Barley microRNAs as metabolic sensors for soil nitrogen availability
•13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitroge...
Saved in:
Published in | Plant science (Limerick) Vol. 299; p. 110608 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Ireland
Elsevier B.V
01.10.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitrogen homeostasis in barley plants.
Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants. |
---|---|
AbstractList | Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants. •13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified microRNAs and their targets respond in an opposite way in nitrogen deficiency conditions.•These microRNAs can be regarded as sensors of nitrogen homeostasis in barley plants. Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants. Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants.Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing environmental obstacles in the field, such as drought, salinity but also toxic over fertilization which not only impacts quality of the grain but also an yield. One of the most prevalent mechanisms of gene expression regulation in plants is microRNA-mediated silencing of target genes. We identified 13 barley microRNAs and 2 microRNAs* that are nitrogen excess responsive. Four microRNAs respond only in root, eight microRNAs only in shoot and one displays broad response in roots and shoots. We demonstrate that 2 microRNAs* are induced in barley shoot by nitrogen excess. For all microRNAs we identified putative target genes and confirmed microRNA-guided cleavage sites for ten out of thirteen mRNAs. None of the identified microRNAs or their target genes is known as nitrogen excess responsive. Analysis of expression pattern of thirteen target mRNAs and their cognate microRNAs showed expected correlations of their levels. The plant microRNAs analyzed are also known to respond to nitrogen deprivation and exhibit the opposite expression pattern when nitrogen excess/deficiency conditions are compared. Thus, they can be regarded as metabolic sensors of the regulation of nitrogen homeostasis in plants. |
ArticleNumber | 110608 |
Author | Szweykowska-Kulinska, Zofia Jarmolowski, Artur Bielewicz, Dawid Grabowska, Aleksandra Smoczynska, Aleksandra Pacak, Andrzej |
Author_xml | – sequence: 1 givenname: Aleksandra surname: Grabowska fullname: Grabowska, Aleksandra – sequence: 2 givenname: Aleksandra surname: Smoczynska fullname: Smoczynska, Aleksandra – sequence: 3 givenname: Dawid surname: Bielewicz fullname: Bielewicz, Dawid – sequence: 4 givenname: Andrzej surname: Pacak fullname: Pacak, Andrzej – sequence: 5 givenname: Artur surname: Jarmolowski fullname: Jarmolowski, Artur – sequence: 6 givenname: Zofia surname: Szweykowska-Kulinska fullname: Szweykowska-Kulinska, Zofia email: zofszwey@amu.edu.pl |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32900446$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1LAzEURYNU7If-hTJLN1OTdDLNgAtr_YSiILoOmcyLpMxMapIW-u9NmdaFG109yDv3Qc4dol5rW0BoTPCEYJJfrSbrWrbBKzOhmMZHgnPMT9CA8Nk0pZQVPTSIIE-LjNE-Gnq_whhTxmZnqD-lBcZZlg_Q3a10NeySxihn317mPpE-aSDI0tZGJR5ab51PtHWJt6ZOWhOc_YQ2kVtpalma2oTdOTrVsvZwcZgj9PFw_754Spevj8-L-TJVjLCQ8kqVWmoNRa6q2TSjWnNCK81kSYmmPGMqk3gmVV6WBWeykJpijhnJaVyWbDpCl93dtbNfG_BBNMYrqKMJsBsvKCMk_r9g_0CzjFCOi3yPjg_opmygEmtnGul24igpAnkHREXeO9A_CMFi34ZYiWMbYt-G6NqIwetfQWWCDMa2wUV7f8dvujhEp1sDTkQCWgWVcaCCqKz568Q30fSppg |
CitedBy_id | crossref_primary_10_1007_s00709_022_01775_w crossref_primary_10_1111_jac_70045 crossref_primary_10_3389_fpls_2022_950796 crossref_primary_10_3389_fpls_2023_1124785 crossref_primary_10_3390_ijms21228508 crossref_primary_10_1186_s12870_022_03866_5 crossref_primary_10_3390_ijms232314755 crossref_primary_10_1080_15476286_2024_2303555 |
Cites_doi | 10.1038/embor.2013.62 10.1093/jxb/eru353 10.1186/s12864-019-5799-6 10.1093/aobpla/plx012 10.1104/pp.114.246959 10.1186/s13059-014-0550-8 10.1093/aob/mct133 10.3389/fpls.2019.01103 10.1038/ng.2007.20 10.1039/c3mt00022b 10.1371/journal.pone.0097839 10.2134/agronj1999.00021962009100030001x 10.1007/s10142-010-0181-4 10.1016/S1161-0301(01)00133-2 10.1242/dev.00362 10.1002/wrna.1403 10.1111/pce.12764 10.1007/s11738-012-0967-1 10.1105/tpc.110.081356 10.1371/journal.pone.0029669 10.3389/fpls.2012.00105 10.1038/nprot.2009.8 10.1371/journal.pone.0048951 10.1371/journal.pone.0054148 10.1016/j.febslet.2012.05.013 10.1111/jipb.12433 10.1007/s12010-015-1815-8 10.1007/s11104-013-1645-9 10.1016/S0092-8674(04)00045-5 10.3389/fpls.2018.01253 10.1002/0471142727.mb0417s103 10.1104/pp.106.078063 10.1104/pp.106.079707 10.1186/s12864-017-3556-2 10.1104/pp.112.193649 10.1073/pnas.0505461102 10.1186/s12867-019-0131-1 10.1371/journal.pbio.1002571 10.1371/journal.pone.0183253 10.1371/journal.pone.0104409 10.1007/s12229-009-9031-2 10.1007/s11434-012-5197-9 10.5751/ES-03180-140232 10.1104/pp.111.172627 10.1105/tpc.104.022830 10.1080/15592324.2016.1213474 10.1111/j.1365-3040.2011.02478.x 10.1111/pbi.12318 10.3389/fpls.2018.01075 10.1073/pnas.0802493105 10.1016/j.molcel.2018.01.007 10.1146/annurev-phyto-073009-114457 10.1105/tpc.105.030841 10.1186/1471-2229-9-149 10.1073/pnas.0604698103 10.1101/gad.1004402 10.1093/nar/gkt1181 10.1105/tpc.108.059444 10.1371/journal.pgen.1002021 10.1186/1471-2229-13-214 10.3389/fpls.2015.00555 10.1007/s11103-019-00932-9 10.1016/j.jplph.2012.03.009 10.1080/07352680590910410 10.1111/pce.12130 10.2174/1389202920666190129145439 10.1111/tpj.12446 10.1111/pbi.12032 10.1002/2016JG003393 10.1371/journal.pone.0028009 10.1016/j.bbagrm.2011.05.001 10.3389/fpls.2018.00499 10.3389/fpls.2015.00410 10.1093/jxb/erz022 10.1038/ng1791 10.1186/1471-2199-10-29 10.1146/annurev.arplant.043008.092111 10.3389/fpls.2015.00629 10.1126/science.1159151 10.1016/j.envexpbot.2019.01.006 10.1126/science.1126088 10.1186/s12864-015-1851-3 10.1093/pcp/pcw211 10.1038/35888 10.3389/fpls.2017.00864 10.1104/pp.109.139139 10.1093/bib/bbn013 10.1101/gad.1201404 10.1093/pcp/pcq170 10.1111/j.1469-8137.2011.03647.x 10.1016/j.molp.2016.06.014 10.1105/tpc.016238 10.1261/rna.2146906 10.1186/1471-2164-14-34 10.1126/science.1088060 10.1016/j.gene.2010.03.011 10.1104/pp.15.00899 10.1038/sj.embor.7400806 10.1104/pp.18.00485 10.1016/S0022-2836(05)80360-2 10.1126/science.1133649 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2020 The Author(s) – notice: Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.plantsci.2020.110608 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1873-2259 |
ExternalDocumentID | 32900446 10_1016_j_plantsci_2020_110608 S0168945220302144 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 29O 4.4 457 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABLJU ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LW9 LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SCU SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 WH7 WUQ ZCG ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c515t-8dcbfaffe96cd7342ff812df5ab21f2845c4a07ac6bb985a9af20805162284b53 |
IEDL.DBID | .~1 |
ISSN | 0168-9452 1873-2259 |
IngestDate | Fri Jul 11 02:17:39 EDT 2025 Tue Aug 05 11:20:54 EDT 2025 Thu Apr 03 07:08:50 EDT 2025 Thu Apr 24 23:02:56 EDT 2025 Thu Jul 10 06:44:37 EDT 2025 Fri Feb 23 02:49:47 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | mRNA targets Barley microRNA Abiotic stresses Nitrogen excess |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2020 The Author(s). Published by Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-8dcbfaffe96cd7342ff812df5ab21f2845c4a07ac6bb985a9af20805162284b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168945220302144 |
PMID | 32900446 |
PQID | 2441280965 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2511187955 proquest_miscellaneous_2441280965 pubmed_primary_32900446 crossref_primary_10_1016_j_plantsci_2020_110608 crossref_citationtrail_10_1016_j_plantsci_2020_110608 elsevier_sciencedirect_doi_10_1016_j_plantsci_2020_110608 |
PublicationCentury | 2000 |
PublicationDate | October 2020 2020-10-00 2020-Oct 20201001 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: October 2020 |
PublicationDecade | 2020 |
PublicationPlace | Ireland |
PublicationPlace_xml | – name: Ireland |
PublicationTitle | Plant science (Limerick) |
PublicationTitleAlternate | Plant Sci |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vaucheret, Vazquez, Crete, Bartel (bib0060) 2004; 18 Zhao, Ding, Zhu, Zhang, Li (bib0240) 2011; 190 Wang, Zhang, Hao, Sha, Zhou, Zhou, Yuan (bib0375) 2013; 8 Dalakouras, Jarausch, Buchholz, Bassler, Braun, Manthey (bib0015) 2018; 9 Liang, He, Yu (bib0365) 2012; 7 Brodersen, Sakvarelidze-Achard, Bruun-Rasmussen (bib0075) 2008; 320 Pacak, Kruszka, Swida-Barteczka, Nuc, Karlowski (bib0275) 2016; 63 Xiong, Ishitani, Lee, Zhu (bib0500) 2001; 13 Chavez-Hernandez, Alejandri-Ramirez, JuarezGonzalez, Dinkova (bib0200) 2015; 6 Uauy, Distelfeld, Fahima, Blechl, Dubcovsky (bib0480) 2006; 314 Hunt, McLaren, Gil, Thormann, Schuilenburg, Sheppard (bib0325) 2018 Aukerman, Sakai (bib0505) 2003; 15 Bai, Wang, Chen, Shi, Liu (bib0535) 2018; 9 Palavan-Unsal, Arisan (bib0485) 2009; 75 Chuck, Meeley, Irish, Sakai, Hake (bib0515) 2007; 39 Wang, Lu, Ren, Hussain, Guo, Wang (bib0290) 2017; 9 Bielewicz, Kalak, Kalyna (bib0095) 2013; 14 Yang, Li, Mao, Liu, Ji (bib0180) 2013; 36 Ruiz-Ferrer, Voinnet (bib0105) 2009; 60 Kuang, Shen, Wu, Yu, Fu (bib0160) 2019 Yuan, Li, Li, Yuan, Hu, Luo (bib0195) 2015; 169 Katiyar-Agarwal, Jin (bib0110) 2010; 48 Zhang, Zhou, Bai, Tao, Wang, Zhang, Zhu (bib0460) 2020; 7 Katoh, Toh (bib0330) 2008; 9 Zhang, Ding, Wu, Yang, Li (bib0410) 2016; 9 Sega, Kruszka, Szewc, Szweykowska-Kulinska, Pacak (bib0540) 2020; 102 Yang, Chen (bib0140) 2013; 5 Thody, Folkes, Medina-Calzada, Xu, Dalmay, Moulton (bib0345) 2018; 46 Zuluaga, De Paola, Janni, Curci, Sonnante (bib0530) 2017; 12 Mendoza-Soto, Sánchez, Hernández (bib0175) 2012; 3 Laubinger, Sachsenberg, Zeller (bib0045) 2008; 105 Love, Huber, Anders (bib0315) 2014; 15 Xu, Zhong, Li, Li, Rothstein (bib0350) 2011; 6 Pieczynski, Marczewski, Hennig, Dolata, Bielewicz (bib0120) 2013; 11 Nguyen, Rothstein, Spangenberg, Kant (bib0525) 2015; 6 Raun, Johnson (bib0250) 1999; 91 Kantar, Unver, Budak (bib0225) 2010; 10 Rockström, Steffen, Noone, Persson, Chapin, Lambin (bib0260) 2009; 14 Bai, Bian, Zeng, Hou, Shi, Wang (bib0465) 2017 Bollman, Aukerman, Park (bib0050) 2003; 130 Bari (bib0430) 2006; 141 Bartels, Sunkar (bib0115) 2005; 24 Baumberger, Baulcombe (bib0065) 2005; 102 Hackenberg, Shi, Gustafson, Langridge (bib0550) 2013; 13 Zhang, Long, Xue, Xiao, Pei (bib0130) 2017; 12 Aceto, Sica, De Paolo, D’Argenio, Cantiello (bib0395) 2014; 9 Stepien, Knop, Dolata, Taube, Bajczyk, Barciszewska-Pacak (bib0025) 2016; 8 Kozomara, Griffiths-Jones (bib0305) 2014; 42 Zhu, Upadhyaya, Gubler, Helliwell (bib0520) 2009; 9 Barciszewska-Pacak, Milanowska, Knop (bib0100) 2015; 6 Kruszka, Pacak, Swida-Barteczka, Nuc, Alaba (bib0165) 2014; 65 Sega, Kruszka, Bielewicz, Karlowski, Nuc, Szweykowska-Kulinska, Pacak (bib0545) 2020 Zhao, Xu, Mo, Zou, Li, Xu, Xie (bib0360) 2013; 112 Reinhart, Weinstein, Rhoades, Bartel, Bartel (bib0030) 2002; 16 Song, Zhang, Zhang, Li, Gao, Han (bib0145) 2017; 18 Kumar, Goh (bib0255) 2002; 16 Luo, Jin, Qiu (bib0420) 2012; 57 Qu, He, Wang, Zhao, Teng, Shao (bib0245) 2015; 167 Chen, Li, Xiong (bib0220) 2012; 586 Rapacz, Stępień, Skorupa (bib0320) 2012; 34 Zhang, Zhang, Zhang, Wang, Li, Li (bib0495) 2011; 23 Eminaga, Christodoulou, Vigneault, Church, Seidman (bib0310) 2013; 103 Ding, Gong, Wang, Wang, Bao, Sun (bib0215) 2018; 177 Khraiwesh, Zhu, Zhu (bib0085) 2012; 1819 Marino, Moran (bib0270) 2019; 10 Altschul, Gish, Miller, Myers, Lipman (bib0335) 1990; 215 Zhao, Tai, Sun, Zhang, Xu, Li (bib0355) 2012; 7 Hewezi, Maier, Nettleton, Baum (bib0450) 2012; 159 Zhu, Wang, He, Smith, Elser, Du (bib0265) 2016; 121 Cheah, Nadarajah, Divate, Wickneswari (bib0205) 2015; 16 Sinha, Rani, Bansal, Gayatri, Venkatesh, Mandal (bib0235) 2015; 177 Xiong, Tang, Zhong, He, Chen (bib0295) 2018; 9 Ferdous, Sanchez-Ferrero, Langridge, Milne, Chowdhury (bib0230) 2017; 40 Zhao, Ge, Liang, Li, Ruan (bib0150) 2009; 10 Trevisan, Nonis, Begheldo, Manoli, Palme, Caporale (bib0380) 2012; 35 Bartel (bib0070) 2004; 116 Devers, Branscheid, May, Krajinski (bib0385) 2011; 156 Li, Xia, Liang, Chen, Gao, Zhang (bib0470) 2016; 6 Ravichandran, Ragupathy, Edwards, Domaratzki, Cloutier (bib0170) 2019; 20 Bologna, Iselin, Abriata (bib0055) 2018; 69 Liu, Fu, Yang, Luan, Zhao (bib0440) 2016; 11 Chen (bib0510) 2004; 303 Lv, Bai, Li, Ding, Ge, Cai (bib0135) 2010; 459 Kruszka, Pieczynski, Windels (bib0090) 2012; 169 Liu, Li, Chen, Kimberlin, Cahoon, Yu (bib0490) 2016; 14 Lin, Santi, Jobet, Lacut, El Kholti, Karlowski (bib0435) 2010; 51 Navarro, Dunoyer, Jay, Arnold, Dharmasiri, Estelle (bib0415) 2006; 312 Noon, Hewezi, Baum (bib0455) 2019; 70 Araya, Kubo, von Wirén, Takahashi (bib0280) 2015; 58 Fu, Zhang, Zhao, He, Ding, Wang (bib0155) 2017; 8 Huang, Allen, Davis, Baum, Hussey (bib0010) 2006; 103 Kruszka, Pacak, Swida-Barteczka, Stefaniak, Kaja, Sierocka (bib0300) 2013; 14 Lobbes, Rallapalli, Schmidt (bib0040) 2006; 7 Li, Oono, Zhu, He, Wu (bib0190) 2008; 20 Gao, Luo, Peng, Chen, Li (bib0185) 2019; 20 Nacry, Bouguyon, Gojon (bib0285) 2013; 370 Sunkar, Zhu (bib0080) 2004; 16 Jia, Zhang, Qi, Ma, Xiang, He (bib0400) 2014; 9 Yan, Wang, Hamera, Chen, Fang (bib0405) 2014; 78 Guo (bib0475) 2005; 17 Ferdous, Hussain, Shi (bib0125) 2015; 13 Kurihara, Takashi, Watanabe (bib0035) 2006; 12 Tang, Thompson (bib0210) 2019; 20 Fire, Xu, Montgomery, Kostas, Driver, Mello (bib0005) 1998; 391 Kant, Peng, Rothstein (bib0445) 2011; 7 German, Luo, Schroth, Meyers, Green (bib0340) 2009; 4 Peng, Sun, Du, Zhang, Li, Liu (bib0390) 2013; 8 Pant, Musialak-Lange, Nuc, May, Buhtz, Kehr (bib0370) 2009; 150 Mallory, Vaucheret (bib0020) 2006; 38 Aung, Lin, Wu, Huang, Su, Chiou (bib0425) 2006; 141 Bartels (10.1016/j.plantsci.2020.110608_bib0115) 2005; 24 Jia (10.1016/j.plantsci.2020.110608_bib0400) 2014; 9 Bai (10.1016/j.plantsci.2020.110608_bib0465) 2017 Tang (10.1016/j.plantsci.2020.110608_bib0210) 2019; 20 Aung (10.1016/j.plantsci.2020.110608_bib0425) 2006; 141 Altschul (10.1016/j.plantsci.2020.110608_bib0335) 1990; 215 Kantar (10.1016/j.plantsci.2020.110608_bib0225) 2010; 10 Kurihara (10.1016/j.plantsci.2020.110608_bib0035) 2006; 12 Chavez-Hernandez (10.1016/j.plantsci.2020.110608_bib0200) 2015; 6 Devers (10.1016/j.plantsci.2020.110608_bib0385) 2011; 156 Zhu (10.1016/j.plantsci.2020.110608_bib0520) 2009; 9 Sunkar (10.1016/j.plantsci.2020.110608_bib0080) 2004; 16 Kumar (10.1016/j.plantsci.2020.110608_bib0255) 2002; 16 Bielewicz (10.1016/j.plantsci.2020.110608_bib0095) 2013; 14 Ferdous (10.1016/j.plantsci.2020.110608_bib0125) 2015; 13 Barciszewska-Pacak (10.1016/j.plantsci.2020.110608_bib0100) 2015; 6 Kruszka (10.1016/j.plantsci.2020.110608_bib0165) 2014; 65 Wang (10.1016/j.plantsci.2020.110608_bib0375) 2013; 8 Lin (10.1016/j.plantsci.2020.110608_bib0435) 2010; 51 Xu (10.1016/j.plantsci.2020.110608_bib0350) 2011; 6 Reinhart (10.1016/j.plantsci.2020.110608_bib0030) 2002; 16 Bollman (10.1016/j.plantsci.2020.110608_bib0050) 2003; 130 Chen (10.1016/j.plantsci.2020.110608_bib0510) 2004; 303 Wang (10.1016/j.plantsci.2020.110608_bib0290) 2017; 9 Ding (10.1016/j.plantsci.2020.110608_bib0215) 2018; 177 Yang (10.1016/j.plantsci.2020.110608_bib0180) 2013; 36 Katiyar-Agarwal (10.1016/j.plantsci.2020.110608_bib0110) 2010; 48 Palavan-Unsal (10.1016/j.plantsci.2020.110608_bib0485) 2009; 75 Bai (10.1016/j.plantsci.2020.110608_bib0535) 2018; 9 Lobbes (10.1016/j.plantsci.2020.110608_bib0040) 2006; 7 Mallory (10.1016/j.plantsci.2020.110608_bib0020) 2006; 38 Song (10.1016/j.plantsci.2020.110608_bib0145) 2017; 18 Zhang (10.1016/j.plantsci.2020.110608_bib0460) 2020; 7 Kozomara (10.1016/j.plantsci.2020.110608_bib0305) 2014; 42 Trevisan (10.1016/j.plantsci.2020.110608_bib0380) 2012; 35 Navarro (10.1016/j.plantsci.2020.110608_bib0415) 2006; 312 Ravichandran (10.1016/j.plantsci.2020.110608_bib0170) 2019; 20 German (10.1016/j.plantsci.2020.110608_bib0340) 2009; 4 Araya (10.1016/j.plantsci.2020.110608_bib0280) 2015; 58 Xiong (10.1016/j.plantsci.2020.110608_bib0500) 2001; 13 Kuang (10.1016/j.plantsci.2020.110608_bib0160) 2019 Fire (10.1016/j.plantsci.2020.110608_bib0005) 1998; 391 Brodersen (10.1016/j.plantsci.2020.110608_bib0075) 2008; 320 Gao (10.1016/j.plantsci.2020.110608_bib0185) 2019; 20 Lv (10.1016/j.plantsci.2020.110608_bib0135) 2010; 459 Ferdous (10.1016/j.plantsci.2020.110608_bib0230) 2017; 40 Zhang (10.1016/j.plantsci.2020.110608_bib0130) 2017; 12 Hunt (10.1016/j.plantsci.2020.110608_bib0325) 2018 Liu (10.1016/j.plantsci.2020.110608_bib0440) 2016; 11 Rockström (10.1016/j.plantsci.2020.110608_bib0260) 2009; 14 Love (10.1016/j.plantsci.2020.110608_bib0315) 2014; 15 Pant (10.1016/j.plantsci.2020.110608_bib0370) 2009; 150 Kant (10.1016/j.plantsci.2020.110608_bib0445) 2011; 7 Mendoza-Soto (10.1016/j.plantsci.2020.110608_bib0175) 2012; 3 Zhao (10.1016/j.plantsci.2020.110608_bib0360) 2013; 112 Baumberger (10.1016/j.plantsci.2020.110608_bib0065) 2005; 102 Luo (10.1016/j.plantsci.2020.110608_bib0420) 2012; 57 Stepien (10.1016/j.plantsci.2020.110608_bib0025) 2016; 8 Cheah (10.1016/j.plantsci.2020.110608_bib0205) 2015; 16 Aceto (10.1016/j.plantsci.2020.110608_bib0395) 2014; 9 Li (10.1016/j.plantsci.2020.110608_bib0470) 2016; 6 Sega (10.1016/j.plantsci.2020.110608_bib0545) 2020 Bari (10.1016/j.plantsci.2020.110608_bib0430) 2006; 141 Zhao (10.1016/j.plantsci.2020.110608_bib0150) 2009; 10 Fu (10.1016/j.plantsci.2020.110608_bib0155) 2017; 8 Sega (10.1016/j.plantsci.2020.110608_bib0540) 2020; 102 Huang (10.1016/j.plantsci.2020.110608_bib0010) 2006; 103 Qu (10.1016/j.plantsci.2020.110608_bib0245) 2015; 167 Zuluaga (10.1016/j.plantsci.2020.110608_bib0530) 2017; 12 Katoh (10.1016/j.plantsci.2020.110608_bib0330) 2008; 9 Peng (10.1016/j.plantsci.2020.110608_bib0390) 2013; 8 Zhu (10.1016/j.plantsci.2020.110608_bib0265) 2016; 121 Khraiwesh (10.1016/j.plantsci.2020.110608_bib0085) 2012; 1819 Uauy (10.1016/j.plantsci.2020.110608_bib0480) 2006; 314 Chuck (10.1016/j.plantsci.2020.110608_bib0515) 2007; 39 Zhao (10.1016/j.plantsci.2020.110608_bib0240) 2011; 190 Liang (10.1016/j.plantsci.2020.110608_bib0365) 2012; 7 Eminaga (10.1016/j.plantsci.2020.110608_bib0310) 2013; 103 Sinha (10.1016/j.plantsci.2020.110608_bib0235) 2015; 177 Thody (10.1016/j.plantsci.2020.110608_bib0345) 2018; 46 Bartel (10.1016/j.plantsci.2020.110608_bib0070) 2004; 116 Guo (10.1016/j.plantsci.2020.110608_bib0475) 2005; 17 Hewezi (10.1016/j.plantsci.2020.110608_bib0450) 2012; 159 Zhang (10.1016/j.plantsci.2020.110608_bib0410) 2016; 9 Hackenberg (10.1016/j.plantsci.2020.110608_bib0550) 2013; 13 Nacry (10.1016/j.plantsci.2020.110608_bib0285) 2013; 370 Chen (10.1016/j.plantsci.2020.110608_bib0220) 2012; 586 Yuan (10.1016/j.plantsci.2020.110608_bib0195) 2015; 169 Zhao (10.1016/j.plantsci.2020.110608_bib0355) 2012; 7 Xiong (10.1016/j.plantsci.2020.110608_bib0295) 2018; 9 Dalakouras (10.1016/j.plantsci.2020.110608_bib0015) 2018; 9 Raun (10.1016/j.plantsci.2020.110608_bib0250) 1999; 91 Yang (10.1016/j.plantsci.2020.110608_bib0140) 2013; 5 Yan (10.1016/j.plantsci.2020.110608_bib0405) 2014; 78 Ruiz-Ferrer (10.1016/j.plantsci.2020.110608_bib0105) 2009; 60 Liu (10.1016/j.plantsci.2020.110608_bib0490) 2016; 14 Li (10.1016/j.plantsci.2020.110608_bib0190) 2008; 20 Kruszka (10.1016/j.plantsci.2020.110608_bib0090) 2012; 169 Laubinger (10.1016/j.plantsci.2020.110608_bib0045) 2008; 105 Marino (10.1016/j.plantsci.2020.110608_bib0270) 2019; 10 Vaucheret (10.1016/j.plantsci.2020.110608_bib0060) 2004; 18 Noon (10.1016/j.plantsci.2020.110608_bib0455) 2019; 70 Aukerman (10.1016/j.plantsci.2020.110608_bib0505) 2003; 15 Nguyen (10.1016/j.plantsci.2020.110608_bib0525) 2015; 6 Pieczynski (10.1016/j.plantsci.2020.110608_bib0120) 2013; 11 Bologna (10.1016/j.plantsci.2020.110608_bib0055) 2018; 69 Zhang (10.1016/j.plantsci.2020.110608_bib0495) 2011; 23 Kruszka (10.1016/j.plantsci.2020.110608_bib0300) 2013; 14 Rapacz (10.1016/j.plantsci.2020.110608_bib0320) 2012; 34 Pacak (10.1016/j.plantsci.2020.110608_bib0275) 2016; 63 |
References_xml | – volume: 105 start-page: 8795 year: 2008 end-page: 8800 ident: bib0045 article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in publication-title: Proc. Natl. Acad. Sci. – volume: 36 start-page: 2207 year: 2013 end-page: 2218 ident: bib0180 article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) publication-title: Plant Cell Environ. – volume: 15 year: 2014 ident: bib0315 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 7 year: 2011 ident: bib0445 article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in publication-title: PLoS Genet. – volume: 391 start-page: 806 year: 1998 end-page: 811 ident: bib0005 article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans publication-title: Nature – volume: 303 start-page: 2022 year: 2004 end-page: 2025 ident: bib0510 article-title: A MicroRNA as a translational repressor of APETALA2 in publication-title: Science – year: 2019 ident: bib0160 article-title: Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis publication-title: Environ. Exp. Bot. – volume: 60 start-page: 485 year: 2009 end-page: 510 ident: bib0105 article-title: Roles of plant small RNAs in biotic stress responses publication-title: Annu. Rev. Plant Biol. – volume: 40 start-page: 11 year: 2017 end-page: 24 ident: bib0230 article-title: Differential expression of microRNAs and potential targets under drought stress in barley publication-title: Plant Cell Environ. – volume: 9 start-page: 286 year: 2008 end-page: 298 ident: bib0330 article-title: Recent developments in the MAFFT multiple sequence alignment program publication-title: Brief. Bioinf. – volume: 38 start-page: S31 year: 2006 end-page: 36 ident: bib0020 article-title: Functions of microRNAs and related small RNAs in plants publication-title: Nat. Genet. – volume: 586 start-page: 1742 year: 2012 end-page: 1747 ident: bib0220 article-title: A plant microRNA regulates the adaptation of roots to drought stress publication-title: FEBS Lett. – volume: 39 start-page: 1517 year: 2007 end-page: 1521 ident: bib0515 article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1 publication-title: Nat. Genet. – volume: 10 start-page: 29 year: 2009 ident: bib0150 article-title: Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor publication-title: BMC Mol. Biol. – volume: 9 year: 2014 ident: bib0400 article-title: Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing publication-title: PLoS One – volume: 14 start-page: 34 year: 2013 ident: bib0300 article-title: Developmentally regulated expression and complex processing of barley pri-microRNAs publication-title: BMC Genomics – volume: 8 year: 2013 ident: bib0375 article-title: Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes publication-title: PLoS One – volume: 102 start-page: 73 year: 2020 end-page: 88 ident: bib0540 article-title: Identification of transcription factors that bind to the 5’-UTR of the barley PHO2 gene publication-title: Plant Mol Biol – volume: 3 year: 2012 ident: bib0175 article-title: MicroRNAs as regulators in plant metal toxicity response publication-title: Front. Plant Sci. – volume: 150 start-page: 1541 year: 2009 end-page: 1555 ident: bib0370 article-title: Identification of nutrient-responsive publication-title: Plant Physiol. – volume: 116 start-page: 281 year: 2004 end-page: 297 ident: bib0070 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell – volume: 6 start-page: 410 year: 2015 ident: bib0100 article-title: microRNA expression regulation in a wide range of abiotic stress responses publication-title: Front. Plant Sci. – volume: 12 year: 2017 ident: bib0530 article-title: Durum wheat microRNAs in response to nitrogen starvation at the grain filling stage publication-title: PLoS One – volume: 314 start-page: 1298 year: 2006 end-page: 1301 ident: bib0480 article-title: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat publication-title: Science – volume: 18 start-page: 1187 year: 2004 end-page: 1197 ident: bib0060 article-title: The action of ARGONAUTE1 in the microRNA pathway and its regulation by the microRNA pathway are crucial for plant development publication-title: Genes Dev. – volume: 103 start-page: 14302 year: 2006 end-page: 14306 ident: bib0010 article-title: Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 11928 year: 2005 end-page: 11933 ident: bib0065 article-title: ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs publication-title: Proc. Natl. Acad. Sci. – volume: 20 start-page: 2238 year: 2008 end-page: 2251 ident: bib0190 article-title: The publication-title: Plant Cell – volume: 177 start-page: 1299 year: 2015 end-page: 1312 ident: bib0235 article-title: Nitrate starvation induced changes in root system architecture, carbon:nitrogen metabolism, and microRNA expression in nitrogen-responsive wheat genotypes publication-title: Appl. Biochem. Biotechnol. – volume: 11 start-page: 459 year: 2013 end-page: 469 ident: bib0120 article-title: Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato publication-title: Plant Biotechnol. J. – volume: 177 start-page: 1691 year: 2018 end-page: 1703 ident: bib0215 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. – volume: 23 start-page: 396 year: 2011 end-page: 411 ident: bib0495 article-title: floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation publication-title: Plant Cell – volume: 12 start-page: 206 year: 2006 end-page: 212 ident: bib0035 article-title: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-microRNA in plant microRNA biogenesis publication-title: RNA – volume: 167 start-page: 411 year: 2015 end-page: 423 ident: bib0245 article-title: A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input publication-title: Plant Physiol. – volume: 16 start-page: 2001 year: 2004 end-page: 2019 ident: bib0080 article-title: Novel and stress-regulated microRNAs and other small RNAs from publication-title: Plant Cell – volume: 13 start-page: 293 year: 2015 end-page: 305 ident: bib0125 article-title: Role of microRNAs in plant drought tolerance publication-title: Plant Biotechnol. J. – volume: 9 year: 2017 ident: bib0290 article-title: Effects of nitrogen and tiller type on grain yield and physiological responses in rice publication-title: AoB Plants – volume: 15 start-page: 2730 year: 2003 end-page: 2741 ident: bib0505 article-title: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes publication-title: Plant Cell – volume: 9 start-page: 1302 year: 2016 end-page: 1314 ident: bib0410 article-title: Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice publication-title: Mol. Plant – volume: 20 start-page: 100 year: 2019 end-page: 114 ident: bib0210 article-title: Osmir528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells publication-title: Curr. Genomics – volume: 156 start-page: 1990 year: 2011 end-page: 2010 ident: bib0385 article-title: Stars and symbiosis: MicroRNA- and MicroRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis publication-title: Plant Physiol. – volume: 9 start-page: 149 year: 2009 ident: bib0520 article-title: Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa) publication-title: BMC Plant Biol. – volume: 78 start-page: 44 year: 2014 end-page: 55 ident: bib0405 article-title: miR444a has multiple functions in the rice nitrate-signaling pathway publication-title: Plant J. – volume: 312 start-page: 436 year: 2006 end-page: 439 ident: bib0415 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science – volume: 7 year: 2012 ident: bib0365 article-title: Identification of nitrogen starvation-responsive MicroRNAs in publication-title: PLoS One – volume: 103 start-page: 4.17.1 year: 2013 end-page: 4.17.14 ident: bib0310 article-title: Quantification of microRNA expression with next-generation sequencing publication-title: Curr. Protoc. Mol. Biol. – volume: 169 start-page: 1664 year: 2012 end-page: 1672 ident: bib0090 article-title: Role of microRNAs and other sRNAs of plants in their changing environments publication-title: J. Plant Physiol. – volume: 20 year: 2019 ident: bib0170 article-title: MicroRNA-guided regulation of heat stress response in wheat publication-title: BMC Genomics – volume: 91 start-page: 357 year: 1999 end-page: 363 ident: bib0250 article-title: Improving nitrogen use efficiency for cereal production publication-title: Agron. J. – volume: 58 start-page: 254 year: 2015 end-page: 265 ident: bib0280 article-title: Statistical modeling of nitrogen-dependent modulation of root system architecture in publication-title: J. Integr. Plant Biol. – volume: 48 start-page: 225 year: 2010 end-page: 246 ident: bib0110 article-title: Role of small RNAs in host-microbe interactions publication-title: Annu. Rev. Phytopathol. – volume: 14 year: 2016 ident: bib0490 article-title: snRNA 3’ end processing by a CPSF73-containing complex essential for development in publication-title: PLoS Biol. – volume: 70 start-page: 1653 year: 2019 end-page: 1668 ident: bib0455 article-title: Homeostasis in the soybean microRNA396-GRF network is essential for productive soybean cyst nematode infections publication-title: J. Exp. Bot. – volume: 9 start-page: 1253 year: 2018 ident: bib0015 article-title: Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption publication-title: Front. Plant Sci. – volume: 121 start-page: 1605 year: 2016 end-page: 1616 ident: bib0265 article-title: Imbalanced atmospheric nitrogen and phosphorus depositions in China: implications for nutrient limitation publication-title: J. Geophys. Res. Biogeosci. – volume: 7 start-page: 102 year: 2020 end-page: 112 ident: bib0460 article-title: Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions publication-title: Sci. Rev. – volume: 14 year: 2009 ident: bib0260 article-title: Planetary boundaries: exploring the safe operating space for humanity publication-title: Ecol. Soc. – volume: 16 start-page: 295 year: 2002 end-page: 308 ident: bib0255 article-title: Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance publication-title: Eur. J. Agron. – volume: 141 start-page: 1000 year: 2006 end-page: 1011 ident: bib0425 article-title: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microrna399 target gene publication-title: Plant Physiol. – volume: 69 start-page: 1 year: 2018 end-page: 11 ident: bib0055 article-title: Short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway publication-title: Mol. Cell – volume: 190 start-page: 906 year: 2011 end-page: 915 ident: bib0240 article-title: Involvement of miR169 in the nitrogen-starvation responses in publication-title: New Phytol. – volume: 6 year: 2016 ident: bib0470 article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds publication-title: Sci. Rep. – volume: 5 start-page: 1184 year: 2013 end-page: 1190 ident: bib0140 article-title: A potential role of microRNAs in plant response to metal toxicity publication-title: Metallomics – volume: 141 start-page: 988 year: 2006 end-page: 999 ident: bib0430 article-title: PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants publication-title: Plant Physiol. – volume: 6 year: 2011 ident: bib0350 article-title: Genome-wide identification of MicroRNAs in response to low nitrate availability in maize leaves and roots publication-title: PLoS One – volume: 459 start-page: 39 year: 2010 end-page: 47 ident: bib0135 article-title: Profiling of cold-stress-responsive microRNAs in rice by microarrays publication-title: Gene – volume: 51 start-page: 2119 year: 2010 end-page: 2131 ident: bib0435 article-title: Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation publication-title: Plant Cell Physiol. – volume: 17 start-page: 1376 year: 2005 end-page: 1386 ident: bib0475 article-title: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for publication-title: Plant Cell Online – volume: 8 year: 2016 ident: bib0025 article-title: Post-transcriptional coordination of splicing and microRNA biogenesis in plants publication-title: WIREs RNA – volume: 215 start-page: 403 year: 1990 end-page: 410 ident: bib0335 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. – volume: 10 start-page: 493 year: 2010 end-page: 507 ident: bib0225 article-title: Regulation of barley microRNAs upon dehydration stress correlated with target gene expression publication-title: Funct. Integr. Genomics – volume: 169 start-page: 576 year: 2015 end-page: 593 ident: bib0195 article-title: Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass publication-title: Plant Physiol. – volume: 35 start-page: 1137 year: 2012 end-page: 1155 ident: bib0380 article-title: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings publication-title: Plant Cell Environ. – volume: 34 start-page: 1723 year: 2012 end-page: 1733 ident: bib0320 article-title: Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age publication-title: Acta Physiol. Plant. – volume: 4 start-page: 356 year: 2009 end-page: 362 ident: bib0340 article-title: Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome publication-title: Nat. Protoc. – volume: 57 start-page: 3804 year: 2012 end-page: 3810 ident: bib0420 article-title: MiR1511 co-regulates with miR1511* to cleave the GmRPL4a gene in soybean publication-title: Chinese Sci. Bull. – volume: 6 start-page: 629 year: 2015 ident: bib0525 article-title: Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions publication-title: Front. Plant Sci. – volume: 370 start-page: 1 year: 2013 end-page: 29 ident: bib0285 article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource publication-title: Plant Soil – volume: 11 year: 2016 ident: bib0440 article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants publication-title: Plant Signal. Behav. – volume: 18 start-page: 212 year: 2017 ident: bib0145 article-title: Response of microRNAs to cold treatment in the young spikes of common wheat publication-title: BMC Genomics – volume: 14 start-page: 622 year: 2013 end-page: 628 ident: bib0095 article-title: Introns of plant pri-microRNAs enhance microRNA biogenesis publication-title: EMBO Rep. – volume: 10 year: 2019 ident: bib0270 article-title: Can ammonium stress be positive for plant performance? publication-title: Front. Plant Sci. – volume: 46 start-page: 8730 year: 2018 end-page: 8739 ident: bib0345 article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules publication-title: Nucleic Acids Res. – volume: 8 year: 2013 ident: bib0390 article-title: Characterization and expression patterns of microRNAs involved in rice grain filling publication-title: PLoS One – volume: 159 start-page: 321 year: 2012 end-page: 335 ident: bib0450 article-title: The publication-title: Plant Physiol. – volume: 16 start-page: 1616 year: 2002 end-page: 1626 ident: bib0030 article-title: MicroRNAs in plants publication-title: Genes Dev. – volume: 13 start-page: 2063 year: 2001 end-page: 2083 ident: bib0500 article-title: The publication-title: Plant Cell – volume: 12 year: 2017 ident: bib0130 article-title: Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots publication-title: PLoS One – volume: 65 start-page: 6123 year: 2014 end-page: 6135 ident: bib0165 article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley publication-title: J. Exp. Bot. – volume: 9 year: 2018 ident: bib0295 article-title: Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice publication-title: Front. Plant Sci. – volume: 112 start-page: 633 year: 2013 end-page: 642 ident: bib0360 article-title: Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize publication-title: Ann. Bot. – year: 2020 ident: bib0545 article-title: Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses publication-title: BMC Genomics – volume: 16 start-page: 692 year: 2015 ident: bib0205 article-title: Identification of four functionally important microRNA families with contrasting differential expression profiles between drought tolerant and susceptible rice leaf at vegetative stage publication-title: BMC Genom. – year: 2018 ident: bib0325 article-title: Ensembl variation resources Database (Oxford) publication-title: bay119 – volume: 75 start-page: 203 year: 2009 end-page: 229 ident: bib0485 article-title: Nitric oxide signalling in plants publication-title: Bot. Rev. – volume: 130 start-page: 1493 year: 2003 end-page: 1504 ident: bib0050 article-title: HASTY, the publication-title: Development – volume: 9 year: 2018 ident: bib0535 article-title: Wheat microRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes publication-title: Front. Plant Sci. – volume: 20 start-page: 14 year: 2019 ident: bib0185 article-title: Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots publication-title: BMC Mol. Biol. – volume: 1819 start-page: 137 year: 2012 end-page: 148 ident: bib0085 article-title: Role of microRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: Biochim. Biophys. Acta – volume: 24 start-page: 23 year: 2005 end-page: 58 ident: bib0115 article-title: Drought and salt tolerance in plants publication-title: Crit. Rev. Plant Sci. – volume: 42 start-page: D68 year: 2014 end-page: D73 ident: bib0305 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res. – volume: 6 start-page: 555 year: 2015 ident: bib0200 article-title: Maize microRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis publication-title: Front. Plant Sci. – volume: 320 start-page: 1185 year: 2008 end-page: 1190 ident: bib0075 article-title: Widespread translational inhibition by plant microRNAs and siRNAs publication-title: Science – year: 2017 ident: bib0465 article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley publication-title: Plant Cell Physiol. – volume: 13 year: 2013 ident: bib0550 article-title: Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions publication-title: BMC Plant Biology – volume: 7 start-page: 1052 year: 2006 end-page: 1058 ident: bib0040 article-title: SERRATE: a new player on the plant microRNA scene publication-title: EMBO Rep. – volume: 9 year: 2014 ident: bib0395 article-title: The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-Like MADS-box gene as a new miRNA target publication-title: PLoS One – volume: 63 start-page: 799 year: 2016 end-page: 809 ident: bib0275 article-title: Developmental changes in barley microRNA expression profiles coupled with microRNA target analysis publication-title: Acta Biochim. Pol. – volume: 7 year: 2012 ident: bib0355 article-title: Cloning and characterization of maize microRNAs involved in responses to nitrogen deficiency publication-title: PLoS One – volume: 8 start-page: 864 year: 2017 ident: bib0155 article-title: Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis publication-title: Front. Plant Sci. – volume: 14 start-page: 622 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0095 article-title: Introns of plant pri-microRNAs enhance microRNA biogenesis publication-title: EMBO Rep. doi: 10.1038/embor.2013.62 – volume: 65 start-page: 6123 issue: November (20) year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0165 article-title: Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley publication-title: J. Exp. Bot. doi: 10.1093/jxb/eru353 – volume: 20 issue: 1 year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0170 article-title: MicroRNA-guided regulation of heat stress response in wheat publication-title: BMC Genomics doi: 10.1186/s12864-019-5799-6 – volume: 9 issue: 2 year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0290 article-title: Effects of nitrogen and tiller type on grain yield and physiological responses in rice publication-title: AoB Plants doi: 10.1093/aobpla/plx012 – volume: 167 start-page: 411 issue: 2 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0245 article-title: A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input publication-title: Plant Physiol. doi: 10.1104/pp.114.246959 – volume: 15 issue: 12 year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0315 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 112 start-page: 633 issue: 3 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0360 article-title: Combined small RNA and degradome sequencing reveals novel miRNAs and their targets in response to low nitrate availability in maize publication-title: Ann. Bot. doi: 10.1093/aob/mct133 – volume: 10 year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0270 article-title: Can ammonium stress be positive for plant performance? publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.01103 – volume: 39 start-page: 1517 issue: 12 year: 2007 ident: 10.1016/j.plantsci.2020.110608_bib0515 article-title: The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1 publication-title: Nat. Genet. doi: 10.1038/ng.2007.20 – volume: 5 start-page: 1184 issue: 9 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0140 article-title: A potential role of microRNAs in plant response to metal toxicity publication-title: Metallomics doi: 10.1039/c3mt00022b – volume: 9 issue: 5 year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0395 article-title: The analysis of the inflorescence miRNome of the orchid Orchis italica reveals a DEF-Like MADS-box gene as a new miRNA target publication-title: PLoS One doi: 10.1371/journal.pone.0097839 – volume: 91 start-page: 357 year: 1999 ident: 10.1016/j.plantsci.2020.110608_bib0250 article-title: Improving nitrogen use efficiency for cereal production publication-title: Agron. J. doi: 10.2134/agronj1999.00021962009100030001x – volume: 12 issue: January (1) year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0130 article-title: Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots publication-title: PLoS One – volume: 10 start-page: 493 issue: 4 year: 2010 ident: 10.1016/j.plantsci.2020.110608_bib0225 article-title: Regulation of barley microRNAs upon dehydration stress correlated with target gene expression publication-title: Funct. Integr. Genomics doi: 10.1007/s10142-010-0181-4 – volume: 16 start-page: 295 issue: 4 year: 2002 ident: 10.1016/j.plantsci.2020.110608_bib0255 article-title: Management practices of antecedent leguminous and non-leguminous crop residues in relation to winter wheat yields, nitrogen uptake, soil nitrogen mineralization and simple nitrogen balance publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(01)00133-2 – volume: 130 start-page: 1493 issue: 8 year: 2003 ident: 10.1016/j.plantsci.2020.110608_bib0050 article-title: HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis publication-title: Development doi: 10.1242/dev.00362 – volume: 8 issue: 3 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0025 article-title: Post-transcriptional coordination of splicing and microRNA biogenesis in plants publication-title: WIREs RNA doi: 10.1002/wrna.1403 – volume: 6 issue: 1 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0470 article-title: MicroRNA393 is involved in nitrogen-promoted rice tillering through regulation of auxin signal transduction in axillary buds publication-title: Sci. Rep. – volume: 40 start-page: 11 issue: 1 year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0230 article-title: Differential expression of microRNAs and potential targets under drought stress in barley publication-title: Plant Cell Environ. doi: 10.1111/pce.12764 – volume: 34 start-page: 1723 issue: 5 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0320 article-title: Internal standards for quantitative RT-PCR studies of gene expression under drought treatment in barley (Hordeum vulgare L.): the effects of developmental stage and leaf age publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-012-0967-1 – volume: 23 start-page: 396 issue: 1 year: 2011 ident: 10.1016/j.plantsci.2020.110608_bib0495 article-title: Arabidopsis floral initiator SKB1 confers high salt tolerance by regulating transcription and Pre-mRNA splicing through altering histone H4R3 and small nuclear ribonucleoprotein LSM4 methylation publication-title: Plant Cell doi: 10.1105/tpc.110.081356 – volume: 7 issue: 1 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0355 article-title: Cloning and characterization of maize microRNAs involved in responses to nitrogen deficiency publication-title: PLoS One doi: 10.1371/journal.pone.0029669 – volume: 3 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0175 article-title: MicroRNAs as regulators in plant metal toxicity response publication-title: Front. Plant Sci. doi: 10.3389/fpls.2012.00105 – volume: 4 start-page: 356 issue: 3 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0340 article-title: Construction of Parallel Analysis of RNA Ends (PARE) libraries for the study of cleaved miRNA targets and the RNA degradome publication-title: Nat. Protoc. doi: 10.1038/nprot.2009.8 – volume: 7 issue: 11 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0365 article-title: Identification of nitrogen starvation-responsive MicroRNAs in Arabidopsis thaliana publication-title: PLoS One doi: 10.1371/journal.pone.0048951 – volume: 8 issue: 1 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0390 article-title: Characterization and expression patterns of microRNAs involved in rice grain filling publication-title: PLoS One doi: 10.1371/journal.pone.0054148 – volume: 586 start-page: 1742 issue: 12 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0220 article-title: A plant microRNA regulates the adaptation of roots to drought stress publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.05.013 – volume: 58 start-page: 254 issue: 3 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0280 article-title: Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12433 – volume: 177 start-page: 1299 issue: 6 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0235 article-title: Nitrate starvation induced changes in root system architecture, carbon:nitrogen metabolism, and microRNA expression in nitrogen-responsive wheat genotypes publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-015-1815-8 – volume: 370 start-page: 1 issue: 1–2 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0285 article-title: Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource publication-title: Plant Soil doi: 10.1007/s11104-013-1645-9 – volume: 116 start-page: 281 issue: 2 year: 2004 ident: 10.1016/j.plantsci.2020.110608_bib0070 article-title: MicroRNAs: genomics, biogenesis, mechanism, and function publication-title: Cell doi: 10.1016/S0092-8674(04)00045-5 – volume: 9 start-page: 1253 year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0015 article-title: Delivery of hairpin RNAs and small RNAs into woody and herbaceous plants by trunk injection and petiole absorption publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01253 – volume: 103 start-page: 4.17.1 issue: 1 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0310 article-title: Quantification of microRNA expression with next-generation sequencing publication-title: Curr. Protoc. Mol. Biol. doi: 10.1002/0471142727.mb0417s103 – volume: 141 start-page: 1000 issue: 3 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0425 article-title: pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microrna399 target gene publication-title: Plant Physiol. doi: 10.1104/pp.106.078063 – volume: 141 start-page: 988 issue: 3 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0430 article-title: PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants publication-title: Plant Physiol. doi: 10.1104/pp.106.079707 – volume: 18 start-page: 212 year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0145 article-title: Response of microRNAs to cold treatment in the young spikes of common wheat publication-title: BMC Genomics doi: 10.1186/s12864-017-3556-2 – volume: 159 start-page: 321 issue: 1 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0450 article-title: The Arabidopsis microrna396-grf1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection publication-title: Plant Physiol. doi: 10.1104/pp.112.193649 – volume: 102 start-page: 11928 year: 2005 ident: 10.1016/j.plantsci.2020.110608_bib0065 article-title: Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0505461102 – volume: 20 start-page: 14 year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0185 article-title: Characterization of cadmium-responsive MicroRNAs and their target genes in maize (Zea mays) roots publication-title: BMC Mol. Biol. doi: 10.1186/s12867-019-0131-1 – volume: 14 issue: 10 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0490 article-title: snRNA 3’ end processing by a CPSF73-containing complex essential for development in Arabidopsis publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1002571 – volume: 12 issue: 8 year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0530 article-title: Durum wheat microRNAs in response to nitrogen starvation at the grain filling stage publication-title: PLoS One doi: 10.1371/journal.pone.0183253 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0400 article-title: Identification of the conserved and novel miRNAs in mulberry by high-throughput sequencing publication-title: PLoS One doi: 10.1371/journal.pone.0104409 – volume: 75 start-page: 203 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0485 article-title: Nitric oxide signalling in plants publication-title: Bot. Rev. doi: 10.1007/s12229-009-9031-2 – volume: 57 start-page: 3804 issue: 28–29 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0420 article-title: MiR1511 co-regulates with miR1511* to cleave the GmRPL4a gene in soybean publication-title: Chinese Sci. Bull. doi: 10.1007/s11434-012-5197-9 – volume: 14 issue: 2 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0260 article-title: Planetary boundaries: exploring the safe operating space for humanity publication-title: Ecol. Soc. doi: 10.5751/ES-03180-140232 – volume: 156 start-page: 1990 issue: 4 year: 2011 ident: 10.1016/j.plantsci.2020.110608_bib0385 article-title: Stars and symbiosis: MicroRNA- and MicroRNA*-mediated transcript cleavage involved in arbuscular mycorrhizal symbiosis publication-title: Plant Physiol. doi: 10.1104/pp.111.172627 – volume: 16 start-page: 2001 issue: 8 year: 2004 ident: 10.1016/j.plantsci.2020.110608_bib0080 article-title: Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.104.022830 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0440 article-title: Vacuolar SPX-MFS transporters are essential for phosphate adaptation in plants publication-title: Plant Signal. Behav. doi: 10.1080/15592324.2016.1213474 – year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0325 article-title: Ensembl variation resources Database (Oxford) publication-title: bay119 – volume: 35 start-page: 1137 issue: 6 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0380 article-title: Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2011.02478.x – volume: 13 start-page: 293 issue: 3 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0125 article-title: Role of microRNAs in plant drought tolerance publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12318 – volume: 9 year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0295 article-title: Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01075 – volume: 105 start-page: 8795 year: 2008 ident: 10.1016/j.plantsci.2020.110608_bib0045 article-title: Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0802493105 – volume: 69 start-page: 1 year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0055 article-title: Short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA short article nucleo-cytosolic shuttling of ARGONAUTE1 prompts a revised model of the plant microRNA pathway publication-title: Mol. Cell doi: 10.1016/j.molcel.2018.01.007 – volume: 48 start-page: 225 year: 2010 ident: 10.1016/j.plantsci.2020.110608_bib0110 article-title: Role of small RNAs in host-microbe interactions publication-title: Annu. Rev. Phytopathol. doi: 10.1146/annurev-phyto-073009-114457 – volume: 17 start-page: 1376 issue: 5 year: 2005 ident: 10.1016/j.plantsci.2020.110608_bib0475 article-title: MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development publication-title: Plant Cell Online doi: 10.1105/tpc.105.030841 – volume: 9 start-page: 149 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0520 article-title: Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa) publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-9-149 – volume: 63 start-page: 799 issue: 4 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0275 article-title: Developmental changes in barley microRNA expression profiles coupled with microRNA target analysis publication-title: Acta Biochim. Pol. – volume: 103 start-page: 14302 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0010 article-title: Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0604698103 – volume: 16 start-page: 1616 issue: 13 year: 2002 ident: 10.1016/j.plantsci.2020.110608_bib0030 article-title: MicroRNAs in plants publication-title: Genes Dev. doi: 10.1101/gad.1004402 – volume: 42 start-page: D68 issue: D1 year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0305 article-title: miRBase: annotating high confidence microRNAs using deep sequencing data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt1181 – volume: 20 start-page: 2238 year: 2008 ident: 10.1016/j.plantsci.2020.110608_bib0190 article-title: The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance publication-title: Plant Cell doi: 10.1105/tpc.108.059444 – volume: 46 start-page: 8730 issue: 17 year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0345 article-title: PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules publication-title: Nucleic Acids Res. – volume: 7 issue: 3 year: 2011 ident: 10.1016/j.plantsci.2020.110608_bib0445 article-title: Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002021 – volume: 13 issue: 1 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0550 article-title: Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions publication-title: BMC Plant Biology doi: 10.1186/1471-2229-13-214 – volume: 6 start-page: 555 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0200 article-title: Maize microRNA and target regulation in response to hormone depletion and light exposure during somatic embryogenesis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00555 – volume: 102 start-page: 73 year: 2020 ident: 10.1016/j.plantsci.2020.110608_bib0540 article-title: Identification of transcription factors that bind to the 5’-UTR of the barley PHO2 gene publication-title: Plant Mol Biol doi: 10.1007/s11103-019-00932-9 – volume: 169 start-page: 1664 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0090 article-title: Role of microRNAs and other sRNAs of plants in their changing environments publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2012.03.009 – volume: 24 start-page: 23 year: 2005 ident: 10.1016/j.plantsci.2020.110608_bib0115 article-title: Drought and salt tolerance in plants publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352680590910410 – volume: 36 start-page: 2207 issue: 12 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0180 article-title: Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) publication-title: Plant Cell Environ. doi: 10.1111/pce.12130 – volume: 20 start-page: 100 year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0210 article-title: Osmir528 enhances cold stress tolerance by repressing expression of stress response-related transcription factor genes in plant cells publication-title: Curr. Genomics doi: 10.2174/1389202920666190129145439 – volume: 78 start-page: 44 issue: 1 year: 2014 ident: 10.1016/j.plantsci.2020.110608_bib0405 article-title: miR444a has multiple functions in the rice nitrate-signaling pathway publication-title: Plant J. doi: 10.1111/tpj.12446 – volume: 11 start-page: 459 issue: 4 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0120 article-title: Down-regulation of CBP80 gene expression as a strategy to engineer a drought-tolerant potato publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12032 – volume: 121 start-page: 1605 issue: 6 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0265 article-title: Imbalanced atmospheric nitrogen and phosphorus depositions in China: implications for nutrient limitation publication-title: J. Geophys. Res. Biogeosci. doi: 10.1002/2016JG003393 – volume: 6 issue: 11 year: 2011 ident: 10.1016/j.plantsci.2020.110608_bib0350 article-title: Genome-wide identification of MicroRNAs in response to low nitrate availability in maize leaves and roots publication-title: PLoS One doi: 10.1371/journal.pone.0028009 – volume: 1819 start-page: 137 issue: 2 year: 2012 ident: 10.1016/j.plantsci.2020.110608_bib0085 article-title: Role of microRNAs and siRNAs in biotic and abiotic stress responses of plants publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2011.05.001 – volume: 9 year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0535 article-title: Wheat microRNA TaemiR408 acts as an essential mediator in plant tolerance to Pi deprivation and salt stress via modulating stress-associated physiological processes publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.00499 – volume: 6 start-page: 410 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0100 article-title: Arabidopsis microRNA expression regulation in a wide range of abiotic stress responses publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00410 – volume: 70 start-page: 1653 issue: 5 year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0455 article-title: Homeostasis in the soybean microRNA396-GRF network is essential for productive soybean cyst nematode infections publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz022 – volume: 38 start-page: S31 issue: Suppl year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0020 article-title: Functions of microRNAs and related small RNAs in plants publication-title: Nat. Genet. doi: 10.1038/ng1791 – volume: 10 start-page: 29 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0150 article-title: Members of miR-169 family are induced by high salinity and transiently inhibit the NF-YA transcription factor publication-title: BMC Mol. Biol. doi: 10.1186/1471-2199-10-29 – volume: 60 start-page: 485 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0105 article-title: Roles of plant small RNAs in biotic stress responses publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.043008.092111 – volume: 6 start-page: 629 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0525 article-title: Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00629 – volume: 320 start-page: 1185 year: 2008 ident: 10.1016/j.plantsci.2020.110608_bib0075 article-title: Widespread translational inhibition by plant microRNAs and siRNAs publication-title: Science doi: 10.1126/science.1159151 – year: 2019 ident: 10.1016/j.plantsci.2020.110608_bib0160 article-title: Identification of microRNAs responding to salt stress in barley by high-throughput sequencing and degradome analysis publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2019.01.006 – volume: 312 start-page: 436 issue: 5772 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0415 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science doi: 10.1126/science.1126088 – volume: 16 start-page: 692 issue: 1 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0205 article-title: Identification of four functionally important microRNA families with contrasting differential expression profiles between drought tolerant and susceptible rice leaf at vegetative stage publication-title: BMC Genom. doi: 10.1186/s12864-015-1851-3 – year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0465 article-title: miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcw211 – volume: 391 start-page: 806 issue: 6669 year: 1998 ident: 10.1016/j.plantsci.2020.110608_bib0005 article-title: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35888 – year: 2020 ident: 10.1016/j.plantsci.2020.110608_bib0545 article-title: Pi-starvation induced transcriptional changes in barley revealed by a comprehensive RNA-Seq and degradome analyses publication-title: BMC Genomics – volume: 8 start-page: 864 year: 2017 ident: 10.1016/j.plantsci.2020.110608_bib0155 article-title: Identification of salt tolerance-related microRNAs and their targets in maize (Zea mays L.) using high-throughput sequencing and degradome analysis publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00864 – volume: 150 start-page: 1541 issue: 3 year: 2009 ident: 10.1016/j.plantsci.2020.110608_bib0370 article-title: Identification of nutrient-responsive Arabidopsis and rapeseed MicroRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing publication-title: Plant Physiol. doi: 10.1104/pp.109.139139 – volume: 9 start-page: 286 issue: 4 year: 2008 ident: 10.1016/j.plantsci.2020.110608_bib0330 article-title: Recent developments in the MAFFT multiple sequence alignment program publication-title: Brief. Bioinf. doi: 10.1093/bib/bbn013 – volume: 13 start-page: 2063 year: 2001 ident: 10.1016/j.plantsci.2020.110608_bib0500 article-title: The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold stress- and osmotic stress-responsive gene expression publication-title: Plant Cell – volume: 18 start-page: 1187 year: 2004 ident: 10.1016/j.plantsci.2020.110608_bib0060 article-title: The action of ARGONAUTE1 in the microRNA pathway and its regulation by the microRNA pathway are crucial for plant development publication-title: Genes Dev. doi: 10.1101/gad.1201404 – volume: 51 start-page: 2119 issue: 12 year: 2010 ident: 10.1016/j.plantsci.2020.110608_bib0435 article-title: Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcq170 – volume: 7 start-page: 102 year: 2020 ident: 10.1016/j.plantsci.2020.110608_bib0460 article-title: Disruption of MIR396e and MIR396f improves rice yield under nitrogen-deficient conditions publication-title: Sci. Rev. – volume: 190 start-page: 906 issue: 4 year: 2011 ident: 10.1016/j.plantsci.2020.110608_bib0240 article-title: Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis publication-title: New Phytol. doi: 10.1111/j.1469-8137.2011.03647.x – volume: 9 start-page: 1302 issue: 9 year: 2016 ident: 10.1016/j.plantsci.2020.110608_bib0410 article-title: Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice publication-title: Mol. Plant doi: 10.1016/j.molp.2016.06.014 – volume: 8 issue: 7 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0375 article-title: Elucidation of miRNAs-mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes publication-title: PLoS One – volume: 15 start-page: 2730 year: 2003 ident: 10.1016/j.plantsci.2020.110608_bib0505 article-title: Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes publication-title: Plant Cell doi: 10.1105/tpc.016238 – volume: 12 start-page: 206 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0035 article-title: The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-microRNA in plant microRNA biogenesis publication-title: RNA doi: 10.1261/rna.2146906 – volume: 14 start-page: 34 issue: 1 year: 2013 ident: 10.1016/j.plantsci.2020.110608_bib0300 article-title: Developmentally regulated expression and complex processing of barley pri-microRNAs publication-title: BMC Genomics doi: 10.1186/1471-2164-14-34 – volume: 303 start-page: 2022 issue: 5666 year: 2004 ident: 10.1016/j.plantsci.2020.110608_bib0510 article-title: A MicroRNA as a translational repressor of APETALA2 in Arabidopsis flower development publication-title: Science doi: 10.1126/science.1088060 – volume: 459 start-page: 39 issue: 1–2 year: 2010 ident: 10.1016/j.plantsci.2020.110608_bib0135 article-title: Profiling of cold-stress-responsive microRNAs in rice by microarrays publication-title: Gene doi: 10.1016/j.gene.2010.03.011 – volume: 169 start-page: 576 issue: 1 year: 2015 ident: 10.1016/j.plantsci.2020.110608_bib0195 article-title: Constitutive expression of rice MicroRNA528 alters plant development and enhances tolerance to salinity stress and nitrogen starvation in creeping bentgrass publication-title: Plant Physiol. doi: 10.1104/pp.15.00899 – volume: 7 start-page: 1052 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0040 article-title: SERRATE: a new player on the plant microRNA scene publication-title: EMBO Rep. doi: 10.1038/sj.embor.7400806 – volume: 177 start-page: 1691 issue: August(4) year: 2018 ident: 10.1016/j.plantsci.2020.110608_bib0215 article-title: MicroRNA166 modulates cadmium tolerance and accumulation in rice publication-title: Plant Physiol. doi: 10.1104/pp.18.00485 – volume: 215 start-page: 403 issue: 3 year: 1990 ident: 10.1016/j.plantsci.2020.110608_bib0335 article-title: Basic local alignment search tool publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 – volume: 314 start-page: 1298 year: 2006 ident: 10.1016/j.plantsci.2020.110608_bib0480 article-title: A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat publication-title: Science doi: 10.1126/science.1133649 |
SSID | ssj0002557 |
Score | 2.3654265 |
Snippet | •13 barley microRNAs and 2 microRNAs* are nitrogen excess responsive.•Target mRNA levels are in agreement with the cognate microRNA level change.•Identified... Barley (Hordeum vulgare) is one of the most important crops in the world, ranking 4th in the worldwide production. Crop breeders are facing increasing... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 110608 |
SubjectTerms | Abiotic stresses Barley correlation crops drought Gene Expression Regulation, Plant homeostasis Hordeum - metabolism Hordeum vulgare microRNA MicroRNAs - metabolism mRNA targets nitrogen Nitrogen - metabolism Nitrogen excess Plant Roots - metabolism Plant Shoots - metabolism RNA, Plant - metabolism roots salinity shoots soil Soil - chemistry Stress, Physiological toxicity Up-Regulation |
Title | Barley microRNAs as metabolic sensors for soil nitrogen availability |
URI | https://dx.doi.org/10.1016/j.plantsci.2020.110608 https://www.ncbi.nlm.nih.gov/pubmed/32900446 https://www.proquest.com/docview/2441280965 https://www.proquest.com/docview/2511187955 |
Volume | 299 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQMLAg3pSXjMQaQlzHicdSQAWkDkClbpbj2FJQ2lRNQerCb-ccJwUkHgNjHFuy7s53n-Xv7hA6Y2ma8oiEHjGx8ShViSdtxnIQKcZpzGTqCLJ91hvQu2E4XELdJhfG0ipr3-98euWt6xG_lqY_yTL_EcBKzG1BcLBTW_jLZrDTyFr5-dsHzQMgs0uZZnCwYfanLOHn80luySYqg3siqRjxzLaZ_D5A_QRAq0B0s4HWawSJO26Tm2hJj7fQ6mUBKG--ja4u7fP5HI8s0e6h3ymxLPFIz0DXeaZwCbfWYlpigKq4LLIcw4meFmBEWL7KLHdFu-c7aHBz_dTteXWnBE8BHpl5caoSI43RnKk0alNiDATu1IQyIYGBCBQqKi8iqViS8DiUXBoCUDEMGIGfSdjeRcvjYqz3EQZFSWq4bqfGUBkrQGhcMUkCrTRREW2hsBGPUHUZcdvNIhcNX-xZNGIVVqzCibWF_MW6iSuk8ecK3khffDEJAd7-z7WnjboEnBf7CCLHungpBcAZCMm25s0vcwCFVl3YYc6e0_Viz23Cq0fwg3_s7hCt2S_HCTxCy7Ppiz4GbDNLTirjPUErndv7Xv8dDOn4yw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BQYIXxBifg82T9pqVurYTP5YvlQF92EDizXIcW0oVmqopk_rf7xwn1SYxeOA1zknW3fnuZ_nudwDfRJZlMqY8oi5xEWMmjbTvWO7FRkiWCJ2FAtmRGD6wH4_8cQXO214YX1bZxP4Q0-to3XzpNtrsTvO8-wvBSiI9ITj6qSf-WoU1z07FO7A2uL4ZjpYBGVFz6JoWeLZR4K9G4fH3aeHrTUyOV0VaF8ULP2ny5Rz1Pwxa56KrbdhqQCQZhH1-gBU72YH1sxKB3uIjXJz5F_QFefK1dj9Hg4roijzZOZq7yA2p8OJaziqCaJVUZV4QPNSzEv2I6N86LwJv92IXHq4u78-HUTMsITIISeZRkpnUaeesFCaL-4w6h7k7c1yntOcwCXHD9GmsjUhTmXAttaOIFnlPUFxMeX8POpNyYg-AoK00c9L2M-eYTgyCNGmEpj1rLDUxOwTeqkeZhkncD7QoVFsyNlatWpVXqwpqPYTuUm4auDTelJCt9tU_XqEw4L8p-7U1l8Ij499B9MSWz5VCRINZ2dPevPIPAtF6EDv-sx9svdxzn8r6HfzoHbv7AhvD-7tbdXs9uvkEm34llAgeQ2c-e7YnCHXm6efGlf8AkbP7fA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Barley+microRNAs+as+metabolic+sensors+for+soil+nitrogen+availability&rft.jtitle=Plant+science+%28Limerick%29&rft.au=Grabowska%2C+Aleksandra&rft.au=Smoczynska%2C+Aleksandra&rft.au=Bielewicz%2C+Dawid&rft.au=Pacak%2C+Andrzej&rft.date=2020-10-01&rft.issn=1873-2259&rft.eissn=1873-2259&rft.volume=299&rft.spage=110608&rft_id=info:doi/10.1016%2Fj.plantsci.2020.110608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9452&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9452&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9452&client=summon |