QT–GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining bio...
Saved in:
Published in | Molecular plant Vol. 16; no. 7; pp. 1212 - 1227 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Inc
03.07.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT–GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT–GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT–GWAS method can retrieve valid gene–metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
A novel genome-wide association method to uncover biosynthetic loci underlying qualitative metabolic traits (designated as QT–GWAS) was developed and compared with a conventional quantitative metabolite GWAS (mGWAS). At least 23 of the associations identified by QT-GWAS were supported by previous research, and 7 associations involving three metabolic enzyme-encoding genes (CYP706A5, UGT76C3, and SULT202B1) were newly confirmed, illustrating the power of QT–GWAS. |
---|---|
AbstractList | Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remains unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted system-wide method in
Arabidopsis thaliana
, subjecting qualitative metabolic traits to a genome-wide association study (designated as Qualitative Trait GWAS or QT-GWAS), along with the more conventional metabolite GWAS (mGWAS) that considers the quantitative variation of metabolites. As proof of the validity of the QT-GWAS and mGWAS, 23 and 15 of the retrieved associations were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or
in vitro
enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UGT76C3 is able to hexosylate guanine
in vitro
and
in planta
, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans
in vitro
. Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT–GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT–GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT–GWAS method can retrieve valid gene–metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits. A novel genome-wide association method to uncover biosynthetic loci underlying qualitative metabolic traits (designated as QT–GWAS) was developed and compared with a conventional quantitative metabolite GWAS (mGWAS). At least 23 of the associations identified by QT-GWAS were supported by previous research, and 7 associations involving three metabolic enzyme-encoding genes (CYP706A5, UGT76C3, and SULT202B1) were newly confirmed, illustrating the power of QT–GWAS. Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits. Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT–GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT–GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT–GWAS method can retrieve valid gene–metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits. Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits. |
Author | Morreel, Kris Peng, Meng Höfer, René Vanholme, Ruben Storme, Véronique Darrah, Chiarina Ralph, John Goeminne, Geert Brouckaert, Marlies Saeys, Yvan Boerjan, Wout Timokhin, Vitaliy I. El Houari, llias |
AuthorAffiliation | 6 Ghent University Department of Applied Mathematics, Computer Science and Statistics, Ghent, Belgium 2 VIB Center for Plant Systems Biology, Ghent, Belgium 9 Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA 1 Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium 7 VIB Center for Inflammation Research, Ghent, Belgium 8 VIB Metabolomics Core, Ghent, Belgium |
AuthorAffiliation_xml | – name: 1 Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium – name: 7 VIB Center for Inflammation Research, Ghent, Belgium – name: 2 VIB Center for Plant Systems Biology, Ghent, Belgium – name: 6 Ghent University Department of Applied Mathematics, Computer Science and Statistics, Ghent, Belgium – name: 9 Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI, USA – name: 8 VIB Metabolomics Core, Ghent, Belgium |
Author_xml | – sequence: 1 givenname: Marlies orcidid: 0000-0002-5893-3175 surname: Brouckaert fullname: Brouckaert, Marlies organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 2 givenname: Meng surname: Peng fullname: Peng, Meng organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 3 givenname: René surname: Höfer fullname: Höfer, René organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 4 givenname: llias surname: El Houari fullname: El Houari, llias organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 5 givenname: Chiarina surname: Darrah fullname: Darrah, Chiarina organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 6 givenname: Véronique surname: Storme fullname: Storme, Véronique organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 7 givenname: Yvan surname: Saeys fullname: Saeys, Yvan organization: Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium – sequence: 8 givenname: Ruben surname: Vanholme fullname: Vanholme, Ruben organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 9 givenname: Geert surname: Goeminne fullname: Goeminne, Geert organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 10 givenname: Vitaliy I. surname: Timokhin fullname: Timokhin, Vitaliy I. organization: Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 11 givenname: John surname: Ralph fullname: Ralph, John organization: Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA – sequence: 12 givenname: Kris surname: Morreel fullname: Morreel, Kris organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium – sequence: 13 givenname: Wout orcidid: 0000-0003-1495-510X surname: Boerjan fullname: Boerjan, Wout email: wout.boerjan@psb.vib-ugent.be organization: Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37349988$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1989747$$D View this record in Osti.gov |
BookMark | eNqNUstu1DAUjVARfcAPsEARKzYJjuMnQpVGFRSkSghRxNI4zk3HI8eexp5I3fEP_CFfgsOUClhUrHyte865r3NcHPjgoSieNqhuUMNebuoxuG2NEW5rxGqEyIPiqOEUV1IwfpBjxkmFEcWHxXGMG4QYEqx9VBy2vCVSCnFUfP14-ePb9_Mvq0-vylXpwwyuHCGtQ18OYSp3fgbrrL8qOxvijU9rSNaULhhb6mEAk5bc9U47m3SyMyxk3QWXQWnSNsXHxcNBuwhPbt-T4vPbN5dn76qLD-fvz1YXlaENTZUkfYeBmA6htpM0_6jpKKGI6IExagYkcCM6xOiAmdBIU5AAVAJuDGuZbk-K073udteN0Bvwub5T28mOerpRQVv1d8bbtboKs-KsIVzgLPB8LxBisioam8CsTfA-D6kaKSQnPINe3FaZwvUOYlKjjQac0x7CLiosBGeYSIz-A4olaZHki-qzP3u_a_r3mTIA7wFmCjFOMNxBGqQWL6iNWrygFi8oxFT2QiaJf0jm15HCMr9191Nf76mQLzZbmJZ9gDfQ22lZRx_sffSf5BjRSw |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2024_138821 crossref_primary_10_1093_plphys_kiad596 crossref_primary_10_1016_j_copbio_2024_103147 crossref_primary_10_3390_plants14040629 crossref_primary_10_3390_agronomy14102214 |
Cites_doi | 10.1007/978-1-4615-4729-7_5 10.1111/tpj.14496 10.1038/ng2115 10.1093/jxb/ers067 10.1016/j.phytochem.2006.09.030 10.1038/ncomms4438 10.1093/jxb/erv546 10.1371/journal.pone.0061971 10.1104/pp.010416 10.1093/plcell/koaa046 10.1074/jbc.M210983200 10.1093/jxb/erx049 10.1021/acs.jafc.8b01044 10.1007/s00425-003-1184-3 10.1016/j.molp.2020.04.004 10.3390/toxins8030060 10.1534/genetics.114.168690 10.1105/tpc.15.00223 10.1373/clinchem.2015.251181 10.1016/j.pbi.2015.01.006 10.1105/tpc.15.00208 10.3389/fpls.2016.00735 10.3390/ijms140510242 10.3390/molecules21060806 10.1105/tpc.114.134643 10.1016/j.molp.2019.06.001 10.1016/j.csbj.2020.11.050 10.1111/pbi.13335 10.1073/pnas.2005460117 10.1104/pp.110.156489 10.1093/pcp/pcac041 10.1021/acs.analchem.6b01702 10.1093/jxb/erz392 10.1073/pnas.1503272112 10.1016/j.molp.2014.11.003 10.1093/jxb/erh183 10.1038/ng.548 10.1038/ng.1042 10.1021/acs.jafc.0c01652 10.3389/fpls.2019.00738 10.1111/nph.12416 10.1111/j.1365-313X.2006.02786.x 10.3389/fpls.2015.00365 10.1371/journal.pgen.1006363 10.1016/S0014-5793(99)01403-9 10.1111/nph.12145 10.1146/annurev-genet-120116-024640 10.1016/j.semcancer.2016.08.006 10.1371/journal.pone.0000718 10.1111/bjh.14520 10.1016/j.plaphy.2006.10.004 10.1038/ncomms12767 10.1105/tpc.107.056523 10.1038/ncomms13299 10.1021/ac100968g 10.1111/tpj.14879 10.1073/pnas.1509788112 10.1038/s41467-017-02168-x 10.1093/gbe/evv217 10.1007/s11306-019-1503-8 10.1093/pcp/pcr152 10.1534/genetics.109.108522 10.3389/fpls.2014.00443 10.1111/tpj.14727 10.1073/pnas.1719497115 10.1093/mp/ssp090 10.1104/pp.16.01287 10.3390/molecules23020480 10.3389/fpls.2016.01264 10.1016/j.molp.2017.08.012 10.1016/j.cis.2020.102145 10.1111/tpj.12681 10.1104/pp.126.2.811 10.1016/j.tplants.2013.05.002 10.1016/j.bbrc.2013.04.022 10.1093/nar/gku436 10.1111/tpj.15182 10.1038/ng.3007 10.1093/jb/mvt102 10.1038/ncomms12399 10.1016/j.csbj.2021.01.004 10.1105/tpc.113.122242 10.1016/j.jplph.2006.02.001 10.1002/tpg2.20008 10.1016/j.plaphy.2016.03.014 |
ContentType | Journal Article |
Copyright | 2023 The Author Copyright © 2023 The Author. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2023 The Author – notice: Copyright © 2023 The Author. Published by Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 OTOTI 5PM |
DOI | 10.1016/j.molp.2023.06.004 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1752-9867 |
EndPage | 1227 |
ExternalDocumentID | PMC7614782 1989747 37349988 10_1016_j_molp_2023_06_004 S1674205223001703 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 834923 |
GroupedDBID | --- --M .2P .I3 0R~ 123 2WC 4.4 457 53G 7-5 70D 8P~ AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAMRU AAOAW AAQFI AATLK AATTM AAVLN AAXKI AAXUO ABGRD ABJNI ABMAC ABNKS ABZBJ ACDAQ ACGFS ACPRK ACRLP ADBBV ADEYI ADEZE ADFTL ADOCK ADVLN ADZTZ AEBSH AEGPL AEIPS AEKER AENEX AEXQZ AFRAH AFTJW AFXIZ AGKEF AGUBO AHMBA AHXPO AIJHB AIKHN AITUG AKHUL AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU BKOJK BLXMC BNPGV CS3 CZ4 DU5 E3Z EBS EE~ EFJIC F5P F9B FDB FIRID FYGXN GBLVA H5~ HW0 HZ~ IOX IXB KOM M-Z M41 M49 N9A O9- OAUVE OK1 P2P PQQKQ Q1. RD5 ROL RW1 RXO SPCBC SSA SSH SSZ T5K TR2 W8F X7H ~91 ~G- 1RT AAYWO AAYXX ABFNM ABXDB ACVFH ADCNI AEUPX AFPUW AGCQF AGHFR AGRNS AIEXJ AIGII AIIUN AKBMS AKYEP APXCP AXJTR CITATION CKLRP CW9 EJD H13 O0~ OVD TEORI TGP CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 AABVA AAFTH AAIAV AAIYJ AALMO ABPTK ABYKQ AFKWA AJOXV AMFUW ESX OTOTI PQEST RCE 5PM |
ID | FETCH-LOGICAL-c515t-94db2e4cb003b954db5cb54504af665cf08218b065f268a0a5e9ee59e21c636a3 |
IEDL.DBID | AIKHN |
ISSN | 1674-2052 1752-9867 |
IngestDate | Thu Aug 21 18:36:56 EDT 2025 Mon Aug 07 05:57:16 EDT 2023 Wed Jul 02 04:50:21 EDT 2025 Fri Jul 11 00:01:06 EDT 2025 Mon Jul 21 06:07:07 EDT 2025 Tue Jul 01 01:40:51 EDT 2025 Thu Apr 24 23:08:08 EDT 2025 Sun Apr 06 06:53:16 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Copyright © 2023 The Author. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-94db2e4cb003b954db5cb54504af665cf08218b065f268a0a5e9ee59e21c636a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE SC0018409 current address: VIB Agro-incubator, Nevele, Belgium current address: Research Institute for Chromatography, Kortrijk, Belgium current address: BioNTech SE, Mainz, Rhineland-Palatinate, Germany current address: Eunomia Research & Consulting, Bristol, United Kingdom current addresses are 6,7 |
ORCID | 0000-0003-1495-510X 0000-0002-5893-3175 000000031495510X 0000000258933175 |
OpenAccessLink | http://www.cell.com/article/S1674205223001703/pdf |
PMID | 37349988 |
PQID | 2829430977 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7614782 osti_scitechconnect_1989747 proquest_miscellaneous_2887624920 proquest_miscellaneous_2829430977 pubmed_primary_37349988 crossref_primary_10_1016_j_molp_2023_06_004 crossref_citationtrail_10_1016_j_molp_2023_06_004 elsevier_sciencedirect_doi_10_1016_j_molp_2023_06_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-07-03 |
PublicationDateYYYYMMDD | 2023-07-03 |
PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United Kingdom |
PublicationTitle | Molecular plant |
PublicationTitleAlternate | Mol Plant |
PublicationYear | 2023 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Bishayee, Sethi (bib7) 2016; 40-41 Duguay, Jamal, Liu, Wang, Thompson (bib22) 2007; 164 Ricachenevsky, Vasconcelos, Shou, Johnson, Sperotto (bib65) 2019; 10 Kliebenstein, Kroymann, Brown, Figuth, Pedersen, Gershenzon, Mitchell-Olds (bib39) 2001; 126 Šmehilová, Dobrůšková, Novák, Takáč, Galuszka (bib72) 2016; 7 Tohge, Scossa, Wendenburg, Frasse, Balbo, Watanabe, Alseekh, Jadhav, Delfin, Lohse (bib78) 2020; 13 Chen, Hu, Shi, Yin, Sun, Hao, Xia, Luo, Fernie, He, Chen (bib11) 2020; 18 Wen, Li, Li, Gao, Li, Li, Liu, Liu, Chen, Luo, Yan (bib84) 2014; 5 Chen, Gao, Xie, Gong, Lu, Wang, Li, Liu, Zhang, Dong (bib12) 2014; 46 Mukherjee, Mukherjee, Ghosh (bib60) 2015; 8 (bib64) 2020 Li, Zhang, Chang, Zhao, Schranz, Wang (bib44) 2015; 27 Mojzeš, Gao, Ismagulova, Pilátová, Moudříková, Gorelova, Solovchenko, Nedbal, Salih (bib55) 2020; 117 Peng, Shahzad, Gul, Subthain, Shen, Lei, Zheng, Zhou, Lu, Wang (bib63) 2017; 8 Textor, Bartram, Kroymann, Falk, Hick, Pickett, Gershenzon (bib77) 2004; 218 Angelovici, Batushansky, Deason, Gonzalez-Jorge, Gore, Fait, DellaPenna (bib3) 2017; 173 Dong, Gao, Chen, Wang, Gong, Liu, Luo (bib20) 2015; 8 Desborough, Keeling (bib16) 2017; 177 Kang, Sul, Service, Zaitlen, Kong, Freimer, Sabatti, Eskin (bib35) 2010; 42 Matsuda, Nakabayashi, Yang, Okazaki, Yonemaru, Ebana, Yano, Saito (bib52) 2015; 81 Dima, Morreel, Vanholme, Kim, Ralph, Boerjan (bib19) 2015; 27 Hashiguchi, Sakakibara, Hara, Shimohira, Kurogi, Akashi, Liu, Suiko (bib29) 2013; 434 Baseggio, Murray, Magallanes-Lundback, Kaczmar, Chamness, Buckler, Smith, DellaPenna, Tracy, Gore (bib6) 2020; 13 Knoch, Riewe, Meyer, Boudichevskaia, Schmidt, Altmann (bib40) 2017; 68 Allen, Pon, Wilson, Greiner, Wishart (bib1) 2014; 42 Arbona, Gómez-Cadenas (bib4) 2016; 19 Bouwmeester, Schuurink, Bleeker, Schiestl (bib8) 2019; 100 Moghe, Last (bib54) 2015; 169 Fürstenberg-Hägg, Zagrobelny, Bak (bib25) 2013; 14 Shi, Zhu, Jia, Hu, Chen, Liu, Ren, Sun, Fernie, Cui, Chen (bib69) 2020; 103 Contrepois, Liang, Snyder (bib15) 2016; 62 Sotelo-Silveira, Chauvin, Marsch-Martínez, Winkler, de Folter (bib73) 2015; 6 Tohge, Wendenburg, Ishihara, Nakabayashi, Watanabe, Sulpice, Hoefgen, Takayama, Saito, Stitt, Fernie (bib79) 2016; 7 Le Roy, Huss, Creach, Hawkins, Neutelings (bib43) 2016; 7 Teles, Souza, Souza (bib76) 2018; 23 Ludidi, Gehring (bib49) 2003; 278 Chowański, Adamski, Marciniak, Rosiński, Büyükgüzel, Büyükgüzel, Falabella, Scrano, Ventrella, Lelario, Bufo (bib14) 2016; 8 Jiang, Su, Chen, Peng, Zhou, Liu, Liu, Xue (bib34) 2020; 68 Wen, Li, Alseekh, Omranian, Zhao, Zhou, Xiao, Jin, Yang, Liu (bib85) 2015; 27 Morreel, Goeminne, Storme, Sterck, Ralph, Coppieters, Breyne, Steenackers, Georges, Messens, Boerjan (bib57) 2006; 47 Nunes-Nesi, Alseekh, de Oliveira Silva, Omranian, Lichtenstein, Mirnezhad, González, Sabio y Garcia, Conte, Leiss (bib61) 2019; 15 Winter, Vinegar, Nahal, Ammar, Wilson, Provart (bib87) 2007; 2 Chen, Wang, Peng, Gong, Gao, Wan, Wang, Shi, Zhou, Li (bib13) 2016; 7 Varela, Arslan, Reginato, Cenzano, Luna (bib81) 2016; 104 Yamaguchi, Kurosaki, Suh, Sankawa, Nishioka, Akiyama, Shibuya, Ebizuka (bib90) 1999; 460 Kroymann, Textor, Tokuhisa, Falk, Bartram, Gershenzon, Mitchell-Olds (bib41) 2001; 127 Rose, Cantrill, Benohoud, Tidder, Rayner, Blackburn (bib66) 2018; 66 Klein, Papenbrock (bib38) 2004; 55 Kim, Jo, Jang, Cho, Clark, Ossowski, Ecker, Weigel, Nordborg (bib36) 2007; 27 Brotman, Llorente-Wiegand, Oyong, Badoni, Misra, Anacleto, Parween, Pasion, Tiozon, Anonuevo (bib9) 2021; 106 Dührkop, Shen, Meusel, Rousu, Böcker (bib23) 2015; 112 Simpson, Wunderlich, Li, Svedin, Dilkes, Chapple (bib71) 2021; 33 Mahieu, Spalding, Gelman, Patti (bib51) 2016; 88 Lim, Go, Yew (bib47) 2016; 21 Chan, Rowe, Kliebenstein (bib10) 2010; 185 Góral, Wojciechowski (bib28) 2020; 279 Alseekh, Ofner, Liu, Osorio, Vallarino, Last, Zamir, Tohge, Fernie (bib2) 2020; 103 Dudareva, Klempien, Muhlemann, Kaplan (bib21) 2013; 198 Morreel, Dima, Kim, Lu, Niculaes, Vanholme, Dauwe, Goeminne, Inzé, Messens (bib56) 2010; 153 Wu, Alseekh, Cuadros-Inostroza, Fusari, Mutwil, Kooke, Keurentjes, Fernie, Willmitzer, Brotman (bib88) 2016; 12 Ishihara, Tohge, Viehöver, Fernie, Weisshaar, Stracke (bib32) 2016; 67 McInnes, Healy, Melville (bib53) 2020 Shin, Jung, Kim, Kim, Kim, Lee, Park (bib70) 2013; 8 Strauch, Svedin, Dilkes, Chapple, Li (bib75) 2015; 112 Morreel, Saeys, Dima, Lu, Van de Peer, Vanholme, Ralph, Vanholme, Boerjan (bib59) 2014; 26 Jiang, Schommer, Kim, Suh (bib33) 2006; 67 Desmet, Brouckaert, Boerjan, Morreel (bib17) 2021; 19 Loza-Tavera (bib48) 1999; 464 Desmet, Saeys, Verstaen, Dauwe, Kim, Niculaes, Fukushima, Goeminne, Vanholme, Ralph (bib18) 2021; 19 Morreel, Kim, Lu, Dima, Akiyama, Vanholme, Niculaes, Goeminne, Inzé, Messens (bib58) 2010; 82 Schauer, Semel, Balbo, Steinfath, Repsilber, Selbig, Pleban, Zamir, Fernie (bib68) 2008; 20 Klasen, Barbez, Meier, Meinshausen, Bühlmann, Koornneef, Busch, Schneeberger (bib37) 2016; 7 Turner (bib80) 2014 Kushalappa, Gunnaiah (bib42) 2013; 18 Weng (bib86) 2014; 201 Girke, Daumann, Niopek-Witz, Möhlmann (bib27) 2014; 5 Li, Svedin, Mo, Atwell, Dilkes, Chapple (bib46) 2014; 198 Barbado, Córdoba-Cañero, Ariza, Roldán-Arjona (bib5) 2018; 115 Wu, Tohge, Cuadros-Inostroza, Tong, Tenenboim, Kooke, Méret, Keurentjes, Nikoloski, Fernie (bib89) 2018; 11 Wang, Ma, Kojima, Sakakibara, Hou (bib82) 2011; 52 Hashiguchi, Sakakibara, Shimohira, Kurogi, Yamasaki, Nishiyama, Akashi, Liu, Suiko (bib30) 2014; 155 Li, Bergelson, Chapple (bib45) 2010; 3 Fernie, Tohge (bib24) 2017; 51 Steenackers, El Houari, Baekelandt, Witvrouw, Dhondt, Leroux, Gonzalez, Corneillie, Cesarino, Inzé (bib74) 2019; 70 Wang, Alseekh, Fernie, Luo (bib83) 2019; 12 Routaboul, Dubos, Beck, Marquis, Bidzinski, Loudet, Lepiniec (bib67) 2012; 63 Gidda, Varin (bib26) 2006; 44 Luo (bib50) 2015; 24 Obayashi, Hibara, Kagaya, Aoki, Kinoshita (bib62) 2022; 63 Horton, Hancock, Huang, Toomajian, Atwell, Auton, Muliyati, Platt, Sperone, Vilhjálmsson (bib31) 2012; 44 Bouwmeester (10.1016/j.molp.2023.06.004_bib8) 2019; 100 Le Roy (10.1016/j.molp.2023.06.004_bib43) 2016; 7 Strauch (10.1016/j.molp.2023.06.004_bib75) 2015; 112 Kang (10.1016/j.molp.2023.06.004_bib35) 2010; 42 Schauer (10.1016/j.molp.2023.06.004_bib68) 2008; 20 Gidda (10.1016/j.molp.2023.06.004_bib26) 2006; 44 Klasen (10.1016/j.molp.2023.06.004_bib37) 2016; 7 (10.1016/j.molp.2023.06.004_bib64) 2020 Ricachenevsky (10.1016/j.molp.2023.06.004_bib65) 2019; 10 Tohge (10.1016/j.molp.2023.06.004_bib78) 2020; 13 Varela (10.1016/j.molp.2023.06.004_bib81) 2016; 104 Kroymann (10.1016/j.molp.2023.06.004_bib41) 2001; 127 Wu (10.1016/j.molp.2023.06.004_bib89) 2018; 11 Li (10.1016/j.molp.2023.06.004_bib44) 2015; 27 Winter (10.1016/j.molp.2023.06.004_bib87) 2007; 2 Dong (10.1016/j.molp.2023.06.004_bib20) 2015; 8 Chen (10.1016/j.molp.2023.06.004_bib12) 2014; 46 Dührkop (10.1016/j.molp.2023.06.004_bib23) 2015; 112 Mahieu (10.1016/j.molp.2023.06.004_bib51) 2016; 88 Desborough (10.1016/j.molp.2023.06.004_bib16) 2017; 177 Nunes-Nesi (10.1016/j.molp.2023.06.004_bib61) 2019; 15 Weng (10.1016/j.molp.2023.06.004_bib86) 2014; 201 Fürstenberg-Hägg (10.1016/j.molp.2023.06.004_bib25) 2013; 14 Knoch (10.1016/j.molp.2023.06.004_bib40) 2017; 68 Teles (10.1016/j.molp.2023.06.004_bib76) 2018; 23 Obayashi (10.1016/j.molp.2023.06.004_bib62) 2022; 63 Tohge (10.1016/j.molp.2023.06.004_bib79) 2016; 7 Kushalappa (10.1016/j.molp.2023.06.004_bib42) 2013; 18 Dima (10.1016/j.molp.2023.06.004_bib19) 2015; 27 Chen (10.1016/j.molp.2023.06.004_bib11) 2020; 18 Shin (10.1016/j.molp.2023.06.004_bib70) 2013; 8 Barbado (10.1016/j.molp.2023.06.004_bib5) 2018; 115 Chowański (10.1016/j.molp.2023.06.004_bib14) 2016; 8 Morreel (10.1016/j.molp.2023.06.004_bib57) 2006; 47 Ludidi (10.1016/j.molp.2023.06.004_bib49) 2003; 278 Steenackers (10.1016/j.molp.2023.06.004_bib74) 2019; 70 Horton (10.1016/j.molp.2023.06.004_bib31) 2012; 44 Góral (10.1016/j.molp.2023.06.004_bib28) 2020; 279 Arbona (10.1016/j.molp.2023.06.004_bib4) 2016; 19 Wen (10.1016/j.molp.2023.06.004_bib84) 2014; 5 Morreel (10.1016/j.molp.2023.06.004_bib58) 2010; 82 Lim (10.1016/j.molp.2023.06.004_bib47) 2016; 21 Hashiguchi (10.1016/j.molp.2023.06.004_bib29) 2013; 434 Ishihara (10.1016/j.molp.2023.06.004_bib32) 2016; 67 Jiang (10.1016/j.molp.2023.06.004_bib33) 2006; 67 Jiang (10.1016/j.molp.2023.06.004_bib34) 2020; 68 Loza-Tavera (10.1016/j.molp.2023.06.004_bib48) 1999; 464 Morreel (10.1016/j.molp.2023.06.004_bib56) 2010; 153 Rose (10.1016/j.molp.2023.06.004_bib66) 2018; 66 Allen (10.1016/j.molp.2023.06.004_bib1) 2014; 42 Girke (10.1016/j.molp.2023.06.004_bib27) 2014; 5 Li (10.1016/j.molp.2023.06.004_bib46) 2014; 198 Bishayee (10.1016/j.molp.2023.06.004_bib7) 2016; 40-41 Dudareva (10.1016/j.molp.2023.06.004_bib21) 2013; 198 Klein (10.1016/j.molp.2023.06.004_bib38) 2004; 55 Wu (10.1016/j.molp.2023.06.004_bib88) 2016; 12 Mukherjee (10.1016/j.molp.2023.06.004_bib60) 2015; 8 Brotman (10.1016/j.molp.2023.06.004_bib9) 2021; 106 Simpson (10.1016/j.molp.2023.06.004_bib71) 2021; 33 Duguay (10.1016/j.molp.2023.06.004_bib22) 2007; 164 Turner (10.1016/j.molp.2023.06.004_bib80) 2014 McInnes (10.1016/j.molp.2023.06.004_bib53) 2020 Li (10.1016/j.molp.2023.06.004_bib45) 2010; 3 Matsuda (10.1016/j.molp.2023.06.004_bib52) 2015; 81 Desmet (10.1016/j.molp.2023.06.004_bib17) 2021; 19 Šmehilová (10.1016/j.molp.2023.06.004_bib72) 2016; 7 Shi (10.1016/j.molp.2023.06.004_bib69) 2020; 103 Wang (10.1016/j.molp.2023.06.004_bib83) 2019; 12 Moghe (10.1016/j.molp.2023.06.004_bib54) 2015; 169 Kliebenstein (10.1016/j.molp.2023.06.004_bib39) 2001; 126 Fernie (10.1016/j.molp.2023.06.004_bib24) 2017; 51 Angelovici (10.1016/j.molp.2023.06.004_bib3) 2017; 173 Textor (10.1016/j.molp.2023.06.004_bib77) 2004; 218 Wang (10.1016/j.molp.2023.06.004_bib82) 2011; 52 Peng (10.1016/j.molp.2023.06.004_bib63) 2017; 8 Luo (10.1016/j.molp.2023.06.004_bib50) 2015; 24 Chen (10.1016/j.molp.2023.06.004_bib13) 2016; 7 Morreel (10.1016/j.molp.2023.06.004_bib59) 2014; 26 Contrepois (10.1016/j.molp.2023.06.004_bib15) 2016; 62 Hashiguchi (10.1016/j.molp.2023.06.004_bib30) 2014; 155 Mojzeš (10.1016/j.molp.2023.06.004_bib55) 2020; 117 Sotelo-Silveira (10.1016/j.molp.2023.06.004_bib73) 2015; 6 Chan (10.1016/j.molp.2023.06.004_bib10) 2010; 185 Wen (10.1016/j.molp.2023.06.004_bib85) 2015; 27 Kim (10.1016/j.molp.2023.06.004_bib36) 2007; 27 Yamaguchi (10.1016/j.molp.2023.06.004_bib90) 1999; 460 Routaboul (10.1016/j.molp.2023.06.004_bib67) 2012; 63 Baseggio (10.1016/j.molp.2023.06.004_bib6) 2020; 13 Alseekh (10.1016/j.molp.2023.06.004_bib2) 2020; 103 Desmet (10.1016/j.molp.2023.06.004_bib18) 2021; 19 |
References_xml | – volume: 27 start-page: 695 year: 2015 end-page: 710 ident: bib19 article-title: Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles publication-title: Plant Cell – volume: 14 start-page: 10242 year: 2013 end-page: 10297 ident: bib25 article-title: Plant defense against insect herbivores publication-title: Int. J. Mol. Sci. – volume: 18 start-page: 522 year: 2013 end-page: 531 ident: bib42 article-title: Metabolo-proteomics to discover plant biotic stress resistance genes publication-title: Trends Plant Sci. – volume: 12 start-page: e1006363 year: 2016 ident: bib88 article-title: Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in publication-title: PLoS Genet. – volume: 19 start-page: 1127 year: 2021 end-page: 1144 ident: bib18 article-title: Maize specialized metabolome networks reveal organ-preferential mixed glycosides publication-title: Comput. Struct. Biotechnol. J. – volume: 2 start-page: e718 year: 2007 ident: bib87 article-title: An “electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets publication-title: PLoS One – volume: 185 start-page: 991 year: 2010 end-page: 1007 ident: bib10 article-title: Understanding the evolution of defense metabolites in publication-title: Genetics – volume: 24 start-page: 31 year: 2015 end-page: 38 ident: bib50 article-title: Metabolite-based genome-wide association studies in plants publication-title: Curr. Opin. Plant Biol. – volume: 67 start-page: 1505 year: 2016 end-page: 1517 ident: bib32 article-title: Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6 publication-title: J. Exp. Bot. – volume: 55 start-page: 1809 year: 2004 end-page: 1820 ident: bib38 article-title: The multi-protein family of publication-title: J. Exp. Bot. – volume: 15 start-page: 46 year: 2019 ident: bib61 article-title: Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds publication-title: Metabolomics – volume: 8 start-page: 60 year: 2016 ident: bib14 article-title: A review of bioinsecticidal activity of solanaceae alkaloids publication-title: Toxins – volume: 7 start-page: 12767 year: 2016 ident: bib13 article-title: Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals publication-title: Nat. Commun. – volume: 20 start-page: 509 year: 2008 end-page: 523 ident: bib68 article-title: Mode of inheritance of primary metabolic traits in tomato publication-title: Plant Cell – volume: 10 start-page: 738 year: 2019 ident: bib65 article-title: Editorial: Improving the nutritional content and quality of crops: promises, achievements, and future challenges publication-title: Front. Plant Sci. – volume: 103 start-page: 2007 year: 2020 end-page: 2024 ident: bib2 article-title: Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato publication-title: Plant J. – volume: 18 start-page: 1722 year: 2020 end-page: 1735 ident: bib11 article-title: Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels publication-title: Plant Biotechnol. J. – volume: 177 start-page: 674 year: 2017 end-page: 683 ident: bib16 article-title: The aspirin story – from willow to wonder drug publication-title: Br. J. Haematol. – volume: 153 start-page: 1464 year: 2010 end-page: 1478 ident: bib56 article-title: Mass spectrometry-based sequencing of lignin oligomers publication-title: Plant Physiol. – volume: 47 start-page: 224 year: 2006 end-page: 237 ident: bib57 article-title: Genetical metabolomics of flavonoid biosynthesis in publication-title: Plant J. – volume: 115 start-page: E916 year: 2018 end-page: E924 ident: bib5 article-title: Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in publication-title: Proc. Natl. Acad. Sci. USA – volume: 127 start-page: 1077 year: 2001 end-page: 1088 ident: bib41 article-title: A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway publication-title: Plant Physiol. – volume: 278 start-page: 6490 year: 2003 end-page: 6494 ident: bib49 article-title: Identification of a novel protein with guanylyl cyclase activity in publication-title: J. Biol. Chem. – volume: 112 start-page: 11726 year: 2015 end-page: 11731 ident: bib75 article-title: Discovery of a novel amino acid racemase through exploration of natural variation in publication-title: Proc. Natl. Acad. Sci. USA – volume: 464 start-page: 49 year: 1999 end-page: 62 ident: bib48 article-title: Monoterpenes in essential oils. Biosynthesis and properties publication-title: Adv. Exp. Med. Biol. – year: 2020 ident: bib53 article-title: Umap: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 126 start-page: 811 year: 2001 end-page: 825 ident: bib39 article-title: Genetic control of natural variation in Arabidopsis glucosinolate accumulation publication-title: Plant Physiol. – volume: 62 start-page: 676 year: 2016 end-page: 678 ident: bib15 article-title: Can metabolic profiles be used as a phenotypic readout of the genome to enhance precision medicine? publication-title: Clin. Chem. – volume: 112 start-page: 12580 year: 2015 end-page: 12585 ident: bib23 article-title: Searching molecular structure databases with tandem mass spectra using CSI:FingerID publication-title: Proc. Natl. Acad. Sci. USA – volume: 5 start-page: 443 year: 2014 ident: bib27 article-title: Nucleobase and nucleoside transport and integration into plant metabolism publication-title: Front. Plant Sci. – volume: 103 start-page: 279 year: 2020 end-page: 292 ident: bib69 article-title: Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat ( publication-title: Plant J. – volume: 3 start-page: 91 year: 2010 end-page: 100 ident: bib45 article-title: The publication-title: Mol. Plant – volume: 40-41 start-page: 1 year: 2016 end-page: 3 ident: bib7 article-title: Bioactive natural products in cancer prevention and therapy: progress and promise publication-title: Semin. Cancer Biol. – volume: 44 start-page: 212 year: 2012 end-page: 216 ident: bib31 article-title: Genome-wide patterns of genetic variation in worldwide publication-title: Nat. Genet. – volume: 7 start-page: 1264 year: 2016 ident: bib72 article-title: Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance publication-title: Front. Plant Sci. – volume: 6 start-page: 365 year: 2015 ident: bib73 article-title: Metabolic fingerprinting of publication-title: Front. Plant Sci. – volume: 5 start-page: 3438 year: 2014 ident: bib84 article-title: Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights publication-title: Nat. Commun. – year: 2014 ident: bib80 article-title: qqman: an R package for visualizing GWAS results using QQ and manhattan plots publication-title: bioRxiv – volume: 12 start-page: 899 year: 2019 end-page: 919 ident: bib83 article-title: The structure and function of major plant metabolite modifications publication-title: Mol. Plant – volume: 23 start-page: 480 year: 2018 ident: bib76 article-title: Sulphated flavonoids: biosynthesis, structures, and biological activities publication-title: Molecules – volume: 44 start-page: 628 year: 2006 end-page: 636 ident: bib26 article-title: Biochemical and molecular characterization of flavonoid 7-sulfotransferase from publication-title: Plant Physiol. Biochem. – volume: 117 start-page: 32722 year: 2020 end-page: 32730 ident: bib55 article-title: Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 66 start-page: 6790 year: 2018 end-page: 6798 ident: bib66 article-title: Application of anthocyanins from blackcurrant ( publication-title: J. Agric. Food Chem. – volume: 63 start-page: 869 year: 2022 end-page: 881 ident: bib62 article-title: ATTED-II v11: a plant gene coexpression database using a sample balancing technique by subagging of principal components publication-title: Plant Cell Physiol. – year: 2020 ident: bib64 article-title: R: A Language and Environment for Statistical Computing – volume: 434 start-page: 829 year: 2013 end-page: 835 ident: bib29 article-title: Identification and characterization of a novel kaempferol sulfotransferase from publication-title: Biochem. Biophys. Res. Commun. – volume: 63 start-page: 3749 year: 2012 end-page: 3764 ident: bib67 article-title: Metabolite profiling and quantitative genetics of natural variation for flavonoids in publication-title: J. Exp. Bot. – volume: 27 start-page: 1839 year: 2015 end-page: 1856 ident: bib85 article-title: Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population publication-title: Plant Cell – volume: 8 start-page: 111 year: 2015 end-page: 121 ident: bib20 article-title: Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice publication-title: Mol. Plant – volume: 164 start-page: 408 year: 2007 end-page: 420 ident: bib22 article-title: Leaf-specific suppression of deoxyhypusine synthase in publication-title: J. Plant Physiol. – volume: 8 start-page: 17 year: 2015 end-page: 28 ident: bib60 article-title: Evolutionary rate heterogeneity of primary and secondary metabolic pathway genes in publication-title: Genome Biol. Evol. – volume: 70 start-page: 6293 year: 2019 end-page: 6304 ident: bib74 article-title: -Cinnamic acid is a natural plant growth-promoting compound publication-title: J. Exp. Bot. – volume: 218 start-page: 1026 year: 2004 end-page: 1035 ident: bib77 article-title: Biosynthesis of methionine-derived glucosinolates in publication-title: Planta – volume: 173 start-page: 872 year: 2017 end-page: 886 ident: bib3 article-title: Network-guided GWAS improves identification of genes affecting free amino acids publication-title: Plant Physiol. – volume: 100 start-page: 892 year: 2019 end-page: 907 ident: bib8 article-title: The role of volatiles in plant communication publication-title: Plant J. – volume: 67 start-page: 2531 year: 2006 end-page: 2540 ident: bib33 article-title: Cloning and characterization of chalcone synthase from the moss, publication-title: Phytochemistry – volume: 27 start-page: 1151 year: 2007 end-page: 1153 ident: bib36 article-title: Recombination and linkage disequilibrium in publication-title: Nat. Genet. – volume: 279 start-page: 102145 year: 2020 ident: bib28 article-title: Surface activity and foaming properties of saponin-rich plants extracts publication-title: Adv. Colloid Interface Sci. – volume: 7 start-page: 13299 year: 2016 ident: bib37 article-title: A multi-marker association method for genome-wide association studies without the need for population structure correction publication-title: Nat. Commun. – volume: 7 start-page: 735 year: 2016 ident: bib43 article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants publication-title: Front. Plant Sci. – volume: 13 start-page: e20008 year: 2020 ident: bib6 article-title: Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn publication-title: Plant Genome – volume: 19 start-page: 13 year: 2016 end-page: 30 ident: bib4 article-title: Metabolomics of disease resistance in crops publication-title: Curr. Issues Mol. Biol. – volume: 106 start-page: 507 year: 2021 end-page: 525 ident: bib9 article-title: The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition publication-title: Plant J. – volume: 68 start-page: 1655 year: 2017 end-page: 1667 ident: bib40 article-title: Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism publication-title: J. Exp. Bot. – volume: 52 start-page: 2200 year: 2011 end-page: 2213 ident: bib82 article-title: -glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in publication-title: Plant Cell Physiol. – volume: 42 start-page: 348 year: 2010 end-page: 354 ident: bib35 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet. – volume: 19 start-page: 72 year: 2021 end-page: 85 ident: bib17 article-title: Seeing the forest for the trees: retrieving plant secondary biochemical pathways from metabolome networks publication-title: Comput. Struct. Biotechnol. J. – volume: 198 start-page: 16 year: 2013 end-page: 32 ident: bib21 article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds publication-title: New Phytol. – volume: 169 start-page: 1512 year: 2015 end-page: 1523 ident: bib54 article-title: Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism publication-title: Plant Physiol. – volume: 21 start-page: 806 year: 2016 ident: bib47 article-title: Exploiting the biosynthetic potential of type III polyketide synthases publication-title: Molecules – volume: 42 start-page: W94 year: 2014 end-page: W99 ident: bib1 article-title: CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra publication-title: Nucleic Acids Res. – volume: 33 start-page: 492 year: 2021 end-page: 510 ident: bib71 article-title: Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants publication-title: Plant Cell – volume: 155 start-page: 91 year: 2014 end-page: 97 ident: bib30 article-title: Identification of a novel flavonoid glycoside sulfotransferase in publication-title: J. Biochem. – volume: 7 start-page: 12399 year: 2016 ident: bib79 article-title: Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae publication-title: Nat. Commun. – volume: 104 start-page: 81 year: 2016 end-page: 91 ident: bib81 article-title: Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina) publication-title: Plant Physiol. Biochem. – volume: 201 start-page: 1141 year: 2014 end-page: 1149 ident: bib86 article-title: The evolutionary paths towards complexity: a metabolic perspective publication-title: New Phytol. – volume: 81 start-page: 13 year: 2015 end-page: 23 ident: bib52 article-title: Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism publication-title: Plant J. – volume: 8 start-page: 1975 year: 2017 ident: bib63 article-title: Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance publication-title: Nat. Commun. – volume: 460 start-page: 457 year: 1999 end-page: 461 ident: bib90 article-title: Cross-reaction of chalcone synthase and stilbene synthase overexpressed in publication-title: FEBS Lett. – volume: 26 start-page: 929 year: 2014 end-page: 945 ident: bib59 article-title: Systematic structural characterization of metabolites in publication-title: Plant Cell – volume: 88 start-page: 9037 year: 2016 end-page: 9046 ident: bib51 article-title: Defining and detecting complex peak relationships in mass spectral data: the Mz.unity algorithm publication-title: Anal. Chem. – volume: 11 start-page: 118 year: 2018 end-page: 134 ident: bib89 article-title: Mapping the publication-title: Mol. Plant – volume: 51 start-page: 287 year: 2017 end-page: 310 ident: bib24 article-title: The genetics of plant metabolism publication-title: Annu. Rev. Genet. – volume: 8 start-page: e61971 year: 2013 ident: bib70 article-title: Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage publication-title: PLoS One – volume: 68 start-page: 5641 year: 2020 end-page: 5647 ident: bib34 article-title: Antibacterial activities of novel dithiocarbamate-containing 4 publication-title: J. Agric. Food Chem. – volume: 13 start-page: 1027 year: 2020 end-page: 1046 ident: bib78 article-title: Exploiting natural variation in tomato to define pathway structure and metabolic regulation of fruit polyphenolics in the lycopersicum complex publication-title: Mol. Plant – volume: 46 start-page: 714 year: 2014 end-page: 721 ident: bib12 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. – volume: 198 start-page: 1267 year: 2014 end-page: 1276 ident: bib46 article-title: Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids publication-title: Genetics – volume: 27 start-page: 1907 year: 2015 end-page: 1924 ident: bib44 article-title: Nicotinate publication-title: Plant Cell – volume: 82 start-page: 8095 year: 2010 end-page: 8105 ident: bib58 article-title: Mass spectrometry-based fragmentation as an identification tool in lignomics publication-title: Anal. Chem. – volume: 464 start-page: 49 year: 1999 ident: 10.1016/j.molp.2023.06.004_bib48 article-title: Monoterpenes in essential oils. Biosynthesis and properties publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4615-4729-7_5 – volume: 100 start-page: 892 year: 2019 ident: 10.1016/j.molp.2023.06.004_bib8 article-title: The role of volatiles in plant communication publication-title: Plant J. doi: 10.1111/tpj.14496 – volume: 27 start-page: 1151 year: 2007 ident: 10.1016/j.molp.2023.06.004_bib36 article-title: Recombination and linkage disequilibrium in Arabidopsis thaliana publication-title: Nat. Genet. doi: 10.1038/ng2115 – volume: 63 start-page: 3749 year: 2012 ident: 10.1016/j.molp.2023.06.004_bib67 article-title: Metabolite profiling and quantitative genetics of natural variation for flavonoids in Arabidopsis publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers067 – volume: 67 start-page: 2531 year: 2006 ident: 10.1016/j.molp.2023.06.004_bib33 article-title: Cloning and characterization of chalcone synthase from the moss, Physcomitrella patens publication-title: Phytochemistry doi: 10.1016/j.phytochem.2006.09.030 – volume: 5 start-page: 3438 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib84 article-title: Metabolome-based genome-wide association study of maize kernel leads to novel biochemical insights publication-title: Nat. Commun. doi: 10.1038/ncomms4438 – volume: 67 start-page: 1505 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib32 article-title: Natural variation in flavonol accumulation in Arabidopsis is determined by the flavonol glucosyltransferase BGLU6 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv546 – volume: 8 start-page: e61971 year: 2013 ident: 10.1016/j.molp.2023.06.004_bib70 article-title: Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage publication-title: PLoS One doi: 10.1371/journal.pone.0061971 – volume: 127 start-page: 1077 year: 2001 ident: 10.1016/j.molp.2023.06.004_bib41 article-title: A gene controlling variation in Arabidopsis glucosinolate composition is part of the methionine chain elongation pathway publication-title: Plant Physiol. doi: 10.1104/pp.010416 – volume: 33 start-page: 492 year: 2021 ident: 10.1016/j.molp.2023.06.004_bib71 article-title: Metabolic source isotopic pair labeling and genome-wide association are complementary tools for the identification of metabolite–gene associations in plants publication-title: Plant Cell doi: 10.1093/plcell/koaa046 – volume: 278 start-page: 6490 year: 2003 ident: 10.1016/j.molp.2023.06.004_bib49 article-title: Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210983200 – volume: 68 start-page: 1655 year: 2017 ident: 10.1016/j.molp.2023.06.004_bib40 article-title: Genetic dissection of metabolite variation in Arabidopsis seeds: evidence for mQTL hotspots and a master regulatory locus of seed metabolism publication-title: J. Exp. Bot. doi: 10.1093/jxb/erx049 – volume: 66 start-page: 6790 year: 2018 ident: 10.1016/j.molp.2023.06.004_bib66 article-title: Application of anthocyanins from blackcurrant (Ribes nigrum L.) fruit waste as renewable hair dyes publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.8b01044 – volume: 218 start-page: 1026 year: 2004 ident: 10.1016/j.molp.2023.06.004_bib77 article-title: Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle publication-title: Planta doi: 10.1007/s00425-003-1184-3 – volume: 13 start-page: 1027 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib78 article-title: Exploiting natural variation in tomato to define pathway structure and metabolic regulation of fruit polyphenolics in the lycopersicum complex publication-title: Mol. Plant doi: 10.1016/j.molp.2020.04.004 – volume: 8 start-page: 60 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib14 article-title: A review of bioinsecticidal activity of solanaceae alkaloids publication-title: Toxins doi: 10.3390/toxins8030060 – volume: 198 start-page: 1267 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib46 article-title: Exploiting natural variation of secondary metabolism identifies a gene controlling the glycosylation diversity of dihydroxybenzoic acids in Arabidopsis thaliana publication-title: Genetics doi: 10.1534/genetics.114.168690 – volume: 27 start-page: 1907 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib44 article-title: Nicotinate O-glucosylation is an evolutionarily metabolic trait important for seed germination under stress conditions in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.15.00223 – volume: 62 start-page: 676 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib15 article-title: Can metabolic profiles be used as a phenotypic readout of the genome to enhance precision medicine? publication-title: Clin. Chem. doi: 10.1373/clinchem.2015.251181 – volume: 24 start-page: 31 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib50 article-title: Metabolite-based genome-wide association studies in plants publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.01.006 – volume: 27 start-page: 1839 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib85 article-title: Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population publication-title: Plant Cell doi: 10.1105/tpc.15.00208 – volume: 7 start-page: 735 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib43 article-title: Glycosylation is a major regulator of phenylpropanoid availability and biological activity in plants publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00735 – year: 2014 ident: 10.1016/j.molp.2023.06.004_bib80 article-title: qqman: an R package for visualizing GWAS results using QQ and manhattan plots publication-title: bioRxiv – volume: 14 start-page: 10242 year: 2013 ident: 10.1016/j.molp.2023.06.004_bib25 article-title: Plant defense against insect herbivores publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms140510242 – volume: 21 start-page: 806 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib47 article-title: Exploiting the biosynthetic potential of type III polyketide synthases publication-title: Molecules doi: 10.3390/molecules21060806 – volume: 27 start-page: 695 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib19 article-title: Small glycosylated lignin oligomers are stored in Arabidopsis leaf vacuoles publication-title: Plant Cell doi: 10.1105/tpc.114.134643 – volume: 12 start-page: 899 year: 2019 ident: 10.1016/j.molp.2023.06.004_bib83 article-title: The structure and function of major plant metabolite modifications publication-title: Mol. Plant doi: 10.1016/j.molp.2019.06.001 – volume: 19 start-page: 72 year: 2021 ident: 10.1016/j.molp.2023.06.004_bib17 article-title: Seeing the forest for the trees: retrieving plant secondary biochemical pathways from metabolome networks publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2020.11.050 – volume: 18 start-page: 1722 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib11 article-title: Metabolite-based genome-wide association study enables dissection of the flavonoid decoration pathway of wheat kernels publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.13335 – volume: 117 start-page: 32722 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib55 article-title: Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2005460117 – volume: 153 start-page: 1464 year: 2010 ident: 10.1016/j.molp.2023.06.004_bib56 article-title: Mass spectrometry-based sequencing of lignin oligomers publication-title: Plant Physiol. doi: 10.1104/pp.110.156489 – volume: 63 start-page: 869 year: 2022 ident: 10.1016/j.molp.2023.06.004_bib62 article-title: ATTED-II v11: a plant gene coexpression database using a sample balancing technique by subagging of principal components publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcac041 – volume: 88 start-page: 9037 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib51 article-title: Defining and detecting complex peak relationships in mass spectral data: the Mz.unity algorithm publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01702 – volume: 70 start-page: 6293 year: 2019 ident: 10.1016/j.molp.2023.06.004_bib74 article-title: cis-Cinnamic acid is a natural plant growth-promoting compound publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz392 – volume: 112 start-page: 11726 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib75 article-title: Discovery of a novel amino acid racemase through exploration of natural variation in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1503272112 – volume: 8 start-page: 111 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib20 article-title: Spatiotemporal distribution of phenolamides and the genetics of natural variation of hydroxycinnamoyl spermidine in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2014.11.003 – volume: 55 start-page: 1809 year: 2004 ident: 10.1016/j.molp.2023.06.004_bib38 article-title: The multi-protein family of Arabidopsis sulphotransferases and their relatives in other plant species publication-title: J. Exp. Bot. doi: 10.1093/jxb/erh183 – year: 2020 ident: 10.1016/j.molp.2023.06.004_bib53 article-title: Umap: Uniform manifold approximation and projection for dimension reduction publication-title: arXiv – volume: 42 start-page: 348 year: 2010 ident: 10.1016/j.molp.2023.06.004_bib35 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nat. Genet. doi: 10.1038/ng.548 – volume: 44 start-page: 212 year: 2012 ident: 10.1016/j.molp.2023.06.004_bib31 article-title: Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions from the RegMap panel publication-title: Nat. Genet. doi: 10.1038/ng.1042 – volume: 68 start-page: 5641 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib34 article-title: Antibacterial activities of novel dithiocarbamate-containing 4H-chromen-4-one derivatives publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c01652 – volume: 10 start-page: 738 year: 2019 ident: 10.1016/j.molp.2023.06.004_bib65 article-title: Editorial: Improving the nutritional content and quality of crops: promises, achievements, and future challenges publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00738 – volume: 201 start-page: 1141 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib86 article-title: The evolutionary paths towards complexity: a metabolic perspective publication-title: New Phytol. doi: 10.1111/nph.12416 – volume: 47 start-page: 224 year: 2006 ident: 10.1016/j.molp.2023.06.004_bib57 article-title: Genetical metabolomics of flavonoid biosynthesis in Populus: a case study publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.02786.x – volume: 6 start-page: 365 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib73 article-title: Metabolic fingerprinting of Arabidopsis thaliana accessions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00365 – volume: 12 start-page: e1006363 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib88 article-title: Combined use of genome-wide association data and correlation networks unravels key regulators of primary metabolism in Arabidopsis thaliana publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006363 – volume: 460 start-page: 457 year: 1999 ident: 10.1016/j.molp.2023.06.004_bib90 article-title: Cross-reaction of chalcone synthase and stilbene synthase overexpressed in Escherichia coli publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)01403-9 – volume: 198 start-page: 16 year: 2013 ident: 10.1016/j.molp.2023.06.004_bib21 article-title: Biosynthesis, function and metabolic engineering of plant volatile organic compounds publication-title: New Phytol. doi: 10.1111/nph.12145 – volume: 51 start-page: 287 year: 2017 ident: 10.1016/j.molp.2023.06.004_bib24 article-title: The genetics of plant metabolism publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-120116-024640 – volume: 40-41 start-page: 1 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib7 article-title: Bioactive natural products in cancer prevention and therapy: progress and promise publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2016.08.006 – volume: 2 start-page: e718 year: 2007 ident: 10.1016/j.molp.2023.06.004_bib87 article-title: An “electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets publication-title: PLoS One doi: 10.1371/journal.pone.0000718 – volume: 177 start-page: 674 year: 2017 ident: 10.1016/j.molp.2023.06.004_bib16 article-title: The aspirin story – from willow to wonder drug publication-title: Br. J. Haematol. doi: 10.1111/bjh.14520 – volume: 44 start-page: 628 year: 2006 ident: 10.1016/j.molp.2023.06.004_bib26 article-title: Biochemical and molecular characterization of flavonoid 7-sulfotransferase from Arabidopsis thaliana publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2006.10.004 – volume: 7 start-page: 12767 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib13 article-title: Comparative and parallel genome-wide association studies for metabolic and agronomic traits in cereals publication-title: Nat. Commun. doi: 10.1038/ncomms12767 – year: 2020 ident: 10.1016/j.molp.2023.06.004_bib64 – volume: 20 start-page: 509 year: 2008 ident: 10.1016/j.molp.2023.06.004_bib68 article-title: Mode of inheritance of primary metabolic traits in tomato publication-title: Plant Cell doi: 10.1105/tpc.107.056523 – volume: 19 start-page: 13 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib4 article-title: Metabolomics of disease resistance in crops publication-title: Curr. Issues Mol. Biol. – volume: 7 start-page: 13299 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib37 article-title: A multi-marker association method for genome-wide association studies without the need for population structure correction publication-title: Nat. Commun. doi: 10.1038/ncomms13299 – volume: 82 start-page: 8095 year: 2010 ident: 10.1016/j.molp.2023.06.004_bib58 article-title: Mass spectrometry-based fragmentation as an identification tool in lignomics publication-title: Anal. Chem. doi: 10.1021/ac100968g – volume: 103 start-page: 2007 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib2 article-title: Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato publication-title: Plant J. doi: 10.1111/tpj.14879 – volume: 112 start-page: 12580 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib23 article-title: Searching molecular structure databases with tandem mass spectra using CSI:FingerID publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1509788112 – volume: 8 start-page: 1975 year: 2017 ident: 10.1016/j.molp.2023.06.004_bib63 article-title: Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance publication-title: Nat. Commun. doi: 10.1038/s41467-017-02168-x – volume: 8 start-page: 17 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib60 article-title: Evolutionary rate heterogeneity of primary and secondary metabolic pathway genes in Arabidopsis thaliana publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evv217 – volume: 15 start-page: 46 year: 2019 ident: 10.1016/j.molp.2023.06.004_bib61 article-title: Identification and characterization of metabolite quantitative trait loci in tomato leaves and comparison with those reported for fruits and seeds publication-title: Metabolomics doi: 10.1007/s11306-019-1503-8 – volume: 52 start-page: 2200 year: 2011 ident: 10.1016/j.molp.2023.06.004_bib82 article-title: N-glucosyltransferase UGT76C2 is involved in cytokinin homeostasis and cytokinin response in Arabidopsis thaliana publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcr152 – volume: 185 start-page: 991 year: 2010 ident: 10.1016/j.molp.2023.06.004_bib10 article-title: Understanding the evolution of defense metabolites in Arabidopsis thaliana using genome-wide association mapping publication-title: Genetics doi: 10.1534/genetics.109.108522 – volume: 5 start-page: 443 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib27 article-title: Nucleobase and nucleoside transport and integration into plant metabolism publication-title: Front. Plant Sci. doi: 10.3389/fpls.2014.00443 – volume: 103 start-page: 279 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib69 article-title: Metabolomics analysis and metabolite-agronomic trait associations using kernels of wheat (Triticum aestivum) recombinant inbred lines publication-title: Plant J. doi: 10.1111/tpj.14727 – volume: 115 start-page: E916 year: 2018 ident: 10.1016/j.molp.2023.06.004_bib5 article-title: Nonenzymatic release of N7-methylguanine channels repair of abasic sites into an AP endonuclease-independent pathway in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1719497115 – volume: 3 start-page: 91 year: 2010 ident: 10.1016/j.molp.2023.06.004_bib45 article-title: The ARABIDOPSIS accession Pna-10 is a naturally occurring sng1 deletion mutant publication-title: Mol. Plant doi: 10.1093/mp/ssp090 – volume: 173 start-page: 872 year: 2017 ident: 10.1016/j.molp.2023.06.004_bib3 article-title: Network-guided GWAS improves identification of genes affecting free amino acids publication-title: Plant Physiol. doi: 10.1104/pp.16.01287 – volume: 23 start-page: 480 year: 2018 ident: 10.1016/j.molp.2023.06.004_bib76 article-title: Sulphated flavonoids: biosynthesis, structures, and biological activities publication-title: Molecules doi: 10.3390/molecules23020480 – volume: 7 start-page: 1264 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib72 article-title: Cytokinin-specific glycosyltransferases possess different roles in cytokinin homeostasis maintenance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01264 – volume: 11 start-page: 118 year: 2018 ident: 10.1016/j.molp.2023.06.004_bib89 article-title: Mapping the Arabidopsis metabolic landscape by untargeted metabolomics at different environmental conditions publication-title: Mol. Plant doi: 10.1016/j.molp.2017.08.012 – volume: 279 start-page: 102145 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib28 article-title: Surface activity and foaming properties of saponin-rich plants extracts publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2020.102145 – volume: 81 start-page: 13 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib52 article-title: Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism publication-title: Plant J. doi: 10.1111/tpj.12681 – volume: 126 start-page: 811 year: 2001 ident: 10.1016/j.molp.2023.06.004_bib39 article-title: Genetic control of natural variation in Arabidopsis glucosinolate accumulation publication-title: Plant Physiol. doi: 10.1104/pp.126.2.811 – volume: 18 start-page: 522 year: 2013 ident: 10.1016/j.molp.2023.06.004_bib42 article-title: Metabolo-proteomics to discover plant biotic stress resistance genes publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2013.05.002 – volume: 434 start-page: 829 year: 2013 ident: 10.1016/j.molp.2023.06.004_bib29 article-title: Identification and characterization of a novel kaempferol sulfotransferase from Arabidopsis thaliana publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.04.022 – volume: 42 start-page: W94 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib1 article-title: CFM-ID: a web server for annotation, spectrum prediction and metabolite identification from tandem mass spectra publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku436 – volume: 106 start-page: 507 year: 2021 ident: 10.1016/j.molp.2023.06.004_bib9 article-title: The genetics underlying metabolic signatures in a brown rice diversity panel and their vital role in human nutrition publication-title: Plant J. doi: 10.1111/tpj.15182 – volume: 46 start-page: 714 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib12 article-title: Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism publication-title: Nat. Genet. doi: 10.1038/ng.3007 – volume: 155 start-page: 91 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib30 article-title: Identification of a novel flavonoid glycoside sulfotransferase in Arabidopsis thaliana publication-title: J. Biochem. doi: 10.1093/jb/mvt102 – volume: 7 start-page: 12399 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib79 article-title: Characterization of a recently evolved flavonol-phenylacyltransferase gene provides signatures of natural light selection in Brassicaceae publication-title: Nat. Commun. doi: 10.1038/ncomms12399 – volume: 19 start-page: 1127 year: 2021 ident: 10.1016/j.molp.2023.06.004_bib18 article-title: Maize specialized metabolome networks reveal organ-preferential mixed glycosides publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2021.01.004 – volume: 26 start-page: 929 year: 2014 ident: 10.1016/j.molp.2023.06.004_bib59 article-title: Systematic structural characterization of metabolites in Arabidopsis via candidate substrate-product pair networks publication-title: Plant Cell doi: 10.1105/tpc.113.122242 – volume: 164 start-page: 408 year: 2007 ident: 10.1016/j.molp.2023.06.004_bib22 article-title: Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2006.02.001 – volume: 169 start-page: 1512 year: 2015 ident: 10.1016/j.molp.2023.06.004_bib54 article-title: Something old, something new: conserved enzymes and the evolution of novelty in plant specialized metabolism publication-title: Plant Physiol. – volume: 13 start-page: e20008 year: 2020 ident: 10.1016/j.molp.2023.06.004_bib6 article-title: Natural variation for carotenoids in fresh kernels is controlled by uncommon variants in sweet corn publication-title: Plant Genome doi: 10.1002/tpg2.20008 – volume: 104 start-page: 81 year: 2016 ident: 10.1016/j.molp.2023.06.004_bib81 article-title: Phenolic compounds as indicators of drought resistance in shrubs from Patagonian shrublands (Argentina) publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.03.014 |
SSID | ssj0060863 |
Score | 2.3871396 |
Snippet | Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these... |
SourceID | pubmedcentral osti proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1212 |
SubjectTerms | Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis thaliana biosynthesis cytochrome P-450 enzymes Genome-Wide Association Study guanine kingdom lignans metabolites metabolomics Metabolomics - methods Phenotype Polymorphism, Single Nucleotide Quantitative Trait Loci - genetics reverse genetics |
Title | QT–GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits |
URI | https://dx.doi.org/10.1016/j.molp.2023.06.004 https://www.ncbi.nlm.nih.gov/pubmed/37349988 https://www.proquest.com/docview/2829430977 https://www.proquest.com/docview/2887624920 https://www.osti.gov/biblio/1989747 https://pubmed.ncbi.nlm.nih.gov/PMC7614782 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe2jgdeEP8pg8pIvKGoie24Dm9dxej4MwHbRN-M7TkiqCQTbSftje_AN-STcOc4FUVTH3hMcpfEuTvfz8rvzoQ8x0VHBsghkYAGElGkIrG2UImxpTVCuZEPhbTvj-X0TLyZ5bMdMulqYZBWGef-dk4Ps3U8M4xfc3hRVcMT5M-zFPADD01g-C7ZY7yQ4Np746O30-NuQpaA2gPPHuQTVIi1My3N63szx7aVjIc2nnG_tmvyU6-BkLsOhv7LpvwrPR3eJrcirqTj9tXvkB1f3yU3DhrAflf3yJePp79__nr9eXzyko5p3Vz6OW33jqYAWumqvvQV1qVTWzWLqxpAIdyGQp6rqAmED7zW1l-GRuGoDN4zByHcY2K5uE_ODl-dTqZJ3FshcYBglkkhzi3zwmFU2yKHo9xZQFOpMKWUuSsBGmTKAkApmVQmNbkvvM8LzzInuTT8AenVTe0fEYod60rLTGm5EsJ5pcrUZfAYL8-ZcGmfZN0X1S42Hsd3m-uOYfZNoxU0WkEHmp3okxdrnYu27cZW6bwzlN5wHg15YavePloVdbBjrkNqESghjQxWWX3yrDO2hpjDHymm9s1qofHvs-ApQOdtMphnRMFg_A9bB1mPhI84LDSV6pPRhuusBbDn9-aVuvoaen-PAE4BqHv8nyPeJzfxKPCN-RPSW_5Y-aeAqpZ2AFEz-fTuwyBGz4DsHs0O_gALTiRY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEB2VgEQvqHy1oRQWiRuyYnvXa5tbWrWk0FZCTUVuy-52LYyCXZGkUm_8B_4hv4SZtR01qMqBY7wzjtezH2_lN28A3tKhI0LkEEhEA4HIQxEYk2eBNoXRIrOp84m0p2dydCE-TpLJBhx0uTBEq2zX_mZN96t1e2XQvs3BVVkOzok_H4eIH7gXgeH34D6igZTqNxxP9rvlWCJm9yx7tA7IvM2caUheP-opiVbG3It4ttXa7tidejVOuLtA6L9cylub09EWPGpRJRs2D_4YNlz1BB7s14j8bp7C18_jP79-f_gyPH_Phqyqr92UNZWjGUJWtqiuXUlZ6cyU9eymQkiIt2G4y5VMe7oHtTXZl14mnJxx7EzRiCpMzGfP4OLocHwwCtrKCoFF_DIPcnFpYicszWmTJ_grsQaxVCh0IWViCwQGUWYQnhSxzHSoE5c7l-QujqzkUvPn0Kvqyu0AI726wsS6MDwTwrosK0Ib4d84eRkLG_Yh6t6osq3sOD3bVHX8su-KoqAoCsqT7EQf3i19rhrRjbXWSRcotTJ0FO4Ka_12KarkQ3q5lohF6EQkMjxj9eFNF2yFM44-o-jK1YuZom_PgocInNfZ0C4j8hj7v90MkGVPeMrxmJllfUhXhs7SgBS_V1uq8ptX_k4RTCGke_GfPX4ND0fj0xN1cnz2aRc2qcUzj_lL6M1_Ltwe4qu5eeXnz19sASOO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QT%E2%80%93GWAS%3A+A+novel+method+for+unveiling+biosynthetic+loci+affecting+qualitative+metabolic+traits&rft.jtitle=Molecular+plant&rft.au=Brouckaert%2C+Marlies&rft.au=Peng%2C+Meng&rft.au=H%C3%B6fer%2C+Ren%C3%A9&rft.au=El+Houari%2C+llias&rft.date=2023-07-03&rft.pub=Elsevier+Inc&rft.issn=1674-2052&rft.volume=16&rft.issue=7&rft.spage=1212&rft.epage=1227&rft_id=info:doi/10.1016%2Fj.molp.2023.06.004&rft.externalDocID=S1674205223001703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-2052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-2052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-2052&client=summon |