Barley microRNAs as metabolic sensors for soil nitrogen availability

•13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitroge...

Full description

Saved in:
Bibliographic Details
Published inPlant science (Limerick) Vol. 299; p. 110608
Main Authors Grabowska, Aleksandra, Smoczynska, Aleksandra, Bielewicz, Dawid, Pacak, Andrzej, Jarmolowski, Artur, Szweykowska-Kulinska, Zofia
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitrogen homeostasis in barley plants. Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.
AbstractList Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.
•13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitrogen homeostasis in barley plants. Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.
Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.
ArticleNumber 110608
Author Szweykowska-Kulinska, Zofia
Jarmolowski, Artur
Bielewicz, Dawid
Grabowska, Aleksandra
Smoczynska, Aleksandra
Pacak, Andrzej
Author_xml – sequence: 1
  givenname: Aleksandra
  surname: Grabowska
  fullname: Grabowska, Aleksandra
– sequence: 2
  givenname: Aleksandra
  surname: Smoczynska
  fullname: Smoczynska, Aleksandra
– sequence: 3
  givenname: Dawid
  surname: Bielewicz
  fullname: Bielewicz, Dawid
– sequence: 4
  givenname: Andrzej
  surname: Pacak
  fullname: Pacak, Andrzej
– sequence: 5
  givenname: Artur
  surname: Jarmolowski
  fullname: Jarmolowski, Artur
– sequence: 6
  givenname: Zofia
  surname: Szweykowska-Kulinska
  fullname: Szweykowska-Kulinska, Zofia
  email: zofszwey@amu.edu.pl
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32900446$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1LAzEURYNU7If-hTJLN1OTdDLNgAtr_YSiILoOmcyLpMxMapIW-u9NmdaFG109yDv3Qc4dol5rW0BoTPCEYJJfrSbrWrbBKzOhmMZHgnPMT9CA8Nk0pZQVPTSIIE-LjNE-Gnq_whhTxmZnqD-lBcZZlg_Q3a10NeySxihn317mPpE-aSDI0tZGJR5ab51PtHWJt6ZOWhOc_YQ2kVtpalma2oTdOTrVsvZwcZgj9PFw_754Spevj8-L-TJVjLCQ8kqVWmoNRa6q2TSjWnNCK81kSYmmPGMqk3gmVV6WBWeykJpijhnJaVyWbDpCl93dtbNfG_BBNMYrqKMJsBsvKCMk_r9g_0CzjFCOi3yPjg_opmygEmtnGul24igpAnkHREXeO9A_CMFi34ZYiWMbYt-G6NqIwetfQWWCDMa2wUV7f8dvujhEp1sDTkQCWgWVcaCCqKz568Q30fSppg
CitedBy_id crossref_primary_10_1007_s00709_022_01775_w
crossref_primary_10_1111_jac_70045
crossref_primary_10_3389_fpls_2022_950796
crossref_primary_10_3389_fpls_2023_1124785
crossref_primary_10_3390_ijms21228508
crossref_primary_10_1186_s12870_022_03866_5
crossref_primary_10_3390_ijms232314755
crossref_primary_10_1080_15476286_2024_2303555
Cites_doi 10.1038/embor.2013.62
10.1093/jxb/eru353
10.1186/s12864-019-5799-6
10.1093/aobpla/plx012
10.1104/pp.114.246959
10.1186/s13059-014-0550-8
10.1093/aob/mct133
10.3389/fpls.2019.01103
10.1038/ng.2007.20
10.1039/c3mt00022b
10.1371/journal.pone.0097839
10.2134/agronj1999.00021962009100030001x
10.1007/s10142-010-0181-4
10.1016/S1161-0301(01)00133-2
10.1242/dev.00362
10.1002/wrna.1403
10.1111/pce.12764
10.1007/s11738-012-0967-1
10.1105/tpc.110.081356
10.1371/journal.pone.0029669
10.3389/fpls.2012.00105
10.1038/nprot.2009.8
10.1371/journal.pone.0048951
10.1371/journal.pone.0054148
10.1016/j.febslet.2012.05.013
10.1111/jipb.12433
10.1007/s12010-015-1815-8
10.1007/s11104-013-1645-9
10.1016/S0092-8674(04)00045-5
10.3389/fpls.2018.01253
10.1002/0471142727.mb0417s103
10.1104/pp.106.078063
10.1104/pp.106.079707
10.1186/s12864-017-3556-2
10.1104/pp.112.193649
10.1073/pnas.0505461102
10.1186/s12867-019-0131-1
10.1371/journal.pbio.1002571
10.1371/journal.pone.0183253
10.1371/journal.pone.0104409
10.1007/s12229-009-9031-2
10.1007/s11434-012-5197-9
10.5751/ES-03180-140232
10.1104/pp.111.172627
10.1105/tpc.104.022830
10.1080/15592324.2016.1213474
10.1111/j.1365-3040.2011.02478.x
10.1111/pbi.12318
10.3389/fpls.2018.01075
10.1073/pnas.0802493105
10.1016/j.molcel.2018.01.007
10.1146/annurev-phyto-073009-114457
10.1105/tpc.105.030841
10.1186/1471-2229-9-149
10.1073/pnas.0604698103
10.1101/gad.1004402
10.1093/nar/gkt1181
10.1105/tpc.108.059444
10.1371/journal.pgen.1002021
10.1186/1471-2229-13-214
10.3389/fpls.2015.00555
10.1007/s11103-019-00932-9
10.1016/j.jplph.2012.03.009
10.1080/07352680590910410
10.1111/pce.12130
10.2174/1389202920666190129145439
10.1111/tpj.12446
10.1111/pbi.12032
10.1002/2016JG003393
10.1371/journal.pone.0028009
10.1016/j.bbagrm.2011.05.001
10.3389/fpls.2018.00499
10.3389/fpls.2015.00410
10.1093/jxb/erz022
10.1038/ng1791
10.1186/1471-2199-10-29
10.1146/annurev.arplant.043008.092111
10.3389/fpls.2015.00629
10.1126/science.1159151
10.1016/j.envexpbot.2019.01.006
10.1126/science.1126088
10.1186/s12864-015-1851-3
10.1093/pcp/pcw211
10.1038/35888
10.3389/fpls.2017.00864
10.1104/pp.109.139139
10.1093/bib/bbn013
10.1101/gad.1201404
10.1093/pcp/pcq170
10.1111/j.1469-8137.2011.03647.x
10.1016/j.molp.2016.06.014
10.1105/tpc.016238
10.1261/rna.2146906
10.1186/1471-2164-14-34
10.1126/science.1088060
10.1016/j.gene.2010.03.011
10.1104/pp.15.00899
10.1038/sj.embor.7400806
10.1104/pp.18.00485
10.1016/S0022-2836(05)80360-2
10.1126/science.1133649
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 The Author(s)
– notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.plantsci.2020.110608
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1873-2259
ExternalDocumentID 32900446
10_1016_j_plantsci_2020_110608
S0168945220302144
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
29O
4.4
457
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABLJU
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HLW
HVGLF
HZ~
IHE
J1W
K-O
KOM
LW9
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SBG
SCC
SCU
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSU
SSZ
T5K
TN5
WH7
WUQ
ZCG
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c515t-8dcbfaffe96cd7342ff812df5ab21f2845c4a07ac6bb985a9af20805162284b53
IEDL.DBID .~1
ISSN 0168-9452
1873-2259
IngestDate Fri Jul 11 02:17:39 EDT 2025
Tue Aug 05 11:20:54 EDT 2025
Thu Apr 03 07:08:50 EDT 2025
Thu Apr 24 23:02:56 EDT 2025
Thu Jul 10 06:44:37 EDT 2025
Fri Feb 23 02:49:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords mRNA targets
Barley
microRNA
Abiotic stresses
Nitrogen excess
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-8dcbfaffe96cd7342ff812df5ab21f2845c4a07ac6bb985a9af20805162284b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0168945220302144
PMID 32900446
PQID 2441280965
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2511187955
proquest_miscellaneous_2441280965
pubmed_primary_32900446
crossref_primary_10_1016_j_plantsci_2020_110608
crossref_citationtrail_10_1016_j_plantsci_2020_110608
elsevier_sciencedirect_doi_10_1016_j_plantsci_2020_110608
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
2020-Oct
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Plant science (Limerick)
PublicationTitleAlternate Plant Sci
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vaucheret, Vazquez, Crete, Bartel (bib0060) 2004; 18
Zhao, Ding, Zhu, Zhang, Li (bib0240) 2011; 190
Wang, Zhang, Hao, Sha, Zhou, Zhou, Yuan (bib0375) 2013; 8
Dalakouras, Jarausch, Buchholz, Bassler, Braun, Manthey (bib0015) 2018; 9
Liang, He, Yu (bib0365) 2012; 7
Brodersen, Sakvarelidze-Achard, Bruun-Rasmussen (bib0075) 2008; 320
Pacak, Kruszka, Swida-Barteczka, Nuc, Karlowski (bib0275) 2016; 63
Xiong, Ishitani, Lee, Zhu (bib0500) 2001; 13
Chavez-Hernandez, Alejandri-Ramirez, JuarezGonzalez, Dinkova (bib0200) 2015; 6
Uauy, Distelfeld, Fahima, Blechl, Dubcovsky (bib0480) 2006; 314
Hunt, McLaren, Gil, Thormann, Schuilenburg, Sheppard (bib0325) 2018
Aukerman, Sakai (bib0505) 2003; 15
Bai, Wang, Chen, Shi, Liu (bib0535) 2018; 9
Palavan-Unsal, Arisan (bib0485) 2009; 75
Chuck, Meeley, Irish, Sakai, Hake (bib0515) 2007; 39
Wang, Lu, Ren, Hussain, Guo, Wang (bib0290) 2017; 9
Bielewicz, Kalak, Kalyna (bib0095) 2013; 14
Yang, Li, Mao, Liu, Ji (bib0180) 2013; 36
Ruiz-Ferrer, Voinnet (bib0105) 2009; 60
Kuang, Shen, Wu, Yu, Fu (bib0160) 2019
Yuan, Li, Li, Yuan, Hu, Luo (bib0195) 2015; 169
Katiyar-Agarwal, Jin (bib0110) 2010; 48
Zhang, Zhou, Bai, Tao, Wang, Zhang, Zhu (bib0460) 2020; 7
Katoh, Toh (bib0330) 2008; 9
Zhang, Ding, Wu, Yang, Li (bib0410) 2016; 9
Sega, Kruszka, Szewc, Szweykowska-Kulinska, Pacak (bib0540) 2020; 102
Yang, Chen (bib0140) 2013; 5
Thody, Folkes, Medina-Calzada, Xu, Dalmay, Moulton (bib0345) 2018; 46
Zuluaga, De Paola, Janni, Curci, Sonnante (bib0530) 2017; 12
Mendoza-Soto, Sánchez, Hernández (bib0175) 2012; 3
Laubinger, Sachsenberg, Zeller (bib0045) 2008; 105
Love, Huber, Anders (bib0315) 2014; 15
Xu, Zhong, Li, Li, Rothstein (bib0350) 2011; 6
Pieczynski, Marczewski, Hennig, Dolata, Bielewicz (bib0120) 2013; 11
Nguyen, Rothstein, Spangenberg, Kant (bib0525) 2015; 6
Raun, Johnson (bib0250) 1999; 91
Kantar, Unver, Budak (bib0225) 2010; 10
Rockström, Steffen, Noone, Persson, Chapin, Lambin (bib0260) 2009; 14
Bai, Bian, Zeng, Hou, Shi, Wang (bib0465) 2017
Bollman, Aukerman, Park (bib0050) 2003; 130
Bari (bib0430) 2006; 141
Bartels, Sunkar (bib0115) 2005; 24
Baumberger, Baulcombe (bib0065) 2005; 102
Hackenberg, Shi, Gustafson, Langridge (bib0550) 2013; 13
Zhang, Long, Xue, Xiao, Pei (bib0130) 2017; 12
Aceto, Sica, De Paolo, D’Argenio, Cantiello (bib0395) 2014; 9
Stepien, Knop, Dolata, Taube, Bajczyk, Barciszewska-Pacak (bib0025) 2016; 8
Kozomara, Griffiths-Jones (bib0305) 2014; 42
Zhu, Upadhyaya, Gubler, Helliwell (bib0520) 2009; 9
Barciszewska-Pacak, Milanowska, Knop (bib0100) 2015; 6
Kruszka, Pacak, Swida-Barteczka, Nuc, Alaba (bib0165) 2014; 65
Sega, Kruszka, Bielewicz, Karlowski, Nuc, Szweykowska-Kulinska, Pacak (bib0545) 2020
Zhao, Xu, Mo, Zou, Li, Xu, Xie (bib0360) 2013; 112
Reinhart, Weinstein, Rhoades, Bartel, Bartel (bib0030) 2002; 16
Song, Zhang, Zhang, Li, Gao, Han (bib0145) 2017; 18
Kumar, Goh (bib0255) 2002; 16
Luo, Jin, Qiu (bib0420) 2012; 57
Qu, He, Wang, Zhao, Teng, Shao (bib0245) 2015; 167
Chen, Li, Xiong (bib0220) 2012; 586
Rapacz, Stępień, Skorupa (bib0320) 2012; 34
Zhang, Zhang, Zhang, Wang, Li, Li (bib0495) 2011; 23
Eminaga, Christodoulou, Vigneault, Church, Seidman (bib0310) 2013; 103
Ding, Gong, Wang, Wang, Bao, Sun (bib0215) 2018; 177
Khraiwesh, Zhu, Zhu (bib0085) 2012; 1819
Marino, Moran (bib0270) 2019; 10
Altschul, Gish, Miller, Myers, Lipman (bib0335) 1990; 215
Zhao, Tai, Sun, Zhang, Xu, Li (bib0355) 2012; 7
Hewezi, Maier, Nettleton, Baum (bib0450) 2012; 159
Zhu, Wang, He, Smith, Elser, Du (bib0265) 2016; 121
Cheah, Nadarajah, Divate, Wickneswari (bib0205) 2015; 16
Sinha, Rani, Bansal, Gayatri, Venkatesh, Mandal (bib0235) 2015; 177
Xiong, Tang, Zhong, He, Chen (bib0295) 2018; 9
Ferdous, Sanchez-Ferrero, Langridge, Milne, Chowdhury (bib0230) 2017; 40
Zhao, Ge, Liang, Li, Ruan (bib0150) 2009; 10
Trevisan, Nonis, Begheldo, Manoli, Palme, Caporale (bib0380) 2012; 35
Bartel (bib0070) 2004; 116
Devers, Branscheid, May, Krajinski (bib0385) 2011; 156
Li, Xia, Liang, Chen, Gao, Zhang (bib0470) 2016; 6
Ravichandran, Ragupathy, Edwards, Domaratzki, Cloutier (bib0170) 2019; 20
Bologna, Iselin, Abriata (bib0055) 2018; 69
Liu, Fu, Yang, Luan, Zhao (bib0440) 2016; 11
Chen (bib0510) 2004; 303
Lv, Bai, Li, Ding, Ge, Cai (bib0135) 2010; 459
Kruszka, Pieczynski, Windels (bib0090) 2012; 169
Liu, Li, Chen, Kimberlin, Cahoon, Yu (bib0490) 2016; 14
Lin, Santi, Jobet, Lacut, El Kholti, Karlowski (bib0435) 2010; 51
Navarro, Dunoyer, Jay, Arnold, Dharmasiri, Estelle (bib0415) 2006; 312
Noon, Hewezi, Baum (bib0455) 2019; 70
Araya, Kubo, von Wirén, Takahashi (bib0280) 2015; 58
Fu, Zhang, Zhao, He, Ding, Wang (bib0155) 2017; 8
Huang, Allen, Davis, Baum, Hussey (bib0010) 2006; 103
Kruszka, Pacak, Swida-Barteczka, Stefaniak, Kaja, Sierocka (bib0300) 2013; 14
Lobbes, Rallapalli, Schmidt (bib0040) 2006; 7
Li, Oono, Zhu, He, Wu (bib0190) 2008; 20
Gao, Luo, Peng, Chen, Li (bib0185) 2019; 20
Nacry, Bouguyon, Gojon (bib0285) 2013; 370
Sunkar, Zhu (bib0080) 2004; 16
Jia, Zhang, Qi, Ma, Xiang, He (bib0400) 2014; 9
Yan, Wang, Hamera, Chen, Fang (bib0405) 2014; 78
Guo (bib0475) 2005; 17
Ferdous, Hussain, Shi (bib0125) 2015; 13
Kurihara, Takashi, Watanabe (bib0035) 2006; 12
Tang, Thompson (bib0210) 2019; 20
Fire, Xu, Montgomery, Kostas, Driver, Mello (bib0005) 1998; 391
Kant, Peng, Rothstein (bib0445) 2011; 7
German, Luo, Schroth, Meyers, Green (bib0340) 2009; 4
Peng, Sun, Du, Zhang, Li, Liu (bib0390) 2013; 8
Pant, Musialak-Lange, Nuc, May, Buhtz, Kehr (bib0370) 2009; 150
Mallory, Vaucheret (bib0020) 2006; 38
Aung, Lin, Wu, Huang, Su, Chiou (bib0425) 2006; 141
Bartels (10.1016/j.plantsci.2020.110608_bib0115) 2005; 24
Jia (10.1016/j.plantsci.2020.110608_bib0400) 2014; 9
Bai (10.1016/j.plantsci.2020.110608_bib0465) 2017
Tang (10.1016/j.plantsci.2020.110608_bib0210) 2019; 20
Aung (10.1016/j.plantsci.2020.110608_bib0425) 2006; 141
Altschul (10.1016/j.plantsci.2020.110608_bib0335) 1990; 215
Kantar (10.1016/j.plantsci.2020.110608_bib0225) 2010; 10
Kurihara (10.1016/j.plantsci.2020.110608_bib0035) 2006; 12
Chavez-Hernandez (10.1016/j.plantsci.2020.110608_bib0200) 2015; 6
Devers (10.1016/j.plantsci.2020.110608_bib0385) 2011; 156
Zhu (10.1016/j.plantsci.2020.110608_bib0520) 2009; 9
Sunkar (10.1016/j.plantsci.2020.110608_bib0080) 2004; 16
Kumar (10.1016/j.plantsci.2020.110608_bib0255) 2002; 16
Bielewicz (10.1016/j.plantsci.2020.110608_bib0095) 2013; 14
Ferdous (10.1016/j.plantsci.2020.110608_bib0125) 2015; 13
Barciszewska-Pacak (10.1016/j.plantsci.2020.110608_bib0100) 2015; 6
Kruszka (10.1016/j.plantsci.2020.110608_bib0165) 2014; 65
Wang (10.1016/j.plantsci.2020.110608_bib0375) 2013; 8
Lin (10.1016/j.plantsci.2020.110608_bib0435) 2010; 51
Xu (10.1016/j.plantsci.2020.110608_bib0350) 2011; 6
Reinhart (10.1016/j.plantsci.2020.110608_bib0030) 2002; 16
Bollman (10.1016/j.plantsci.2020.110608_bib0050) 2003; 130
Chen (10.1016/j.plantsci.2020.110608_bib0510) 2004; 303
Wang (10.1016/j.plantsci.2020.110608_bib0290) 2017; 9
Ding (10.1016/j.plantsci.2020.110608_bib0215) 2018; 177
Yang (10.1016/j.plantsci.2020.110608_bib0180) 2013; 36
Katiyar-Agarwal (10.1016/j.plantsci.2020.110608_bib0110) 2010; 48
Palavan-Unsal (10.1016/j.plantsci.2020.110608_bib0485) 2009; 75
Bai (10.1016/j.plantsci.2020.110608_bib0535) 2018; 9
Lobbes (10.1016/j.plantsci.2020.110608_bib0040) 2006; 7
Mallory (10.1016/j.plantsci.2020.110608_bib0020) 2006; 38
Song (10.1016/j.plantsci.2020.110608_bib0145) 2017; 18
Zhang (10.1016/j.plantsci.2020.110608_bib0460) 2020; 7
Kozomara (10.1016/j.plantsci.2020.110608_bib0305) 2014; 42
Trevisan (10.1016/j.plantsci.2020.110608_bib0380) 2012; 35
Navarro (10.1016/j.plantsci.2020.110608_bib0415) 2006; 312
Ravichandran (10.1016/j.plantsci.2020.110608_bib0170) 2019; 20
German (10.1016/j.plantsci.2020.110608_bib0340) 2009; 4
Araya (10.1016/j.plantsci.2020.110608_bib0280) 2015; 58
Xiong (10.1016/j.plantsci.2020.110608_bib0500) 2001; 13
Kuang (10.1016/j.plantsci.2020.110608_bib0160) 2019
Fire (10.1016/j.plantsci.2020.110608_bib0005) 1998; 391
Brodersen (10.1016/j.plantsci.2020.110608_bib0075) 2008; 320
Gao (10.1016/j.plantsci.2020.110608_bib0185) 2019; 20
Lv (10.1016/j.plantsci.2020.110608_bib0135) 2010; 459
Ferdous (10.1016/j.plantsci.2020.110608_bib0230) 2017; 40
Zhang (10.1016/j.plantsci.2020.110608_bib0130) 2017; 12
Hunt (10.1016/j.plantsci.2020.110608_bib0325) 2018
Liu (10.1016/j.plantsci.2020.110608_bib0440) 2016; 11
Rockström (10.1016/j.plantsci.2020.110608_bib0260) 2009; 14
Love (10.1016/j.plantsci.2020.110608_bib0315) 2014; 15
Pant (10.1016/j.plantsci.2020.110608_bib0370) 2009; 150
Kant (10.1016/j.plantsci.2020.110608_bib0445) 2011; 7
Mendoza-Soto (10.1016/j.plantsci.2020.110608_bib0175) 2012; 3
Zhao (10.1016/j.plantsci.2020.110608_bib0360) 2013; 112
Baumberger (10.1016/j.plantsci.2020.110608_bib0065) 2005; 102
Luo (10.1016/j.plantsci.2020.110608_bib0420) 2012; 57
Stepien (10.1016/j.plantsci.2020.110608_bib0025) 2016; 8
Cheah (10.1016/j.plantsci.2020.110608_bib0205) 2015; 16
Aceto (10.1016/j.plantsci.2020.110608_bib0395) 2014; 9
Li (10.1016/j.plantsci.2020.110608_bib0470) 2016; 6
Sega (10.1016/j.plantsci.2020.110608_bib0545) 2020
Bari (10.1016/j.plantsci.2020.110608_bib0430) 2006; 141
Zhao (10.1016/j.plantsci.2020.110608_bib0150) 2009; 10
Fu (10.1016/j.plantsci.2020.110608_bib0155) 2017; 8
Sega (10.1016/j.plantsci.2020.110608_bib0540) 2020; 102
Huang (10.1016/j.plantsci.2020.110608_bib0010) 2006; 103
Qu (10.1016/j.plantsci.2020.110608_bib0245) 2015; 167
Zuluaga (10.1016/j.plantsci.2020.110608_bib0530) 2017; 12
Katoh (10.1016/j.plantsci.2020.110608_bib0330) 2008; 9
Peng (10.1016/j.plantsci.2020.110608_bib0390) 2013; 8
Zhu (10.1016/j.plantsci.2020.110608_bib0265) 2016; 121
Khraiwesh (10.1016/j.plantsci.2020.110608_bib0085) 2012; 1819
Uauy (10.1016/j.plantsci.2020.110608_bib0480) 2006; 314
Chuck (10.1016/j.plantsci.2020.110608_bib0515) 2007; 39
Zhao (10.1016/j.plantsci.2020.110608_bib0240) 2011; 190
Liang (10.1016/j.plantsci.2020.110608_bib0365) 2012; 7
Eminaga (10.1016/j.plantsci.2020.110608_bib0310) 2013; 103
Sinha (10.1016/j.plantsci.2020.110608_bib0235) 2015; 177
Thody (10.1016/j.plantsci.2020.110608_bib0345) 2018; 46
Bartel (10.1016/j.plantsci.2020.110608_bib0070) 2004; 116
Guo (10.1016/j.plantsci.2020.110608_bib0475) 2005; 17
Hewezi (10.1016/j.plantsci.2020.110608_bib0450) 2012; 159
Zhang (10.1016/j.plantsci.2020.110608_bib0410) 2016; 9
Hackenberg (10.1016/j.plantsci.2020.110608_bib0550) 2013; 13
Nacry (10.1016/j.plantsci.2020.110608_bib0285) 2013; 370
Chen (10.1016/j.plantsci.2020.110608_bib0220) 2012; 586
Yuan (10.1016/j.plantsci.2020.110608_bib0195) 2015; 169
Zhao (10.1016/j.plantsci.2020.110608_bib0355) 2012; 7
Xiong (10.1016/j.plantsci.2020.110608_bib0295) 2018; 9
Dalakouras (10.1016/j.plantsci.2020.110608_bib0015) 2018; 9
Raun (10.1016/j.plantsci.2020.110608_bib0250) 1999; 91
Yang (10.1016/j.plantsci.2020.110608_bib0140) 2013; 5
Yan (10.1016/j.plantsci.2020.110608_bib0405) 2014; 78
Ruiz-Ferrer (10.1016/j.plantsci.2020.110608_bib0105) 2009; 60
Liu (10.1016/j.plantsci.2020.110608_bib0490) 2016; 14
Li (10.1016/j.plantsci.2020.110608_bib0190) 2008; 20
Kruszka (10.1016/j.plantsci.2020.110608_bib0090) 2012; 169
Laubinger (10.1016/j.plantsci.2020.110608_bib0045) 2008; 105
Marino (10.1016/j.plantsci.2020.110608_bib0270) 2019; 10
Vaucheret (10.1016/j.plantsci.2020.110608_bib0060) 2004; 18
Noon (10.1016/j.plantsci.2020.110608_bib0455) 2019; 70
Aukerman (10.1016/j.plantsci.2020.110608_bib0505) 2003; 15
Nguyen (10.1016/j.plantsci.2020.110608_bib0525) 2015; 6
Pieczynski (10.1016/j.plantsci.2020.110608_bib0120) 2013; 11
Bologna (10.1016/j.plantsci.2020.110608_bib0055) 2018; 69
Zhang (10.1016/j.plantsci.2020.110608_bib0495) 2011; 23
Kruszka (10.1016/j.plantsci.2020.110608_bib0300) 2013; 14
Rapacz (10.1016/j.plantsci.2020.110608_bib0320) 2012; 34
Pacak (10.1016/j.plantsci.2020.110608_bib0275) 2016; 63
References_xml – volume: 105
  start-page: 8795
  year: 2008
  end-page: 8800
  ident: bib0045
  article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in
  publication-title: Proc. Natl. Acad. Sci.
– volume: 36
  start-page: 2207
  year: 2013
  end-page: 2218
  ident: bib0180
  article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)
  publication-title: Plant Cell Environ.
– volume: 15
  year: 2014
  ident: bib0315
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
– volume: 7
  year: 2011
  ident: bib0445
  article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in
  publication-title: PLoS Genet.
– volume: 391
  start-page: 806
  year: 1998
  end-page: 811
  ident: bib0005
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
  publication-title: Nature
– volume: 303
  start-page: 2022
  year: 2004
  end-page: 2025
  ident: bib0510
  article-title: A MicroRNA as a translational repressor of APETALA2 in
  publication-title: Science
– year: 2019
  ident: bib0160
  article-title: Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis
  publication-title: Environ. Exp. Bot.
– volume: 60
  start-page: 485
  year: 2009
  end-page: 510
  ident: bib0105
  article-title: Roles of plant small RNAs in biotic stress responses
  publication-title: Annu. Rev. Plant Biol.
– volume: 40
  start-page: 11
  year: 2017
  end-page: 24
  ident: bib0230
  article-title: Differential expression of microRNAs and potential targets under drought stress in barley
  publication-title: Plant Cell Environ.
– volume: 9
  start-page: 286
  year: 2008
  end-page: 298
  ident: bib0330
  article-title: Recent developments in the MAFFT multiple sequence alignment program
  publication-title: Brief. Bioinf.
– volume: 38
  start-page: S31
  year: 2006
  end-page: 36
  ident: bib0020
  article-title: Functions of microRNAs and related small RNAs in plants
  publication-title: Nat. Genet.
– volume: 586
  start-page: 1742
  year: 2012
  end-page: 1747
  ident: bib0220
  article-title: A plant microRNA regulates the adaptation of roots to drought stress
  publication-title: FEBS Lett.
– volume: 39
  start-page: 1517
  year: 2007
  end-page: 1521
  ident: bib0515
  article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1
  publication-title: Nat. Genet.
– volume: 10
  start-page: 29
  year: 2009
  ident: bib0150
  article-title: Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor
  publication-title: BMC Mol. Biol.
– volume: 9
  year: 2014
  ident: bib0400
  article-title: Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing
  publication-title: PLoS One
– volume: 14
  start-page: 34
  year: 2013
  ident: bib0300
  article-title: Developmentally regulated expression and complex processing of barley pri-microRNAs
  publication-title: BMC Genomics
– volume: 8
  year: 2013
  ident: bib0375
  article-title: Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes
  publication-title: PLoS One
– volume: 102
  start-page: 73
  year: 2020
  end-page: 88
  ident: bib0540
  article-title: Identification of transcription factors that bind to the 5’-UTR of the barley PHO2 gene
  publication-title: Plant Mol Biol
– volume: 3
  year: 2012
  ident: bib0175
  article-title: MicroRNAs as regulators in plant metal toxicity response
  publication-title: Front. Plant Sci.
– volume: 150
  start-page: 1541
  year: 2009
  end-page: 1555
  ident: bib0370
  article-title: Identification of nutrient-responsive
  publication-title: Plant Physiol.
– volume: 116
  start-page: 281
  year: 2004
  end-page: 297
  ident: bib0070
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
– volume: 6
  start-page: 410
  year: 2015
  ident: bib0100
  article-title: microRNA expression regulation in a wide range of abiotic stress responses
  publication-title: Front. Plant Sci.
– volume: 12
  year: 2017
  ident: bib0530
  article-title: Durum wheat microRNAs in response to nitrogen starvation at the grain filling stage
  publication-title: PLoS One
– volume: 314
  start-page: 1298
  year: 2006
  end-page: 1301
  ident: bib0480
  article-title: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat
  publication-title: Science
– volume: 18
  start-page: 1187
  year: 2004
  end-page: 1197
  ident: bib0060
  article-title: The action of ARGONAUTE1 in the microRNA pathway and its regulation by the microRNA pathway are crucial for plant development
  publication-title: Genes Dev.
– volume: 103
  start-page: 14302
  year: 2006
  end-page: 14306
  ident: bib0010
  article-title: Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  start-page: 11928
  year: 2005
  end-page: 11933
  ident: bib0065
  article-title: ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs
  publication-title: Proc. Natl. Acad. Sci.
– volume: 20
  start-page: 2238
  year: 2008
  end-page: 2251
  ident: bib0190
  article-title: The
  publication-title: Plant Cell
– volume: 177
  start-page: 1299
  year: 2015
  end-page: 1312
  ident: bib0235
  article-title: Nitrate starvation induced changes in root system architecture, carbon:nitrogen metabolism, and microRNA expression in nitrogen-responsive wheat genotypes
  publication-title: Appl. Biochem. Biotechnol.
– volume: 11
  start-page: 459
  year: 2013
  end-page: 469
  ident: bib0120
  article-title: Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato
  publication-title: Plant Biotechnol. J.
– volume: 177
  start-page: 1691
  year: 2018
  end-page: 1703
  ident: bib0215
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
– volume: 23
  start-page: 396
  year: 2011
  end-page: 411
  ident: bib0495
  article-title: floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation
  publication-title: Plant Cell
– volume: 12
  start-page: 206
  year: 2006
  end-page: 212
  ident: bib0035
  article-title: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-microRNA in plant microRNA biogenesis
  publication-title: RNA
– volume: 167
  start-page: 411
  year: 2015
  end-page: 423
  ident: bib0245
  article-title: A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input
  publication-title: Plant Physiol.
– volume: 16
  start-page: 2001
  year: 2004
  end-page: 2019
  ident: bib0080
  article-title: Novel and stress-regulated microRNAs and other small RNAs from
  publication-title: Plant Cell
– volume: 13
  start-page: 293
  year: 2015
  end-page: 305
  ident: bib0125
  article-title: Role of microRNAs in plant drought tolerance
  publication-title: Plant Biotechnol. J.
– volume: 9
  year: 2017
  ident: bib0290
  article-title: Effects of nitrogen and tiller type on grain yield and physiological responses in rice
  publication-title: AoB Plants
– volume: 15
  start-page: 2730
  year: 2003
  end-page: 2741
  ident: bib0505
  article-title: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes
  publication-title: Plant Cell
– volume: 9
  start-page: 1302
  year: 2016
  end-page: 1314
  ident: bib0410
  article-title: Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice
  publication-title: Mol. Plant
– volume: 20
  start-page: 100
  year: 2019
  end-page: 114
  ident: bib0210
  article-title: Osmir528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells
  publication-title: Curr. Genomics
– volume: 156
  start-page: 1990
  year: 2011
  end-page: 2010
  ident: bib0385
  article-title: Stars and symbiosis: MicroRNA- and MicroRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis
  publication-title: Plant Physiol.
– volume: 9
  start-page: 149
  year: 2009
  ident: bib0520
  article-title: Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa)
  publication-title: BMC Plant Biol.
– volume: 78
  start-page: 44
  year: 2014
  end-page: 55
  ident: bib0405
  article-title: miR444a has multiple functions in the rice nitrate-signaling pathway
  publication-title: Plant J.
– volume: 312
  start-page: 436
  year: 2006
  end-page: 439
  ident: bib0415
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
– volume: 7
  year: 2012
  ident: bib0365
  article-title: Identification of nitrogen starvation-responsive MicroRNAs in
  publication-title: PLoS One
– volume: 103
  start-page: 4.17.1
  year: 2013
  end-page: 4.17.14
  ident: bib0310
  article-title: Quantification of microRNA expression with next-generation sequencing
  publication-title: Curr. Protoc. Mol. Biol.
– volume: 169
  start-page: 1664
  year: 2012
  end-page: 1672
  ident: bib0090
  article-title: Role of microRNAs and other sRNAs of plants in their changing environments
  publication-title: J. Plant Physiol.
– volume: 20
  year: 2019
  ident: bib0170
  article-title: MicroRNA-guided regulation of heat stress response in wheat
  publication-title: BMC Genomics
– volume: 91
  start-page: 357
  year: 1999
  end-page: 363
  ident: bib0250
  article-title: Improving nitrogen use efficiency for cereal production
  publication-title: Agron. J.
– volume: 58
  start-page: 254
  year: 2015
  end-page: 265
  ident: bib0280
  article-title: Statistical modeling of nitrogen-dependent modulation of root system architecture in
  publication-title: J. Integr. Plant Biol.
– volume: 48
  start-page: 225
  year: 2010
  end-page: 246
  ident: bib0110
  article-title: Role of small RNAs in host-microbe interactions
  publication-title: Annu. Rev. Phytopathol.
– volume: 14
  year: 2016
  ident: bib0490
  article-title: snRNA 3’ end processing by a CPSF73-containing complex essential for development in
  publication-title: PLoS Biol.
– volume: 70
  start-page: 1653
  year: 2019
  end-page: 1668
  ident: bib0455
  article-title: Homeostasis in the soybean microRNA396-GRF network is essential for productive soybean cyst nematode infections
  publication-title: J. Exp. Bot.
– volume: 9
  start-page: 1253
  year: 2018
  ident: bib0015
  article-title: Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption
  publication-title: Front. Plant Sci.
– volume: 121
  start-page: 1605
  year: 2016
  end-page: 1616
  ident: bib0265
  article-title: Imbalanced atmospheric nitrogen and phosphorus depositions in China: implications for nutrient limitation
  publication-title: J. Geophys. Res. Biogeosci.
– volume: 7
  start-page: 102
  year: 2020
  end-page: 112
  ident: bib0460
  article-title: Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions
  publication-title: Sci. Rev.
– volume: 14
  year: 2009
  ident: bib0260
  article-title: Planetary boundaries: exploring the safe operating space for humanity
  publication-title: Ecol. Soc.
– volume: 16
  start-page: 295
  year: 2002
  end-page: 308
  ident: bib0255
  article-title: Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance
  publication-title: Eur. J. Agron.
– volume: 141
  start-page: 1000
  year: 2006
  end-page: 1011
  ident: bib0425
  article-title: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microrna399 target gene
  publication-title: Plant Physiol.
– volume: 69
  start-page: 1
  year: 2018
  end-page: 11
  ident: bib0055
  article-title: Short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway
  publication-title: Mol. Cell
– volume: 190
  start-page: 906
  year: 2011
  end-page: 915
  ident: bib0240
  article-title: Involvement of miR169 in the nitrogen-starvation responses in
  publication-title: New Phytol.
– volume: 6
  year: 2016
  ident: bib0470
  article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds
  publication-title: Sci. Rep.
– volume: 5
  start-page: 1184
  year: 2013
  end-page: 1190
  ident: bib0140
  article-title: A potential role of microRNAs in plant response to metal toxicity
  publication-title: Metallomics
– volume: 141
  start-page: 988
  year: 2006
  end-page: 999
  ident: bib0430
  article-title: PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants
  publication-title: Plant Physiol.
– volume: 6
  year: 2011
  ident: bib0350
  article-title: Genome-wide identification of MicroRNAs in response to low nitrate availability in maize leaves and roots
  publication-title: PLoS One
– volume: 459
  start-page: 39
  year: 2010
  end-page: 47
  ident: bib0135
  article-title: Profiling of cold-stress-responsive microRNAs in rice by microarrays
  publication-title: Gene
– volume: 51
  start-page: 2119
  year: 2010
  end-page: 2131
  ident: bib0435
  article-title: Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation
  publication-title: Plant Cell Physiol.
– volume: 17
  start-page: 1376
  year: 2005
  end-page: 1386
  ident: bib0475
  article-title: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for
  publication-title: Plant Cell Online
– volume: 8
  year: 2016
  ident: bib0025
  article-title: Post-transcriptional coordination of splicing and microRNA biogenesis in plants
  publication-title: WIREs RNA
– volume: 215
  start-page: 403
  year: 1990
  end-page: 410
  ident: bib0335
  article-title: Basic local alignment search tool
  publication-title: J. Mol. Biol.
– volume: 10
  start-page: 493
  year: 2010
  end-page: 507
  ident: bib0225
  article-title: Regulation of barley microRNAs upon dehydration stress correlated with target gene expression
  publication-title: Funct. Integr. Genomics
– volume: 169
  start-page: 576
  year: 2015
  end-page: 593
  ident: bib0195
  article-title: Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass
  publication-title: Plant Physiol.
– volume: 35
  start-page: 1137
  year: 2012
  end-page: 1155
  ident: bib0380
  article-title: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings
  publication-title: Plant Cell Environ.
– volume: 34
  start-page: 1723
  year: 2012
  end-page: 1733
  ident: bib0320
  article-title: Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age
  publication-title: Acta Physiol. Plant.
– volume: 4
  start-page: 356
  year: 2009
  end-page: 362
  ident: bib0340
  article-title: Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome
  publication-title: Nat. Protoc.
– volume: 57
  start-page: 3804
  year: 2012
  end-page: 3810
  ident: bib0420
  article-title: MiR1511 co-regulates with miR1511* to cleave the GmRPL4a gene in soybean
  publication-title: Chinese Sci. Bull.
– volume: 6
  start-page: 629
  year: 2015
  ident: bib0525
  article-title: Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions
  publication-title: Front. Plant Sci.
– volume: 370
  start-page: 1
  year: 2013
  end-page: 29
  ident: bib0285
  article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource
  publication-title: Plant Soil
– volume: 11
  year: 2016
  ident: bib0440
  article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants
  publication-title: Plant Signal. Behav.
– volume: 18
  start-page: 212
  year: 2017
  ident: bib0145
  article-title: Response of microRNAs to cold treatment in the young spikes of common wheat
  publication-title: BMC Genomics
– volume: 14
  start-page: 622
  year: 2013
  end-page: 628
  ident: bib0095
  article-title: Introns of plant pri-microRNAs enhance microRNA biogenesis
  publication-title: EMBO Rep.
– volume: 10
  year: 2019
  ident: bib0270
  article-title: Can ammonium stress be positive for plant performance?
  publication-title: Front. Plant Sci.
– volume: 46
  start-page: 8730
  year: 2018
  end-page: 8739
  ident: bib0345
  article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules
  publication-title: Nucleic Acids Res.
– volume: 8
  year: 2013
  ident: bib0390
  article-title: Characterization and expression patterns of microRNAs involved in rice grain filling
  publication-title: PLoS One
– volume: 159
  start-page: 321
  year: 2012
  end-page: 335
  ident: bib0450
  article-title: The
  publication-title: Plant Physiol.
– volume: 16
  start-page: 1616
  year: 2002
  end-page: 1626
  ident: bib0030
  article-title: MicroRNAs in plants
  publication-title: Genes Dev.
– volume: 13
  start-page: 2063
  year: 2001
  end-page: 2083
  ident: bib0500
  article-title: The
  publication-title: Plant Cell
– volume: 12
  year: 2017
  ident: bib0130
  article-title: Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots
  publication-title: PLoS One
– volume: 65
  start-page: 6123
  year: 2014
  end-page: 6135
  ident: bib0165
  article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley
  publication-title: J. Exp. Bot.
– volume: 9
  year: 2018
  ident: bib0295
  article-title: Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice
  publication-title: Front. Plant Sci.
– volume: 112
  start-page: 633
  year: 2013
  end-page: 642
  ident: bib0360
  article-title: Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize
  publication-title: Ann. Bot.
– year: 2020
  ident: bib0545
  article-title: Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses
  publication-title: BMC Genomics
– volume: 16
  start-page: 692
  year: 2015
  ident: bib0205
  article-title: Identification of four functionally important microRNA families with contrasting differential expression profiles between drought tolerant and susceptible rice leaf at vegetative stage
  publication-title: BMC Genom.
– year: 2018
  ident: bib0325
  article-title: Ensembl variation resources Database (Oxford)
  publication-title: bay119
– volume: 75
  start-page: 203
  year: 2009
  end-page: 229
  ident: bib0485
  article-title: Nitric oxide signalling in plants
  publication-title: Bot. Rev.
– volume: 130
  start-page: 1493
  year: 2003
  end-page: 1504
  ident: bib0050
  article-title: HASTY, the
  publication-title: Development
– volume: 9
  year: 2018
  ident: bib0535
  article-title: Wheat microRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes
  publication-title: Front. Plant Sci.
– volume: 20
  start-page: 14
  year: 2019
  ident: bib0185
  article-title: Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots
  publication-title: BMC Mol. Biol.
– volume: 1819
  start-page: 137
  year: 2012
  end-page: 148
  ident: bib0085
  article-title: Role of microRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: Biochim. Biophys. Acta
– volume: 24
  start-page: 23
  year: 2005
  end-page: 58
  ident: bib0115
  article-title: Drought and salt tolerance in plants
  publication-title: Crit. Rev. Plant Sci.
– volume: 42
  start-page: D68
  year: 2014
  end-page: D73
  ident: bib0305
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res.
– volume: 6
  start-page: 555
  year: 2015
  ident: bib0200
  article-title: Maize microRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis
  publication-title: Front. Plant Sci.
– volume: 320
  start-page: 1185
  year: 2008
  end-page: 1190
  ident: bib0075
  article-title: Widespread translational inhibition by plant microRNAs and siRNAs
  publication-title: Science
– year: 2017
  ident: bib0465
  article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley
  publication-title: Plant Cell Physiol.
– volume: 13
  year: 2013
  ident: bib0550
  article-title: Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions
  publication-title: BMC Plant Biology
– volume: 7
  start-page: 1052
  year: 2006
  end-page: 1058
  ident: bib0040
  article-title: SERRATE: a new player on the plant microRNA scene
  publication-title: EMBO Rep.
– volume: 9
  year: 2014
  ident: bib0395
  article-title: The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-Like MADS-box gene as a new miRNA target
  publication-title: PLoS One
– volume: 63
  start-page: 799
  year: 2016
  end-page: 809
  ident: bib0275
  article-title: Developmental changes in barley microRNA expression profiles coupled with microRNA target analysis
  publication-title: Acta Biochim. Pol.
– volume: 7
  year: 2012
  ident: bib0355
  article-title: Cloning and characterization of maize microRNAs involved in responses to nitrogen deficiency
  publication-title: PLoS One
– volume: 8
  start-page: 864
  year: 2017
  ident: bib0155
  article-title: Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis
  publication-title: Front. Plant Sci.
– volume: 14
  start-page: 622
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0095
  article-title: Introns of plant pri-microRNAs enhance microRNA biogenesis
  publication-title: EMBO Rep.
  doi: 10.1038/embor.2013.62
– volume: 65
  start-page: 6123
  issue: November (20)
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0165
  article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru353
– volume: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0170
  article-title: MicroRNA-guided regulation of heat stress response in wheat
  publication-title: BMC Genomics
  doi: 10.1186/s12864-019-5799-6
– volume: 9
  issue: 2
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0290
  article-title: Effects of nitrogen and tiller type on grain yield and physiological responses in rice
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plx012
– volume: 167
  start-page: 411
  issue: 2
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0245
  article-title: A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input
  publication-title: Plant Physiol.
  doi: 10.1104/pp.114.246959
– volume: 15
  issue: 12
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0315
  article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 112
  start-page: 633
  issue: 3
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0360
  article-title: Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mct133
– volume: 10
  year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0270
  article-title: Can ammonium stress be positive for plant performance?
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01103
– volume: 39
  start-page: 1517
  issue: 12
  year: 2007
  ident: 10.1016/j.plantsci.2020.110608_bib0515
  article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2007.20
– volume: 5
  start-page: 1184
  issue: 9
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0140
  article-title: A potential role of microRNAs in plant response to metal toxicity
  publication-title: Metallomics
  doi: 10.1039/c3mt00022b
– volume: 9
  issue: 5
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0395
  article-title: The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-Like MADS-box gene as a new miRNA target
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0097839
– volume: 91
  start-page: 357
  year: 1999
  ident: 10.1016/j.plantsci.2020.110608_bib0250
  article-title: Improving nitrogen use efficiency for cereal production
  publication-title: Agron. J.
  doi: 10.2134/agronj1999.00021962009100030001x
– volume: 12
  issue: January (1)
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0130
  article-title: Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots
  publication-title: PLoS One
– volume: 10
  start-page: 493
  issue: 4
  year: 2010
  ident: 10.1016/j.plantsci.2020.110608_bib0225
  article-title: Regulation of barley microRNAs upon dehydration stress correlated with target gene expression
  publication-title: Funct. Integr. Genomics
  doi: 10.1007/s10142-010-0181-4
– volume: 16
  start-page: 295
  issue: 4
  year: 2002
  ident: 10.1016/j.plantsci.2020.110608_bib0255
  article-title: Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(01)00133-2
– volume: 130
  start-page: 1493
  issue: 8
  year: 2003
  ident: 10.1016/j.plantsci.2020.110608_bib0050
  article-title: HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis
  publication-title: Development
  doi: 10.1242/dev.00362
– volume: 8
  issue: 3
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0025
  article-title: Post-transcriptional coordination of splicing and microRNA biogenesis in plants
  publication-title: WIREs RNA
  doi: 10.1002/wrna.1403
– volume: 6
  issue: 1
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0470
  article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds
  publication-title: Sci. Rep.
– volume: 40
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0230
  article-title: Differential expression of microRNAs and potential targets under drought stress in barley
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12764
– volume: 34
  start-page: 1723
  issue: 5
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0320
  article-title: Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-012-0967-1
– volume: 23
  start-page: 396
  issue: 1
  year: 2011
  ident: 10.1016/j.plantsci.2020.110608_bib0495
  article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation
  publication-title: Plant Cell
  doi: 10.1105/tpc.110.081356
– volume: 7
  issue: 1
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0355
  article-title: Cloning and characterization of maize microRNAs involved in responses to nitrogen deficiency
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029669
– volume: 3
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0175
  article-title: MicroRNAs as regulators in plant metal toxicity response
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2012.00105
– volume: 4
  start-page: 356
  issue: 3
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0340
  article-title: Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2009.8
– volume: 7
  issue: 11
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0365
  article-title: Identification of nitrogen starvation-responsive MicroRNAs in Arabidopsis thaliana
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0048951
– volume: 8
  issue: 1
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0390
  article-title: Characterization and expression patterns of microRNAs involved in rice grain filling
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054148
– volume: 586
  start-page: 1742
  issue: 12
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0220
  article-title: A plant microRNA regulates the adaptation of roots to drought stress
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.05.013
– volume: 58
  start-page: 254
  issue: 3
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0280
  article-title: Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/jipb.12433
– volume: 177
  start-page: 1299
  issue: 6
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0235
  article-title: Nitrate starvation induced changes in root system architecture, carbon:nitrogen metabolism, and microRNA expression in nitrogen-responsive wheat genotypes
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-015-1815-8
– volume: 370
  start-page: 1
  issue: 1–2
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0285
  article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1645-9
– volume: 116
  start-page: 281
  issue: 2
  year: 2004
  ident: 10.1016/j.plantsci.2020.110608_bib0070
  article-title: MicroRNAs: genomics, biogenesis, mechanism, and function
  publication-title: Cell
  doi: 10.1016/S0092-8674(04)00045-5
– volume: 9
  start-page: 1253
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0015
  article-title: Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01253
– volume: 103
  start-page: 4.17.1
  issue: 1
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0310
  article-title: Quantification of microRNA expression with next-generation sequencing
  publication-title: Curr. Protoc. Mol. Biol.
  doi: 10.1002/0471142727.mb0417s103
– volume: 141
  start-page: 1000
  issue: 3
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0425
  article-title: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microrna399 target gene
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.078063
– volume: 141
  start-page: 988
  issue: 3
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0430
  article-title: PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants
  publication-title: Plant Physiol.
  doi: 10.1104/pp.106.079707
– volume: 18
  start-page: 212
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0145
  article-title: Response of microRNAs to cold treatment in the young spikes of common wheat
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-3556-2
– volume: 159
  start-page: 321
  issue: 1
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0450
  article-title: The Arabidopsis microrna396-grf1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection
  publication-title: Plant Physiol.
  doi: 10.1104/pp.112.193649
– volume: 102
  start-page: 11928
  year: 2005
  ident: 10.1016/j.plantsci.2020.110608_bib0065
  article-title: Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0505461102
– volume: 20
  start-page: 14
  year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0185
  article-title: Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots
  publication-title: BMC Mol. Biol.
  doi: 10.1186/s12867-019-0131-1
– volume: 14
  issue: 10
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0490
  article-title: snRNA 3’ end processing by a CPSF73-containing complex essential for development in Arabidopsis
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002571
– volume: 12
  issue: 8
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0530
  article-title: Durum wheat microRNAs in response to nitrogen starvation at the grain filling stage
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183253
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0400
  article-title: Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104409
– volume: 75
  start-page: 203
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0485
  article-title: Nitric oxide signalling in plants
  publication-title: Bot. Rev.
  doi: 10.1007/s12229-009-9031-2
– volume: 57
  start-page: 3804
  issue: 28–29
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0420
  article-title: MiR1511 co-regulates with miR1511* to cleave the GmRPL4a gene in soybean
  publication-title: Chinese Sci. Bull.
  doi: 10.1007/s11434-012-5197-9
– volume: 14
  issue: 2
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0260
  article-title: Planetary boundaries: exploring the safe operating space for humanity
  publication-title: Ecol. Soc.
  doi: 10.5751/ES-03180-140232
– volume: 156
  start-page: 1990
  issue: 4
  year: 2011
  ident: 10.1016/j.plantsci.2020.110608_bib0385
  article-title: Stars and symbiosis: MicroRNA- and MicroRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis
  publication-title: Plant Physiol.
  doi: 10.1104/pp.111.172627
– volume: 16
  start-page: 2001
  issue: 8
  year: 2004
  ident: 10.1016/j.plantsci.2020.110608_bib0080
  article-title: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis
  publication-title: Plant Cell
  doi: 10.1105/tpc.104.022830
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0440
  article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants
  publication-title: Plant Signal. Behav.
  doi: 10.1080/15592324.2016.1213474
– year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0325
  article-title: Ensembl variation resources Database (Oxford)
  publication-title: bay119
– volume: 35
  start-page: 1137
  issue: 6
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0380
  article-title: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2011.02478.x
– volume: 13
  start-page: 293
  issue: 3
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0125
  article-title: Role of microRNAs in plant drought tolerance
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12318
– volume: 9
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0295
  article-title: Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01075
– volume: 105
  start-page: 8795
  year: 2008
  ident: 10.1016/j.plantsci.2020.110608_bib0045
  article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0802493105
– volume: 69
  start-page: 1
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0055
  article-title: Short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2018.01.007
– volume: 48
  start-page: 225
  year: 2010
  ident: 10.1016/j.plantsci.2020.110608_bib0110
  article-title: Role of small RNAs in host-microbe interactions
  publication-title: Annu. Rev. Phytopathol.
  doi: 10.1146/annurev-phyto-073009-114457
– volume: 17
  start-page: 1376
  issue: 5
  year: 2005
  ident: 10.1016/j.plantsci.2020.110608_bib0475
  article-title: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development
  publication-title: Plant Cell Online
  doi: 10.1105/tpc.105.030841
– volume: 9
  start-page: 149
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0520
  article-title: Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa)
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-9-149
– volume: 63
  start-page: 799
  issue: 4
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0275
  article-title: Developmental changes in barley microRNA expression profiles coupled with microRNA target analysis
  publication-title: Acta Biochim. Pol.
– volume: 103
  start-page: 14302
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0010
  article-title: Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0604698103
– volume: 16
  start-page: 1616
  issue: 13
  year: 2002
  ident: 10.1016/j.plantsci.2020.110608_bib0030
  article-title: MicroRNAs in plants
  publication-title: Genes Dev.
  doi: 10.1101/gad.1004402
– volume: 42
  start-page: D68
  issue: D1
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0305
  article-title: miRBase: annotating high confidence microRNAs using deep sequencing data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt1181
– volume: 20
  start-page: 2238
  year: 2008
  ident: 10.1016/j.plantsci.2020.110608_bib0190
  article-title: The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance
  publication-title: Plant Cell
  doi: 10.1105/tpc.108.059444
– volume: 46
  start-page: 8730
  issue: 17
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0345
  article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules
  publication-title: Nucleic Acids Res.
– volume: 7
  issue: 3
  year: 2011
  ident: 10.1016/j.plantsci.2020.110608_bib0445
  article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002021
– volume: 13
  issue: 1
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0550
  article-title: Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions
  publication-title: BMC Plant Biology
  doi: 10.1186/1471-2229-13-214
– volume: 6
  start-page: 555
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0200
  article-title: Maize microRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00555
– volume: 102
  start-page: 73
  year: 2020
  ident: 10.1016/j.plantsci.2020.110608_bib0540
  article-title: Identification of transcription factors that bind to the 5’-UTR of the barley PHO2 gene
  publication-title: Plant Mol Biol
  doi: 10.1007/s11103-019-00932-9
– volume: 169
  start-page: 1664
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0090
  article-title: Role of microRNAs and other sRNAs of plants in their changing environments
  publication-title: J. Plant Physiol.
  doi: 10.1016/j.jplph.2012.03.009
– volume: 24
  start-page: 23
  year: 2005
  ident: 10.1016/j.plantsci.2020.110608_bib0115
  article-title: Drought and salt tolerance in plants
  publication-title: Crit. Rev. Plant Sci.
  doi: 10.1080/07352680590910410
– volume: 36
  start-page: 2207
  issue: 12
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0180
  article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.)
  publication-title: Plant Cell Environ.
  doi: 10.1111/pce.12130
– volume: 20
  start-page: 100
  year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0210
  article-title: Osmir528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells
  publication-title: Curr. Genomics
  doi: 10.2174/1389202920666190129145439
– volume: 78
  start-page: 44
  issue: 1
  year: 2014
  ident: 10.1016/j.plantsci.2020.110608_bib0405
  article-title: miR444a has multiple functions in the rice nitrate-signaling pathway
  publication-title: Plant J.
  doi: 10.1111/tpj.12446
– volume: 11
  start-page: 459
  issue: 4
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0120
  article-title: Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12032
– volume: 121
  start-page: 1605
  issue: 6
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0265
  article-title: Imbalanced atmospheric nitrogen and phosphorus depositions in China: implications for nutrient limitation
  publication-title: J. Geophys. Res. Biogeosci.
  doi: 10.1002/2016JG003393
– volume: 6
  issue: 11
  year: 2011
  ident: 10.1016/j.plantsci.2020.110608_bib0350
  article-title: Genome-wide identification of MicroRNAs in response to low nitrate availability in maize leaves and roots
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0028009
– volume: 1819
  start-page: 137
  issue: 2
  year: 2012
  ident: 10.1016/j.plantsci.2020.110608_bib0085
  article-title: Role of microRNAs and siRNAs in biotic and abiotic stress responses of plants
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbagrm.2011.05.001
– volume: 9
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0535
  article-title: Wheat microRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.00499
– volume: 6
  start-page: 410
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0100
  article-title: Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00410
– volume: 70
  start-page: 1653
  issue: 5
  year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0455
  article-title: Homeostasis in the soybean microRNA396-GRF network is essential for productive soybean cyst nematode infections
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erz022
– volume: 38
  start-page: S31
  issue: Suppl
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0020
  article-title: Functions of microRNAs and related small RNAs in plants
  publication-title: Nat. Genet.
  doi: 10.1038/ng1791
– volume: 10
  start-page: 29
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0150
  article-title: Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor
  publication-title: BMC Mol. Biol.
  doi: 10.1186/1471-2199-10-29
– volume: 60
  start-page: 485
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0105
  article-title: Roles of plant small RNAs in biotic stress responses
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev.arplant.043008.092111
– volume: 6
  start-page: 629
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0525
  article-title: Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00629
– volume: 320
  start-page: 1185
  year: 2008
  ident: 10.1016/j.plantsci.2020.110608_bib0075
  article-title: Widespread translational inhibition by plant microRNAs and siRNAs
  publication-title: Science
  doi: 10.1126/science.1159151
– year: 2019
  ident: 10.1016/j.plantsci.2020.110608_bib0160
  article-title: Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis
  publication-title: Environ. Exp. Bot.
  doi: 10.1016/j.envexpbot.2019.01.006
– volume: 312
  start-page: 436
  issue: 5772
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0415
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
  doi: 10.1126/science.1126088
– volume: 16
  start-page: 692
  issue: 1
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0205
  article-title: Identification of four functionally important microRNA families with contrasting differential expression profiles between drought tolerant and susceptible rice leaf at vegetative stage
  publication-title: BMC Genom.
  doi: 10.1186/s12864-015-1851-3
– year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0465
  article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcw211
– volume: 391
  start-page: 806
  issue: 6669
  year: 1998
  ident: 10.1016/j.plantsci.2020.110608_bib0005
  article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35888
– year: 2020
  ident: 10.1016/j.plantsci.2020.110608_bib0545
  article-title: Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses
  publication-title: BMC Genomics
– volume: 8
  start-page: 864
  year: 2017
  ident: 10.1016/j.plantsci.2020.110608_bib0155
  article-title: Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00864
– volume: 150
  start-page: 1541
  issue: 3
  year: 2009
  ident: 10.1016/j.plantsci.2020.110608_bib0370
  article-title: Identification of nutrient-responsive Arabidopsis and rapeseed MicroRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.139139
– volume: 9
  start-page: 286
  issue: 4
  year: 2008
  ident: 10.1016/j.plantsci.2020.110608_bib0330
  article-title: Recent developments in the MAFFT multiple sequence alignment program
  publication-title: Brief. Bioinf.
  doi: 10.1093/bib/bbn013
– volume: 13
  start-page: 2063
  year: 2001
  ident: 10.1016/j.plantsci.2020.110608_bib0500
  article-title: The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression
  publication-title: Plant Cell
– volume: 18
  start-page: 1187
  year: 2004
  ident: 10.1016/j.plantsci.2020.110608_bib0060
  article-title: The action of ARGONAUTE1 in the microRNA pathway and its regulation by the microRNA pathway are crucial for plant development
  publication-title: Genes Dev.
  doi: 10.1101/gad.1201404
– volume: 51
  start-page: 2119
  issue: 12
  year: 2010
  ident: 10.1016/j.plantsci.2020.110608_bib0435
  article-title: Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcq170
– volume: 7
  start-page: 102
  year: 2020
  ident: 10.1016/j.plantsci.2020.110608_bib0460
  article-title: Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions
  publication-title: Sci. Rev.
– volume: 190
  start-page: 906
  issue: 4
  year: 2011
  ident: 10.1016/j.plantsci.2020.110608_bib0240
  article-title: Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.2011.03647.x
– volume: 9
  start-page: 1302
  issue: 9
  year: 2016
  ident: 10.1016/j.plantsci.2020.110608_bib0410
  article-title: Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.06.014
– volume: 8
  issue: 7
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0375
  article-title: Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes
  publication-title: PLoS One
– volume: 15
  start-page: 2730
  year: 2003
  ident: 10.1016/j.plantsci.2020.110608_bib0505
  article-title: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes
  publication-title: Plant Cell
  doi: 10.1105/tpc.016238
– volume: 12
  start-page: 206
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0035
  article-title: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-microRNA in plant microRNA biogenesis
  publication-title: RNA
  doi: 10.1261/rna.2146906
– volume: 14
  start-page: 34
  issue: 1
  year: 2013
  ident: 10.1016/j.plantsci.2020.110608_bib0300
  article-title: Developmentally regulated expression and complex processing of barley pri-microRNAs
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-34
– volume: 303
  start-page: 2022
  issue: 5666
  year: 2004
  ident: 10.1016/j.plantsci.2020.110608_bib0510
  article-title: A MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development
  publication-title: Science
  doi: 10.1126/science.1088060
– volume: 459
  start-page: 39
  issue: 1–2
  year: 2010
  ident: 10.1016/j.plantsci.2020.110608_bib0135
  article-title: Profiling of cold-stress-responsive microRNAs in rice by microarrays
  publication-title: Gene
  doi: 10.1016/j.gene.2010.03.011
– volume: 169
  start-page: 576
  issue: 1
  year: 2015
  ident: 10.1016/j.plantsci.2020.110608_bib0195
  article-title: Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00899
– volume: 7
  start-page: 1052
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0040
  article-title: SERRATE: a new player on the plant microRNA scene
  publication-title: EMBO Rep.
  doi: 10.1038/sj.embor.7400806
– volume: 177
  start-page: 1691
  issue: August(4)
  year: 2018
  ident: 10.1016/j.plantsci.2020.110608_bib0215
  article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice
  publication-title: Plant Physiol.
  doi: 10.1104/pp.18.00485
– volume: 215
  start-page: 403
  issue: 3
  year: 1990
  ident: 10.1016/j.plantsci.2020.110608_bib0335
  article-title: Basic local alignment search tool
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(05)80360-2
– volume: 314
  start-page: 1298
  year: 2006
  ident: 10.1016/j.plantsci.2020.110608_bib0480
  article-title: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat
  publication-title: Science
  doi: 10.1126/science.1133649
SSID ssj0002557
Score 2.3654265
Snippet •13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified...
Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 110608
SubjectTerms Abiotic stresses
Barley
correlation
crops
drought
Gene Expression Regulation, Plant
homeostasis
Hordeum - metabolism
Hordeum vulgare
microRNA
MicroRNAs - metabolism
mRNA targets
nitrogen
Nitrogen - metabolism
Nitrogen excess
Plant Roots - metabolism
Plant Shoots - metabolism
RNA, Plant - metabolism
roots
salinity
shoots
soil
Soil - chemistry
Stress, Physiological
toxicity
Up-Regulation
Title Barley microRNAs as metabolic sensors for soil nitrogen availability
URI https://dx.doi.org/10.1016/j.plantsci.2020.110608
https://www.ncbi.nlm.nih.gov/pubmed/32900446
https://www.proquest.com/docview/2441280965
https://www.proquest.com/docview/2511187955
Volume 299
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQMLAg3pSXjMQaQlzHicdSQAWkDkClbpbj2FJQ2lRNQerCb-ccJwUkHgNjHFuy7s53n-Xv7hA6Y2ma8oiEHjGx8ShViSdtxnIQKcZpzGTqCLJ91hvQu2E4XELdJhfG0ipr3-98euWt6xG_lqY_yTL_EcBKzG1BcLBTW_jLZrDTyFr5-dsHzQMgs0uZZnCwYfanLOHn80luySYqg3siqRjxzLaZ_D5A_QRAq0B0s4HWawSJO26Tm2hJj7fQ6mUBKG--ja4u7fP5HI8s0e6h3ymxLPFIz0DXeaZwCbfWYlpigKq4LLIcw4meFmBEWL7KLHdFu-c7aHBz_dTteXWnBE8BHpl5caoSI43RnKk0alNiDATu1IQyIYGBCBQqKi8iqViS8DiUXBoCUDEMGIGfSdjeRcvjYqz3EQZFSWq4bqfGUBkrQGhcMUkCrTRREW2hsBGPUHUZcdvNIhcNX-xZNGIVVqzCibWF_MW6iSuk8ecK3khffDEJAd7-z7WnjboEnBf7CCLHungpBcAZCMm25s0vcwCFVl3YYc6e0_Viz23Cq0fwg3_s7hCt2S_HCTxCy7Ppiz4GbDNLTirjPUErndv7Xv8dDOn4yw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQYIXxBifg82T9pqVurYTP5YvlQF92EDizXIcW0oVmqopk_rf7xwn1SYxeOA1zknW3fnuZ_nudwDfRJZlMqY8oi5xEWMmjbTvWO7FRkiWCJ2FAtmRGD6wH4_8cQXO214YX1bZxP4Q0-to3XzpNtrsTvO8-wvBSiI9ITj6qSf-WoU1z07FO7A2uL4ZjpYBGVFz6JoWeLZR4K9G4fH3aeHrTUyOV0VaF8ULP2ny5Rz1Pwxa56KrbdhqQCQZhH1-gBU72YH1sxKB3uIjXJz5F_QFefK1dj9Hg4roijzZOZq7yA2p8OJaziqCaJVUZV4QPNSzEv2I6N86LwJv92IXHq4u78-HUTMsITIISeZRkpnUaeesFCaL-4w6h7k7c1yntOcwCXHD9GmsjUhTmXAttaOIFnlPUFxMeX8POpNyYg-AoK00c9L2M-eYTgyCNGmEpj1rLDUxOwTeqkeZhkncD7QoVFsyNlatWpVXqwpqPYTuUm4auDTelJCt9tU_XqEw4L8p-7U1l8Ij499B9MSWz5VCRINZ2dPevPIPAtF6EDv-sx9svdxzn8r6HfzoHbv7AhvD-7tbdXs9uvkEm34llAgeQ2c-e7YnCHXm6efGlf8AkbP7fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barley+microRNAs+as+metabolic+sensors+for+soil+nitrogen+availability&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Grabowska%2C+Aleksandra&rft.au=Smoczynska%2C+Aleksandra&rft.au=Bielewicz%2C+Dawid&rft.au=Pacak%2C+Andrzej&rft.date=2020-10-01&rft.issn=1873-2259&rft.eissn=1873-2259&rft.volume=299&rft.spage=110608&rft_id=info:doi/10.1016%2Fj.plantsci.2020.110608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon