Recent Developments in the Study of Plant Microbiomes
To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in co...
Saved in:
Published in | Microorganisms (Basel) Vol. 9; no. 7; p. 1533 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
19.07.2021
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions. |
---|---|
AbstractList | To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions. To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions. |
Author | Glick, Bernard R. Gamalero, Elisa |
AuthorAffiliation | 2 Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel, 11, 15121 Alessandria, Italy 1 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca |
AuthorAffiliation_xml | – name: 2 Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel, 11, 15121 Alessandria, Italy – name: 1 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca |
Author_xml | – sequence: 1 givenname: Bernard R. orcidid: 0000-0002-1729-4258 surname: Glick fullname: Glick, Bernard R. – sequence: 2 givenname: Elisa orcidid: 0000-0001-8273-9500 surname: Gamalero fullname: Gamalero, Elisa |
BookMark | eNqFkltLHTEQgINY1Fp_grDQF19Om2zuFAqivQiWlrY-hyQ70Rx2N8dkV_DfN9tjoUqxecmQfPMlM8lLtDumERA6JvgNpRq_HaLPKeVrO8YyFI0l4ZTuoIMWS7FqBZa7f8X76KiUNa5DE6o42UP7lFFBtNAHiH8HD-PUnMMd9Gkz1Lg0cWymG2h-THN336TQfOttRb4sh7qYBiiv0Itg-wJHD_Mhuvr44efZ59Xl108XZ6eXK88Jn1YanAcWaCedEi33jFncWaK48NYBs8IL4jphsaQYK8-9dqr1nbNBEq2ZoIfoYuvtkl2bTY6Dzfcm2Wh-L9QOGJun6HswFgIwxrUDTRknSnEcgg6EESKYUrS63m9dm9kN0C1VZ9s_kj7eGeONuU53RlEsqqQKTh4EOd3OUCYzxOKhr82BNBfTCiqYkC1p_49yrhmVki_o6yfoOs15rF1dKCYIYxJX6t2Wqk9QSoZgfJzsFNNy1dgbgs3yMcw_P0bN5k-y_1T9fN4vbjfCCQ |
CitedBy_id | crossref_primary_10_3390_plants12030554 crossref_primary_10_1007_s42770_024_01583_9 crossref_primary_10_1016_j_scitotenv_2023_168994 crossref_primary_10_1007_s42729_021_00643_5 crossref_primary_10_3390_agronomy13122983 crossref_primary_10_1051_e3sconf_202338903095 crossref_primary_10_3389_fmicb_2022_984832 crossref_primary_10_1007_s42729_023_01569_w crossref_primary_10_1016_j_micres_2022_127199 crossref_primary_10_3390_plants12173052 crossref_primary_10_34248_bsengineering_957791 crossref_primary_10_1016_j_scitotenv_2023_165689 crossref_primary_10_1016_j_stress_2024_100714 crossref_primary_10_3390_biology11111666 crossref_primary_10_1007_s43538_023_00224_3 crossref_primary_10_3390_bacteria4010012 crossref_primary_10_1111_jam_15375 crossref_primary_10_3390_microorganisms12030510 crossref_primary_10_1016_j_bcab_2024_103427 crossref_primary_10_3389_fmicb_2022_1062414 crossref_primary_10_3390_biology11121782 crossref_primary_10_1016_j_envres_2023_117907 crossref_primary_10_3390_agronomy12102539 crossref_primary_10_1016_j_apsoil_2024_105693 crossref_primary_10_3390_microorganisms10122462 crossref_primary_10_2478_agriceng_2024_0014 crossref_primary_10_3390_microorganisms10050865 crossref_primary_10_1186_s40793_023_00484_y crossref_primary_10_3389_fenvs_2022_1015897 crossref_primary_10_3390_microorganisms9112186 crossref_primary_10_1007_s10725_023_01027_8 crossref_primary_10_1016_j_scienta_2023_112277 crossref_primary_10_1007_s00248_024_02435_7 crossref_primary_10_1007_s42729_023_01397_y crossref_primary_10_3390_agriculture13051089 crossref_primary_10_1007_s00425_022_04052_5 crossref_primary_10_1007_s00344_024_11297_9 crossref_primary_10_3390_agriculture13081626 crossref_primary_10_3390_microorganisms10071380 crossref_primary_10_3390_cells11203254 crossref_primary_10_1007_s12649_023_02233_1 crossref_primary_10_3390_plants11202783 crossref_primary_10_1007_s42729_024_01839_1 crossref_primary_10_3390_horticulturae10080779 crossref_primary_10_1007_s00203_022_03321_x crossref_primary_10_3390_horticulturae8100910 crossref_primary_10_3390_ijerph192113721 crossref_primary_10_1093_molbev_msad093 crossref_primary_10_1016_j_tibtech_2025_01_001 crossref_primary_10_3389_fmicb_2024_1485197 crossref_primary_10_3390_plants13213069 crossref_primary_10_3390_metabo12111100 crossref_primary_10_3389_fpls_2022_899464 crossref_primary_10_1038_s41598_022_21857_2 crossref_primary_10_1007_s13205_023_03851_1 crossref_primary_10_3390_agronomy13030666 crossref_primary_10_1016_j_plaphy_2023_108290 crossref_primary_10_1007_s00248_023_02190_1 crossref_primary_10_1080_00103624_2023_2265945 crossref_primary_10_1016_j_crmicr_2021_100094 crossref_primary_10_1016_j_jplph_2022_153658 crossref_primary_10_1051_bioconf_202414502017 crossref_primary_10_3389_fmicb_2023_1285566 crossref_primary_10_3390_agronomy12112620 crossref_primary_10_3390_plants10122789 crossref_primary_10_3390_microorganisms10102008 crossref_primary_10_1016_j_jssas_2023_11_005 crossref_primary_10_3390_app112311442 crossref_primary_10_1080_17429145_2023_2215235 crossref_primary_10_1016_j_heliyon_2024_e40517 crossref_primary_10_1016_j_stress_2023_100242 crossref_primary_10_3390_microorganisms11040835 crossref_primary_10_1016_j_isci_2023_107910 crossref_primary_10_3390_life11101060 crossref_primary_10_3390_microorganisms13010189 crossref_primary_10_3390_plants11020230 crossref_primary_10_38211_jms_2025_04_76 crossref_primary_10_24193_subbbiol_2024_1_03 crossref_primary_10_3390_d15010112 crossref_primary_10_1002_sae2_70006 crossref_primary_10_1016_j_rhisph_2024_100920 crossref_primary_10_1007_s00425_022_03997_x crossref_primary_10_1016_j_pmpp_2023_102048 crossref_primary_10_1007_s42729_022_00868_y crossref_primary_10_1016_j_envexpbot_2023_105397 crossref_primary_10_3389_fmicb_2023_1142966 crossref_primary_10_1016_j_sjbs_2022_103499 crossref_primary_10_3389_fmicb_2023_1114400 crossref_primary_10_3390_agronomy12092069 crossref_primary_10_3390_microorganisms10112171 crossref_primary_10_3390_plants11070962 crossref_primary_10_3390_su141811405 crossref_primary_10_3390_crops4010004 |
Cites_doi | 10.1146/annurev-arplant-050312-120106 10.3923/pjbs.2013.580.584 10.3389/fmicb.2020.574110 10.1016/S1002-0160(17)60370-9 10.1111/jipb.13060 10.1007/s00253-019-09751-w 10.3389/fmicb.2018.02240 10.1007/978-3-319-08575-3 10.4014/jmb.1511.11058 10.3389/fpls.2018.00345 10.3389/fmicb.2020.00678 10.3389/fmicb.2021.666010 10.1007/s11104-017-3289-7 10.1126/science.aau6389 10.1590/1983-21252019v32n206rc 10.1094/PBIOMES-02-20-0020-R 10.3389/fmicb.2021.673512 10.3389/fmicb.2020.569366 10.1016/j.apsoil.2011.12.011 10.1007/s11103-013-0038-z 10.3389/fmicb.2017.02620 10.1371/journal.pone.0017968 10.1007/978-1-4614-0815-4 10.1016/j.tplants.2017.09.003 10.1007/978-81-322-2779-3 10.1038/s41477-018-0139-4 10.1080/15226514.2011.568533 10.1146/annurev.arplant.57.032905.105159 10.3389/fmicb.2020.559728 10.3389/fpls.2021.642027 10.1111/gcbb.12407 10.1038/s41598-021-88839-8 10.3390/microorganisms9051036 10.1007/s00248-018-1260-7 10.1038/s41467-018-07343-2 10.1126/science.aaa8764 10.3389/fmicb.2017.00012 10.1093/jxb/erz532 10.1038/s41598-021-91452-4 10.3389/fpls.2017.00537 10.1186/s40168-019-0723-5 10.1007/978-1-4020-4999-4 10.1007/s00203-019-01649-5 10.1111/j.1365-2672.2009.04414.x 10.1016/j.jare.2019.03.004 10.1016/S0734-9750(03)00055-7 10.3389/fsufs.2021.617332 10.1016/j.tibtech.2020.07.008 10.3389/fmicb.2020.00750 10.3389/fsufs.2021.672881 10.1038/nature22009 10.1007/s11274-017-2364-9 10.1073/pnas.2022241118 10.1023/B:ANTO.0000024903.10757.6e 10.1038/s41587-019-0104-4 10.1111/1751-7915.13618 10.1038/s41396-020-0648-9 10.1139/cjm-2020-0306 10.3389/fpls.2019.00157 10.3389/fmicb.2020.00161 10.1016/j.micres.2013.09.009 10.1094/PBIOMES-08-20-0059-R 10.1007/s40502-020-00553-1 10.1038/s41396-020-00759-z 10.3389/fpls.2017.01094 10.3389/fmicb.2015.00136 10.1007/s00374-020-01464-x 10.3389/fmicb.2018.02479 10.1094/MPMI-07-20-0178-R 10.1146/annurev-phyto-082712-102342 10.6064/2012/963401 10.1038/s41396-018-0093-1 10.3389/fmicb.2020.01587 10.1038/s41396-017-0028-2 10.1128/JB.05055-11 10.3390/plants9121630 10.1201/9780429059186 10.1094/MPMI-11-20-0318-FI 10.3390/microorganisms9071359 10.1038/s41598-020-63154-w 10.1007/s11104-016-3007-x 10.1104/pp.102.019661 10.1016/j.micres.2020.126690 10.3389/fpls.2020.00203 10.1094/PBIOMES-12-16-0019-RVW 10.1038/s41598-021-82768-2 10.1186/s12864-017-3633-6 10.3389/fpls.2019.01336 10.3389/fmicb.2020.594890 10.1139/cjm-2020-0002 10.1094/PBIOMES-04-20-0029-FI 10.1007/978-3-030-44368-9 10.3390/biology9110381 10.1016/j.micres.2020.126439 10.1094/PBIOMES-01-20-0013-FI 10.1186/s12866-019-1572-x 10.3389/fmicb.2021.635917 10.1007/s42360-019-00174-1 10.1073/pnas.1414592112 10.1038/s41598-020-58402-y 10.3389/fpls.2017.02022 10.1042/BIO20200042 10.1007/s11104-008-9814-y 10.1128/MRA.00954-20 10.1016/j.micres.2018.01.005 10.1016/j.plaphy.2004.05.009 10.1094/PBIOMES-12-19-0069-FI 10.3389/fmicb.2020.00704 10.3389/fmicb.2020.01948 10.1038/s41598-021-82181-9 10.1038/s41579-020-0412-1 10.1093/jxb/eraa089 10.1038/s41586-020-2778-7 10.3389/fmicb.2020.00796 10.1094/PHYTO-03-10-0098 10.1007/s10123-021-00169-x 10.1371/journal.pone.0030438 10.1016/j.ecoenv.2019.109504 10.1371/journal.pone.0159007 10.1162/biot.2008.3.4.357 10.1016/j.tplants.2017.04.008 10.1128/AEM.01744-19 10.1371/journal.pone.0052565 10.3389/fpls.2018.01473 10.1073/pnas.1820691116 10.3390/agronomy11020219 10.1073/pnas.1717308115 10.1016/0734-9750(95)00004-A 10.3389/fmicb.2017.01528 10.1104/pp.15.00284 10.6026/97320630002339 10.1016/S0734-9750(03)00024-7 10.1099/ijs.0.63149-0 10.1016/j.soilbio.2015.04.001 10.3389/fmicb.2021.618169 10.1186/1471-2229-11-163 10.1007/s11104-021-04856-6 10.1038/s41396-020-0665-8 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 7T7 8FD 8FE 8FH ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/microorganisms9071533 |
DatabaseName | CrossRef Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2076-2607 |
ExternalDocumentID | oai_doaj_org_article_aefe4459be934518850ff9f141164883 PMC8306116 10_3390_microorganisms9071533 |
GroupedDBID | 53G 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ACPRK AFKRA AFPKN AFRAH AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BBNVY BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ GS5 GX1 HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RNS RPM 7T7 8FD ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c515t-9ebce4f3d7b8625c44a0da1856cabe4a6c61bd6a073008c5c9b82cdbaf7199463 |
IEDL.DBID | M48 |
ISSN | 2076-2607 |
IngestDate | Wed Aug 27 01:26:33 EDT 2025 Thu Aug 21 14:11:35 EDT 2025 Fri Jul 11 11:03:02 EDT 2025 Fri Jul 11 05:44:22 EDT 2025 Fri Jul 25 09:29:47 EDT 2025 Tue Jul 01 01:32:18 EDT 2025 Thu Apr 24 23:04:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-9ebce4f3d7b8625c44a0da1856cabe4a6c61bd6a073008c5c9b82cdbaf7199463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1729-4258 0000-0001-8273-9500 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms9071533 |
PMID | 34361969 |
PQID | 2554614470 |
PQPubID | 2032358 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_aefe4459be934518850ff9f141164883 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306116 proquest_miscellaneous_2636467212 proquest_miscellaneous_2559437752 proquest_journals_2554614470 crossref_citationtrail_10_3390_microorganisms9071533 crossref_primary_10_3390_microorganisms9071533 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210719 |
PublicationDateYYYYMMDD | 2021-07-19 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210719 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Microorganisms (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_136 ref_92 Gepstein (ref_94) 2013; 82 Kui (ref_19) 2021; 12 Gamalero (ref_95) 2015; 169 Goswami (ref_135) 2019; 72 Ulbrich (ref_65) 2021; 5 Han (ref_113) 2020; 14 Qin (ref_79) 2017; 8 Xu (ref_63) 2018; 115 ref_97 ref_96 Zhang (ref_11) 2021; 245 ref_17 Santoyo (ref_88) 2021; 5 Epihov (ref_111) 2021; 118 Wang (ref_9) 2020; 42 Nelson (ref_117) 2018; 422 Lemanceau (ref_146) 2017; 22 Zhao (ref_67) 2020; 11 ref_128 Shahzad (ref_134) 2017; 49 Chiellini (ref_14) 2014; 17 Bais (ref_4) 2006; 57 ref_25 Backer (ref_86) 2018; 9 ref_120 Berendsen (ref_133) 2018; 12 Kandasamy (ref_37) 2021; 5 ref_21 Voges (ref_68) 2019; 116 Nascimento (ref_112) 2019; 201 Babalola (ref_38) 2021; 10 Dai (ref_118) 2020; 13 Gamalero (ref_108) 2010; 108 Farina (ref_27) 2012; 55 Hirsch (ref_66) 2017; 1 Edwards (ref_29) 2015; 112 Hamel (ref_26) 2020; 11 Chartrel (ref_61) 2021; 462 Ke (ref_129) 2021; 39 Trivedi (ref_10) 2020; 18 Liu (ref_54) 2021; 34 Bashan (ref_132) 2020; 56 Pandey (ref_106) 2017; 8 Hartmann (ref_13) 2009; 321 Kusstatscher (ref_51) 2021; 12 Novinscak (ref_44) 2020; 11 Zhou (ref_20) 2020; 11 Compant (ref_8) 2019; 19 ref_78 ref_77 Finkel (ref_71) 2020; 587 Saikia (ref_137) 2018; 8 Kaul (ref_138) 2021; 12 Sita (ref_103) 2020; 25 Debruyn (ref_141) 2017; 9 Olanrewaju (ref_82) 2017; 33 Xu (ref_74) 2018; 9 Glick (ref_110) 2020; 235 Lazcano (ref_50) 2021; 11 ref_83 Glick (ref_80) 2012; 2012 ref_140 ref_89 Canarini (ref_22) 2019; 10 ref_144 ref_143 Sasse (ref_7) 2018; 23 ref_85 ref_84 Ullah (ref_46) 2019; 77 Mattera (ref_102) 2020; 71 Ma (ref_101) 2020; 71 Zhang (ref_32) 2019; 37 Wang (ref_43) 2020; 11 Kumar (ref_73) 2017; 8 Hough (ref_36) 2020; 11 Kim (ref_98) 2016; 26 Chen (ref_41) 2019; 29 Walker (ref_5) 2003; 32 Wassermann (ref_75) 2019; 7 Sarma (ref_126) 2015; 87 Zhang (ref_59) 2020; 11 Cloutier (ref_62) 2021; 5 Ren (ref_49) 2020; 11 Hestrin (ref_64) 2021; 5 Waqas (ref_99) 2019; 10 Kong (ref_58) 2021; 15 Glick (ref_87) 1995; 13 Bulgarelli (ref_1) 2013; 64 Wang (ref_28) 2020; 11 Mavrodi (ref_48) 2018; 9 Zipfel (ref_23) 2017; 543 Singha (ref_24) 2021; 11 Glick (ref_93) 2011; 13 Weilharter (ref_122) 2011; 193 Moreira (ref_119) 2021; 67 Ding (ref_53) 2020; 11 Firrincieli (ref_55) 2020; 11 Wei (ref_45) 2021; 12 Stockwell (ref_125) 2011; 101 Stearns (ref_90) 2003; 21 Huang (ref_69) 2019; 364 Glick (ref_81) 2014; 169 Kong (ref_127) 2019; 183 Li (ref_16) 2018; 9 Buchholz (ref_52) 2021; 11 Antoniou (ref_15) 2017; 8 Yaish (ref_76) 2016; 19 Desgarennes (ref_60) 2021; 11 Sessitsch (ref_121) 2005; 55 Frindte (ref_139) 2021; 12 Regalado (ref_72) 2020; 14 ref_115 ref_114 Arul (ref_123) 2008; 2 Terrazas (ref_18) 2017; 8 Sandheep (ref_130) 2013; 16 Glick (ref_91) 2003; 21 Gamalero (ref_33) 2020; 10 Forni (ref_109) 2017; 410 Berg (ref_116) 2018; 12 Ali (ref_39) 2020; 66 Lebeis (ref_70) 2015; 349 Wang (ref_31) 2019; 103 Kavamura (ref_47) 2020; 10 Okubo (ref_30) 2015; 6 Rosier (ref_56) 2021; 11 ref_104 Gong (ref_12) 2021; 63 Reed (ref_124) 2004; 86 ref_105 Mayak (ref_107) 2004; 42 Novello (ref_35) 2017; 8 DaSilva (ref_131) 2019; 32 Toju (ref_145) 2018; 4 ref_100 Amidon (ref_142) 2008; 3 ref_40 ref_3 ref_2 Burbano (ref_6) 2015; 53 French (ref_57) 2020; 4 Candela (ref_34) 2018; 9 Kepler (ref_42) 2020; 86 Glick (ref_147) 2018; 208 |
References_xml | – volume: 64 start-page: 807 year: 2013 ident: ref_1 article-title: Structure and functions of the bacterial microbiota of plants publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-050312-120106 – volume: 16 start-page: 580 year: 2013 ident: ref_130 article-title: Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia) publication-title: Pak. J. Biol. Sci. doi: 10.3923/pjbs.2013.580.584 – volume: 11 start-page: 574110 year: 2021 ident: ref_60 article-title: Phytophthora root rot modifies the composition of the avocado microbiome and increases the abundance of opportunistic fungal pathogens publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.574110 – volume: 29 start-page: 360 year: 2019 ident: ref_41 article-title: Soil Characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize publication-title: Pedosphere doi: 10.1016/S1002-0160(17)60370-9 – volume: 63 start-page: 297 year: 2021 ident: ref_12 article-title: Phyllosphere microbiota: Community dynamics and its interaction with plant hosts publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13060 – volume: 103 start-page: 4217 year: 2019 ident: ref_31 article-title: Limited effect of planting transgenic rice on the soil microbiome studied by continuous 13CO2 labeling combined with high-throughput sequencing publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-019-09751-w – volume: 9 start-page: 2240 year: 2018 ident: ref_34 article-title: The rootstock regulates microbiome diversity in root and rhizosphere compartments of Vitis vinifera cultivar Lambrusco publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02240 – ident: ref_96 doi: 10.1007/978-3-319-08575-3 – volume: 26 start-page: 549 year: 2016 ident: ref_98 article-title: Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility publication-title: J. Microbiol. Biotechnol. doi: 10.4014/jmb.1511.11058 – volume: 9 start-page: 345 year: 2018 ident: ref_48 article-title: Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00345 – volume: 11 start-page: 678 year: 2020 ident: ref_53 article-title: Low nitrogen fertilization after rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00678 – volume: 12 start-page: 666010 year: 2021 ident: ref_139 article-title: Differential impact of plant secondary metabolites on the soil microbiota publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.666010 – volume: 422 start-page: 7 year: 2018 ident: ref_117 article-title: The seed microbiome: Origins, interactions, and impacts publication-title: Plant Soil. doi: 10.1007/s11104-017-3289-7 – volume: 364 start-page: eaau6389 year: 2019 ident: ref_69 article-title: A specialized metabolic network selectively modulates Arabidopsis root microbiota publication-title: Science doi: 10.1126/science.aau6389 – volume: 32 start-page: 336 year: 2019 ident: ref_131 article-title: Coinoculation with Bradyrhizobium and Trichoderma alleviates the effects of salt stress in cowpea publication-title: Rev. Caatinga doi: 10.1590/1983-21252019v32n206rc – volume: 4 start-page: 314 year: 2020 ident: ref_57 article-title: Tomato genotype modulates selection and responses to root microbiota publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-02-20-0020-R – volume: 12 start-page: 673512 year: 2021 ident: ref_19 article-title: A comparative analysis on the structure and function of the Panax notoginseng rhizosphere microbiome publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.673512 – volume: 11 start-page: 569366 year: 2020 ident: ref_44 article-title: Inoculation with the plant-growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.569366 – volume: 55 start-page: 44 year: 2012 ident: ref_27 article-title: Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2011.12.011 – volume: 82 start-page: 623 year: 2013 ident: ref_94 article-title: Strategies to ameliorate abiotic stress-induced plant senescence publication-title: Plant Mol. Biol. doi: 10.1007/s11103-013-0038-z – ident: ref_83 – volume: 8 start-page: 2620 year: 2017 ident: ref_79 article-title: Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02620 – ident: ref_114 doi: 10.1371/journal.pone.0017968 – ident: ref_104 doi: 10.1007/978-1-4614-0815-4 – volume: 23 start-page: 25 year: 2018 ident: ref_7 article-title: Feed your friends: Do plant exudates shape the root microbiome? publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.09.003 – ident: ref_85 doi: 10.1007/978-81-322-2779-3 – volume: 4 start-page: 247 year: 2018 ident: ref_145 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nat. Plants doi: 10.1038/s41477-018-0139-4 – volume: 13 start-page: 4 year: 2011 ident: ref_93 article-title: Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity publication-title: Int. J. Phytoremediat. doi: 10.1080/15226514.2011.568533 – volume: 57 start-page: 233 year: 2006 ident: ref_4 article-title: The role of root exudates in the rhizosphere interactions with plants and other organisms publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.57.032905.105159 – volume: 11 start-page: 559728 year: 2020 ident: ref_28 article-title: Dynamic changes in the microbiome of rice during shoot and root growth derived from seed publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.559728 – volume: 12 start-page: 642027 year: 2021 ident: ref_51 article-title: Microbiome-assisted breeding to understand cultivar-dependent assembly in Curcurbita pepo publication-title: Front. Plant Sci. doi: 10.3389/fpls.2021.642027 – volume: 9 start-page: 1100 year: 2017 ident: ref_141 article-title: Field-grown transgenic switchgrass (Panicum virgatum L.) with altered lignin does not affect soil chemistry, microbiology, and carbon storage potential publication-title: Glob. Chang. Biol. Bioenergies doi: 10.1111/gcbb.12407 – volume: 11 start-page: 9447 year: 2021 ident: ref_56 article-title: Urbanization pressures alter tree rhizosphere microbiomes publication-title: Sci. Rep. doi: 10.1038/s41598-021-88839-8 – ident: ref_144 doi: 10.3390/microorganisms9051036 – volume: 77 start-page: 429 year: 2019 ident: ref_46 article-title: Microbe diversity in cotton rhizosphere under normal and drought conditions publication-title: Microb. Ecol. doi: 10.1007/s00248-018-1260-7 – volume: 9 start-page: 4894 year: 2018 ident: ref_74 article-title: The structure and function of the global citrus rhizosphere microbiome publication-title: Nat. Commun. doi: 10.1038/s41467-018-07343-2 – ident: ref_3 – volume: 349 start-page: 860 year: 2015 ident: ref_70 article-title: Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa publication-title: Science doi: 10.1126/science.aaa8764 – ident: ref_140 – volume: 8 start-page: 12 year: 2017 ident: ref_73 article-title: Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00012 – volume: 71 start-page: 3765 year: 2020 ident: ref_102 article-title: Molecular bases of responses to abiotic stress in trees publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz532 – volume: 11 start-page: 12259 year: 2021 ident: ref_24 article-title: Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage publication-title: Sci. Rep. doi: 10.1038/s41598-021-91452-4 – volume: 8 start-page: 537 year: 2017 ident: ref_106 article-title: Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00537 – volume: 8 start-page: 1 year: 2018 ident: ref_137 article-title: Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India publication-title: Sci. Rep. – volume: 7 start-page: 108 year: 2019 ident: ref_75 article-title: Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks publication-title: Microbiome doi: 10.1186/s40168-019-0723-5 – ident: ref_92 doi: 10.1007/978-1-4020-4999-4 – volume: 201 start-page: 817 year: 2019 ident: ref_112 article-title: ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains publication-title: Arch. Microbiol. doi: 10.1007/s00203-019-01649-5 – volume: 108 start-page: 236 year: 2010 ident: ref_108 article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2009.04414.x – volume: 19 start-page: 29 year: 2019 ident: ref_8 article-title: A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.03.004 – volume: 21 start-page: 383 year: 2003 ident: ref_91 article-title: Phytoremediation: Synergistic use of plants and bacteria to clean up the environment publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(03)00055-7 – volume: 5 start-page: 617332 year: 2021 ident: ref_37 article-title: Disentangling the association of corn root microbiome with plant productivity and the importance of physiochemical balance in shaping their relationship publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2021.617332 – volume: 39 start-page: 244 year: 2021 ident: ref_129 article-title: Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2020.07.008 – volume: 11 start-page: 750 year: 2020 ident: ref_43 article-title: Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00750 – volume: 5 start-page: 672881 year: 2021 ident: ref_88 article-title: Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress publication-title: Front. Sustain. Food Syst. doi: 10.3389/fsufs.2021.672881 – ident: ref_143 – volume: 543 start-page: 328 year: 2017 ident: ref_23 article-title: Plant signaling in symbiosis and immunity publication-title: Nature doi: 10.1038/nature22009 – volume: 33 start-page: 197 year: 2017 ident: ref_82 article-title: Mechanisms of action of plant growth promoting bacteria publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-017-2364-9 – volume: 118 start-page: e2022241118 year: 2021 ident: ref_111 article-title: Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2022241118 – volume: 86 start-page: 1 year: 2004 ident: ref_124 article-title: Applications of free-living plant growth-promoting rhizobacteria publication-title: Antonie van Leeuwenhoek doi: 10.1023/B:ANTO.0000024903.10757.6e – volume: 37 start-page: 676 year: 2019 ident: ref_32 article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0104-4 – volume: 13 start-page: 1461 year: 2020 ident: ref_118 article-title: The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages publication-title: Microb. Biotechnol. doi: 10.1111/1751-7915.13618 – volume: 14 start-page: 1915 year: 2020 ident: ref_113 article-title: Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean publication-title: ISME J. doi: 10.1038/s41396-020-0648-9 – ident: ref_89 – volume: 67 start-page: 161 year: 2021 ident: ref_119 article-title: Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2020-0306 – volume: 10 start-page: 157 year: 2019 ident: ref_22 article-title: Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00157 – volume: 11 start-page: 161 year: 2020 ident: ref_59 article-title: Rhizosphere community structure is selected by habitat but not plant species in two tropical seagrass beds publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00161 – volume: 169 start-page: 30 year: 2014 ident: ref_81 article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world publication-title: Microbiol. Res. doi: 10.1016/j.micres.2013.09.009 – ident: ref_120 doi: 10.1094/PBIOMES-08-20-0059-R – volume: 25 start-page: 654 year: 2020 ident: ref_103 article-title: Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: A review publication-title: Plant Physiol. Rep. doi: 10.1007/s40502-020-00553-1 – volume: 15 start-page: 397 year: 2021 ident: ref_58 article-title: Achieving similar root microbiota composition in neighboring plants through airborne signalling publication-title: ISME J. doi: 10.1038/s41396-020-00759-z – volume: 8 start-page: 1094 year: 2017 ident: ref_18 article-title: Root hair mutation displace the barley rhizosphere microbiota publication-title: Front. Plant. Sci. doi: 10.3389/fpls.2017.01094 – volume: 6 start-page: 136 year: 2015 ident: ref_30 article-title: Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.00136 – volume: 56 start-page: 443 year: 2020 ident: ref_132 article-title: Disclosure of exact protocols of fermentation, identity of microorganisms within consortia, formation of advanced consortia with microbe-based products publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-020-01464-x – volume: 9 start-page: 2479 year: 2018 ident: ref_16 article-title: Plant phenotypic traits eventually shape its microbiota: A common garden test publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.02479 – volume: 34 start-page: 351 year: 2021 ident: ref_54 article-title: Divergence of phyllosphere microbial communities between females and males of the dioecious Populus cathayana publication-title: Mol. Plant Microbe Interact. doi: 10.1094/MPMI-07-20-0178-R – volume: 53 start-page: 403 year: 2015 ident: ref_6 article-title: Roots shaping their microbiome: Global hotspots for microbial activity publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-082712-102342 – volume: 2012 start-page: 963401 year: 2012 ident: ref_80 article-title: Plant growth-promoting bacteria: Mechanisms and applications publication-title: Scientifica doi: 10.6064/2012/963401 – volume: 12 start-page: 1496 year: 2018 ident: ref_133 article-title: Disease-induced assemblage of a plant-beneficial bacterial consortium publication-title: ISME J. doi: 10.1038/s41396-018-0093-1 – volume: 11 start-page: 1587 year: 2020 ident: ref_26 article-title: Bacterial communities of the canola rhizosphere: Network analysis reveals a core bacterium shaping microbial interactions publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01587 – volume: 12 start-page: 1167 year: 2018 ident: ref_116 article-title: Saving seed microbiomes publication-title: ISME J. doi: 10.1038/s41396-017-0028-2 – volume: 193 start-page: 3383 year: 2011 ident: ref_122 article-title: Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN publication-title: J. Bacteriol. doi: 10.1128/JB.05055-11 – ident: ref_128 doi: 10.3390/plants9121630 – ident: ref_84 doi: 10.1201/9780429059186 – ident: ref_21 doi: 10.1094/MPMI-11-20-0318-FI – ident: ref_25 doi: 10.3390/microorganisms9071359 – volume: 10 start-page: 6453 year: 2020 ident: ref_33 article-title: Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard publication-title: Sci. Rep. doi: 10.1038/s41598-020-63154-w – volume: 410 start-page: 335 year: 2017 ident: ref_109 article-title: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria publication-title: Plant Soil doi: 10.1007/s11104-016-3007-x – volume: 32 start-page: 44 year: 2003 ident: ref_5 article-title: Root exudation and rhizosphere biology publication-title: Plant Physiol. doi: 10.1104/pp.102.019661 – volume: 245 start-page: 126690 year: 2021 ident: ref_11 article-title: Harnessing the plant microbiome to promote the growth of agricultural crops publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126690 – volume: 11 start-page: 203 year: 2020 ident: ref_55 article-title: Influences of climate on phyllosphere endophytic bacterial communities of wild poplar publication-title: Front. Plant Sci. doi: 10.3389/fpls.2020.00203 – volume: 1 start-page: 70 year: 2017 ident: ref_66 article-title: The nodule microbiome: N2-fixing rhizobia do not live alone publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-12-16-0019-RVW – volume: 11 start-page: 3188 year: 2021 ident: ref_50 article-title: The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under filed conditions publication-title: Sci. Rep. doi: 10.1038/s41598-021-82768-2 – ident: ref_77 doi: 10.1186/s12864-017-3633-6 – volume: 10 start-page: 1336 year: 2019 ident: ref_99 article-title: Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01336 – volume: 11 start-page: 594890 year: 2020 ident: ref_20 article-title: Soil organic carbon attenuates the influence of plants on root-associated bacterial community publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.594890 – volume: 66 start-page: 457 year: 2020 ident: ref_39 article-title: Corn microbial diversity and its relationship to yield publication-title: Can. J. Microbiol. doi: 10.1139/cjm-2020-0002 – volume: 5 start-page: 14 year: 2021 ident: ref_64 article-title: The switchgrass microbiome: A review of structure, function, and taxonomic distribution publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-04-20-0029-FI – ident: ref_2 doi: 10.1007/978-3-030-44368-9 – ident: ref_97 doi: 10.3390/biology9110381 – volume: 235 start-page: 126439 year: 2020 ident: ref_110 article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt in crops publication-title: Microbiol. Res. doi: 10.1016/j.micres.2020.126439 – volume: 5 start-page: 39 year: 2021 ident: ref_62 article-title: Sorghum root flavonoid chemistry, cultivar, and frost stress effects on rhizosphere bacteria and fungi publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-01-20-0013-FI – ident: ref_17 doi: 10.1186/s12866-019-1572-x – volume: 12 start-page: 635917 year: 2021 ident: ref_138 article-title: Engineering host microbiome for crop improvement and sustainable agriculture publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.635917 – volume: 72 start-page: 479 year: 2019 ident: ref_135 article-title: Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India publication-title: Indian Phytopathol. doi: 10.1007/s42360-019-00174-1 – volume: 112 start-page: E911 year: 2015 ident: ref_29 article-title: Structure, variation, and assembly of the root-associated microbiomes of rice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1414592112 – volume: 10 start-page: 1452 year: 2020 ident: ref_47 article-title: Wheat dwarfing influences selection of the rhizosphere microbiome publication-title: Sci. Rep. doi: 10.1038/s41598-020-58402-y – volume: 8 start-page: 2022 year: 2017 ident: ref_15 article-title: Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02022 – volume: 42 start-page: 20 year: 2020 ident: ref_9 article-title: Harnessing the genetic potential of the plant microbiome publication-title: Biochemist doi: 10.1042/BIO20200042 – volume: 321 start-page: 235 year: 2009 ident: ref_13 article-title: Plant-driven selection of microbes publication-title: Plant Soil doi: 10.1007/s11104-008-9814-y – volume: 10 start-page: e00954-20 year: 2021 ident: ref_38 article-title: Metagenome assembly and metagenome-assembled genome sequences from the rhizosphere of maize plants in Mafikeng, South Africa publication-title: Microbiol. Resour. Announc. doi: 10.1128/MRA.00954-20 – volume: 208 start-page: 25 year: 2018 ident: ref_147 article-title: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.01.005 – volume: 49 start-page: 1523 year: 2017 ident: ref_134 article-title: Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions publication-title: Pak. J. Bot. – volume: 42 start-page: 565 year: 2004 ident: ref_107 article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2004.05.009 – volume: 5 start-page: 108 year: 2021 ident: ref_65 article-title: Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars publication-title: Phytobiomes J. doi: 10.1094/PBIOMES-12-19-0069-FI – volume: 11 start-page: 704 year: 2020 ident: ref_67 article-title: Effects of drought-tolerant Ea-DREB2B transgenic sugarcane on bacterial communities in soil publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00704 – volume: 11 start-page: 1948 year: 2020 ident: ref_49 article-title: Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.01948 – volume: 11 start-page: 3146 year: 2021 ident: ref_52 article-title: 16S rRNA gene-based microbiome analysis identifies candidate bacterial strains that increase the storage time of potato tubers publication-title: Sci. Rep. doi: 10.1038/s41598-021-82181-9 – volume: 18 start-page: 607 year: 2020 ident: ref_10 article-title: Plant-microbiome interactions: From community assembly to plant health publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-020-0412-1 – volume: 71 start-page: 2870 year: 2020 ident: ref_101 article-title: Molecular genetic analyses of abiotic stress responses during plant reproductive development publication-title: J. Exp. Bot. doi: 10.1093/jxb/eraa089 – volume: 587 start-page: 103 year: 2020 ident: ref_71 article-title: A single bacterial genus maintains root growth in a complex microbiome publication-title: Nature doi: 10.1038/s41586-020-2778-7 – volume: 11 start-page: 796 year: 2020 ident: ref_36 article-title: Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00796 – volume: 101 start-page: 113 year: 2011 ident: ref_125 article-title: Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear publication-title: Phytopathology doi: 10.1094/PHYTO-03-10-0098 – ident: ref_40 doi: 10.1007/s10123-021-00169-x – ident: ref_115 doi: 10.1371/journal.pone.0030438 – volume: 183 start-page: 109504 year: 2019 ident: ref_127 article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.109504 – ident: ref_78 doi: 10.1371/journal.pone.0159007 – volume: 3 start-page: 357 year: 2008 ident: ref_142 article-title: Adolf Meyer-Abich, Holism, and the Negotiation of Theoretical Biology publication-title: Biol. Theory doi: 10.1162/biot.2008.3.4.357 – volume: 22 start-page: 583 year: 2017 ident: ref_146 article-title: Let the Core Microbiota Be Functional publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2017.04.008 – volume: 86 start-page: e01744-19 year: 2020 ident: ref_42 article-title: Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01744-19 – ident: ref_136 doi: 10.1371/journal.pone.0052565 – volume: 9 start-page: 1473 year: 2018 ident: ref_86 article-title: Plant Growth-Promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01473 – volume: 116 start-page: 12558 year: 2019 ident: ref_68 article-title: Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1820691116 – ident: ref_105 doi: 10.3390/agronomy11020219 – volume: 115 start-page: E4284 year: 2018 ident: ref_63 article-title: Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1717308115 – volume: 13 start-page: 247 year: 1995 ident: ref_87 article-title: Metabolic load and heterologous gene expression publication-title: Biotechnol. Adv. doi: 10.1016/0734-9750(95)00004-A – volume: 8 start-page: 1528 year: 2017 ident: ref_35 article-title: The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01528 – volume: 169 start-page: 13 year: 2015 ident: ref_95 article-title: Bacterial modulation of plant ethylene levels publication-title: Plant Physiol. doi: 10.1104/pp.15.00284 – volume: 2 start-page: 339 year: 2008 ident: ref_123 article-title: Functional insight for β-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1 publication-title: Bioinformation doi: 10.6026/97320630002339 – volume: 21 start-page: 193 year: 2003 ident: ref_90 article-title: Transgenic plants with altered ethylene biosynthesis or perception publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(03)00024-7 – volume: 55 start-page: 1187 year: 2005 ident: ref_121 article-title: Burkholderia phytofirmans sp. Nov., a novel plant-associated bacterium with plant beneficial properties publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63149-0 – volume: 19 start-page: 143 year: 2016 ident: ref_76 article-title: The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress publication-title: Int. Microbiol. – volume: 87 start-page: 25 year: 2015 ident: ref_126 article-title: Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2015.04.001 – volume: 12 start-page: 618169 year: 2021 ident: ref_45 article-title: Composition of rhizosphere microbial communities associated with healthy and Verticillium wilt diseased cotton plants publication-title: Front. Microbiol. doi: 10.3389/fmicb.2021.618169 – ident: ref_100 doi: 10.1186/1471-2229-11-163 – volume: 462 start-page: 405 year: 2021 ident: ref_61 article-title: The microbial community associated with pea seeds (Pisum sativum) of different geographical origins publication-title: Plant Soil doi: 10.1007/s11104-021-04856-6 – volume: 17 start-page: 165 year: 2014 ident: ref_14 article-title: Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia publication-title: Int. Microbiol. – volume: 14 start-page: 2116 year: 2020 ident: ref_72 article-title: Combining whole-genome shotgun sequencing and rRNA gene amplicon analysis to improve detection of microbe-microbe interaction networks in plant leaves publication-title: ISME J. doi: 10.1038/s41396-020-0665-8 |
SSID | ssj0000913851 |
Score | 2.4884782 |
SecondaryResourceType | review_article |
Snippet | To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1533 |
SubjectTerms | Bacteria Carbon Consortia Environmental conditions Environmental stress Exudates Exudation Homeostasis Metabolism Metabolites microbiome Microbiomes Microbiota Microorganisms organic agriculture Pathogens PGPB Physiology Plant growth plant growth-promoting bacteria Potassium Review root microbiomes seed microbiomes Seeds soil soil bacteria Soil microorganisms Soils |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhoZBLSJuEOt0WBXJ1Ylvfx7Y0hEJzSiA3I8kjupD1lto57L_vSHYWG0L20qs1Y-SR5HmDn98QclkopQBxQi4tYzlXweXaFJB7cCo0znPuE0H2Tt4-8J-P4nHS6itywgZ54CFw1xYCcC6MA8N4VA8TRQgmlLxEoK910vnEnDcpptI72JQMscTwyw7Duv56HfltQ6ekbt1hSRiBziwZJc3-GdCc0yQneefmmByNgJF-HSb6nhxA-4G8G1pIbk-IQNyHjnRC_unoqqWI62jkCG7pJtDYmainv1aD6NIaulPycPPj_vttPrZCyD0Cjj434DzwwBrlsAQRGEJbNBZzrfTWAbfSy9I10ib5ee2FN05XvnE2qCj-K9kZWbSbFj4SCsyUtqm08BpvA0ZLUNpLVjjPhGxkRvhLTGo_6oTHdhVPNdYLMZT1q6HMyNXO7c8glLHP4VsM-M446lynC2hYj6tf71v9jCxflqseD19XV5F5h4WiKjJysRvGYxO_hdgWNs_JxnCmlKjesJFMYh7B5J4RNdsKs0nPR9rV7yTSrbEWw0me_4-n_EQOq0iliXqeZkkW_d9n-IxYqHdf0rb_B3_-Cs0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFcEX0ap4_ZAIvq7d23w_FSstRbCUYqFvS5JN8MDba7vXh_73zuzmzi6U-rqZhDCZZH6TzP4G4EuptY6IEwrlOC-ETr4wtoxFiF6nxgchQp8ge67OrsSPa3mdL9y6nFa5PhP7g7pZBrojP6wonQrRvy6Pbm4LqhpFr6u5hMYL2MYj2JgJbB-fnF9cbm5ZiPUSMcXw6w7H-P5wQXluQ8WkbtFhaEiAZ-SUeu7-EeAcp0s-8j-nb-B1Bo7s27DSb2Ertjvwcigl-fAOJOI_7MgeJQF1bN4yxHeMcgUf2DIxqlC0Yj_nA_nSInbv4er05Nf3syKXRCgCAo9VYaMPUSTeaI-hiERVurJx6HNVcD4Kp4Ka-Ua5nobeBBmsN1VovEuaSIAV_wCTdtnGj8AitzPXVEYGg8NEa1TUJihe-sClatQUxFondch84VS24k-NcQOpsn5SlVP4uul2MxBm_K_DMSl8I0x81_0HFKzz9qldTFEIaX20XBCHnCxTsmkmZhjuGYOD7K-Xq86bsKv_mcwUPm-acfvQm4hr4_K-l7GCay2rZ2QUV-hP0MKmoEemMJr0uKWd_-7Jug3GZDjJ3ecnuAevKkqWIcZOuw-T1d19PEC0s_Kfskn_BXAZBIc priority: 102 providerName: ProQuest |
Title | Recent Developments in the Study of Plant Microbiomes |
URI | https://www.proquest.com/docview/2554614470 https://www.proquest.com/docview/2559437752 https://www.proquest.com/docview/2636467212 https://pubmed.ncbi.nlm.nih.gov/PMC8306116 https://doaj.org/article/aefe4459be934518850ff9f141164883 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS9xAEB6sUuhLsdbitXpsoa_RJPv7oYgWRQqKlB74FnY3u3jg5dSc0PvvO7vJHQasfU1mlmV2N_N9yeQbgG-5lNIjTsiEoTRjMthM6dxnzlsZausYc6lA9kpcTNjPG36zAStBhT6A7YvULvaTmjzeHf55WB7jgf8eGSdS9qNZLF3rmiC1sxbZXsQwb2ALk5OMTQ0ue8SfHs66oAgyun95_u09yFJJzH-AQIf1k88S0vk2vO-RJDnplv4DbPhmB952vSWXH4EjIERH8qwqqCXThiDgI7F4cEnmgcSWRQtyOe3UmGa-3YXJ-dnvHxdZ3yMhc4hEFpn21nkWaC0tchOOsTV5bTAJC2esZ0Y4UdhamKRLrxx32qrS1dYEGVWBBf0Em8288XtAPNWFqUvFncJhvFbCS-UEza2jXNRiBGwVk8r1AuKxj8VdhUQihrJ6MZQjOFy73XcKGv9zOI0BXxtHAex0AQ2r_jxVxgfPGNfWa8qiqBzPQ9ChYAXyP6VwkP3VclWrTVWVsSQPGaTMR_B1fRvPU_xIYho_f0o2mlEpefmKjaACEwxm_RHIwVYYTHp4p5neJvVuhSQNJ_n59Ql-gXdlrJ6JEp56HzYXj0_-AOHPwo5h6_Ts6vrXOL0-GKft_RdxZAxz |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IJ5iSwEjwTE0Gzt-HFBFodWWtiuEWqm3YDuOWKmbbclWaP8Uv7EzeSyNhMqp1_ghazzj-SYefwPwLlZKBcQJkbScR0IVLtImDpEPThW580L4OkF2Isen4utZerYGf7q3MJRW2Z2J9UGdzz39I99OKJ0K0b-Kdy4uI6oaRberXQmNRi0Ow_I3hmzVx4MvuL_vk2R_7-TzOGqrCkQeffciMsH5IAqeK4doPsXV2Di36Lakty4IK70cuVzamsld-9QbpxOfO1so4tGVHOe9B-uCyzgZwPru3uTb99VfHWLZRAzTPBXi3MTbM8qrayo0VbMKQ1ECWD0nWNcK6AHcfnrmDX-3_wgetkCVfWo06zGshfIJ3G9KVy6fQop4EweyG0lHFZuWDPEko9zEJZsXjCoiLdjxtCF7moXqGZzeibCew6Ccl-EFsMDNyOaJTr3GaYLRMijtJY-d56nM5RBEJ5PMt_zkVCbjPMM4hUSZ_VOUQ_iwGnbREHT8b8AuCXzVmfi16w_YMWvNNbOhCEKkxgXDBXHWpXFRmGIkRhheao2TbHXblbVGX2V_VXQIb1fNaK50B2PLML-q-xjBlUqTW_pILtF_IagYguqpQm_R_ZZy-rMmB9cYA-IiN29f4Bt4MD45PsqODiaHL2EjoUQdYgs1WzBY_LoKrxBpLdzrVr0Z_Lhri7oGRyVCnA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE91oYCR4Bg2Gzt-HBCitKuWwqpCVOot2I4tVmKzhWyF9q_x65hJsksjoXLqNX7Imow93ySfvwF4mSqlAuKERFrOE6GiS7RJQ-KDU7F0XgjfEGSn8vBUfDjLz7bg9_ouDNEq12dic1CXC0_fyEcZ0akQ_at0FDtaxMn-5O35j4QqSNGf1nU5jdZFjsPqF6Zv9ZujfXzXr7JscvDl_WHSVRhIPMbxZWKC80FEXiqHyD7Hldm0tBjCpLcuCCu9HLtS2kbVXfvcG6czXzobFWnqSo7z3oBtRVnRALb3DqYnnzdfeEhxE_FMe22Ic5OO5sSxa6s11fMa01ICW72A2NQN6IHdPlXzUuyb3IU7HWhl71ovuwdboboPN9sylqsHkCP2xIHsEgGpZrOKIbZkxFNcsUVkVB1pyT7NWuGneagfwum1GOsRDKpFFXaABW7Gtsx07jVOE4yWQWkveeo8z2UphyDWNil8p1VOJTO-F5izkCmLf5pyCK83w85bsY7_Ddgjg286k9Z28wA7Ft3WLWyIQYjcuGC4IP26PI3RxLEYY6qpNU6yu35dRXcA1MVfdx3Ci00zbl36H2OrsLho-hjBlcqzK_pILjGWIcAYguq5Qm_R_ZZq9q0RCteYD-IiH1-9wOdwC3dS8fFoevwEbmfE2SHhULMLg-XPi_AUQdfSPeu8m8HX695QfwDg8UbR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Developments+in+the+Study+of+Plant+Microbiomes&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Glick%2C+Bernard+R&rft.au=Gamalero%2C+Elisa&rft.date=2021-07-19&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=9&rft.issue=7&rft.spage=1533&rft_id=info:doi/10.3390%2Fmicroorganisms9071533&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon |