossref_primary_10_1002_jev2_12148
crossref_primary_10_1038_s41598_018_27649_x
crossref_primary_10_3109_17435390_2015_1048322
crossref_primary_10_1186_s12964_018_0281_7
crossref_primary_10_3390_cancers12102798
crossref_primary_10_3390_cancers14194958
crossref_primary_10_3390_ijms23147949
crossref_primary_10_3389_fphys_2014_00412
crossref_primary_10_1098_rsob_200300
crossref_primary_10_3390_ijms24043496
crossref_primary_10_1038_s41568_022_00475_0
crossref_primary_10_1007_s11306_016_1065_y
crossref_primary_10_3390_ijms21155432
crossref_primary_10_1038_s41598_017_18405_8
crossref_primary_10_3389_fcell_2018_00095
crossref_primary_10_3389_fnmol_2017_00333
crossref_primary_10_3390_cancers11070892
crossref_primary_10_1007_s00018_016_2233_y
crossref_primary_10_18632_oncotarget_9504
crossref_primary_10_3390_cancers13164001
crossref_primary_10_1083_jcb_201506084
crossref_primary_10_3390_biom11121875
crossref_primary_10_1007_s12264_014_1522_4
crossref_primary_10_1002_cti2_1077
crossref_primary_10_3389_fmolb_2017_00050
crossref_primary_10_1016_j_abb_2023_109624
crossref_primary_10_3390_biology12020204
crossref_primary_10_1002_mrm_25376
crossref_primary_10_1007_s13277_014_2262_9
crossref_primary_10_3390_cancers12040857
crossref_primary_10_3390_ijms22157971
crossref_primary_10_1016_j_critrevonc_2020_102949
crossref_primary_10_3390_cancers13246330
crossref_primary_10_3390_cancers14081989
crossref_primary_10_1038_mto_2016_29
crossref_primary_10_18632_oncotarget_15467
crossref_primary_10_3390_ijms22052306
crossref_primary_10_1016_j_trecan_2015_12_004
crossref_primary_10_1186_s12964_018_0276_4
crossref_primary_10_3390_ijms232315438
crossref_primary_10_1096_fj_202302551
crossref_primary_10_1021_acs_biomac_9b01610
crossref_primary_10_1042_BCJ20170712
crossref_primary_10_1083_jcb_202211044
crossref_primary_10_3389_fmicb_2024_1356415
crossref_primary_10_1016_j_bpj_2020_01_025
crossref_primary_10_1016_j_jhazmat_2024_135003
crossref_primary_10_1186_s12964_017_0201_2
crossref_primary_10_1038_s41467_018_08178_7
crossref_primary_10_1002_bies_201900231
crossref_primary_10_1002_stem_2922
crossref_primary_10_1016_j_hlc_2016_12_002
crossref_primary_10_1016_j_ymeth_2015_03_009
crossref_primary_10_7554_eLife_52535
crossref_primary_10_26508_lsa_202302398
Cites_doi 10.1371/journal.pone.0024234
10.1242/jcs.03228
10.1016/j.cellimm.2008.08.005
10.1128/JVI.00282-09
10.1038/labinvest.2009.94
10.1111/j.1601-0825.2009.01604.x
10.1371/journal.pbio.1001604
10.1016/j.immuni.2005.08.009
10.1126/science.1093133
10.1038/ncb1800
10.1038/ncb1596
10.1038/ncb1841
10.2147/IJN.S16982
10.2741/2327
10.1073/pnas.0914843107
10.1002/ijc.26217
10.1074/jbc.M110.107821
10.1111/j.1600-0854.2004.00214.x
10.1186/1471-2407-11-108
10.1007/s10456-011-9241-1
10.1111/j.1600-0897.2010.00822.x
10.1074/jbc.M109.041152
10.1016/j.yexcr.2008.08.022
10.1007/BF00121214
10.1091/mbc.02-05-0078
10.1186/1742-4690-9-33
10.4049/jimmunol.1002991
10.1038/ncomms2282
10.1038/ni.1753
10.1021/nn901824n
10.2353/ajpath.2010.091071
10.1038/ncb1990
10.1016/j.ygyno.2008.04.033
10.4161/cib.20569
10.1095/biolreprod.108.075481
10.1016/S0002-9440(10)63739-X
10.1371/journal.pone.0029537
10.1038/ncomms1285
10.4161/cam.4.1.10314
10.1021/nn303729r
10.1182/blood-2003-03-0871
10.1038/ncb1682
10.1111/j.1600-0854.2011.01225.x
10.1371/journal.pone.0013247
10.1016/j.febslet.2009.03.065
10.1371/journal.pone.0033093
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright © 2014 Elsevier B.V. All rights reserved.
2014 Elsevier Inc. All rights reserved. 2014
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
– notice: Copyright © 2014 Elsevier B.V. All rights reserved.
– notice: 2014 Elsevier Inc. All rights reserved. 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
P64
RC3
OTOTI
5PM
DOI 10.1016/j.yexcr.2014.01.014
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
MEDLINE


Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1090-2422
EndPage 188
ExternalDocumentID 22395889
3259583151
10_1016_j_yexcr_2014_01_014
24468420
S0014482714000238
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: 5T32-CA132715
– fundername: NCATS NIH HHS
  grantid: UL1 TR000114
– fundername: NCATS NIH HHS
  grantid: 8UL1TR000114
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCATS NIH HHS
  grantid: KL2 TR000113
GroupedDBID ---
--K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABPPZ
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACPRK
ACRLP
ADBBV
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DM4
DOVZS
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KOM
L7B
LG5
LX2
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSU
SSZ
T5K
TEORI
TWZ
VQA
WH7
Y6R
YZZ
ZA5
ZCA
ZMT
ZU3
~G-
~KM
AAXKI
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
.GJ
29G
3O-
53G
9M8
AAQXK
AAYXX
ABEFU
ACKIV
ADFGL
ADMUD
ADVLN
AFJKZ
AGHFR
AGRDE
AI.
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FA8
FEDTE
FGOYB
G-2
G8K
HLW
HVGLF
HZ~
LPU
MVM
NEJ
OHT
R2-
SBG
SEW
VH1
WUQ
X7L
X7M
XOL
XPP
YYP
ZGI
ZKB
7TK
7TM
8FD
FR3
P64
RC3
AALMO
AAPBV
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
PQEST
5PM
ID FETCH-LOGICAL-c515t-b754c01a0d1fedf51179ddf5c69fe3e6558b554e75d681b2dec34f434e1d9d73
IEDL.DBID AIKHN
ISSN 0014-4827
IngestDate Tue Sep 17 21:16:01 EDT 2024
Fri May 19 01:41:06 EDT 2023
Thu Oct 10 16:37:09 EDT 2024
Thu Sep 26 17:42:49 EDT 2024
Sat Sep 28 08:26:51 EDT 2024
Fri Feb 23 02:47:39 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords RT
SMACs
Tunneling nanotubes
Mesothelioma
Lipid rafts
CTCF
MAPK
Exosomes
ATCC
Intercellular transfer
MPs
FBS
mTOR
AMPK
TnTs
Intercellular communication
nm
DIC
ELISA
Language English
License Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-b754c01a0d1fedf51179ddf5c69fe3e6558b554e75d681b2dec34f434e1d9d73
OpenAccessLink https://europepmc.org/articles/pmc4159162?pdf=render
PMID 24468420
PQID 1511095082
PQPubID 32173
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4159162
osti_scitechconnect_22395889
proquest_journals_1511095082
crossref_primary_10_1016_j_yexcr_2014_01_014
pubmed_primary_24468420
elsevier_sciencedirect_doi_10_1016_j_yexcr_2014_01_014
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Experimental cell research
PublicationTitleAlternate Exp Cell Res
PublicationYear 2014
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Rustom, Saffrich, Markovic, Walther, Gerdes (bib1) 2004; 303
Lokar, Kabaso, Resnik, Sepcic, Kralj-Iglic, Veranic, Zorec, Iglic (bib23) 2012; 7
Wang, Liu, Tian, Zhang, Tang, Pang (bib4) 2012; 6
Bukoreshtliev, Wang, Hodneland, Gurke, Barroso, Gerdes (bib43) 2009; 583
Watkins, Salter (bib5) 2005; 23
Calzolari, Raggi, Deaglio, Sposi, Stafsnes, Fecchi, Parolini, Malavasi, Peschle, Sargiacomo, Testa (bib21) 2006; 119
Sowinski, Jolly, Berninghausen, Purbhoo, Chauveau, Kohler, Oddos, Eissmann, Brodsky, Hopkins, Onfelt, Sattentau, Davis (bib8) 2008; 10
Gupta, DeFranco (bib19) 2003; 14
Kosaka, Iguchi, Yoshioka, Takeshita, Matsuki, Ochiya (bib32) 2010; 285
Kenny, Lee, Bissell (bib31) 2007; 12
Escrevente, Keller, Altevogt, Costa (bib24) 2011; 11
Rudnicka, Feldmann, Porrot, Wietgrefe, Guadagnini, Prevost, Estaquier, Haase, Sol-Foulon, Schwartz (bib18) 2009; 83
Gousset, Schiff, Langevin, Marijanovic, Caputo, Browman, Chenouard, de Chaumont, Martino, Enninga, Olivo-Marin, Mannel, Zurzolo (bib12) 2009; 11
Lou, Fujisawa, Morozov, Barlas, Romin, Dogan, Gholami, Moreira, Manova-Todorova, Moore (bib2) 2012; 7
Gatenby, Gawlinski, Reaction-Diffusion (bib27) 1996; 56
Ohshima, Inoue, Fujiwara, Hatakeyama, Kanto, Watanabe, Muramatsu, Fukuda, Ogura, Yamaguchi, Mochizuki (bib36) 2010; 5
Michael, Bajracharya, Yuen, Zhou, Star, Illei, Alevizos (bib34) 2010; 16
Xu, Santini, Sullivan, He, Shan, Ball, Dyer, Ketas, Chadburn, Cohen-Gould, Knowles, Chiu, Sanders, Chen, Cerutti (bib10) 2009; 10
Hase, Kimura, Takatsu, Ohmae, Kawano, Kitamura, Ito, Watarai, Hazelett, Yeaman, Ohno (bib6) 2009; 11
Taverna, Flugy, Saieva, Kohn, Santoro, Meraviglia, De Leo, Alessandro (bib44) 2012; 130
Bobrie, Colombo, Raposo, Thery (bib25) 2011; 12
Tang, Zhang, Zhang, Xu, Liu, Ma, Lv, Li, Katirai, Shen, Zhang, Feng, Ye, Huang (bib47) 2012; 3
Pegtel, Cosmopoulos, Thorley-Lawson, van Eijndhoven, Hopmans, Lindenberg, de Gruijl, Wurdinger, Middeldorp (bib37) 2010; 107
Skog, Wurdinger, van Rijn, Meijer, Gainche, Sena-Esteves, Curry, Carter, Krichevsky, Breakefield (bib38) 2008; 10
Hegmans, Bard, Hemmes, Luider, Kleijmeer, Prins, Zitvogel, Burgers, Hoogsteden, Lambrecht (bib15) 2004; 164
Martinez-Zaguilan, Seftor, Seftor, Chu, Gillies, Hendrix (bib46) 1996; 14
Koumangoye, Sakwe, Goodwin, Patel, Ochieng (bib16) 2011; 6
Luo, Ishibashi, Ishikawa, Ishikawa, Katayama, Mishima, Takizawa, Shigihara, Goto, Izumi, Ohkuchi, Matsubara, Takeshita (bib33) 2009; 81
Yasuda, Park, Ratliff, Addabbo, Hatzopoulos, Chander, Goligorsky (bib14) 2010; 176
Mincheva-Nilsson, Baranov (bib50) 2010; 63
Parolini, Federici, Raggi, Lugini, Palleschi, De Milito, Coscia, Iessi, Logozzi, Molinari, Colone, Tatti, Sargiacomo, Fais (bib45) 2009; 284
Ranzinger, Rustom, Abel, Leyh, Kihm, Witkowski, Scheurich, Zeier, Schwenger (bib9) 2011; 6
Eugenin, Gaskill, Berman, (Tnt) Are (bib7) 2009; 254
Chen, Guo, Yang, Zhu, Cao (bib42) 2011; 186
Gurke, Barroso, Hodneland, Bukoreshtliev, Schlicker, Gerdes (bib13) 2008; 314
Kabaso, Lokar, Kralj-Iglic, Veranic, Iglic (bib22) 2011; 6
Sharma, Rasool, Palanisamy, Mathisen, Schmidt, Wong, Gimzewski (bib41) 2010; 4
Lou, Fujisawa, Barlas, Romin, Manova-Todorova, Moore, Subramanian (bib3) 2012; 5
Galkina, Stadnichuk, Molotkovsky, Romanova, Sud’ina, Klein (bib11) 2010; 4
Valadi, Ekstrom, Bossios, Sjostrand, Lee, Lotvall (bib40) 2007; 9
Taner, Onfelt, Pirinen, McCann, Magee, Davis (bib17) 2004; 5
Mineo, Garfield, Taverna, Flugy, De Leo, Alessandro, Kohn (bib30) 2012; 15
de Gassart, Geminard, Fevrier, Raposo, Vidal (bib49) 2003; 102
Taylor, Gercel-Taylor (bib39) 2008; 110
Mukerji, Olivieri, Misra, Agopian, Gabuzda (bib20) 2012; 9
Hood, Pan, Lanza, Wickline (bib28) 2009; 89
Fruhbeis, Frohlich, Kuo, Amphornrat, Thilemann, Saab, Kirchhoff, Mobius, Goebbels, Nave, Schneider, Simons, Klugmann, Trotter, Kramer-Albers (bib48) 2013; 11
Chalmin, Ladoire, Mignot, Vincent, Bruchard, Remy-Martin, Boireau, Rouleau, Simon, Lanneau, De Thonel, Multhoff, Hamman, Martin, Chauffert, Solary, Zitvogel, Garrido, Ryffel, Borg, Apetoh, Rebe, Ghiringhelli (bib26) 2010; 120
Mittelbrunn, Gutierrez-Vazquez, Villarroya-Beltri, Gonzalez, Sanchez-Cabo, Gonzalez, Bernad, Sanchez-Madrid (bib35) 2011; 2
Lokar (10.1016/j.yexcr.2014.01.014_bib23) 2012; 7
Kosaka (10.1016/j.yexcr.2014.01.014_bib32) 2010; 285
Kenny (10.1016/j.yexcr.2014.01.014_bib31) 2007; 12
Ohshima (10.1016/j.yexcr.2014.01.014_bib36) 2010; 5
Gupta (10.1016/j.yexcr.2014.01.014_bib19) 2003; 14
Skog (10.1016/j.yexcr.2014.01.014_bib38) 2008; 10
Calzolari (10.1016/j.yexcr.2014.01.014_bib21) 2006; 119
Hegmans (10.1016/j.yexcr.2014.01.014_bib15) 2004; 164
Lou (10.1016/j.yexcr.2014.01.014_bib2) 2012; 7
Mineo (10.1016/j.yexcr.2014.01.014_bib30) 2012; 15
Rustom (10.1016/j.yexcr.2014.01.014_bib1) 2004; 303
Luo (10.1016/j.yexcr.2014.01.014_bib33) 2009; 81
Parolini (10.1016/j.yexcr.2014.01.014_bib45) 2009; 284
Rudnicka (10.1016/j.yexcr.2014.01.014_bib18) 2009; 83
Fruhbeis (10.1016/j.yexcr.2014.01.014_bib48) 2013; 11
Ranzinger (10.1016/j.yexcr.2014.01.014_bib9) 2011; 6
Gatenby (10.1016/j.yexcr.2014.01.014_bib27) 1996; 56
Chen (10.1016/j.yexcr.2014.01.014_bib42) 2011; 186
Taner (10.1016/j.yexcr.2014.01.014_bib17) 2004; 5
Mukerji (10.1016/j.yexcr.2014.01.014_bib20) 2012; 9
Mittelbrunn (10.1016/j.yexcr.2014.01.014_bib35) 2011; 2
Mincheva-Nilsson (10.1016/j.yexcr.2014.01.014_bib50) 2010; 63
Hood (10.1016/j.yexcr.2014.01.014_bib28) 2009; 89
Escrevente (10.1016/j.yexcr.2014.01.014_bib24) 2011; 11
Eugenin (10.1016/j.yexcr.2014.01.014_bib7) 2009; 254
Martinez-Zaguilan (10.1016/j.yexcr.2014.01.014_bib46) 1996; 14
Tang (10.1016/j.yexcr.2014.01.014_bib47) 2012; 3
Watkins (10.1016/j.yexcr.2014.01.014_bib5) 2005; 23
Xu (10.1016/j.yexcr.2014.01.014_bib10) 2009; 10
Gurke (10.1016/j.yexcr.2014.01.014_bib13) 2008; 314
Koumangoye (10.1016/j.yexcr.2014.01.014_bib16) 2011; 6
Kabaso (10.1016/j.yexcr.2014.01.014_bib22) 2011; 6
Yasuda (10.1016/j.yexcr.2014.01.014_bib14) 2010; 176
Bobrie (10.1016/j.yexcr.2014.01.014_bib25) 2011; 12
Taverna (10.1016/j.yexcr.2014.01.014_bib44) 2012; 130
Sharma (10.1016/j.yexcr.2014.01.014_bib41) 2010; 4
Sowinski (10.1016/j.yexcr.2014.01.014_bib8) 2008; 10
Hase (10.1016/j.yexcr.2014.01.014_bib6) 2009; 11
Taylor (10.1016/j.yexcr.2014.01.014_bib39) 2008; 110
Michael (10.1016/j.yexcr.2014.01.014_bib34) 2010; 16
Wang (10.1016/j.yexcr.2014.01.014_bib4) 2012; 6
Gousset (10.1016/j.yexcr.2014.01.014_bib12) 2009; 11
Valadi (10.1016/j.yexcr.2014.01.014_bib40) 2007; 9
Lou (10.1016/j.yexcr.2014.01.014_bib3) 2012; 5
de Gassart (10.1016/j.yexcr.2014.01.014_bib49) 2003; 102
Bukoreshtliev (10.1016/j.yexcr.2014.01.014_bib43) 2009; 583
Galkina (10.1016/j.yexcr.2014.01.014_bib11) 2010; 4
Pegtel (10.1016/j.yexcr.2014.01.014_bib37) 2010; 107
Chalmin (10.1016/j.yexcr.2014.01.014_bib26) 2010; 120
References_xml – volume: 314
  start-page: 3669
  year: 2008
  end-page: 3683
  ident: bib13
  article-title: Tunneling nanotube (Tnt)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells
  publication-title: Exp. Cell Res.
  contributor:
    fullname: Gerdes
– volume: 56
  start-page: 5745
  year: 1996
  end-page: 5753
  ident: bib27
  article-title: Model of cancer invasion
  publication-title: Cancer Res.
  contributor:
    fullname: Reaction-Diffusion
– volume: 12
  start-page: 3468
  year: 2007
  end-page: 3474
  ident: bib31
  article-title: Targeting the tumor microenvironment
  publication-title: Front. Biosci.
  contributor:
    fullname: Bissell
– volume: 176
  start-page: 1685
  year: 2010
  end-page: 1695
  ident: bib14
  article-title: Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair
  publication-title: Am. J. Pathol.
  contributor:
    fullname: Goligorsky
– volume: 6
  start-page: 495
  year: 2011
  end-page: 509
  ident: bib22
  article-title: Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in Rt4 and T24 urothelial cancer cell lines
  publication-title: Int. J. Nanomed.
  contributor:
    fullname: Iglic
– volume: 15
  start-page: 33
  year: 2012
  end-page: 45
  ident: bib30
  article-title: Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion
  publication-title: Angiogenesis
  contributor:
    fullname: Kohn
– volume: 16
  start-page: 34
  year: 2010
  end-page: 38
  ident: bib34
  article-title: Exosomes from human saliva as a source of microrna biomarkers
  publication-title: Oral Dis.
  contributor:
    fullname: Alevizos
– volume: 119
  start-page: 4486
  year: 2006
  end-page: 4498
  ident: bib21
  article-title: Tfr2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the mapk pathway
  publication-title: J. Cell Sci.
  contributor:
    fullname: Testa
– volume: 7
  start-page: e33093
  year: 2012
  ident: bib2
  article-title: Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma
  publication-title: PLoS One
  contributor:
    fullname: Moore
– volume: 11
  start-page: 1427
  year: 2009
  end-page: 1432
  ident: bib6
  article-title: M-sec promotes membrane nanotube formation by interacting with ral and the exocyst complex
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Ohno
– volume: 5
  year: 2012
  ident: bib3
  article-title: Tunneling nanotubes: a new paradigm for studying intercellular communication and therapeutics in cancer
  publication-title: Commun. Integr. Biol.
  contributor:
    fullname: Subramanian
– volume: 6
  start-page: 10033
  year: 2012
  end-page: 10041
  ident: bib4
  article-title: Myosin-driven intercellular transportation of wheat germ agglutinin mediated by membrane nanotubes between human lung cancer cells
  publication-title: ACS Nano
  contributor:
    fullname: Pang
– volume: 254
  start-page: 142
  year: 2009
  end-page: 148
  ident: bib7
  article-title: Induced by Hiv-infection of macrophages: a potential mechanism for intercellular Hiv trafficking
  publication-title: Cell. Immunol.
  contributor:
    fullname: (Tnt) Are
– volume: 10
  start-page: 1008
  year: 2009
  end-page: 1017
  ident: bib10
  article-title: Hiv-1 evades virus-specific Igg2 and Iga responses by targeting systemic and intestinal B cells via long-range intercellular conduits
  publication-title: Nat. Immunol.
  contributor:
    fullname: Cerutti
– volume: 12
  start-page: 1659
  year: 2011
  end-page: 1668
  ident: bib25
  article-title: Exosome secretion: molecular mechanisms and roles in immune responses
  publication-title: Traffic
  contributor:
    fullname: Thery
– volume: 14
  start-page: 176
  year: 1996
  end-page: 186
  ident: bib46
  article-title: Acidic pH enhances the invasive behavior of human melanoma cells
  publication-title: Clin. Exp. Metastasis
  contributor:
    fullname: Hendrix
– volume: 89
  start-page: 1317
  year: 2009
  end-page: 1328
  ident: bib28
  article-title: Paracrine induction of endothelium by tumor exosomes
  publication-title: Lab. Invest.
  contributor:
    fullname: Wickline
– volume: 164
  start-page: 1807
  year: 2004
  end-page: 1815
  ident: bib15
  article-title: Proteomic analysis of exosomes secreted by human mesothelioma cells
  publication-title: Am. J. Pathol.
  contributor:
    fullname: Lambrecht
– volume: 107
  start-page: 6328
  year: 2010
  end-page: 6333
  ident: bib37
  article-title: Functional delivery of viral mirnas via exosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Middeldorp
– volume: 83
  start-page: 6234
  year: 2009
  end-page: 6246
  ident: bib18
  article-title: Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses
  publication-title: J. Virol.
  contributor:
    fullname: Schwartz
– volume: 10
  start-page: 211
  year: 2008
  end-page: 219
  ident: bib8
  article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for Hiv-1 transmission
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Davis
– volume: 9
  start-page: 654
  year: 2007
  end-page: 659
  ident: bib40
  article-title: Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Lotvall
– volume: 3
  start-page: 1282
  year: 2012
  ident: bib47
  article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles
  publication-title: Nat. Commun.
  contributor:
    fullname: Huang
– volume: 284
  start-page: 34211
  year: 2009
  end-page: 34222
  ident: bib45
  article-title: Microenvironmental pH is a key factor for exosome traffic in tumor cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Fais
– volume: 130
  start-page: 2033
  year: 2012
  end-page: 2043
  ident: bib44
  article-title: Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis
  publication-title: Int. J. Cancer
  contributor:
    fullname: Alessandro
– volume: 7
  start-page: 1891
  year: 2012
  end-page: 1902
  ident: bib23
  article-title: The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
  publication-title: Int. J. Nanomed.
  contributor:
    fullname: Iglic
– volume: 6
  start-page: e29537
  year: 2011
  ident: bib9
  article-title: Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses
  publication-title: PLoS One
  contributor:
    fullname: Schwenger
– volume: 120
  start-page: 457
  year: 2010
  end-page: 471
  ident: bib26
  article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates Stat3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Ghiringhelli
– volume: 303
  start-page: 1007
  year: 2004
  end-page: 1010
  ident: bib1
  article-title: Nanotubular highways for intercellular organelle transport
  publication-title: Science
  contributor:
    fullname: Gerdes
– volume: 4
  start-page: 1921
  year: 2010
  end-page: 1926
  ident: bib41
  article-title: Structural–mechanical characterization of nanoparticle exosomes in human saliva, using correlative afm, fesem, and force spectroscopy
  publication-title: ACS Nano
  contributor:
    fullname: Gimzewski
– volume: 81
  start-page: 717
  year: 2009
  end-page: 729
  ident: bib33
  article-title: Human villous trophoblasts express and secrete placenta-specific micrornas into maternal circulation via exosomes
  publication-title: Biol. Reprod.
  contributor:
    fullname: Takeshita
– volume: 4
  start-page: 32
  year: 2010
  end-page: 38
  ident: bib11
  article-title: Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils
  publication-title: Cell Adhes. Migr.
  contributor:
    fullname: Klein
– volume: 23
  start-page: 309
  year: 2005
  end-page: 318
  ident: bib5
  article-title: Functional connectivity between immune cells mediated by tunneling nanotubules
  publication-title: Immunity
  contributor:
    fullname: Salter
– volume: 6
  start-page: e24234
  year: 2011
  ident: bib16
  article-title: Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading
  publication-title: PLoS One
  contributor:
    fullname: Ochieng
– volume: 10
  start-page: 1470
  year: 2008
  end-page: 1476
  ident: bib38
  article-title: Glioblastoma microvesicles transport rna and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Breakefield
– volume: 63
  start-page: 520
  year: 2010
  end-page: 533
  ident: bib50
  article-title: The role of placental exosomes in reproduction
  publication-title: Am. J. Reprod. Immunol.
  contributor:
    fullname: Baranov
– volume: 11
  start-page: 328
  year: 2009
  end-page: 336
  ident: bib12
  article-title: Prions hijack tunnelling nanotubes for intercellular spread
  publication-title: Nat. Cell Biol.
  contributor:
    fullname: Zurzolo
– volume: 5
  start-page: 651
  year: 2004
  end-page: 661
  ident: bib17
  article-title: Control of immune responses by trafficking cell surface proteins, vesicles and lipid rafts to and from the immunological synapse
  publication-title: Traffic
  contributor:
    fullname: Davis
– volume: 9
  start-page: 33
  year: 2012
  ident: bib20
  article-title: Proteomic analysis of Hiv-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation
  publication-title: Retrovirology
  contributor:
    fullname: Gabuzda
– volume: 110
  start-page: 13
  year: 2008
  end-page: 21
  ident: bib39
  article-title: Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer
  publication-title: Gynecol. Oncol.
  contributor:
    fullname: Gercel-Taylor
– volume: 186
  start-page: 2219
  year: 2011
  end-page: 2228
  ident: bib42
  article-title: Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine
  publication-title: J. Immunol.
  contributor:
    fullname: Cao
– volume: 583
  start-page: 1481
  year: 2009
  end-page: 1488
  ident: bib43
  article-title: Selective block of tunneling nanotube (Tnt) formation inhibits intercellular organelle transfer between Pc12 cells
  publication-title: FEBS Lett.
  contributor:
    fullname: Gerdes
– volume: 11
  start-page: e1001604
  year: 2013
  ident: bib48
  article-title: Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication
  publication-title: PLoS Biol.
  contributor:
    fullname: Kramer-Albers
– volume: 102
  start-page: 4336
  year: 2003
  end-page: 4344
  ident: bib49
  article-title: Lipid raft-associated protein sorting in exosomes
  publication-title: Blood
  contributor:
    fullname: Vidal
– volume: 5
  start-page: e13247
  year: 2010
  ident: bib36
  article-title: Let-7 microrna family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line
  publication-title: PLoS One
  contributor:
    fullname: Mochizuki
– volume: 14
  start-page: 432
  year: 2003
  end-page: 444
  ident: bib19
  article-title: Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation
  publication-title: Mol. Biol. Cell
  contributor:
    fullname: DeFranco
– volume: 11
  start-page: 108
  year: 2011
  ident: bib24
  article-title: Interaction and uptake of exosomes by ovarian cancer cells
  publication-title: BMC Cancer
  contributor:
    fullname: Costa
– volume: 285
  start-page: 17442
  year: 2010
  end-page: 17452
  ident: bib32
  article-title: Secretory mechanisms and intercellular transfer of micrornas in living cells
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Ochiya
– volume: 2
  start-page: 282
  year: 2011
  ident: bib35
  article-title: Unidirectional transfer of microrna-loaded exosomes from T cells to antigen-presenting cells
  publication-title: Nat. Commun.
  contributor:
    fullname: Sanchez-Madrid
– volume: 6
  start-page: e24234
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib16
  article-title: Detachment of breast tumor cells induces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0024234
  contributor:
    fullname: Koumangoye
– volume: 119
  start-page: 4486
  year: 2006
  ident: 10.1016/j.yexcr.2014.01.014_bib21
  article-title: Tfr2 localizes in lipid raft domains and is released in exosomes to activate signal transduction along the mapk pathway
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03228
  contributor:
    fullname: Calzolari
– volume: 254
  start-page: 142
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib7
  article-title: Induced by Hiv-infection of macrophages: a potential mechanism for intercellular Hiv trafficking
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2008.08.005
  contributor:
    fullname: Eugenin
– volume: 83
  start-page: 6234
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib18
  article-title: Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses
  publication-title: J. Virol.
  doi: 10.1128/JVI.00282-09
  contributor:
    fullname: Rudnicka
– volume: 89
  start-page: 1317
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib28
  article-title: Paracrine induction of endothelium by tumor exosomes
  publication-title: Lab. Invest.
  doi: 10.1038/labinvest.2009.94
  contributor:
    fullname: Hood
– volume: 16
  start-page: 34
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib34
  article-title: Exosomes from human saliva as a source of microrna biomarkers
  publication-title: Oral Dis.
  doi: 10.1111/j.1601-0825.2009.01604.x
  contributor:
    fullname: Michael
– volume: 11
  start-page: e1001604
  year: 2013
  ident: 10.1016/j.yexcr.2014.01.014_bib48
  article-title: Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001604
  contributor:
    fullname: Fruhbeis
– volume: 23
  start-page: 309
  year: 2005
  ident: 10.1016/j.yexcr.2014.01.014_bib5
  article-title: Functional connectivity between immune cells mediated by tunneling nanotubules
  publication-title: Immunity
  doi: 10.1016/j.immuni.2005.08.009
  contributor:
    fullname: Watkins
– volume: 303
  start-page: 1007
  year: 2004
  ident: 10.1016/j.yexcr.2014.01.014_bib1
  article-title: Nanotubular highways for intercellular organelle transport
  publication-title: Science
  doi: 10.1126/science.1093133
  contributor:
    fullname: Rustom
– volume: 10
  start-page: 1470
  year: 2008
  ident: 10.1016/j.yexcr.2014.01.014_bib38
  article-title: Glioblastoma microvesicles transport rna and proteins that promote tumour growth and provide diagnostic biomarkers
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1800
  contributor:
    fullname: Skog
– volume: 9
  start-page: 654
  year: 2007
  ident: 10.1016/j.yexcr.2014.01.014_bib40
  article-title: Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1596
  contributor:
    fullname: Valadi
– volume: 11
  start-page: 328
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib12
  article-title: Prions hijack tunnelling nanotubes for intercellular spread
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1841
  contributor:
    fullname: Gousset
– volume: 6
  start-page: 495
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib22
  article-title: Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in Rt4 and T24 urothelial cancer cell lines
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S16982
  contributor:
    fullname: Kabaso
– volume: 12
  start-page: 3468
  year: 2007
  ident: 10.1016/j.yexcr.2014.01.014_bib31
  article-title: Targeting the tumor microenvironment
  publication-title: Front. Biosci.
  doi: 10.2741/2327
  contributor:
    fullname: Kenny
– volume: 107
  start-page: 6328
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib37
  article-title: Functional delivery of viral mirnas via exosomes
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0914843107
  contributor:
    fullname: Pegtel
– volume: 130
  start-page: 2033
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib44
  article-title: Role of exosomes released by chronic myelogenous leukemia cells in angiogenesis
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.26217
  contributor:
    fullname: Taverna
– volume: 285
  start-page: 17442
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib32
  article-title: Secretory mechanisms and intercellular transfer of micrornas in living cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.107821
  contributor:
    fullname: Kosaka
– volume: 5
  start-page: 651
  year: 2004
  ident: 10.1016/j.yexcr.2014.01.014_bib17
  article-title: Control of immune responses by trafficking cell surface proteins, vesicles and lipid rafts to and from the immunological synapse
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2004.00214.x
  contributor:
    fullname: Taner
– volume: 11
  start-page: 108
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib24
  article-title: Interaction and uptake of exosomes by ovarian cancer cells
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-11-108
  contributor:
    fullname: Escrevente
– volume: 15
  start-page: 33
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib30
  article-title: Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion
  publication-title: Angiogenesis
  doi: 10.1007/s10456-011-9241-1
  contributor:
    fullname: Mineo
– volume: 63
  start-page: 520
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib50
  article-title: The role of placental exosomes in reproduction
  publication-title: Am. J. Reprod. Immunol.
  doi: 10.1111/j.1600-0897.2010.00822.x
  contributor:
    fullname: Mincheva-Nilsson
– volume: 284
  start-page: 34211
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib45
  article-title: Microenvironmental pH is a key factor for exosome traffic in tumor cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.041152
  contributor:
    fullname: Parolini
– volume: 314
  start-page: 3669
  year: 2008
  ident: 10.1016/j.yexcr.2014.01.014_bib13
  article-title: Tunneling nanotube (Tnt)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2008.08.022
  contributor:
    fullname: Gurke
– volume: 14
  start-page: 176
  year: 1996
  ident: 10.1016/j.yexcr.2014.01.014_bib46
  article-title: Acidic pH enhances the invasive behavior of human melanoma cells
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/BF00121214
  contributor:
    fullname: Martinez-Zaguilan
– volume: 14
  start-page: 432
  year: 2003
  ident: 10.1016/j.yexcr.2014.01.014_bib19
  article-title: Visualizing lipid raft dynamics and early signaling events during antigen receptor-mediated B-lymphocyte activation
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.02-05-0078
  contributor:
    fullname: Gupta
– volume: 9
  start-page: 33
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib20
  article-title: Proteomic analysis of Hiv-1 Nef cellular binding partners reveals a role for exocyst complex proteins in mediating enhancement of intercellular nanotube formation
  publication-title: Retrovirology
  doi: 10.1186/1742-4690-9-33
  contributor:
    fullname: Mukerji
– volume: 186
  start-page: 2219
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib42
  article-title: Chemokine-containing exosomes are released from heat-stressed tumor cells via lipid raft-dependent pathway and act as efficient tumor vaccine
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002991
  contributor:
    fullname: Chen
– volume: 3
  start-page: 1282
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib47
  article-title: Delivery of chemotherapeutic drugs in tumour cell-derived microparticles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2282
  contributor:
    fullname: Tang
– volume: 10
  start-page: 1008
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib10
  article-title: Hiv-1 evades virus-specific Igg2 and Iga responses by targeting systemic and intestinal B cells via long-range intercellular conduits
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.1753
  contributor:
    fullname: Xu
– volume: 4
  start-page: 1921
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib41
  article-title: Structural–mechanical characterization of nanoparticle exosomes in human saliva, using correlative afm, fesem, and force spectroscopy
  publication-title: ACS Nano
  doi: 10.1021/nn901824n
  contributor:
    fullname: Sharma
– volume: 176
  start-page: 1685
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib14
  article-title: Adriamycin nephropathy: a failure of endothelial progenitor cell-induced repair
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.091071
  contributor:
    fullname: Yasuda
– volume: 11
  start-page: 1427
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib6
  article-title: M-sec promotes membrane nanotube formation by interacting with ral and the exocyst complex
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1990
  contributor:
    fullname: Hase
– volume: 110
  start-page: 13
  year: 2008
  ident: 10.1016/j.yexcr.2014.01.014_bib39
  article-title: Microrna signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2008.04.033
  contributor:
    fullname: Taylor
– volume: 5
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib3
  article-title: Tunneling nanotubes: a new paradigm for studying intercellular communication and therapeutics in cancer
  publication-title: Commun. Integr. Biol.
  doi: 10.4161/cib.20569
  contributor:
    fullname: Lou
– volume: 81
  start-page: 717
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib33
  article-title: Human villous trophoblasts express and secrete placenta-specific micrornas into maternal circulation via exosomes
  publication-title: Biol. Reprod.
  doi: 10.1095/biolreprod.108.075481
  contributor:
    fullname: Luo
– volume: 164
  start-page: 1807
  year: 2004
  ident: 10.1016/j.yexcr.2014.01.014_bib15
  article-title: Proteomic analysis of exosomes secreted by human mesothelioma cells
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)63739-X
  contributor:
    fullname: Hegmans
– volume: 6
  start-page: e29537
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib9
  article-title: Nanotube action between human mesothelial cells reveals novel aspects of inflammatory responses
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029537
  contributor:
    fullname: Ranzinger
– volume: 2
  start-page: 282
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib35
  article-title: Unidirectional transfer of microrna-loaded exosomes from T cells to antigen-presenting cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1285
  contributor:
    fullname: Mittelbrunn
– volume: 120
  start-page: 457
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib26
  article-title: Membrane-associated Hsp72 from tumor-derived exosomes mediates Stat3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells
  publication-title: J. Clin. Invest.
  contributor:
    fullname: Chalmin
– volume: 4
  start-page: 32
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib11
  article-title: Microbial alkaloid staurosporine induces formation of nanometer-wide membrane tubular extensions (cytonemes, membrane tethers) in human neutrophils
  publication-title: Cell Adhes. Migr.
  doi: 10.4161/cam.4.1.10314
  contributor:
    fullname: Galkina
– volume: 6
  start-page: 10033
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib4
  article-title: Myosin-driven intercellular transportation of wheat germ agglutinin mediated by membrane nanotubes between human lung cancer cells
  publication-title: ACS Nano
  doi: 10.1021/nn303729r
  contributor:
    fullname: Wang
– volume: 102
  start-page: 4336
  year: 2003
  ident: 10.1016/j.yexcr.2014.01.014_bib49
  article-title: Lipid raft-associated protein sorting in exosomes
  publication-title: Blood
  doi: 10.1182/blood-2003-03-0871
  contributor:
    fullname: de Gassart
– volume: 10
  start-page: 211
  year: 2008
  ident: 10.1016/j.yexcr.2014.01.014_bib8
  article-title: Membrane nanotubes physically connect T cells over long distances presenting a novel route for Hiv-1 transmission
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb1682
  contributor:
    fullname: Sowinski
– volume: 7
  start-page: 1891
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib23
  article-title: The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes
  publication-title: Int. J. Nanomed.
  contributor:
    fullname: Lokar
– volume: 12
  start-page: 1659
  year: 2011
  ident: 10.1016/j.yexcr.2014.01.014_bib25
  article-title: Exosome secretion: molecular mechanisms and roles in immune responses
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2011.01225.x
  contributor:
    fullname: Bobrie
– volume: 5
  start-page: e13247
  year: 2010
  ident: 10.1016/j.yexcr.2014.01.014_bib36
  article-title: Let-7 microrna family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013247
  contributor:
    fullname: Ohshima
– volume: 56
  start-page: 5745
  year: 1996
  ident: 10.1016/j.yexcr.2014.01.014_bib27
  article-title: Model of cancer invasion
  publication-title: Cancer Res.
  contributor:
    fullname: Gatenby
– volume: 583
  start-page: 1481
  year: 2009
  ident: 10.1016/j.yexcr.2014.01.014_bib43
  article-title: Selective block of tunneling nanotube (Tnt) formation inhibits intercellular organelle transfer between Pc12 cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2009.03.065
  contributor:
    fullname: Bukoreshtliev
– volume: 7
  start-page: e33093
  year: 2012
  ident: 10.1016/j.yexcr.2014.01.014_bib2
  article-title: Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0033093
  contributor:
    fullname: Lou
SSID ssj0008816
Score 2.4609632
Snippet Tunneling nanotubes (TnTs) are long, non-adherent, actin-based cellular extensions that act as conduits for transport of cellular cargo between connected...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 178
SubjectTerms 60 APPLIED LIFE SCIENCES
ACTIN
Biological Transport - physiology
CATTLE
Cell Communication - physiology
Cell Culture Techniques
Cell Line, Tumor
ENZYME IMMUNOASSAY
ENZYMES
Exosomes
Exosomes - metabolism
FLUORESCENCE
Humans
Intercellular communication
Intercellular transfer
Lipid rafts
LIPIDS
Lung cancer
Membrane Microdomains - metabolism
Mesothelioma
Mesothelioma - metabolism
NANOTUBES
NEOPLASMS
Signal Transduction
Tumor Microenvironment
Tunneling nanotubes
Title Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells
URI https://dx.doi.org/10.1016/j.yexcr.2014.01.014
https://www.ncbi.nlm.nih.gov/pubmed/24468420
https://www.proquest.com/docview/1511095082
https://www.osti.gov/biblio/22395889
https://pubmed.ncbi.nlm.nih.gov/PMC4159162
Volume 323
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SDYVeSt_ZNA069Fg3liXZ8jGEhm1Lc9pCbsZ6mLpk7WXtheTS354Z2V66pe2hYDCyJCNrpJlP1ugbgHfCIOa3uY6sjW0kdewikygdidiUOjEmVZ5-6H-9Thff5OcbdXMAl9NZGHKrHHX_oNODth6fnI-9eb6uazrji4sBnRDjXLA8h3CE5kjKGRxdfPqyuN4pZK1DBFQqH1GFiXwouHnd-ztLvKBcBvpOLv9moGYtzrk_4dDf3Sl_sU9XT-HJCCzZxdD2Z3Dgm-fwaAg1ef8C3HK7ajfM37Vdu_Idw6U4CpX1W_JzQfPFmrJp-60JWey2XteObcqqj3B8kbcopjy5LnesrVgI7MfwNXR867ZuVyWjDYDuJSyvPi4vF9EYYSGyiGP6yGRK2piXseOVd5UifjiHd5vmlRc-VUobxBs-Uy5FfJs4b4WspJCeu9xl4hXMmrbxx8B0knuVytz4ykghrEm5sakTLjPW2ySbw_upV4v1wKNRTA5mP4oghIKEUMQcLzmHdOr5Ym84FKjp_13xlORElYgE15K3ENZCEJQrrXPMnuRXjJO1KxD08Jii4SZzeD2IctdGRD-0UxnPIdsT8q4A0XPv5zT190DTjdAIsXdy8r-f8gYeU4q2rrg6hVm_2fq3iIB6cwaHH37ys3GcPwDAvwhX
link.rule.ids 230,315,786,790,891,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDaW9hPS9aZrq0GNNLFuy5WMIDZvXnraQm7Aepi5Ze1l7Ifn3nfFj6Zamh4LB2CMZWSPPfLJG3wB8iQ1ifpupwNrQBkKFLjCRVEEcmlxFxiTS0w_923ky-y6u7uTdHpyPe2EorHKw_b1N76z1cOd06M3TVVnSHl-cDKiIGOc6z_MM9oVMeTSB_bPL69l8a5CV6jKgUvmAKozkQ12Y16N_sMQLykVH38nFUw5qUuM39zcc-mc45W_-6eIQDgZgyc76tr-CPV-9hud9qsnHN-AWm2W9Zv6hbuqlbxhOxVGprN1QnAu6L1blVd1uTCdi9-WqdGydF22A44uiRfHKU-hyw-qCdYn9GD6Gtm_dl_UyZ7QA0LyFxcW3xfksGDIsBBZxTBuYVAob8jx0vPCukMQP5_Bsk6zwsU-kVAbxhk-lSxDfRs7bWBQiFp67zKXxO5hUdeU_AFNR5mUiMuMLI-LYmoQbm7jYpcZ6G6VT-Dr2ql71PBp6DDD7qTslaFKCDjkeYgrJ2PN6ZzhotPT_rnhMeqJKRIJrKVoIayEIyqRSGYpH_enhY200gh4eUjbcaArve1Vu24joh1YqwymkO0reFiB67l1JVf7oaLoRGiH2jo7-91U-w4vZ4vZG31zOrz_CS5LQMhaXxzBp1xv_CdFQa06G0f4LF48KRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tumor+exosomes+induce+tunneling+nanotubes+in+lipid+raft-enriched+regions+of+human+mesothelioma+cells&rft.jtitle=Experimental+cell+research&rft.au=Thayanithy%2C+Venugopal&rft.au=Babatunde%2C+Victor&rft.au=Dickson%2C+Elizabeth+L.&rft.au=Wong%2C+Phillip&rft.date=2014-04-15&rft.issn=0014-4827&rft.eissn=1090-2422&rft.volume=323&rft.issue=1&rft_id=info:doi/10.1016%2FJ.YEXCR.2014.01.014&rft.externalDocID=22395889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4827&client=summon