Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials
The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regenerat...
Saved in:
Published in | International journal of nanomedicine Vol. 19; pp. 859 - 881 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New Zealand
Dove Medical Press Limited
01.01.2024
Dove Dove Medical Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries. |
---|---|
AbstractList | The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries.The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries. The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries. The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries. Keywords: polydopamine, biomaterial, tissue damage, tissue regeneration Kai Guo,1,* Yong Wang,1,* Zi-Xuan Feng,1 Xiao-Ying Lin,1 Zhang-Rui Wu,1 Xin-Cao Zhong,1 Ze-Ming Zhuang,1 Tao Zhang,1 Jian Chen,2 Wei-Qiang Tan1 1Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China; 2Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China*These authors contributed equally to this workCorrespondence: Jian Chen, Department of Ultrasonography, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang Province, People’s Republic of China, Email chenjianzuj4h@zju.edu.cn Wei-Qiang Tan, Department of Plastic Surgery, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China, Email tanweixxxx@zju.edu.cnAbstract: The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage tissue repair and regeneration. Therefore, many researchers devoted themselves to exploring biomaterials suitable for tissue repair and regeneration. Polydopamine (PDA) as a natural and multifunctional material which is inspired by mussel has been widely applied in different biomaterials. The excellent properties of PDA, such as strong adhesion, photothermal and high drug-loaded capacity, seem to be born for tissue repair and regeneration. Furthermore, PDA combined with different materials can exert unexpected effects. Thus, to inspire researchers, this review summarizes the recent and representative development of PDA biomaterials in tissue repair and regeneration. This article focuses on why apply PDA in these biomaterials and what PDA can do in different tissue injuries. Keywords: polydopamine, biomaterial, tissue damage, tissue regeneration |
Audience | Academic |
Author | Lin, Xiao-Ying Zhuang, Ze-Ming Wu, Zhang-Rui Feng, Zi-Xuan Zhong, Xin-Cao Chen, Jian Guo, Kai Wang, Yong Zhang, Tao Tan, Wei-Qiang |
Author_xml | – sequence: 1 givenname: Kai surname: Guo fullname: Guo, Kai – sequence: 2 givenname: Yong surname: Wang fullname: Wang, Yong – sequence: 3 givenname: Zi-Xuan surname: Feng fullname: Feng, Zi-Xuan – sequence: 4 givenname: Xiao-Ying surname: Lin fullname: Lin, Xiao-Ying – sequence: 5 givenname: Zhang-Rui orcidid: 0000-0002-2417-7316 surname: Wu fullname: Wu, Zhang-Rui – sequence: 6 givenname: Xin-Cao surname: Zhong fullname: Zhong, Xin-Cao – sequence: 7 givenname: Ze-Ming surname: Zhuang fullname: Zhuang, Ze-Ming – sequence: 8 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 9 givenname: Jian surname: Chen fullname: Chen, Jian – sequence: 10 givenname: Wei-Qiang orcidid: 0000-0003-4951-0960 surname: Tan fullname: Tan, Wei-Qiang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38293610$$D View this record in MEDLINE/PubMed |
BookMark | eNptkstr3DAQxkVJaB7tqfdi6KVQdquXLelUtulrQ2jLNj0LWR5vFWzJkbyB_PeVd7chW4JAGka_72OkmTN05IMHhF4RPKeEi_fLy-_zX5wJWfJn6JQQIWcUE3b0KD5BZyndYFwKWann6IRJqlhF8CmqV2DBj8UnuIMuDP0UG98Ui2HonDWjCz4VoS1-hu6-CYPpnYfC-eLapbSBYgWDcXGrWMEaPMStpPjoQm9GiM506QU6bvMBL_fnOfr95fP1xbfZ1Y-vy4vF1cyWpBxnRtG2skzwhihVlqQhjbKUEMKN4MwSBrZmpFacY0atVNAyVUErjC0rWVrJztFy59sEc6OH6HoT73UwTm8TIa61iaOzHWhhVCkBCy4U4TXl0uatIkKUrGLG4uz1Yec1bOoemumLoukOTA9vvPuj1-FOEywnpyo7vN07xHC7gTTq3iULXWc8hE3SVNHcDswZz-ibHbo2uTbn25At7YTrRW4YpbSSLFPzJ6i8GuidzSPRupw_ELx-_IaH4v81PwPvdoCNIaUI7QNCsJ5GS-fR0vvRyjT5j7Zu3HY71-G6JzV_Af_Izuw |
CitedBy_id | crossref_primary_10_1016_j_colsurfb_2024_114324 crossref_primary_10_1016_j_colsurfb_2024_114245 crossref_primary_10_1016_j_colsurfb_2025_114607 crossref_primary_10_1016_j_bioactmat_2024_08_006 |
Cites_doi | 10.1016/j.bioactmat.2022.05.011 10.1016/j.bioactmat.2021.01.037 10.1016/j.bioactmat.2022.05.021 10.3389/fbioe.2022.1008360 10.2147/OAEM.S134657 10.1098/rsif.2015.0614 10.1016/j.actbio.2018.03.034 10.1016/j.carbpol.2020.117598 10.1021/acsbiomaterials.1c00246 10.1016/j.addr.2012.09.037 10.1021/cr400407a 10.1046/j.1423-0410.1997.7230133.x 10.1016/j.bioactmat.2020.06.012 10.1002/jbm.b.34849 10.1126/science.aau6977 10.1021/acsami.7b18458 10.1016/j.jconrel.2019.01.033 10.1016/j.bbr.2022.114101 10.1016/S0967-2109(03)00068-1 10.1016/j.biomaterials.2003.08.062 10.1002/pat.4549 10.4103/0366-6999.220299 10.1016/j.actbio.2016.02.003 10.1016/j.jddst.2020.102296 10.3390/nano10081518 10.1016/j.colsurfb.2021.112112 10.1016/j.jconrel.2020.06.006 10.1016/j.bioactmat.2022.06.012 10.1021/acsami.9b22043 10.3389/fimmu.2018.03155 10.1002/smll.202105988 10.1002/adhm.202100546 10.1021/acsami.2c03172 10.1021/acsnano.8b04022 10.1039/c5tb00051c 10.1111/pcmr.12393 10.1002/pola.28368 10.1111/j.1553-2712.2007.00009.x 10.1016/j.addr.2011.05.011 10.1089/ten.TEA.2018.0326 10.1016/j.colsurfb.2018.10.074 10.1016/j.msec.2021.112227 10.1002/jbm.b.31695 10.1039/c7tb00813a 10.1021/la800091y 10.1002/adhm.202200641 10.1016/j.jot.2019.04.001 10.1021/acs.biomac.0c01085 10.1039/c2nr32092d 10.1021/acsnano.8b09496 10.1021/acsnano.0c05122 10.1016/j.phrs.2021.105887 10.1016/j.biomaterials.2015.10.077 10.3390/ijms221910563 10.1016/j.biomaterials.2006.05.018 10.1021/bi3002538 10.1016/j.ijbiomac.2022.07.051 10.1039/d2tb01122k 10.1128/AEM.02001-07 10.1016/j.biomaterials.2014.04.085 10.1021/acsabm.0c01211 10.3390/pharmaceutics14051028 10.1126/sciadv.abf7207 10.1016/j.pneurobio.2015.09.012 10.1002/smll.201201064 10.1002/smll.202103997 10.1016/j.biomaterials.2019.03.016 10.1039/d1nr04687j 10.1016/j.bioactmat.2022.01.037 10.1046/j.0022-202X.2004.22247.x 10.1530/JME-13-0184 10.1002/smll.202101741 10.1021/acscentsci.8b00177 10.1002/advs.201801555 10.1021/jacs.6b11013 10.1002/jbm.b.35086 10.1002/jcp.27442 10.1021/acsami.1c00819 10.1016/j.jcis.2017.11.019 10.1038/s41467-018-06603-5 10.1016/j.carbpol.2021.118348 10.1016/j.bioactmat.2022.03.028 10.1016/j.biocel.2021.106141 10.1021/sc5006022 10.1002/adfm.201909740 10.1021/acsami.0c08285 10.1039/c1nr10969c 10.1016/j.addr.2015.03.013 10.1039/c6tb02667b 10.1016/j.bioactmat.2021.02.005 10.1016/j.biomaterials.2019.05.014 10.1016/j.athoracsur.2004.11.054 10.1016/j.foodhyd.2019.03.038 10.1016/j.bioactmat.2022.03.011 10.1039/c7tb02436c 10.1002/anie.201801063 10.1021/acsbiomaterials.1c01436 10.5185/amlett.2010.3108 10.1016/0741-5214(94)90173-2 10.1021/acsami.2c15561 10.1016/j.mtbio.2022.100320 10.1016/j.bioactmat.2022.03.023 10.1021/acsami.1c19209 10.2147/DDDT.S315249 10.1016/j.jconrel.2012.10.015 10.1002/anie.201305747 10.1021/acsami.9b04956 10.1016/j.bioactmat.2022.08.030 10.3390/jpm11020151 10.1021/acsami.8b10064 10.1126/science.1147241 10.1016/j.ijbiomac.2019.07.052 10.1002/tcr.201700051 10.1016/j.ijbiomac.2022.09.284 10.1016/j.jconrel.2014.12.011 10.1039/d1bm01329g 10.1016/j.bioactmat.2022.03.021 10.1038/s41563-019-0367-7 10.1039/c9ra10275b 10.1126/sciadv.aay1240 10.1088/1758-5090/aa8fb8 10.1039/d2tb00841f 10.1016/j.aca.2015.01.009 10.1016/j.apsb.2021.10.027 10.1002/smll.201601503 10.1016/j.bioactmat.2022.09.021 10.1002/jor.23656 10.1021/acsanm.3c01068 10.1111/pcmr.12624 10.1002/adhm.202100784 10.1021/acs.nanolett.0c00929 10.1016/j.apsusc.2022.153125 10.1002/jbm.b.34348 10.1016/j.msec.2019.03.091 10.1016/j.nano.2022.102625 10.1021/acsnano.8b00117 10.1016/j.carbpol.2018.04.090 10.1016/j.ucl.2009.02.002 10.1016/j.ijpharm.2021.121231 10.1021/acsnano.9b05766 10.1016/j.bioactmat.2022.09.013 10.1002/btm2.10385 10.1002/adhm.201900847 10.1021/acs.jafc.9b07697 10.1016/j.mtbio.2022.100361 10.4103/1673-5374.202928 10.1126/sciadv.aaz7822 10.1002/advs.201800155 10.1002/adfm.201400279 10.1016/j.isci.2019.100778 10.1016/j.bioactmat.2021.11.036 10.1126/science.277.5330.1232 10.1016/j.mtbio.2022.100370 10.1016/j.msec.2021.112589 10.1016/j.biomaterials.2022.121684 10.1016/j.msec.2020.110690 10.1016/j.bioactmat.2022.01.041 10.1016/j.biomaterials.2018.06.037 10.1021/acs.chemmater.6b05192 10.1016/j.mtbio.2022.100458 10.1039/c6sc04692d 10.1002/smll.202007522 10.1038/nmat4758 10.1016/j.jhazmat.2022.130616 10.1021/acs.biomac.8b01013 10.1016/j.actbio.2013.06.014 10.1016/j.biomaterials.2020.120534 10.1021/acsami.6b16192 10.2147/IJN.S162644 10.1038/35039551 |
ContentType | Journal Article |
Copyright | 2024 Guo et al. COPYRIGHT 2024 Dove Medical Press Limited 2024 Guo et al. 2024 Guo et al. |
Copyright_xml | – notice: 2024 Guo et al. – notice: COPYRIGHT 2024 Dove Medical Press Limited – notice: 2024 Guo et al. 2024 Guo et al. |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.2147/IJN.S437854 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitleAlternate | Guo et al |
EISSN | 1178-2013 |
EndPage | 881 |
ExternalDocumentID | oai_doaj_org_article_7a958e0747914b248cb2461775363ac0 PMC10824616 A786222683 38293610 10_2147_IJN_S437854 |
Genre | Journal Article Review |
GeographicLocations | Iran China |
GeographicLocations_xml | – name: China – name: Iran |
GroupedDBID | --- 0YH 29J 2WC 53G 5GY 5VS 7X7 8FI 8FJ 8G5 AAYXX ABUWG ACGFO ADBBV ADRAZ AEGXH AENEX AFKRA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ BVXVI CCPQU CITATION CS3 DIK DU5 DWQXO E3Z EBD EBS EJD EMOBN F5P FYUFA GNUQQ GROUPED_DOAJ GUQSH GX1 HMCUK HYE IAO IHR ITC KQ8 M2O M48 MM. O5R O5S OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RNS RPM SJN SV3 TDBHL TR2 UKHRP VDV NPM PMFND 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c515t-a92f6c374d199551d1d9c21114a743c13ecb31b944032c89ef396ef7ac5685c83 |
IEDL.DBID | M48 |
ISSN | 1178-2013 1176-9114 |
IngestDate | Wed Aug 27 01:28:08 EDT 2025 Thu Aug 21 18:35:56 EDT 2025 Fri Jul 11 13:17:54 EDT 2025 Tue Jun 17 22:14:14 EDT 2025 Tue Jun 10 21:11:50 EDT 2025 Mon Jul 21 06:07:23 EDT 2025 Thu Apr 24 22:57:36 EDT 2025 Tue Jul 01 03:52:25 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | tissue regeneration polydopamine tissue damage biomaterial |
Language | English |
License | https://creativecommons.org/licenses/by-nc/3.0 2024 Guo et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-a92f6c374d199551d1d9c21114a743c13ecb31b944032c89ef396ef7ac5685c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work |
ORCID | 0000-0002-2417-7316 0000-0003-4951-0960 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.2147/IJN.S437854 |
PMID | 38293610 |
PQID | 2920570434 |
PQPubID | 23479 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7a958e0747914b248cb2461775363ac0 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10824616 proquest_miscellaneous_2920570434 gale_infotracmisc_A786222683 gale_infotracacademiconefile_A786222683 pubmed_primary_38293610 crossref_primary_10_2147_IJN_S437854 crossref_citationtrail_10_2147_IJN_S437854 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New Zealand |
PublicationPlace_xml | – name: New Zealand |
PublicationTitle | International journal of nanomedicine |
PublicationTitleAlternate | Int J Nanomedicine |
PublicationYear | 2024 |
Publisher | Dove Medical Press Limited Dove Dove Medical Press |
Publisher_xml | – name: Dove Medical Press Limited – name: Dove – name: Dove Medical Press |
References | Hu (ref80) 2017; 5 Wardani (ref81) 2019; 30 Gong (ref53) 2021; 109 Farhood (ref98) 2019; 234 Chen (ref99) 2022; 12 Shi (ref168) 2022; 10 Li (ref103) 2018; 5 Zhang (ref138) 2020; 110 Pennisi (ref26) 2023; 436 Lynge (ref119) 2011; 3 Sun (ref62) 2021; 7 Zhang (ref112) 2013; 5 Yan (ref116) 2013; 9 Radosevich (ref37) 1997; 72 Che (ref105) 2023; 19 de Villiers (ref133) 2011; 63 (ref13) 2017 Mourya (ref152) 2010; 1 Wu (ref170) 2022; 11 Zhang (ref77) 2022; 10 Chen (ref160) 2022; 18 Pandey (ref43) 2022; 134 Wang (ref159) 2015; 862 Guo (ref59) 2022; 15 Yang (ref114) 2022; 18 Lund (ref74) 2014; 52 Gao (ref78) 2022; 14 Jia (ref82) 2019; 17 Zucca (ref21) 2017; 155 Li (ref47) 2019; 174 Sigal (ref50) 2017; 9 Shadish (ref66) 2019; 18 Fan (ref89) 2020; 14 Shin (ref48) 2017; 16 Kalluri (ref86) 2020; 367 Wu (ref126) 2022; 17 Ou-Yang (ref18) 2004; 122 Zeng (ref30) 2022; 14 Zhao (ref139) 2022; 288 Wheat (ref36) 2009; 36 Xie (ref113) 2018; 4 Bao (ref164) 2018; 12 Zhu (ref79) 2019; 101 Deng (ref1) 2022; 110 Lee (ref25) 2007; 318 Cavallini (ref10) 2020; 10 Eawsakul (ref64) 2021; 61 Fan (ref96) 2021; 6 Decher (ref132) 1997; 277 Kim (ref75) 2018; 72 Gogoi (ref155) 2014; 2 Allen (ref106) 2013; 65 Yang (ref134) 2021; 269 Danner (ref16) 2012; 51 Chen (ref34) 2017; 8 Su (ref95) 2021; 7 Fiorica (ref104) 2021; 610 Sohrabi (ref167) 2018; 9 Roy (ref23) 2019; 94 Dai (ref153) 2022; 14 Liang (ref158) 2018; 9 Fan (ref41) 2016; 33 Pellegrini (ref73) 2000; 407 Tolabi (ref32) 2022; 10 Yuan (ref28) 2021; 17 Yi (ref149) 2020; 3 Li (ref100) 2018; 36 Kalia (ref17) 2018; 31 Li (ref90) 2020; 20 Liu (ref19) 2017; 139 Zhang (ref4) 2023; 20 Kim (ref69) 2018; 19 Li (ref166) 2022; 18 Kord Forooshani (ref12) 2017; 55 Liu (ref121) 2014; 114 Samavedi (ref111) 2013; 9 Chen (ref151) 2018; 10 Rao (ref148) 2022; 14 Hu (ref57) 2022; 18 Deng (ref60) 2022; 11 Lee (ref94) 2020; 6 Chiang (ref102) 2015; 199 Zhang (ref117) 2021; 13 Zhang (ref45) 2019; 138 Saiz-Poseu (ref35) 2019; 58 Daraghmeh (ref156) 2021; 173 Fu (ref165) 2021; 257 Gao (ref83) 2017; 5 Zhu (ref130) 2022; 17 Ma (ref29) 2020; 12 Ran (ref122) 2022; 14 Li (ref147) 2017; 9 Panzella (ref20) 2013; 52 Chen (ref42) 2017; 5 Zheng (ref33) 2021; 22 Wang (ref108) 2014; 24 Miller (ref11) 2015; 12 Kong (ref107) 2001; 61 Bei (ref88) 2021; 17 Jiang (ref3) 2017; 130 Wu (ref144) 2017; 9 Liu (ref49) 2019; 205 Sun (ref101) 2021; 10 Zhao (ref140) 2018; 195 Yazdi (ref31) 2022; 8 Gong (ref154) 2016; 12 Chen (ref63) 2023; 47 Pajorova (ref137) 2018; 13 Wasilewska (ref135) 2018; 513 Jin (ref7) 2022; 16 Yang (ref142) 2004; 25 Zhang (ref150) 2021; 13 Mondelo-Macía (ref157) 2021; 11 Wu (ref71) 2023; 20 Xu (ref131) 2019; 212 Liu (ref8) 2023; 22 Wang (ref27) 2022; 15 Wei (ref163) 2021; 15 Taghizadeh (ref9) 2022; 7 Zheng (ref129) 2021; 6 Leng (ref44) 2021; 270 Babilotte (ref2) 2019; 107 Yin (ref125) 2022; 16 Liang (ref51) 2019; 11 Furst (ref40) 2005; 79 Agarwal (ref68) 2015; 94 Mao (ref146) 2019; 6 Deng (ref84) 2018; 18 Liu (ref46) 2018; 179 Li (ref56) 2020; 12 Sun (ref97) 2020; 30 Jung (ref109) 2008; 74 Chen (ref6) 2023; 22 Wang (ref115) 2014; 35 Silva (ref87) 2018; 12 Joch (ref38) 2003; 11 Ma (ref24) 2019; 13 Hu (ref93) 2018; 10 Fang (ref173) 2023; 6 Wei (ref169) 2023; 20 Pike (ref72) 2006; 27 Peng (ref123) 2021; 9 Shim (ref143) 2010; 95 Haining (ref14) 2017; 12 Zhang (ref5) 2023; 21 Lin (ref118) 2019; 13 Li (ref61) 2021; 208 Zhang (ref52) 2020; 5 Dong (ref58) 2022; 217 Feng (ref141) 2021; 10 Swanson (ref92) 2020; 324 Fang (ref172) 2023; 445 Saita (ref162) 2016; 76 Smetana (ref110) 2008; 24 Wang (ref124) 2017; 29 Zhou (ref145) 2015; 3 Yuan (ref127) 2021; 17 Hong (ref22) 2020; 23 Pan (ref120) 2020; 68 Hettiaratchi (ref65) 2019; 297 Tian (ref136) 2020; 10 Liu (ref171) 2022; 590 Ford Versypt (ref85) 2013; 165 Mol (ref91) 2019; 8 Schoonraad (ref70) 2021; 22 Zheng (ref161) 2022; 143 Kozen (ref54) 2008; 15 Cao (ref55) 2021; 127 Ennker (ref39) 1994; 20 Hettiaratchi (ref76) 2020; 6 Xiong (ref128) 2022; 222 d’Ischia (ref15) 2015; 28 Pearson (ref67) 2019; 25 |
References_xml | – volume: 20 start-page: 16 year: 2023 ident: ref169 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.05.011 – volume: 6 start-page: 2613 year: 2021 ident: ref129 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.01.037 – volume: 20 start-page: 111 year: 2023 ident: ref71 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.05.021 – volume: 10 start-page: 1008360 year: 2022 ident: ref32 publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2022.1008360 – volume: 9 start-page: 47 year: 2017 ident: ref50 publication-title: Open Access Emerg Med doi: 10.2147/OAEM.S134657 – volume: 12 start-page: 20150614 year: 2015 ident: ref11 publication-title: J R Soc Interface doi: 10.1098/rsif.2015.0614 – volume: 72 start-page: 45 year: 2018 ident: ref75 publication-title: Acta Biomater doi: 10.1016/j.actbio.2018.03.034 – volume: 257 start-page: 117598 year: 2021 ident: ref165 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.117598 – volume: 7 start-page: 4883 year: 2021 ident: ref62 publication-title: Acs Biomater Sci Eng doi: 10.1021/acsbiomaterials.1c00246 – volume: 65 start-page: 36 year: 2013 ident: ref106 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2012.09.037 – volume: 114 start-page: 5057 year: 2014 ident: ref121 publication-title: Chem Rev doi: 10.1021/cr400407a – volume: 72 start-page: 133 year: 1997 ident: ref37 publication-title: Vox Sang doi: 10.1046/j.1423-0410.1997.7230133.x – volume: 5 start-page: 1071 year: 2020 ident: ref52 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2020.06.012 – volume: 109 start-page: 1876 year: 2021 ident: ref53 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34849 – volume: 367 year: 2020 ident: ref86 publication-title: Science doi: 10.1126/science.aau6977 – volume: 10 start-page: 2377 year: 2018 ident: ref93 publication-title: Acs Appl Mater Inter doi: 10.1021/acsami.7b18458 – volume: 297 start-page: 14 year: 2019 ident: ref65 publication-title: J Control Release doi: 10.1016/j.jconrel.2019.01.033 – volume: 436 start-page: 114101 year: 2023 ident: ref26 publication-title: Behav Brain Res doi: 10.1016/j.bbr.2022.114101 – volume: 11 start-page: 23 year: 2003 ident: ref38 publication-title: Cardiovasc Surg doi: 10.1016/S0967-2109(03)00068-1 – volume: 25 start-page: 1891 year: 2004 ident: ref142 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.08.062 – volume: 30 start-page: 1148 year: 2019 ident: ref81 publication-title: Polym Adv Technol doi: 10.1002/pat.4549 – volume: 130 start-page: 2996 year: 2017 ident: ref3 publication-title: Chin Med J doi: 10.4103/0366-6999.220299 – volume: 33 start-page: 51 year: 2016 ident: ref41 publication-title: Acta Biomater doi: 10.1016/j.actbio.2016.02.003 – volume: 61 year: 2021 ident: ref64 publication-title: J Drug Deliv Sci Tec doi: 10.1016/j.jddst.2020.102296 – volume: 10 start-page: 1518 year: 2020 ident: ref10 publication-title: Nanomaterials doi: 10.3390/nano10081518 – volume: 208 start-page: 112112 year: 2021 ident: ref61 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2021.112112 – volume: 324 start-page: 679 year: 2020 ident: ref92 publication-title: J Control Release doi: 10.1016/j.jconrel.2020.06.006 – volume: 20 start-page: 638 year: 2023 ident: ref4 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.06.012 – volume: 12 start-page: 6955 year: 2020 ident: ref29 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b22043 – volume: 9 start-page: 3155 year: 2018 ident: ref167 publication-title: Front Immunol doi: 10.3389/fimmu.2018.03155 – volume: 18 start-page: e2105988 year: 2022 ident: ref114 publication-title: Small doi: 10.1002/smll.202105988 – volume: 10 start-page: e2100546 year: 2021 ident: ref101 publication-title: Adv Healthc Mater doi: 10.1002/adhm.202100546 – volume: 14 start-page: 14668 year: 2022 ident: ref153 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c03172 – volume: 12 start-page: 8882 year: 2018 ident: ref164 publication-title: ACS Nano doi: 10.1021/acsnano.8b04022 – volume: 3 start-page: 4439 year: 2015 ident: ref145 publication-title: J Mater Chem B doi: 10.1039/c5tb00051c – volume: 28 start-page: 520 year: 2015 ident: ref15 publication-title: Pigm Cell Melanoma Res doi: 10.1111/pcmr.12393 – volume: 55 start-page: 9 year: 2017 ident: ref12 publication-title: J Polym Sci a Polym Chem doi: 10.1002/pola.28368 – volume: 15 start-page: 74 year: 2008 ident: ref54 publication-title: Acad Emerg Med doi: 10.1111/j.1553-2712.2007.00009.x – volume: 63 start-page: 701 year: 2011 ident: ref133 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2011.05.011 – volume: 25 start-page: 1623 year: 2019 ident: ref67 publication-title: Tissue Eng Part A doi: 10.1089/ten.TEA.2018.0326 – volume: 174 start-page: 35 year: 2019 ident: ref47 publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2018.10.074 – volume: 127 start-page: 112227 year: 2021 ident: ref55 publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2021.112227 – volume: 95 start-page: 150 year: 2010 ident: ref143 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.31695 – volume: 5 start-page: 5668 year: 2017 ident: ref42 publication-title: J Mater Chem B doi: 10.1039/c7tb00813a – volume: 24 start-page: 7457 year: 2008 ident: ref110 publication-title: Langmuir doi: 10.1021/la800091y – volume: 11 start-page: e2200641 year: 2022 ident: ref60 publication-title: Adv Healthc Mater doi: 10.1002/adhm.202200641 – volume: 17 start-page: 82 year: 2019 ident: ref82 publication-title: J Orthop Translat doi: 10.1016/j.jot.2019.04.001 – volume: 22 start-page: 1065 year: 2021 ident: ref70 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c01085 – volume: 5 start-page: 118 year: 2013 ident: ref112 publication-title: Nanoscale doi: 10.1039/c2nr32092d – volume: 13 start-page: 4302 year: 2019 ident: ref24 publication-title: ACS Nano doi: 10.1021/acsnano.8b09496 – volume: 14 start-page: 11973 year: 2020 ident: ref89 publication-title: ACS Nano doi: 10.1021/acsnano.0c05122 – volume: 173 start-page: 105887 year: 2021 ident: ref156 publication-title: Pharmacol Res doi: 10.1016/j.phrs.2021.105887 – volume: 76 start-page: 292 year: 2016 ident: ref162 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.077 – volume: 22 year: 2021 ident: ref33 publication-title: Int J Mol Sci doi: 10.3390/ijms221910563 – volume: 27 start-page: 5242 year: 2006 ident: ref72 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.05.018 – volume: 51 start-page: 6511 year: 2012 ident: ref16 publication-title: Biochemistry doi: 10.1021/bi3002538 – volume: 217 start-page: 367 year: 2022 ident: ref58 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2022.07.051 – volume: 10 start-page: 6214 year: 2022 ident: ref77 publication-title: J Mater Chem B doi: 10.1039/d2tb01122k – volume: 61 start-page: 3027 year: 2001 ident: ref107 publication-title: Cancer Res – volume: 74 start-page: 2171 year: 2008 ident: ref109 publication-title: Appl Environ Microbiol doi: 10.1128/AEM.02001-07 – volume: 35 start-page: 6758 year: 2014 ident: ref115 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2014.04.085 – volume: 3 start-page: 8943 year: 2020 ident: ref149 publication-title: ACS Appl Bio Mater doi: 10.1021/acsabm.0c01211 – volume: 14 start-page: 1028 year: 2022 ident: ref148 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics14051028 – volume: 7 year: 2021 ident: ref95 publication-title: Sci Adv doi: 10.1126/sciadv.abf7207 – volume: 155 start-page: 96 year: 2017 ident: ref21 publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2015.09.012 – volume: 9 start-page: 596 year: 2013 ident: ref116 publication-title: Small doi: 10.1002/smll.201201064 – volume: 17 start-page: e2103997 year: 2021 ident: ref127 publication-title: Small doi: 10.1002/smll.202103997 – volume: 205 start-page: 23 year: 2019 ident: ref49 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.03.016 – volume: 13 start-page: 15937 year: 2021 ident: ref117 publication-title: Nanoscale doi: 10.1039/d1nr04687j – volume: 17 start-page: 195 year: 2022 ident: ref130 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.01.037 – volume: 122 start-page: 492 year: 2004 ident: ref18 publication-title: J Invest Dermatol doi: 10.1046/j.0022-202X.2004.22247.x – volume: 52 start-page: 345 year: 2014 ident: ref74 publication-title: J Mol Endocrinol doi: 10.1530/JME-13-0184 – volume: 17 start-page: e2101741 year: 2021 ident: ref88 publication-title: Small doi: 10.1002/smll.202101741 – volume: 4 start-page: 724 year: 2018 ident: ref113 publication-title: ACS Cent Sci doi: 10.1021/acscentsci.8b00177 – volume: 6 start-page: 1801555 year: 2019 ident: ref146 publication-title: Adv Sci doi: 10.1002/advs.201801555 – volume: 139 start-page: 856 year: 2017 ident: ref19 publication-title: J Am Chem Soc doi: 10.1021/jacs.6b11013 – volume: 110 start-page: 2542 year: 2022 ident: ref1 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.35086 – volume: 234 start-page: 5728 year: 2019 ident: ref98 publication-title: J Cell Physiol doi: 10.1002/jcp.27442 – volume: 13 start-page: 12531 year: 2021 ident: ref150 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c00819 – volume: 513 start-page: 170 year: 2018 ident: ref135 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2017.11.019 – volume-title: Design of Robust Hydrogel Based on Mussel-Inspired Chemistry year: 2017 ident: ref13 – volume: 9 start-page: 4291 year: 2018 ident: ref158 publication-title: Nat Commun doi: 10.1038/s41467-018-06603-5 – volume: 270 start-page: 118348 year: 2021 ident: ref44 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2021.118348 – volume: 18 start-page: 409 year: 2022 ident: ref160 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.03.028 – volume: 143 start-page: 106141 year: 2022 ident: ref161 publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2021.106141 – volume: 2 start-page: 2730 year: 2014 ident: ref155 publication-title: ACS Sustain Chem Eng doi: 10.1021/sc5006022 – volume: 30 year: 2020 ident: ref97 publication-title: Adv Funct Mater doi: 10.1002/adfm.201909740 – volume: 12 start-page: 35856 year: 2020 ident: ref56 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c08285 – volume: 3 start-page: 4916 year: 2011 ident: ref119 publication-title: Nanoscale doi: 10.1039/c1nr10969c – volume: 94 start-page: 53 year: 2015 ident: ref68 publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2015.03.013 – volume: 5 start-page: 575 year: 2017 ident: ref80 publication-title: J Mater Chem B doi: 10.1039/c6tb02667b – volume: 6 start-page: 2754 year: 2021 ident: ref96 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.02.005 – volume: 212 start-page: 98 year: 2019 ident: ref131 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.05.014 – volume: 79 start-page: 1522 year: 2005 ident: ref40 publication-title: Ann Thorac Surg doi: 10.1016/j.athoracsur.2004.11.054 – volume: 94 start-page: 391 year: 2019 ident: ref23 publication-title: Food Hydrocoll doi: 10.1016/j.foodhyd.2019.03.038 – volume: 18 start-page: 228 year: 2022 ident: ref57 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.03.011 – volume: 5 start-page: 9326 year: 2017 ident: ref83 publication-title: J Mater Chem B doi: 10.1039/c7tb02436c – volume: 58 start-page: 696 year: 2019 ident: ref35 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201801063 – volume: 8 start-page: 2196 year: 2022 ident: ref31 publication-title: ACS Biomater Sci Eng doi: 10.1021/acsbiomaterials.1c01436 – volume: 1 start-page: 11 year: 2010 ident: ref152 publication-title: Adv Mater Lett doi: 10.5185/amlett.2010.3108 – volume: 20 start-page: 34 year: 1994 ident: ref39 publication-title: J Vasc Surg doi: 10.1016/0741-5214(94)90173-2 – volume: 14 start-page: 49375 year: 2022 ident: ref122 publication-title: Acs Appl Mater Inter doi: 10.1021/acsami.2c15561 – volume: 15 start-page: 100320 year: 2022 ident: ref27 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100320 – volume: 19 start-page: 75 year: 2023 ident: ref105 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.03.023 – volume: 14 start-page: 2534 year: 2022 ident: ref30 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.1c19209 – volume: 15 start-page: 3509 year: 2021 ident: ref163 publication-title: Drug Des Devel Ther doi: 10.2147/DDDT.S315249 – volume: 165 start-page: 29 year: 2013 ident: ref85 publication-title: J Control Release doi: 10.1016/j.jconrel.2012.10.015 – volume: 52 start-page: 12684 year: 2013 ident: ref20 publication-title: Angew Chem Int Ed Engl doi: 10.1002/anie.201305747 – volume: 11 start-page: 23848 year: 2019 ident: ref51 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b04956 – volume: 21 start-page: 450 year: 2023 ident: ref5 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.08.030 – volume: 11 start-page: 151 year: 2021 ident: ref157 publication-title: J Pers Med doi: 10.3390/jpm11020151 – volume: 10 start-page: 33523 year: 2018 ident: ref151 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b10064 – volume: 318 start-page: 426 year: 2007 ident: ref25 publication-title: Science doi: 10.1126/science.1147241 – volume: 138 start-page: 321 year: 2019 ident: ref45 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2019.07.052 – volume: 18 start-page: 410 year: 2018 ident: ref84 publication-title: Chem Rec doi: 10.1002/tcr.201700051 – volume: 222 start-page: 1948 year: 2022 ident: ref128 publication-title: Int J Biol Macromol doi: 10.1016/j.ijbiomac.2022.09.284 – volume: 199 start-page: 53 year: 2015 ident: ref102 publication-title: J Control Release doi: 10.1016/j.jconrel.2014.12.011 – volume: 9 start-page: 7483 year: 2021 ident: ref123 publication-title: Biomater Sci doi: 10.1039/d1bm01329g – volume: 18 start-page: 213 year: 2022 ident: ref166 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.03.021 – volume: 18 start-page: 1005 year: 2019 ident: ref66 publication-title: Nat Mater doi: 10.1038/s41563-019-0367-7 – volume: 10 start-page: 4805 year: 2020 ident: ref136 publication-title: RSC Adv doi: 10.1039/c9ra10275b – volume: 6 start-page: eaay1240 year: 2020 ident: ref76 publication-title: Sci Adv doi: 10.1126/sciadv.aay1240 – volume: 9 start-page: 044106 year: 2017 ident: ref144 publication-title: Biofabrication doi: 10.1088/1758-5090/aa8fb8 – volume: 10 start-page: 6351 year: 2022 ident: ref168 publication-title: J Mater Chem B doi: 10.1039/d2tb00841f – volume: 862 start-page: 33 year: 2015 ident: ref159 publication-title: Anal Chim Acta doi: 10.1016/j.aca.2015.01.009 – volume: 12 start-page: 2522 year: 2022 ident: ref99 publication-title: Acta Pharm Sin B doi: 10.1016/j.apsb.2021.10.027 – volume: 12 start-page: 5769 year: 2016 ident: ref154 publication-title: Small doi: 10.1002/smll.201601503 – volume: 22 start-page: 141 year: 2023 ident: ref6 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.09.021 – volume: 36 start-page: 22 year: 2018 ident: ref100 publication-title: J Orthop Res doi: 10.1002/jor.23656 – volume: 6 start-page: 6423 year: 2023 ident: ref173 publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.3c01068 – volume: 31 start-page: 31 year: 2018 ident: ref17 publication-title: Pigm Cell Melanoma Res doi: 10.1111/pcmr.12624 – volume: 10 start-page: e2100784 year: 2021 ident: ref141 publication-title: Adv Healthc Mater doi: 10.1002/adhm.202100784 – volume: 20 start-page: 4298 year: 2020 ident: ref90 publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c00929 – volume: 590 start-page: 153125 year: 2022 ident: ref171 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2022.153125 – volume: 107 start-page: 2579 year: 2019 ident: ref2 publication-title: J Biomed Mater Res B Appl Biomater doi: 10.1002/jbm.b.34348 – volume: 101 start-page: 232 year: 2019 ident: ref79 publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2019.03.091 – volume: 47 start-page: 102625 year: 2023 ident: ref63 publication-title: Nanomedicine doi: 10.1016/j.nano.2022.102625 – volume: 12 start-page: 9800 year: 2018 ident: ref87 publication-title: ACS Nano doi: 10.1021/acsnano.8b00117 – volume: 195 start-page: 225 year: 2018 ident: ref140 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.04.090 – volume: 36 start-page: 265 year: 2009 ident: ref36 publication-title: Urol Clin North Am doi: 10.1016/j.ucl.2009.02.002 – volume: 610 start-page: 121231 year: 2021 ident: ref104 publication-title: Int J Pharm doi: 10.1016/j.ijpharm.2021.121231 – volume: 13 start-page: 13965 year: 2019 ident: ref118 publication-title: ACS Nano doi: 10.1021/acsnano.9b05766 – volume: 22 start-page: 60 year: 2023 ident: ref8 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.09.013 – volume: 7 start-page: e10385 year: 2022 ident: ref9 publication-title: Bioeng Transl Med doi: 10.1002/btm2.10385 – volume: 8 year: 2019 ident: ref91 publication-title: Adv Healthc Mater doi: 10.1002/adhm.201900847 – volume: 68 start-page: 2795 year: 2020 ident: ref120 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.9b07697 – volume: 16 start-page: 100361 year: 2022 ident: ref125 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100361 – volume: 12 start-page: 372 year: 2017 ident: ref14 publication-title: Neural Regen Res doi: 10.4103/1673-5374.202928 – volume: 6 year: 2020 ident: ref94 publication-title: Sci Adv doi: 10.1126/sciadv.aaz7822 – volume: 5 start-page: 1800155 year: 2018 ident: ref103 publication-title: Adv Sci doi: 10.1002/advs.201800155 – volume: 24 start-page: 4206 year: 2014 ident: ref108 publication-title: Adv Funct Mater doi: 10.1002/adfm.201400279 – volume: 23 start-page: 100778 year: 2020 ident: ref22 publication-title: iScience doi: 10.1016/j.isci.2019.100778 – volume: 15 start-page: 203 year: 2022 ident: ref59 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2021.11.036 – volume: 277 start-page: 1232 year: 1997 ident: ref132 publication-title: Science doi: 10.1126/science.277.5330.1232 – volume: 16 start-page: 100370 year: 2022 ident: ref7 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100370 – volume: 134 start-page: 112589 year: 2022 ident: ref43 publication-title: Biomater Adv doi: 10.1016/j.msec.2021.112589 – volume: 288 start-page: 121684 year: 2022 ident: ref139 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121684 – volume: 110 start-page: 110690 year: 2020 ident: ref138 publication-title: Mater Sci Eng C Mater Biol Appl doi: 10.1016/j.msec.2020.110690 – volume: 14 start-page: 377 year: 2022 ident: ref78 publication-title: Bioact Mater doi: 10.1016/j.bioactmat.2022.01.041 – volume: 179 start-page: 83 year: 2018 ident: ref46 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.06.037 – volume: 29 start-page: 1370 year: 2017 ident: ref124 publication-title: Chem Mater doi: 10.1021/acs.chemmater.6b05192 – volume: 17 start-page: 100458 year: 2022 ident: ref126 publication-title: Mater Today Bio doi: 10.1016/j.mtbio.2022.100458 – volume: 8 start-page: 1631 year: 2017 ident: ref34 publication-title: Chem Sci doi: 10.1039/c6sc04692d – volume: 17 start-page: e2007522 year: 2021 ident: ref28 publication-title: Small doi: 10.1002/smll.202007522 – volume: 16 start-page: 147 year: 2017 ident: ref48 publication-title: Nat Mater doi: 10.1038/nmat4758 – volume: 11 start-page: 1 year: 2022 ident: ref170 publication-title: Cells – volume: 445 start-page: 130616 year: 2023 ident: ref172 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2022.130616 – volume: 19 start-page: 4239 year: 2018 ident: ref69 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b01013 – volume: 9 start-page: 8037 year: 2013 ident: ref111 publication-title: Acta Biomater doi: 10.1016/j.actbio.2013.06.014 – volume: 269 start-page: 120534 year: 2021 ident: ref134 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2020.120534 – volume: 9 start-page: 9221 year: 2017 ident: ref147 publication-title: Acs Appl Mater Inter doi: 10.1021/acsami.6b16192 – volume: 13 start-page: 3367 year: 2018 ident: ref137 publication-title: Int J Nanomed doi: 10.2147/IJN.S162644 – volume: 407 start-page: 1029 year: 2000 ident: ref73 publication-title: Nature doi: 10.1038/35039551 |
SSID | ssj0057869 |
Score | 2.435443 |
SecondaryResourceType | review_article |
Snippet | The various tissue damages are a severe problem to human health. The limited human tissue regenerate ability requires suitable biomaterials to help damage... Kai Guo,1,* Yong Wang,1,* Zi-Xuan Feng,1 Xiao-Ying Lin,1 Zhang-Rui Wu,1 Xin-Cao Zhong,1 Ze-Ming Zhuang,1 Tao Zhang,1 Jian Chen,2 Wei-Qiang Tan1 1Department of... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 859 |
SubjectTerms | Biological products biomaterial polydopamine Review tissue damage tissue regeneration |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PaxUxEA7Skz2I2qqrVSIUBGHtyyabH8dXsdQeimgLvYVkktUH7a7U14P_vZNk32MXBS-9bhJIMl92vtmdfEPIoUFOG4LztdEeaiFUV7uO6RrQNUnQITYuZ1ucy9NLcXbVXk1KfaWcsCIPXDbuSDnT6phk3g0TvhEafJJAU0izJXeQo3X0eZtgqryDEYbSlNt4qQ7P0eez8w_fBFe6FTP_k2X6_34ZT7zRPFNy4npOHpNHI2ekyzLXJ-RB7J-S3YmS4B7xSP9wMJ3kAFHXB7qc_J-mQ0e_DNe_A8bJNziUrnp6kfedIg13q9s84mv8npWo0xB6vBqQ0RaQ7pPLk08XH0_rsXxCDUhS1rUzTSeBKxHSNeyWBRYMYLzHhEPaAIxH8Jx5I8SCN6BN7LiRsVMOWqlb0PwZ2emHPr4gNPIO3CIYIZ0WQTVOm2Ca4NjCawVeVOT9ZlMtjNriqcTFtcUYI1nAogXsaIGKHG47_yySGv_udpyss-2SdLDzA0SHHdFh_4eOirxLtrXptOKEwI2XDnBZSffKLhEoyJCk5hU5mPXEUwaz5rcbdNjUlFLT-jjc_bKp3FerFoLjjJ8XtGznzDWyKSSoFdEzHM0WNW_pVz-yyDdDboYrkS_vYxtekYcNkrHy6eiA7Kxv7-JrJFNr_yafmz8tWxuH priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Development and Applications of Polydopamine in Tissue Repair and Regeneration Biomaterials |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38293610 https://www.proquest.com/docview/2920570434 https://pubmed.ncbi.nlm.nih.gov/PMC10824616 https://doaj.org/article/7a958e0747914b248cb2461775363ac0 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9eNkexr7nrQsaFAYDd5YlW9LDGMloyQoLpWsgexL6chfI7DZNYf3vd5KdEG992IsfLB1IupPvd_LpdwgdSsC0zmmTSmFsyhivUl0RkVpwTaUVzuc6ZltMyvGUnc6K2Q5aF-PsFvDm3tAu1JOaLhdHv6_vPsOG_xTSmAnjH7-eTo6-M8pFwXbRPrgkHkoZfGOb3wlglbG2HSE8mAWh7UW9v4V7riky-P_7nd5yVP0kyi2vdPIYPergJB62-n-Cdnz9FD3cIhl8hgwgQxDGW-lBWNcOD7d-XeOmwmfN4s5BCP0LRPG8xhdRJRgQup4vo8S5v4wk1UEEj-YNgN3Wfp-j6cnxxZdx2lVWSC3gl1WqZV6VlnLmwg3tgjjipIVQkDANiMIS6q2hxEjGMppbIX1FZekrrm1RisIK-gLt1U3tXyHsaWV15iQrtWCO51pIJ3OnSWYEt4Yl6MN6UZXtaMdD9YuFgvAjaECBBlSngQQdbjpftWwb93cbBe1sugSK7PiiWV6qbscprmUhfKgPIAkzORPWBO48DvFZSbXNEvQ-6FYF04IBWd3dR4BpBUosNQSjAfBUCpqgg15P2IC21_xubR0qNIWstdo3tzcqVAIreMYojPhlay2bMVMBQAuwa4JEz456k-q31POfkf-bAGyDmZSv_2-13qAHOSCx9tzoAO2tlrf-LSCplRmg3ezHGJ58xgdof3Q8OTsfxFOJQdw_fwBQqR8x |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Development+and+Applications+of+Polydopamine+in+Tissue+Repair+and+Regeneration+Biomaterials&rft.jtitle=International+journal+of+nanomedicine&rft.au=Guo%2C+Kai&rft.au=Wang%2C+Yong&rft.au=Feng%2C+Zi-Xuan&rft.au=Lin%2C+Xiao-Ying&rft.date=2024-01-01&rft.issn=1178-2013&rft.eissn=1178-2013&rft.volume=19&rft.spage=859&rft.epage=881&rft_id=info:doi/10.2147%2FIJN.S437854&rft.externalDBID=n%2Fa&rft.externalDocID=10_2147_IJN_S437854 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1178-2013&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1178-2013&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1178-2013&client=summon |