Recent Developments in the Study of Plant Microbiomes

To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in co...

Full description

Saved in:
Bibliographic Details
Published inMicroorganisms (Basel) Vol. 9; no. 7; p. 1533
Main Authors Glick, Bernard R., Gamalero, Elisa
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 19.07.2021
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.
AbstractList To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.
To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting with plants under different conditions. More recently, it has become clear that specific soil microorganisms interact with one another in consortia with the collective being responsible for the positive effects on plant growth. Different plants attract different cross-sections of the bacteria and fungi in the soil, initially based on the composition of the unique root exudates from each plant. Thus, plants mostly attract those microorganisms that are beneficial to plants and exclude those that are potentially pathogenic. Beneficial bacterial consortia not only help to promote plant growth, these consortia also protect plants from a wide range of direct and indirect environmental stresses. Moreover, it is currently possible to engineer plant seeds to contain desired bacterial strains and thereby benefit the next generation of plants. In this way, it may no longer be necessary to deliver beneficial microbiota to each individual growing plant. As we develop a better understanding of beneficial bacterial microbiomes, it may become possible to develop synthetic microbiomes where compatible bacteria work together to facilitate plant growth under a wide range of natural conditions.
Author Glick, Bernard R.
Gamalero, Elisa
AuthorAffiliation 2 Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel, 11, 15121 Alessandria, Italy
1 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca
AuthorAffiliation_xml – name: 2 Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel, 11, 15121 Alessandria, Italy
– name: 1 Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; glick@uwaterloo.ca
Author_xml – sequence: 1
  givenname: Bernard R.
  orcidid: 0000-0002-1729-4258
  surname: Glick
  fullname: Glick, Bernard R.
– sequence: 2
  givenname: Elisa
  orcidid: 0000-0001-8273-9500
  surname: Gamalero
  fullname: Gamalero, Elisa
BookMark eNqFkltLHTEQgINY1Fp_grDQF19Om2zuFAqivQiWlrY-hyQ70Rx2N8dkV_DfN9tjoUqxecmQfPMlM8lLtDumERA6JvgNpRq_HaLPKeVrO8YyFI0l4ZTuoIMWS7FqBZa7f8X76KiUNa5DE6o42UP7lFFBtNAHiH8HD-PUnMMd9Gkz1Lg0cWymG2h-THN336TQfOttRb4sh7qYBiiv0Itg-wJHD_Mhuvr44efZ59Xl108XZ6eXK88Jn1YanAcWaCedEi33jFncWaK48NYBs8IL4jphsaQYK8-9dqr1nbNBEq2ZoIfoYuvtkl2bTY6Dzfcm2Wh-L9QOGJun6HswFgIwxrUDTRknSnEcgg6EESKYUrS63m9dm9kN0C1VZ9s_kj7eGeONuU53RlEsqqQKTh4EOd3OUCYzxOKhr82BNBfTCiqYkC1p_49yrhmVki_o6yfoOs15rF1dKCYIYxJX6t2Wqk9QSoZgfJzsFNNy1dgbgs3yMcw_P0bN5k-y_1T9fN4vbjfCCQ
CitedBy_id crossref_primary_10_3390_plants12030554
crossref_primary_10_1007_s42770_024_01583_9
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_1007_s42729_021_00643_5
crossref_primary_10_3390_agronomy13122983
crossref_primary_10_1051_e3sconf_202338903095
crossref_primary_10_3389_fmicb_2022_984832
crossref_primary_10_1007_s42729_023_01569_w
crossref_primary_10_1016_j_micres_2022_127199
crossref_primary_10_3390_plants12173052
crossref_primary_10_34248_bsengineering_957791
crossref_primary_10_1016_j_scitotenv_2023_165689
crossref_primary_10_1016_j_stress_2024_100714
crossref_primary_10_3390_biology11111666
crossref_primary_10_1007_s43538_023_00224_3
crossref_primary_10_3390_bacteria4010012
crossref_primary_10_1111_jam_15375
crossref_primary_10_3390_microorganisms12030510
crossref_primary_10_1016_j_bcab_2024_103427
crossref_primary_10_3389_fmicb_2022_1062414
crossref_primary_10_3390_biology11121782
crossref_primary_10_1016_j_envres_2023_117907
crossref_primary_10_3390_agronomy12102539
crossref_primary_10_1016_j_apsoil_2024_105693
crossref_primary_10_3390_microorganisms10122462
crossref_primary_10_2478_agriceng_2024_0014
crossref_primary_10_3390_microorganisms10050865
crossref_primary_10_1186_s40793_023_00484_y
crossref_primary_10_3389_fenvs_2022_1015897
crossref_primary_10_3390_microorganisms9112186
crossref_primary_10_1007_s10725_023_01027_8
crossref_primary_10_1016_j_scienta_2023_112277
crossref_primary_10_1007_s00248_024_02435_7
crossref_primary_10_1007_s42729_023_01397_y
crossref_primary_10_3390_agriculture13051089
crossref_primary_10_1007_s00425_022_04052_5
crossref_primary_10_1007_s00344_024_11297_9
crossref_primary_10_3390_agriculture13081626
crossref_primary_10_3390_microorganisms10071380
crossref_primary_10_3390_cells11203254
crossref_primary_10_1007_s12649_023_02233_1
crossref_primary_10_3390_plants11202783
crossref_primary_10_1007_s42729_024_01839_1
crossref_primary_10_3390_horticulturae10080779
crossref_primary_10_1007_s00203_022_03321_x
crossref_primary_10_3390_horticulturae8100910
crossref_primary_10_3390_ijerph192113721
crossref_primary_10_1093_molbev_msad093
crossref_primary_10_1016_j_tibtech_2025_01_001
crossref_primary_10_3389_fmicb_2024_1485197
crossref_primary_10_3390_plants13213069
crossref_primary_10_3390_metabo12111100
crossref_primary_10_3389_fpls_2022_899464
crossref_primary_10_1038_s41598_022_21857_2
crossref_primary_10_1007_s13205_023_03851_1
crossref_primary_10_3390_agronomy13030666
crossref_primary_10_1016_j_plaphy_2023_108290
crossref_primary_10_1007_s00248_023_02190_1
crossref_primary_10_1080_00103624_2023_2265945
crossref_primary_10_1016_j_crmicr_2021_100094
crossref_primary_10_1016_j_jplph_2022_153658
crossref_primary_10_1051_bioconf_202414502017
crossref_primary_10_3389_fmicb_2023_1285566
crossref_primary_10_3390_agronomy12112620
crossref_primary_10_3390_plants10122789
crossref_primary_10_3390_microorganisms10102008
crossref_primary_10_1016_j_jssas_2023_11_005
crossref_primary_10_3390_app112311442
crossref_primary_10_1080_17429145_2023_2215235
crossref_primary_10_1016_j_heliyon_2024_e40517
crossref_primary_10_1016_j_stress_2023_100242
crossref_primary_10_3390_microorganisms11040835
crossref_primary_10_1016_j_isci_2023_107910
crossref_primary_10_3390_life11101060
crossref_primary_10_3390_microorganisms13010189
crossref_primary_10_3390_plants11020230
crossref_primary_10_38211_jms_2025_04_76
crossref_primary_10_24193_subbbiol_2024_1_03
crossref_primary_10_3390_d15010112
crossref_primary_10_1002_sae2_70006
crossref_primary_10_1016_j_rhisph_2024_100920
crossref_primary_10_1007_s00425_022_03997_x
crossref_primary_10_1016_j_pmpp_2023_102048
crossref_primary_10_1007_s42729_022_00868_y
crossref_primary_10_1016_j_envexpbot_2023_105397
crossref_primary_10_3389_fmicb_2023_1142966
crossref_primary_10_1016_j_sjbs_2022_103499
crossref_primary_10_3389_fmicb_2023_1114400
crossref_primary_10_3390_agronomy12092069
crossref_primary_10_3390_microorganisms10112171
crossref_primary_10_3390_plants11070962
crossref_primary_10_3390_su141811405
crossref_primary_10_3390_crops4010004
Cites_doi 10.1146/annurev-arplant-050312-120106
10.3923/pjbs.2013.580.584
10.3389/fmicb.2020.574110
10.1016/S1002-0160(17)60370-9
10.1111/jipb.13060
10.1007/s00253-019-09751-w
10.3389/fmicb.2018.02240
10.1007/978-3-319-08575-3
10.4014/jmb.1511.11058
10.3389/fpls.2018.00345
10.3389/fmicb.2020.00678
10.3389/fmicb.2021.666010
10.1007/s11104-017-3289-7
10.1126/science.aau6389
10.1590/1983-21252019v32n206rc
10.1094/PBIOMES-02-20-0020-R
10.3389/fmicb.2021.673512
10.3389/fmicb.2020.569366
10.1016/j.apsoil.2011.12.011
10.1007/s11103-013-0038-z
10.3389/fmicb.2017.02620
10.1371/journal.pone.0017968
10.1007/978-1-4614-0815-4
10.1016/j.tplants.2017.09.003
10.1007/978-81-322-2779-3
10.1038/s41477-018-0139-4
10.1080/15226514.2011.568533
10.1146/annurev.arplant.57.032905.105159
10.3389/fmicb.2020.559728
10.3389/fpls.2021.642027
10.1111/gcbb.12407
10.1038/s41598-021-88839-8
10.3390/microorganisms9051036
10.1007/s00248-018-1260-7
10.1038/s41467-018-07343-2
10.1126/science.aaa8764
10.3389/fmicb.2017.00012
10.1093/jxb/erz532
10.1038/s41598-021-91452-4
10.3389/fpls.2017.00537
10.1186/s40168-019-0723-5
10.1007/978-1-4020-4999-4
10.1007/s00203-019-01649-5
10.1111/j.1365-2672.2009.04414.x
10.1016/j.jare.2019.03.004
10.1016/S0734-9750(03)00055-7
10.3389/fsufs.2021.617332
10.1016/j.tibtech.2020.07.008
10.3389/fmicb.2020.00750
10.3389/fsufs.2021.672881
10.1038/nature22009
10.1007/s11274-017-2364-9
10.1073/pnas.2022241118
10.1023/B:ANTO.0000024903.10757.6e
10.1038/s41587-019-0104-4
10.1111/1751-7915.13618
10.1038/s41396-020-0648-9
10.1139/cjm-2020-0306
10.3389/fpls.2019.00157
10.3389/fmicb.2020.00161
10.1016/j.micres.2013.09.009
10.1094/PBIOMES-08-20-0059-R
10.1007/s40502-020-00553-1
10.1038/s41396-020-00759-z
10.3389/fpls.2017.01094
10.3389/fmicb.2015.00136
10.1007/s00374-020-01464-x
10.3389/fmicb.2018.02479
10.1094/MPMI-07-20-0178-R
10.1146/annurev-phyto-082712-102342
10.6064/2012/963401
10.1038/s41396-018-0093-1
10.3389/fmicb.2020.01587
10.1038/s41396-017-0028-2
10.1128/JB.05055-11
10.3390/plants9121630
10.1201/9780429059186
10.1094/MPMI-11-20-0318-FI
10.3390/microorganisms9071359
10.1038/s41598-020-63154-w
10.1007/s11104-016-3007-x
10.1104/pp.102.019661
10.1016/j.micres.2020.126690
10.3389/fpls.2020.00203
10.1094/PBIOMES-12-16-0019-RVW
10.1038/s41598-021-82768-2
10.1186/s12864-017-3633-6
10.3389/fpls.2019.01336
10.3389/fmicb.2020.594890
10.1139/cjm-2020-0002
10.1094/PBIOMES-04-20-0029-FI
10.1007/978-3-030-44368-9
10.3390/biology9110381
10.1016/j.micres.2020.126439
10.1094/PBIOMES-01-20-0013-FI
10.1186/s12866-019-1572-x
10.3389/fmicb.2021.635917
10.1007/s42360-019-00174-1
10.1073/pnas.1414592112
10.1038/s41598-020-58402-y
10.3389/fpls.2017.02022
10.1042/BIO20200042
10.1007/s11104-008-9814-y
10.1128/MRA.00954-20
10.1016/j.micres.2018.01.005
10.1016/j.plaphy.2004.05.009
10.1094/PBIOMES-12-19-0069-FI
10.3389/fmicb.2020.00704
10.3389/fmicb.2020.01948
10.1038/s41598-021-82181-9
10.1038/s41579-020-0412-1
10.1093/jxb/eraa089
10.1038/s41586-020-2778-7
10.3389/fmicb.2020.00796
10.1094/PHYTO-03-10-0098
10.1007/s10123-021-00169-x
10.1371/journal.pone.0030438
10.1016/j.ecoenv.2019.109504
10.1371/journal.pone.0159007
10.1162/biot.2008.3.4.357
10.1016/j.tplants.2017.04.008
10.1128/AEM.01744-19
10.1371/journal.pone.0052565
10.3389/fpls.2018.01473
10.1073/pnas.1820691116
10.3390/agronomy11020219
10.1073/pnas.1717308115
10.1016/0734-9750(95)00004-A
10.3389/fmicb.2017.01528
10.1104/pp.15.00284
10.6026/97320630002339
10.1016/S0734-9750(03)00024-7
10.1099/ijs.0.63149-0
10.1016/j.soilbio.2015.04.001
10.3389/fmicb.2021.618169
10.1186/1471-2229-11-163
10.1007/s11104-021-04856-6
10.1038/s41396-020-0665-8
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
7T7
8FD
8FE
8FH
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M7P
P64
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
7X8
7S9
L.6
5PM
DOA
DOI 10.3390/microorganisms9071533
DatabaseName CrossRef
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
Publicly Available Content Database
AGRICOLA
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2076-2607
ExternalDocumentID oai_doaj_org_article_aefe4459be934518850ff9f141164883
PMC8306116
10_3390_microorganisms9071533
GroupedDBID 53G
5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ACPRK
AFKRA
AFPKN
AFRAH
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BBNVY
BENPR
BHPHI
CCPQU
CITATION
ECGQY
GROUPED_DOAJ
GS5
GX1
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
OK1
PATMY
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
RNS
RPM
7T7
8FD
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
5PM
PUEGO
ID FETCH-LOGICAL-c515t-9ebce4f3d7b8625c44a0da1856cabe4a6c61bd6a073008c5c9b82cdbaf7199463
IEDL.DBID M48
ISSN 2076-2607
IngestDate Wed Aug 27 01:26:33 EDT 2025
Thu Aug 21 14:11:35 EDT 2025
Fri Jul 11 11:03:02 EDT 2025
Fri Jul 11 05:44:22 EDT 2025
Fri Jul 25 09:29:47 EDT 2025
Tue Jul 01 01:32:18 EDT 2025
Thu Apr 24 23:04:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-9ebce4f3d7b8625c44a0da1856cabe4a6c61bd6a073008c5c9b82cdbaf7199463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1729-4258
0000-0001-8273-9500
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/microorganisms9071533
PMID 34361969
PQID 2554614470
PQPubID 2032358
ParticipantIDs doaj_primary_oai_doaj_org_article_aefe4459be934518850ff9f141164883
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8306116
proquest_miscellaneous_2636467212
proquest_miscellaneous_2559437752
proquest_journals_2554614470
crossref_citationtrail_10_3390_microorganisms9071533
crossref_primary_10_3390_microorganisms9071533
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210719
PublicationDateYYYYMMDD 2021-07-19
PublicationDate_xml – month: 7
  year: 2021
  text: 20210719
  day: 19
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Microorganisms (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_136
ref_92
Gepstein (ref_94) 2013; 82
Kui (ref_19) 2021; 12
Gamalero (ref_95) 2015; 169
Goswami (ref_135) 2019; 72
Ulbrich (ref_65) 2021; 5
Han (ref_113) 2020; 14
Qin (ref_79) 2017; 8
Xu (ref_63) 2018; 115
ref_97
ref_96
Zhang (ref_11) 2021; 245
ref_17
Santoyo (ref_88) 2021; 5
Epihov (ref_111) 2021; 118
Wang (ref_9) 2020; 42
Nelson (ref_117) 2018; 422
Lemanceau (ref_146) 2017; 22
Zhao (ref_67) 2020; 11
ref_128
Shahzad (ref_134) 2017; 49
Chiellini (ref_14) 2014; 17
Bais (ref_4) 2006; 57
ref_25
Backer (ref_86) 2018; 9
ref_120
Berendsen (ref_133) 2018; 12
Kandasamy (ref_37) 2021; 5
ref_21
Voges (ref_68) 2019; 116
Nascimento (ref_112) 2019; 201
Babalola (ref_38) 2021; 10
Dai (ref_118) 2020; 13
Gamalero (ref_108) 2010; 108
Farina (ref_27) 2012; 55
Hirsch (ref_66) 2017; 1
Edwards (ref_29) 2015; 112
Hamel (ref_26) 2020; 11
Chartrel (ref_61) 2021; 462
Ke (ref_129) 2021; 39
Trivedi (ref_10) 2020; 18
Liu (ref_54) 2021; 34
Bashan (ref_132) 2020; 56
Pandey (ref_106) 2017; 8
Hartmann (ref_13) 2009; 321
Kusstatscher (ref_51) 2021; 12
Novinscak (ref_44) 2020; 11
Zhou (ref_20) 2020; 11
Compant (ref_8) 2019; 19
ref_78
ref_77
Finkel (ref_71) 2020; 587
Saikia (ref_137) 2018; 8
Kaul (ref_138) 2021; 12
Sita (ref_103) 2020; 25
Debruyn (ref_141) 2017; 9
Olanrewaju (ref_82) 2017; 33
Xu (ref_74) 2018; 9
Glick (ref_110) 2020; 235
Lazcano (ref_50) 2021; 11
ref_83
Glick (ref_80) 2012; 2012
ref_140
ref_89
Canarini (ref_22) 2019; 10
ref_144
ref_143
Sasse (ref_7) 2018; 23
ref_85
ref_84
Ullah (ref_46) 2019; 77
Mattera (ref_102) 2020; 71
Ma (ref_101) 2020; 71
Zhang (ref_32) 2019; 37
Wang (ref_43) 2020; 11
Kumar (ref_73) 2017; 8
Hough (ref_36) 2020; 11
Kim (ref_98) 2016; 26
Chen (ref_41) 2019; 29
Walker (ref_5) 2003; 32
Wassermann (ref_75) 2019; 7
Sarma (ref_126) 2015; 87
Zhang (ref_59) 2020; 11
Cloutier (ref_62) 2021; 5
Ren (ref_49) 2020; 11
Hestrin (ref_64) 2021; 5
Waqas (ref_99) 2019; 10
Kong (ref_58) 2021; 15
Glick (ref_87) 1995; 13
Bulgarelli (ref_1) 2013; 64
Wang (ref_28) 2020; 11
Mavrodi (ref_48) 2018; 9
Zipfel (ref_23) 2017; 543
Singha (ref_24) 2021; 11
Glick (ref_93) 2011; 13
Weilharter (ref_122) 2011; 193
Moreira (ref_119) 2021; 67
Ding (ref_53) 2020; 11
Firrincieli (ref_55) 2020; 11
Wei (ref_45) 2021; 12
Stockwell (ref_125) 2011; 101
Stearns (ref_90) 2003; 21
Huang (ref_69) 2019; 364
Glick (ref_81) 2014; 169
Kong (ref_127) 2019; 183
Li (ref_16) 2018; 9
Buchholz (ref_52) 2021; 11
Antoniou (ref_15) 2017; 8
Yaish (ref_76) 2016; 19
Desgarennes (ref_60) 2021; 11
Sessitsch (ref_121) 2005; 55
Frindte (ref_139) 2021; 12
Regalado (ref_72) 2020; 14
ref_115
ref_114
Arul (ref_123) 2008; 2
Terrazas (ref_18) 2017; 8
Sandheep (ref_130) 2013; 16
Glick (ref_91) 2003; 21
Gamalero (ref_33) 2020; 10
Forni (ref_109) 2017; 410
Berg (ref_116) 2018; 12
Ali (ref_39) 2020; 66
Lebeis (ref_70) 2015; 349
Wang (ref_31) 2019; 103
Kavamura (ref_47) 2020; 10
Okubo (ref_30) 2015; 6
Rosier (ref_56) 2021; 11
ref_104
Gong (ref_12) 2021; 63
Reed (ref_124) 2004; 86
ref_105
Mayak (ref_107) 2004; 42
Novello (ref_35) 2017; 8
DaSilva (ref_131) 2019; 32
Toju (ref_145) 2018; 4
ref_100
Amidon (ref_142) 2008; 3
ref_40
ref_3
ref_2
Burbano (ref_6) 2015; 53
French (ref_57) 2020; 4
Candela (ref_34) 2018; 9
Kepler (ref_42) 2020; 86
Glick (ref_147) 2018; 208
References_xml – volume: 64
  start-page: 807
  year: 2013
  ident: ref_1
  article-title: Structure and functions of the bacterial microbiota of plants
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-050312-120106
– volume: 16
  start-page: 580
  year: 2013
  ident: ref_130
  article-title: Combined inoculation of Pseudomonas fluorescens and Trichoderma harzianum for enhancing plant growth of vanilla (Vanilla planifolia)
  publication-title: Pak. J. Biol. Sci.
  doi: 10.3923/pjbs.2013.580.584
– volume: 11
  start-page: 574110
  year: 2021
  ident: ref_60
  article-title: Phytophthora root rot modifies the composition of the avocado microbiome and increases the abundance of opportunistic fungal pathogens
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.574110
– volume: 29
  start-page: 360
  year: 2019
  ident: ref_41
  article-title: Soil Characteristics overwhelm cultivar effects on the structure and assembly of root-associated microbiomes of modern maize
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(17)60370-9
– volume: 63
  start-page: 297
  year: 2021
  ident: ref_12
  article-title: Phyllosphere microbiota: Community dynamics and its interaction with plant hosts
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.13060
– volume: 103
  start-page: 4217
  year: 2019
  ident: ref_31
  article-title: Limited effect of planting transgenic rice on the soil microbiome studied by continuous 13CO2 labeling combined with high-throughput sequencing
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-019-09751-w
– volume: 9
  start-page: 2240
  year: 2018
  ident: ref_34
  article-title: The rootstock regulates microbiome diversity in root and rhizosphere compartments of Vitis vinifera cultivar Lambrusco
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02240
– ident: ref_96
  doi: 10.1007/978-3-319-08575-3
– volume: 26
  start-page: 549
  year: 2016
  ident: ref_98
  article-title: Root exudation by aphid leaf infestation recruits root-associated Paenibacillus spp. to lead plant insect susceptibility
  publication-title: J. Microbiol. Biotechnol.
  doi: 10.4014/jmb.1511.11058
– volume: 9
  start-page: 345
  year: 2018
  ident: ref_48
  article-title: Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00345
– volume: 11
  start-page: 678
  year: 2020
  ident: ref_53
  article-title: Low nitrogen fertilization after rhizosphere microorganism community and improve sweetpotato yield in a nitrogen-deficient rocky soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00678
– volume: 12
  start-page: 666010
  year: 2021
  ident: ref_139
  article-title: Differential impact of plant secondary metabolites on the soil microbiota
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.666010
– volume: 422
  start-page: 7
  year: 2018
  ident: ref_117
  article-title: The seed microbiome: Origins, interactions, and impacts
  publication-title: Plant Soil.
  doi: 10.1007/s11104-017-3289-7
– volume: 364
  start-page: eaau6389
  year: 2019
  ident: ref_69
  article-title: A specialized metabolic network selectively modulates Arabidopsis root microbiota
  publication-title: Science
  doi: 10.1126/science.aau6389
– volume: 32
  start-page: 336
  year: 2019
  ident: ref_131
  article-title: Coinoculation with Bradyrhizobium and Trichoderma alleviates the effects of salt stress in cowpea
  publication-title: Rev. Caatinga
  doi: 10.1590/1983-21252019v32n206rc
– volume: 4
  start-page: 314
  year: 2020
  ident: ref_57
  article-title: Tomato genotype modulates selection and responses to root microbiota
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-02-20-0020-R
– volume: 12
  start-page: 673512
  year: 2021
  ident: ref_19
  article-title: A comparative analysis on the structure and function of the Panax notoginseng rhizosphere microbiome
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.673512
– volume: 11
  start-page: 569366
  year: 2020
  ident: ref_44
  article-title: Inoculation with the plant-growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.569366
– volume: 55
  start-page: 44
  year: 2012
  ident: ref_27
  article-title: Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2011.12.011
– volume: 82
  start-page: 623
  year: 2013
  ident: ref_94
  article-title: Strategies to ameliorate abiotic stress-induced plant senescence
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-013-0038-z
– ident: ref_83
– volume: 8
  start-page: 2620
  year: 2017
  ident: ref_79
  article-title: Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.02620
– ident: ref_114
  doi: 10.1371/journal.pone.0017968
– ident: ref_104
  doi: 10.1007/978-1-4614-0815-4
– volume: 23
  start-page: 25
  year: 2018
  ident: ref_7
  article-title: Feed your friends: Do plant exudates shape the root microbiome?
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.09.003
– ident: ref_85
  doi: 10.1007/978-81-322-2779-3
– volume: 4
  start-page: 247
  year: 2018
  ident: ref_145
  article-title: Core microbiomes for sustainable agroecosystems
  publication-title: Nat. Plants
  doi: 10.1038/s41477-018-0139-4
– volume: 13
  start-page: 4
  year: 2011
  ident: ref_93
  article-title: Making phytoremediation work better: Maximizing a plant’s growth potential in the midst of adversity
  publication-title: Int. J. Phytoremediat.
  doi: 10.1080/15226514.2011.568533
– volume: 57
  start-page: 233
  year: 2006
  ident: ref_4
  article-title: The role of root exudates in the rhizosphere interactions with plants and other organisms
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.57.032905.105159
– volume: 11
  start-page: 559728
  year: 2020
  ident: ref_28
  article-title: Dynamic changes in the microbiome of rice during shoot and root growth derived from seed
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.559728
– volume: 12
  start-page: 642027
  year: 2021
  ident: ref_51
  article-title: Microbiome-assisted breeding to understand cultivar-dependent assembly in Curcurbita pepo
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2021.642027
– volume: 9
  start-page: 1100
  year: 2017
  ident: ref_141
  article-title: Field-grown transgenic switchgrass (Panicum virgatum L.) with altered lignin does not affect soil chemistry, microbiology, and carbon storage potential
  publication-title: Glob. Chang. Biol. Bioenergies
  doi: 10.1111/gcbb.12407
– volume: 11
  start-page: 9447
  year: 2021
  ident: ref_56
  article-title: Urbanization pressures alter tree rhizosphere microbiomes
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88839-8
– ident: ref_144
  doi: 10.3390/microorganisms9051036
– volume: 77
  start-page: 429
  year: 2019
  ident: ref_46
  article-title: Microbe diversity in cotton rhizosphere under normal and drought conditions
  publication-title: Microb. Ecol.
  doi: 10.1007/s00248-018-1260-7
– volume: 9
  start-page: 4894
  year: 2018
  ident: ref_74
  article-title: The structure and function of the global citrus rhizosphere microbiome
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07343-2
– ident: ref_3
– volume: 349
  start-page: 860
  year: 2015
  ident: ref_70
  article-title: Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa
  publication-title: Science
  doi: 10.1126/science.aaa8764
– ident: ref_140
– volume: 8
  start-page: 12
  year: 2017
  ident: ref_73
  article-title: Plants assemble species specific bacterial communities from common core taxa in three arcto-alpine climate zones
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00012
– volume: 71
  start-page: 3765
  year: 2020
  ident: ref_102
  article-title: Molecular bases of responses to abiotic stress in trees
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz532
– volume: 11
  start-page: 12259
  year: 2021
  ident: ref_24
  article-title: Host specific endophytic microbiome diversity and associated functions in three varieties of scented black rice are dependent on growth stage
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-91452-4
– volume: 8
  start-page: 537
  year: 2017
  ident: ref_106
  article-title: Impact of combined abiotic and biotic stresses on plant growth and avenues for crop improvement by exploiting physio-morphological traits
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00537
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_137
  article-title: Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India
  publication-title: Sci. Rep.
– volume: 7
  start-page: 108
  year: 2019
  ident: ref_75
  article-title: Seeds of native alpine plants host unique microbial communities embedded in cross-kingdom networks
  publication-title: Microbiome
  doi: 10.1186/s40168-019-0723-5
– ident: ref_92
  doi: 10.1007/978-1-4020-4999-4
– volume: 201
  start-page: 817
  year: 2019
  ident: ref_112
  article-title: ACC deaminase plays a major role in Pseudomonas fluorescens YsS6 ability to promote the nodulation of Alpha- and Betaproteobacteria rhizobial strains
  publication-title: Arch. Microbiol.
  doi: 10.1007/s00203-019-01649-5
– volume: 108
  start-page: 236
  year: 2010
  ident: ref_108
  article-title: Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences on the growth of cucumber under salt stress conditions
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/j.1365-2672.2009.04414.x
– volume: 19
  start-page: 29
  year: 2019
  ident: ref_8
  article-title: A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.03.004
– volume: 21
  start-page: 383
  year: 2003
  ident: ref_91
  article-title: Phytoremediation: Synergistic use of plants and bacteria to clean up the environment
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(03)00055-7
– volume: 5
  start-page: 617332
  year: 2021
  ident: ref_37
  article-title: Disentangling the association of corn root microbiome with plant productivity and the importance of physiochemical balance in shaping their relationship
  publication-title: Front. Sustain. Food Syst.
  doi: 10.3389/fsufs.2021.617332
– volume: 39
  start-page: 244
  year: 2021
  ident: ref_129
  article-title: Microbiome engineering: Synthetic biology of plant-associated microbiomes in sustainable agriculture
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2020.07.008
– volume: 11
  start-page: 750
  year: 2020
  ident: ref_43
  article-title: Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00750
– volume: 5
  start-page: 672881
  year: 2021
  ident: ref_88
  article-title: Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress
  publication-title: Front. Sustain. Food Syst.
  doi: 10.3389/fsufs.2021.672881
– ident: ref_143
– volume: 543
  start-page: 328
  year: 2017
  ident: ref_23
  article-title: Plant signaling in symbiosis and immunity
  publication-title: Nature
  doi: 10.1038/nature22009
– volume: 33
  start-page: 197
  year: 2017
  ident: ref_82
  article-title: Mechanisms of action of plant growth promoting bacteria
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-017-2364-9
– volume: 118
  start-page: e2022241118
  year: 2021
  ident: ref_111
  article-title: Legume-microbiome interactions unlock mineral nutrients in regrowing tropical forests
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2022241118
– volume: 86
  start-page: 1
  year: 2004
  ident: ref_124
  article-title: Applications of free-living plant growth-promoting rhizobacteria
  publication-title: Antonie van Leeuwenhoek
  doi: 10.1023/B:ANTO.0000024903.10757.6e
– volume: 37
  start-page: 676
  year: 2019
  ident: ref_32
  article-title: NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-019-0104-4
– volume: 13
  start-page: 1461
  year: 2020
  ident: ref_118
  article-title: The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages
  publication-title: Microb. Biotechnol.
  doi: 10.1111/1751-7915.13618
– volume: 14
  start-page: 1915
  year: 2020
  ident: ref_113
  article-title: Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0648-9
– ident: ref_89
– volume: 67
  start-page: 161
  year: 2021
  ident: ref_119
  article-title: Crop, genotype, and field environmental conditions shape bacterial and fungal seed epiphytic microbiomes
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2020-0306
– volume: 10
  start-page: 157
  year: 2019
  ident: ref_22
  article-title: Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00157
– volume: 11
  start-page: 161
  year: 2020
  ident: ref_59
  article-title: Rhizosphere community structure is selected by habitat but not plant species in two tropical seagrass beds
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00161
– volume: 169
  start-page: 30
  year: 2014
  ident: ref_81
  article-title: Bacteria with ACC deaminase can promote plant growth and help to feed the world
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2013.09.009
– ident: ref_120
  doi: 10.1094/PBIOMES-08-20-0059-R
– volume: 25
  start-page: 654
  year: 2020
  ident: ref_103
  article-title: Role of gamma amino butyric acid (GABA) against abiotic stress tolerance in legumes: A review
  publication-title: Plant Physiol. Rep.
  doi: 10.1007/s40502-020-00553-1
– volume: 15
  start-page: 397
  year: 2021
  ident: ref_58
  article-title: Achieving similar root microbiota composition in neighboring plants through airborne signalling
  publication-title: ISME J.
  doi: 10.1038/s41396-020-00759-z
– volume: 8
  start-page: 1094
  year: 2017
  ident: ref_18
  article-title: Root hair mutation displace the barley rhizosphere microbiota
  publication-title: Front. Plant. Sci.
  doi: 10.3389/fpls.2017.01094
– volume: 6
  start-page: 136
  year: 2015
  ident: ref_30
  article-title: Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2015.00136
– volume: 56
  start-page: 443
  year: 2020
  ident: ref_132
  article-title: Disclosure of exact protocols of fermentation, identity of microorganisms within consortia, formation of advanced consortia with microbe-based products
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-020-01464-x
– volume: 9
  start-page: 2479
  year: 2018
  ident: ref_16
  article-title: Plant phenotypic traits eventually shape its microbiota: A common garden test
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2018.02479
– volume: 34
  start-page: 351
  year: 2021
  ident: ref_54
  article-title: Divergence of phyllosphere microbial communities between females and males of the dioecious Populus cathayana
  publication-title: Mol. Plant Microbe Interact.
  doi: 10.1094/MPMI-07-20-0178-R
– volume: 53
  start-page: 403
  year: 2015
  ident: ref_6
  article-title: Roots shaping their microbiome: Global hotspots for microbial activity
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-082712-102342
– volume: 2012
  start-page: 963401
  year: 2012
  ident: ref_80
  article-title: Plant growth-promoting bacteria: Mechanisms and applications
  publication-title: Scientifica
  doi: 10.6064/2012/963401
– volume: 12
  start-page: 1496
  year: 2018
  ident: ref_133
  article-title: Disease-induced assemblage of a plant-beneficial bacterial consortium
  publication-title: ISME J.
  doi: 10.1038/s41396-018-0093-1
– volume: 11
  start-page: 1587
  year: 2020
  ident: ref_26
  article-title: Bacterial communities of the canola rhizosphere: Network analysis reveals a core bacterium shaping microbial interactions
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01587
– volume: 12
  start-page: 1167
  year: 2018
  ident: ref_116
  article-title: Saving seed microbiomes
  publication-title: ISME J.
  doi: 10.1038/s41396-017-0028-2
– volume: 193
  start-page: 3383
  year: 2011
  ident: ref_122
  article-title: Complete genome sequence of the plant growth-promoting endophyte Burkholderia phytofirmans strain PsJN
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.05055-11
– ident: ref_128
  doi: 10.3390/plants9121630
– ident: ref_84
  doi: 10.1201/9780429059186
– ident: ref_21
  doi: 10.1094/MPMI-11-20-0318-FI
– ident: ref_25
  doi: 10.3390/microorganisms9071359
– volume: 10
  start-page: 6453
  year: 2020
  ident: ref_33
  article-title: Discovering the bacteriome of Vitis vinifera cv. Pinot Noir in a conventionally managed vineyard
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-63154-w
– volume: 410
  start-page: 335
  year: 2017
  ident: ref_109
  article-title: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria
  publication-title: Plant Soil
  doi: 10.1007/s11104-016-3007-x
– volume: 32
  start-page: 44
  year: 2003
  ident: ref_5
  article-title: Root exudation and rhizosphere biology
  publication-title: Plant Physiol.
  doi: 10.1104/pp.102.019661
– volume: 245
  start-page: 126690
  year: 2021
  ident: ref_11
  article-title: Harnessing the plant microbiome to promote the growth of agricultural crops
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126690
– volume: 11
  start-page: 203
  year: 2020
  ident: ref_55
  article-title: Influences of climate on phyllosphere endophytic bacterial communities of wild poplar
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00203
– volume: 1
  start-page: 70
  year: 2017
  ident: ref_66
  article-title: The nodule microbiome: N2-fixing rhizobia do not live alone
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-12-16-0019-RVW
– volume: 11
  start-page: 3188
  year: 2021
  ident: ref_50
  article-title: The rhizosphere microbiome plays a role in the resistance to soil-borne pathogens and nutrient uptake of strawberry cultivars under filed conditions
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82768-2
– ident: ref_77
  doi: 10.1186/s12864-017-3633-6
– volume: 10
  start-page: 1336
  year: 2019
  ident: ref_99
  article-title: Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01336
– volume: 11
  start-page: 594890
  year: 2020
  ident: ref_20
  article-title: Soil organic carbon attenuates the influence of plants on root-associated bacterial community
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.594890
– volume: 66
  start-page: 457
  year: 2020
  ident: ref_39
  article-title: Corn microbial diversity and its relationship to yield
  publication-title: Can. J. Microbiol.
  doi: 10.1139/cjm-2020-0002
– volume: 5
  start-page: 14
  year: 2021
  ident: ref_64
  article-title: The switchgrass microbiome: A review of structure, function, and taxonomic distribution
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-04-20-0029-FI
– ident: ref_2
  doi: 10.1007/978-3-030-44368-9
– ident: ref_97
  doi: 10.3390/biology9110381
– volume: 235
  start-page: 126439
  year: 2020
  ident: ref_110
  article-title: ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt in crops
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2020.126439
– volume: 5
  start-page: 39
  year: 2021
  ident: ref_62
  article-title: Sorghum root flavonoid chemistry, cultivar, and frost stress effects on rhizosphere bacteria and fungi
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-01-20-0013-FI
– ident: ref_17
  doi: 10.1186/s12866-019-1572-x
– volume: 12
  start-page: 635917
  year: 2021
  ident: ref_138
  article-title: Engineering host microbiome for crop improvement and sustainable agriculture
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.635917
– volume: 72
  start-page: 479
  year: 2019
  ident: ref_135
  article-title: Deciphering rhizosphere microbiome for the development of novel bacterial consortium and its evaluation for salt stress management in solanaceous crops in India
  publication-title: Indian Phytopathol.
  doi: 10.1007/s42360-019-00174-1
– volume: 112
  start-page: E911
  year: 2015
  ident: ref_29
  article-title: Structure, variation, and assembly of the root-associated microbiomes of rice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1414592112
– volume: 10
  start-page: 1452
  year: 2020
  ident: ref_47
  article-title: Wheat dwarfing influences selection of the rhizosphere microbiome
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58402-y
– volume: 8
  start-page: 2022
  year: 2017
  ident: ref_15
  article-title: Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02022
– volume: 42
  start-page: 20
  year: 2020
  ident: ref_9
  article-title: Harnessing the genetic potential of the plant microbiome
  publication-title: Biochemist
  doi: 10.1042/BIO20200042
– volume: 321
  start-page: 235
  year: 2009
  ident: ref_13
  article-title: Plant-driven selection of microbes
  publication-title: Plant Soil
  doi: 10.1007/s11104-008-9814-y
– volume: 10
  start-page: e00954-20
  year: 2021
  ident: ref_38
  article-title: Metagenome assembly and metagenome-assembled genome sequences from the rhizosphere of maize plants in Mafikeng, South Africa
  publication-title: Microbiol. Resour. Announc.
  doi: 10.1128/MRA.00954-20
– volume: 208
  start-page: 25
  year: 2018
  ident: ref_147
  article-title: Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms
  publication-title: Microbiol. Res.
  doi: 10.1016/j.micres.2018.01.005
– volume: 49
  start-page: 1523
  year: 2017
  ident: ref_134
  article-title: Comparative effectiveness of different carriers to improve the efficacy of bacterial consortium for enhancing wheat production under salt affected field conditions
  publication-title: Pak. J. Bot.
– volume: 42
  start-page: 565
  year: 2004
  ident: ref_107
  article-title: Plant growth-promoting bacteria that confer resistance in tomato to salt stress
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2004.05.009
– volume: 5
  start-page: 108
  year: 2021
  ident: ref_65
  article-title: Intraspecific variability in root traits and edaphic conditions influence soil microbiomes across 12 switchgrass cultivars
  publication-title: Phytobiomes J.
  doi: 10.1094/PBIOMES-12-19-0069-FI
– volume: 11
  start-page: 704
  year: 2020
  ident: ref_67
  article-title: Effects of drought-tolerant Ea-DREB2B transgenic sugarcane on bacterial communities in soil
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00704
– volume: 11
  start-page: 1948
  year: 2020
  ident: ref_49
  article-title: Effects of continuous nitrogen fertilizer application on the diversity and composition of rhizosphere soil bacteria
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.01948
– volume: 11
  start-page: 3146
  year: 2021
  ident: ref_52
  article-title: 16S rRNA gene-based microbiome analysis identifies candidate bacterial strains that increase the storage time of potato tubers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82181-9
– volume: 18
  start-page: 607
  year: 2020
  ident: ref_10
  article-title: Plant-microbiome interactions: From community assembly to plant health
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-020-0412-1
– volume: 71
  start-page: 2870
  year: 2020
  ident: ref_101
  article-title: Molecular genetic analyses of abiotic stress responses during plant reproductive development
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eraa089
– volume: 587
  start-page: 103
  year: 2020
  ident: ref_71
  article-title: A single bacterial genus maintains root growth in a complex microbiome
  publication-title: Nature
  doi: 10.1038/s41586-020-2778-7
– volume: 11
  start-page: 796
  year: 2020
  ident: ref_36
  article-title: Biotic and environmental drivers of plant microbiomes across a permafrost thaw gradient
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00796
– volume: 101
  start-page: 113
  year: 2011
  ident: ref_125
  article-title: Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear
  publication-title: Phytopathology
  doi: 10.1094/PHYTO-03-10-0098
– ident: ref_40
  doi: 10.1007/s10123-021-00169-x
– ident: ref_115
  doi: 10.1371/journal.pone.0030438
– volume: 183
  start-page: 109504
  year: 2019
  ident: ref_127
  article-title: Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal-contaminated soils
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.109504
– ident: ref_78
  doi: 10.1371/journal.pone.0159007
– volume: 3
  start-page: 357
  year: 2008
  ident: ref_142
  article-title: Adolf Meyer-Abich, Holism, and the Negotiation of Theoretical Biology
  publication-title: Biol. Theory
  doi: 10.1162/biot.2008.3.4.357
– volume: 22
  start-page: 583
  year: 2017
  ident: ref_146
  article-title: Let the Core Microbiota Be Functional
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2017.04.008
– volume: 86
  start-page: e01744-19
  year: 2020
  ident: ref_42
  article-title: Soil microbial communities in diverse agroecosystems exposed to the herbicide glyphosate
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01744-19
– ident: ref_136
  doi: 10.1371/journal.pone.0052565
– volume: 9
  start-page: 1473
  year: 2018
  ident: ref_86
  article-title: Plant Growth-Promoting Rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01473
– volume: 116
  start-page: 12558
  year: 2019
  ident: ref_68
  article-title: Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1820691116
– ident: ref_105
  doi: 10.3390/agronomy11020219
– volume: 115
  start-page: E4284
  year: 2018
  ident: ref_63
  article-title: Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1717308115
– volume: 13
  start-page: 247
  year: 1995
  ident: ref_87
  article-title: Metabolic load and heterologous gene expression
  publication-title: Biotechnol. Adv.
  doi: 10.1016/0734-9750(95)00004-A
– volume: 8
  start-page: 1528
  year: 2017
  ident: ref_35
  article-title: The rhizosphere bacterial microbiota of Vitis vinifera cv. Pinot Noir in an integrated pest management vineyard
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01528
– volume: 169
  start-page: 13
  year: 2015
  ident: ref_95
  article-title: Bacterial modulation of plant ethylene levels
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00284
– volume: 2
  start-page: 339
  year: 2008
  ident: ref_123
  article-title: Functional insight for β-glucuronidase in Escherichia coli and Staphylococcus sp. RLH1
  publication-title: Bioinformation
  doi: 10.6026/97320630002339
– volume: 21
  start-page: 193
  year: 2003
  ident: ref_90
  article-title: Transgenic plants with altered ethylene biosynthesis or perception
  publication-title: Biotechnol. Adv.
  doi: 10.1016/S0734-9750(03)00024-7
– volume: 55
  start-page: 1187
  year: 2005
  ident: ref_121
  article-title: Burkholderia phytofirmans sp. Nov., a novel plant-associated bacterium with plant beneficial properties
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.63149-0
– volume: 19
  start-page: 143
  year: 2016
  ident: ref_76
  article-title: The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress
  publication-title: Int. Microbiol.
– volume: 87
  start-page: 25
  year: 2015
  ident: ref_126
  article-title: Microbial consortium-mediated plant defense against phytopathogens: Readdressing for enhancing efficacy
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.04.001
– volume: 12
  start-page: 618169
  year: 2021
  ident: ref_45
  article-title: Composition of rhizosphere microbial communities associated with healthy and Verticillium wilt diseased cotton plants
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.618169
– ident: ref_100
  doi: 10.1186/1471-2229-11-163
– volume: 462
  start-page: 405
  year: 2021
  ident: ref_61
  article-title: The microbial community associated with pea seeds (Pisum sativum) of different geographical origins
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-04856-6
– volume: 17
  start-page: 165
  year: 2014
  ident: ref_14
  article-title: Endophytic and rhizospheric bacterial communities isolated from the medicinal plants Echinacea purpurea and Echinacea angustifolia
  publication-title: Int. Microbiol.
– volume: 14
  start-page: 2116
  year: 2020
  ident: ref_72
  article-title: Combining whole-genome shotgun sequencing and rRNA gene amplicon analysis to improve detection of microbe-microbe interaction networks in plant leaves
  publication-title: ISME J.
  doi: 10.1038/s41396-020-0665-8
SSID ssj0000913851
Score 2.4884782
SecondaryResourceType review_article
Snippet To date, an understanding of how plant growth-promoting bacteria facilitate plant growth has been primarily based on studies of individual bacteria interacting...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1533
SubjectTerms Bacteria
Carbon
Consortia
Environmental conditions
Environmental stress
Exudates
Exudation
Homeostasis
Metabolism
Metabolites
microbiome
Microbiomes
Microbiota
Microorganisms
organic agriculture
Pathogens
PGPB
Physiology
Plant growth
plant growth-promoting bacteria
Potassium
Review
root microbiomes
seed microbiomes
Seeds
soil
soil bacteria
Soil microorganisms
Soils
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVhoZBLSJuEOt0WBXJ1Ylvfx7Y0hEJzSiA3I8kjupD1lto57L_vSHYWG0L20qs1Y-SR5HmDn98QclkopQBxQi4tYzlXweXaFJB7cCo0znPuE0H2Tt4-8J-P4nHS6itywgZ54CFw1xYCcC6MA8N4VA8TRQgmlLxEoK910vnEnDcpptI72JQMscTwyw7Duv56HfltQ6ekbt1hSRiBziwZJc3-GdCc0yQneefmmByNgJF-HSb6nhxA-4G8G1pIbk-IQNyHjnRC_unoqqWI62jkCG7pJtDYmainv1aD6NIaulPycPPj_vttPrZCyD0Cjj434DzwwBrlsAQRGEJbNBZzrfTWAbfSy9I10ib5ee2FN05XvnE2qCj-K9kZWbSbFj4SCsyUtqm08BpvA0ZLUNpLVjjPhGxkRvhLTGo_6oTHdhVPNdYLMZT1q6HMyNXO7c8glLHP4VsM-M446lynC2hYj6tf71v9jCxflqseD19XV5F5h4WiKjJysRvGYxO_hdgWNs_JxnCmlKjesJFMYh7B5J4RNdsKs0nPR9rV7yTSrbEWw0me_4-n_EQOq0iliXqeZkkW_d9n-IxYqHdf0rb_B3_-Cs0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFcEX0ap4_ZAIvq7d23w_FSstRbCUYqFvS5JN8MDba7vXh_73zuzmzi6U-rqZhDCZZH6TzP4G4EuptY6IEwrlOC-ETr4wtoxFiF6nxgchQp8ge67OrsSPa3mdL9y6nFa5PhP7g7pZBrojP6wonQrRvy6Pbm4LqhpFr6u5hMYL2MYj2JgJbB-fnF9cbm5ZiPUSMcXw6w7H-P5wQXluQ8WkbtFhaEiAZ-SUeu7-EeAcp0s-8j-nb-B1Bo7s27DSb2Ertjvwcigl-fAOJOI_7MgeJQF1bN4yxHeMcgUf2DIxqlC0Yj_nA_nSInbv4er05Nf3syKXRCgCAo9VYaMPUSTeaI-hiERVurJx6HNVcD4Kp4Ka-Ua5nobeBBmsN1VovEuaSIAV_wCTdtnGj8AitzPXVEYGg8NEa1TUJihe-sClatQUxFondch84VS24k-NcQOpsn5SlVP4uul2MxBm_K_DMSl8I0x81_0HFKzz9qldTFEIaX20XBCHnCxTsmkmZhjuGYOD7K-Xq86bsKv_mcwUPm-acfvQm4hr4_K-l7GCay2rZ2QUV-hP0MKmoEemMJr0uKWd_-7Jug3GZDjJ3ecnuAevKkqWIcZOuw-T1d19PEC0s_Kfskn_BXAZBIc
  priority: 102
  providerName: ProQuest
Title Recent Developments in the Study of Plant Microbiomes
URI https://www.proquest.com/docview/2554614470
https://www.proquest.com/docview/2559437752
https://www.proquest.com/docview/2636467212
https://pubmed.ncbi.nlm.nih.gov/PMC8306116
https://doaj.org/article/aefe4459be934518850ff9f141164883
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS9xAEB6sUuhLsdbitXpsoa_RJPv7oYgWRQqKlB74FnY3u3jg5dSc0PvvO7vJHQasfU1mlmV2N_N9yeQbgG-5lNIjTsiEoTRjMthM6dxnzlsZausYc6lA9kpcTNjPG36zAStBhT6A7YvULvaTmjzeHf55WB7jgf8eGSdS9qNZLF3rmiC1sxbZXsQwb2ALk5OMTQ0ue8SfHs66oAgyun95_u09yFJJzH-AQIf1k88S0vk2vO-RJDnplv4DbPhmB952vSWXH4EjIERH8qwqqCXThiDgI7F4cEnmgcSWRQtyOe3UmGa-3YXJ-dnvHxdZ3yMhc4hEFpn21nkWaC0tchOOsTV5bTAJC2esZ0Y4UdhamKRLrxx32qrS1dYEGVWBBf0Em8288XtAPNWFqUvFncJhvFbCS-UEza2jXNRiBGwVk8r1AuKxj8VdhUQihrJ6MZQjOFy73XcKGv9zOI0BXxtHAex0AQ2r_jxVxgfPGNfWa8qiqBzPQ9ChYAXyP6VwkP3VclWrTVWVsSQPGaTMR_B1fRvPU_xIYho_f0o2mlEpefmKjaACEwxm_RHIwVYYTHp4p5neJvVuhSQNJ_n59Ql-gXdlrJ6JEp56HzYXj0_-AOHPwo5h6_Ts6vrXOL0-GKft_RdxZAxz
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRC9IJ5iSwEjwTE0Gzt-HFBFodWWtiuEWqm3YDuOWKmbbclWaP8Uv7EzeSyNhMqp1_ghazzj-SYefwPwLlZKBcQJkbScR0IVLtImDpEPThW580L4OkF2Isen4utZerYGf7q3MJRW2Z2J9UGdzz39I99OKJ0K0b-Kdy4uI6oaRberXQmNRi0Ow_I3hmzVx4MvuL_vk2R_7-TzOGqrCkQeffciMsH5IAqeK4doPsXV2Di36Lakty4IK70cuVzamsld-9QbpxOfO1so4tGVHOe9B-uCyzgZwPru3uTb99VfHWLZRAzTPBXi3MTbM8qrayo0VbMKQ1ECWD0nWNcK6AHcfnrmDX-3_wgetkCVfWo06zGshfIJ3G9KVy6fQop4EweyG0lHFZuWDPEko9zEJZsXjCoiLdjxtCF7moXqGZzeibCew6Ccl-EFsMDNyOaJTr3GaYLRMijtJY-d56nM5RBEJ5PMt_zkVCbjPMM4hUSZ_VOUQ_iwGnbREHT8b8AuCXzVmfi16w_YMWvNNbOhCEKkxgXDBXHWpXFRmGIkRhheao2TbHXblbVGX2V_VXQIb1fNaK50B2PLML-q-xjBlUqTW_pILtF_IagYguqpQm_R_ZZy-rMmB9cYA-IiN29f4Bt4MD45PsqODiaHL2EjoUQdYgs1WzBY_LoKrxBpLdzrVr0Z_Lhri7oGRyVCnA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEE91oYCR4Bg2Gzt-HBCitKuWwqpCVOot2I4tVmKzhWyF9q_x65hJsksjoXLqNX7Imow93ySfvwF4mSqlAuKERFrOE6GiS7RJQ-KDU7F0XgjfEGSn8vBUfDjLz7bg9_ouDNEq12dic1CXC0_fyEcZ0akQ_at0FDtaxMn-5O35j4QqSNGf1nU5jdZFjsPqF6Zv9ZujfXzXr7JscvDl_WHSVRhIPMbxZWKC80FEXiqHyD7Hldm0tBjCpLcuCCu9HLtS2kbVXfvcG6czXzobFWnqSo7z3oBtRVnRALb3DqYnnzdfeEhxE_FMe22Ic5OO5sSxa6s11fMa01ICW72A2NQN6IHdPlXzUuyb3IU7HWhl71ovuwdboboPN9sylqsHkCP2xIHsEgGpZrOKIbZkxFNcsUVkVB1pyT7NWuGneagfwum1GOsRDKpFFXaABW7Gtsx07jVOE4yWQWkveeo8z2UphyDWNil8p1VOJTO-F5izkCmLf5pyCK83w85bsY7_Ddgjg286k9Z28wA7Ft3WLWyIQYjcuGC4IP26PI3RxLEYY6qpNU6yu35dRXcA1MVfdx3Ci00zbl36H2OrsLho-hjBlcqzK_pILjGWIcAYguq5Qm_R_ZZq9q0RCteYD-IiH1-9wOdwC3dS8fFoevwEbmfE2SHhULMLg-XPi_AUQdfSPeu8m8HX695QfwDg8UbR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Developments+in+the+Study+of+Plant+Microbiomes&rft.jtitle=Microorganisms+%28Basel%29&rft.au=Glick%2C+Bernard+R&rft.au=Gamalero%2C+Elisa&rft.date=2021-07-19&rft.pub=MDPI+AG&rft.eissn=2076-2607&rft.volume=9&rft.issue=7&rft.spage=1533&rft_id=info:doi/10.3390%2Fmicroorganisms9071533&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-2607&client=summon