Drift-preserving numerical integrators for stochastic Hamiltonian systems

The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a time integrator having the same property for all tim...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 46; no. 2
Main Authors Chen, Chuchu, Cohen, David, D’Ambrosio, Raffaele, Lang, Annika
Format Journal Article
LanguageEnglish
Published New York Springer US 2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1019-7168
1572-9044
1572-9044
DOI10.1007/s10444-020-09771-5

Cover

Loading…
Abstract The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a time integrator having the same property for all times. Furthermore, strong and weak convergence of the numerical scheme along with efficient multilevel Monte Carlo estimators are studied. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
AbstractList The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the total energy, along the exact solution, drifts linearly with time. We present and analyze a time integrator having the same property for all times. Furthermore, strong and weak convergence of the numerical scheme along with efficient multilevel Monte Carlo estimators are studied. Finally, extensive numerical experiments illustrate the performance of the proposed numerical scheme.
ArticleNumber 27
Author D’Ambrosio, Raffaele
Chen, Chuchu
Cohen, David
Lang, Annika
Author_xml – sequence: 1
  givenname: Chuchu
  surname: Chen
  fullname: Chen, Chuchu
  organization: State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences
– sequence: 2
  givenname: David
  orcidid: 0000-0001-6490-1957
  surname: Cohen
  fullname: Cohen, David
  email: david.cohen@umu.se
  organization: Department of Mathematics and Mathematical Statistics, Umeå University
– sequence: 3
  givenname: Raffaele
  surname: D’Ambrosio
  fullname: D’Ambrosio, Raffaele
  organization: Department of Information Engineering and Computer Science and Mathematics, University of L’Aquila
– sequence: 4
  givenname: Annika
  surname: Lang
  fullname: Lang, Annika
  organization: Department of Mathematical Sciences, Chalmers University of Technology & University of Gothenburg
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167824$$DView record from Swedish Publication Index
https://gup.ub.gu.se/publication/292400$$DView record from Swedish Publication Index
https://research.chalmers.se/publication/516178$$DView record from Swedish Publication Index
BookMark eNp9UU1r3TAQNCWFJmn_QE-GntWuvizpGJK2CQRy6MdVyJLsKNjSqyS35N9HyQspFPpOu6xmZnc0J91RTNF33XsMHzGA-FQwMMYQEECghMCIv-qOMRcEqfZw1HrACgk8yDfdSSl3AKAGwY-7q4scpop22Reff4c493FbfQ7WLH2I1c_Z1JRLP6Xcl5rsrSk12P7SrGGpKQYT-3Jfql_L2-71ZJbi3z3X0-7Hl8_fzy_R9c3Xq_Oza2Q55hVJypTDDnNw3nAqRhhAUeCTd8QqOtrJScenkUirJNDJKqyoHYhQzEmOR3rafdvrlj9-t416l8Nq8r1OJuhHFybbW93uXJqNoovXxAAbJ9Uawb1mbKRaGcc1VdgRj51Udmiq6L-q87bTbTRvT2qKMICD-Ivw80ynPOtt3TQehCSs4T_s8bucfm2-VH2XthzbR2lChRBAlMQNRfYom1Mp2U8vuhj0Y9B6H7RuQeunoDVvJPkPyYZqakixZhOWw1T67KLtibPPf686wHoA8VbArw
CitedBy_id crossref_primary_10_3390_sym13040584
crossref_primary_10_1007_s40314_020_01200_z
crossref_primary_10_1016_j_cnsns_2020_105549
crossref_primary_10_1016_j_cnsns_2020_105528
crossref_primary_10_1016_j_probengmech_2021_103179
crossref_primary_10_1016_j_cam_2022_114967
crossref_primary_10_1007_s10444_021_09879_2
crossref_primary_10_1007_s40096_021_00440_2
crossref_primary_10_1080_00207160_2021_1922679
crossref_primary_10_1007_s11075_020_00918_5
crossref_primary_10_1016_j_cnsns_2020_105671
crossref_primary_10_3390_math8122195
crossref_primary_10_1080_00207160_2022_2107393
crossref_primary_10_1186_s13662_023_03796_y
crossref_primary_10_1016_j_amc_2020_125930
crossref_primary_10_1016_j_aml_2021_107223
crossref_primary_10_1016_j_apnum_2023_05_012
crossref_primary_10_3934_jcd_2021023
crossref_primary_10_1090_mcom_3829
crossref_primary_10_1007_s10444_020_09771_5
crossref_primary_10_1137_21M1458612
crossref_primary_10_1016_j_apnum_2020_05_011
crossref_primary_10_1016_j_aml_2022_108529
crossref_primary_10_1137_20M1364746
Cites_doi 10.1016/j.apnum.2014.08.003
10.1090/S0025-5718-2014-02805-6
10.1007/s10543-016-0608-y
10.1016/j.cam.2017.11.043
10.1007/BF02440162
10.1007/978-3-662-10063-9
10.1137/12087030X
10.1007/s10543-004-5240-6
10.1088/1751-8113/41/4/045206
10.4208/jcm.1701-m2016-0525
10.1007/s11075-013-9796-6
10.1016/j.jcp.2012.10.015
10.1007/s10543-014-0507-z
10.1016/j.cam.2012.03.007
10.1007/s10543-011-0310-z
10.1287/opre.1070.0496
10.1007/s10543-014-0474-4
10.1016/j.cam.2018.07.006
10.1007/978-3-662-12616-5
10.1137/090771880
10.1016/j.matcom.2012.02.004
10.1016/j.apnum.2004.02.003
10.1016/j.cam.2012.03.026
10.1007/s00211-011-0426-8
10.4310/CMS.2014.v12.n8.a7
10.1007/s10543-016-0620-2
10.1007/s10543-016-0614-0
10.1137/15M101049X
10.1090/S0025-5718-09-02220-0
10.1098/rsta.1999.0363
10.1137/15M1020861
10.1007/3-540-45346-6_5
10.1007/978-3-319-33507-0_25
10.1007/s10444-020-09771-5
10.1016/j.jcp.2020.109382
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
F1U
ABBSD
F1S
DOI 10.1007/s10444-020-09771-5
DatabaseName Springer Nature Open Access Journals
CrossRef
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
SWEPUB Göteborgs universitet
SWEPUB Chalmers tekniska högskola full text
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef




Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID oai_research_chalmers_se_2a04bf9e_275e_44b3_9ad5_391d2e1d89c6
oai_gup_ub_gu_se_292400
oai_DiVA_org_umu_167824
10_1007_s10444_020_09771_5
GrantInformation_xml – fundername: PRIN2017-MIUR
– fundername: National Natural Science Foundation of China
  grantid: 91630312
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11926417
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11711530017
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11971470
  funderid: https://doi.org/10.13039/501100001809
– fundername: Vetenskapsrådet
  grantid: 2013-4562 and 2018-04443
  funderid: https://doi.org/10.13039/501100004359
– fundername: Vetenskapsrådet
  grantid: 621-2014-3995
  funderid: https://doi.org/10.13039/501100004359
– fundername: National Natural Science Foundation of China
  grantid: 11871068
  funderid: https://doi.org/10.13039/501100001809
– fundername: Knut och Alice Wallenbergs Stiftelse
  funderid: https://doi.org/10.13039/501100004063
– fundername: Swedish Foundation for International Cooperation in Research and Higher Education
  grantid: CH2016-6729
  funderid: https://doi.org/10.13039/501100001728
GroupedDBID -52
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
F1U
ABBSD
F1S
ID FETCH-LOGICAL-c515t-8349d1d150dea537b0609305fed2c93bcfd8d5fb28c9803fc9193c62794d851b3
IEDL.DBID U2A
ISSN 1019-7168
1572-9044
IngestDate Thu Aug 21 06:13:46 EDT 2025
Thu Aug 21 07:24:56 EDT 2025
Thu Aug 21 06:36:21 EDT 2025
Fri Aug 01 03:32:04 EDT 2025
Thu Apr 24 23:01:37 EDT 2025
Tue Jul 01 02:55:34 EDT 2025
Fri Feb 21 02:38:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Weak convergence
65C20
Stochastic differential equations
Strong convergence
60H10
65C30
Energy
Trace formula
Multilevel Monte Carlo
Numerical schemes
Stochastic Hamiltonian systems
60H35
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-8349d1d150dea537b0609305fed2c93bcfd8d5fb28c9803fc9193c62794d851b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6490-1957
OpenAccessLink https://link.springer.com/10.1007/s10444-020-09771-5
PQID 2377702981
PQPubID 2043875
ParticipantIDs swepub_primary_oai_research_chalmers_se_2a04bf9e_275e_44b3_9ad5_391d2e1d89c6
swepub_primary_oai_gup_ub_gu_se_292400
swepub_primary_oai_DiVA_org_umu_167824
proquest_journals_2377702981
crossref_primary_10_1007_s10444_020_09771_5
crossref_citationtrail_10_1007_s10444_020_09771_5
springer_journals_10_1007_s10444_020_09771_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Hairer (CR22) 2010; 5
Cohen (CR10) 2012; 82
Zhou, Zhang, Hong, Song (CR42) 2016; 56
Anton, Cohen (CR1) 2018; 36
Burrage, Burrage (CR6) 2012; 236
Strømmen Melbø, Higham (CR40) 2004; 51
de la Cruz, Jimenez, Zubelli (CR17) 2017; 57
Senosiain, Tocino (CR39) 2015; 55
CR16
Wu, Wang, Shi (CR41) 2013; 235
Kloeden, Platen (CR30) 1992
Quispel, McLaren (CR37) 2008; 41
CR11
Faou, Lelièvre (CR19) 2009; 78
CR32
Brugnano, Gurioli, Iavernaro (CR3) 2018; 335
Schurz (CR38) 2008; 1
McLachlan, Quispel, Robidoux (CR33) 1999; 357
Faou, Hairer, Pham (CR18) 2004; 51
Burrage, Burrage (CR5) 2014; 65
Hong, Zhai, Zhang (CR28) 2011; 49
Cohen, Dujardin (CR12) 2014; 12
Hong, Xu, Wang (CR27) 2015; 87
Anton, Cohen, Larsson, Wang (CR2) 2016; 54
Cohen, Hairer (CR13) 2011; 51
Giles (CR20) 2008; 56
CR9
Celledoni, Owren, Sun (CR7) 2014; 83
Gonzalez (CR21) 1996; 6
Chen, Cohen, Hong (CR8) 2016; 13
CR25
Miyatake (CR35) 2014; 54
Iavernaro, Trigiante (CR29) 2009; 4
Cohen, Sigg (CR15) 2012; 121
Cohen, Larsson, Sigg (CR14) 2013; 51
Han, Ma, Ding (CR24) 2019; 346
Milstein, Tretyakov (CR34) 2004
Kojima (CR31) 2016; 56
Hairer, Lubich, Wanner (CR23) 2006
Miyatake, Butcher (CR36) 2016; 54
Brugnano, Iavernaro (CR4) 2012; 236
Hong, Scherer, Wang (CR26) 2006; 14
J Hong (9771_CR28) 2011; 49
E Hairer (9771_CR22) 2010; 5
MJ Senosiain (9771_CR39) 2015; 55
W Zhou (9771_CR42) 2016; 56
GN Milstein (9771_CR34) 2004
H Schurz (9771_CR38) 2008; 1
D Cohen (9771_CR15) 2012; 121
9771_CR25
D Cohen (9771_CR10) 2012; 82
D Cohen (9771_CR13) 2011; 51
PM Burrage (9771_CR5) 2014; 65
D Cohen (9771_CR12) 2014; 12
D Cohen (9771_CR14) 2013; 51
Y Miyatake (9771_CR35) 2014; 54
Y Miyatake (9771_CR36) 2016; 54
E Celledoni (9771_CR7) 2014; 83
H Kojima (9771_CR31) 2016; 56
X Wu (9771_CR41) 2013; 235
PM Burrage (9771_CR6) 2012; 236
R Anton (9771_CR2) 2016; 54
L Brugnano (9771_CR3) 2018; 335
J Hong (9771_CR27) 2015; 87
F Iavernaro (9771_CR29) 2009; 4
PE Kloeden (9771_CR30) 1992
E Faou (9771_CR18) 2004; 51
O Gonzalez (9771_CR21) 1996; 6
R Anton (9771_CR1) 2018; 36
E Hairer (9771_CR23) 2006
RI McLachlan (9771_CR33) 1999; 357
9771_CR16
9771_CR9
H de la Cruz (9771_CR17) 2017; 57
M Han (9771_CR24) 2019; 346
GRW Quispel (9771_CR37) 2008; 41
AH Strømmen Melbø (9771_CR40) 2004; 51
C Chen (9771_CR8) 2016; 13
J Hong (9771_CR26) 2006; 14
E Faou (9771_CR19) 2009; 78
L Brugnano (9771_CR4) 2012; 236
9771_CR11
9771_CR32
MB Giles (9771_CR20) 2008; 56
References_xml – volume: 87
  start-page: 38
  year: 2015
  end-page: 52
  ident: CR27
  article-title: Preservation of quadratic invariants of stochastic differential equations via Runge-Kutta methods
  publication-title: Appl. Numer Math.
  doi: 10.1016/j.apnum.2014.08.003
– volume: 83
  start-page: 1689
  issue: 288
  year: 2014
  end-page: 1700
  ident: CR7
  article-title: The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2014-02805-6
– volume: 56
  start-page: 1317
  issue: 4
  year: 2016
  end-page: 1337
  ident: CR31
  article-title: Invariants preserving schemes based on explicit Runge–Kutta methods
  publication-title: BIT
  doi: 10.1007/s10543-016-0608-y
– volume: 335
  start-page: 51
  year: 2018
  end-page: 73
  ident: CR3
  article-title: Analysis of energy and quadratic invariant preserving (EQUIP) methods
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.11.043
– ident: CR16
– volume: 6
  start-page: 449
  issue: 5
  year: 1996
  end-page: 467
  ident: CR21
  article-title: Time integration and discrete Hamiltonian systems
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02440162
– year: 2004
  ident: CR34
  publication-title: Stochastic Numerics for Mathematical Physics. Scientific Computation
  doi: 10.1007/978-3-662-10063-9
– volume: 51
  start-page: 204
  issue: 1
  year: 2013
  end-page: 222
  ident: CR14
  article-title: A trigonometric method for the linear stochastic wave equation
  publication-title: SIAM J. Numer Anal.
  doi: 10.1137/12087030X
– volume: 51
  start-page: 699
  issue: 44
  year: 2004
  end-page: 709
  ident: CR18
  article-title: Energy conservation with non-symplectic methods: Examples and counter-examples
  publication-title: BIT
  doi: 10.1007/s10543-004-5240-6
– volume: 41
  start-page: 045206, 7
  issue: 4
  year: 2008
  ident: CR37
  article-title: A new class of energy-preserving numerical integration methods
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/41/4/045206
– volume: 36
  start-page: 276
  issue: 2
  year: 2018
  end-page: 309
  ident: CR1
  article-title: Exponential integrators for stochastic Schrödinger equations driven by Itô noise
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1701-m2016-0525
– volume: 65
  start-page: 519
  issue: 3
  year: 2014
  end-page: 532
  ident: CR5
  article-title: Structure-preserving Runge-Kutta methods for stochastic Hamiltonian equations with additive noise
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-013-9796-6
– volume: 235
  start-page: 587
  year: 2013
  end-page: 605
  ident: CR41
  article-title: Efficient energy-preserving integrators for oscillatory Hamiltonian systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.015
– volume: 55
  start-page: 515
  issue: 2
  year: 2015
  end-page: 529
  ident: CR39
  article-title: A review on numerical schemes for solving a linear stochastic oscillator
  publication-title: BIT
  doi: 10.1007/s10543-014-0507-z
– volume: 1
  start-page: 353
  issue: 2
  year: 2008
  end-page: 363
  ident: CR38
  article-title: Analysis and discretization of semi-linear stochastic wave equations with cubic nonlinearity and additive space-time noise
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 4
  start-page: 87
  issue: 1-2
  year: 2009
  end-page: 101
  ident: CR29
  article-title: High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems
  publication-title: J. Numer. Anal. Ind. Appl Math.
– ident: CR25
– volume: 236
  start-page: 3920
  year: 2012
  end-page: 3930
  ident: CR6
  article-title: Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.007
– volume: 51
  start-page: 91
  issue: 1
  year: 2011
  end-page: 101
  ident: CR13
  article-title: Linear energy-preserving integrators for Poisson systems
  publication-title: BIT
  doi: 10.1007/s10543-011-0310-z
– volume: 56
  start-page: 607
  issue: 3
  year: 2008
  end-page: 617
  ident: CR20
  article-title: Multilevel Monte Carlo path simulation
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0496
– year: 2006
  ident: CR23
  publication-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Volume 31 of Springer Series in Computational Mathematics
– volume: 54
  start-page: 777
  issue: 3
  year: 2014
  end-page: 799
  ident: CR35
  article-title: An energy-preserving exponentially-fitted continuous stage Runge-Kutta method for Hamiltonian systems
  publication-title: BIT
  doi: 10.1007/s10543-014-0474-4
– volume: 346
  start-page: 575
  year: 2019
  end-page: 593
  ident: CR24
  article-title: High-order stochastic symplectic partitioned Runge–Kutta methods for stochastic Hamiltonian systems with additive noise
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2018.07.006
– year: 1992
  ident: CR30
  publication-title: Numerical Solution of Stochastic Differential Equations, Volume 23 of Applications of Mathematics
  doi: 10.1007/978-3-662-12616-5
– volume: 49
  start-page: 2017
  issue: 5
  year: 2011
  end-page: 2038
  ident: CR28
  article-title: Discrete gradient approach to stochastic differential equations with a conserved quantity
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090771880
– volume: 82
  start-page: 1478
  issue: 8
  year: 2012
  end-page: 1495
  ident: CR10
  article-title: On the numerical discretisation of stochastic oscillators
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2012.02.004
– volume: 51
  start-page: 89
  issue: 1
  year: 2004
  end-page: 99
  ident: CR40
  article-title: Numerical simulation of a linear stochastic oscillator with additive noise
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.003
– volume: 236
  start-page: 3905
  issue: 16
  year: 2012
  end-page: 3919
  ident: CR4
  article-title: Line integral methods which preserve all invariants of conservative problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.026
– volume: 121
  start-page: 1
  issue: 1
  year: 2012
  end-page: 29
  ident: CR15
  article-title: Convergence analysis of trigonometric methods for stiff second-order stochastic differential equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-011-0426-8
– volume: 12
  start-page: 1523
  issue: 8
  year: 2014
  end-page: 1539
  ident: CR12
  article-title: Energy-preserving integrators for stochastic Poisson systems
  publication-title: Commun. Math Sci.
  doi: 10.4310/CMS.2014.v12.n8.a7
– volume: 57
  start-page: 123
  issue: 1
  year: 2017
  end-page: 151
  ident: CR17
  article-title: Locally linearized methods for the simulation of stochastic oscillators driven by random forces
  publication-title: BIT
  doi: 10.1007/s10543-016-0620-2
– volume: 13
  start-page: 435
  issue: 3
  year: 2016
  end-page: 456
  ident: CR8
  article-title: Conservative methods for stochastic differential equations with a conserved quantity
  publication-title: Int. J. Numer. Anal Model.
– ident: CR11
– ident: CR9
– ident: CR32
– volume: 56
  start-page: 1497
  issue: 4
  year: 2016
  end-page: 1518
  ident: CR42
  article-title: Projection methods for stochastic differential equations with conserved quantities
  publication-title: BIT
  doi: 10.1007/s10543-016-0614-0
– volume: 5
  start-page: 73
  issue: 1-2
  year: 2010
  end-page: 84
  ident: CR22
  article-title: Energy-preserving variant of collocation methods
  publication-title: J. Numer. Anal. Ind. Appl. Math.
– volume: 54
  start-page: 1093
  issue: 2
  year: 2016
  end-page: 1119
  ident: CR2
  article-title: Full discretization of semilinear stochastic wave equations driven by multiplicative noise
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M101049X
– volume: 14
  start-page: 1
  issue: 1
  year: 2006
  end-page: 12
  ident: CR26
  article-title: Midpoint rule for a linear stochastic oscillator with additive noise
  publication-title: Neural Parallel Sci. Comput.
– volume: 78
  start-page: 2047
  issue: 268
  year: 2009
  end-page: 2074
  ident: CR19
  article-title: Conservative stochastic differential equations: Mathematical and numerical analysis
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-09-02220-0
– volume: 357
  start-page: 1021
  issue: 1754
  year: 1999
  end-page: 1045
  ident: CR33
  article-title: Geometric integration using discrete gradients
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0363
– volume: 54
  start-page: 1993
  issue: 3
  year: 2016
  end-page: 2013
  ident: CR36
  article-title: A characterization of energy-preserving methods and the construction of parallel integrators for Hamiltonian systems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1020861
– volume: 51
  start-page: 204
  issue: 1
  year: 2013
  ident: 9771_CR14
  publication-title: SIAM J. Numer Anal.
  doi: 10.1137/12087030X
– ident: 9771_CR25
  doi: 10.1007/3-540-45346-6_5
– volume: 13
  start-page: 435
  issue: 3
  year: 2016
  ident: 9771_CR8
  publication-title: Int. J. Numer. Anal Model.
– volume: 51
  start-page: 699
  issue: 44
  year: 2004
  ident: 9771_CR18
  publication-title: BIT
  doi: 10.1007/s10543-004-5240-6
– ident: 9771_CR9
– volume: 54
  start-page: 1093
  issue: 2
  year: 2016
  ident: 9771_CR2
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M101049X
– volume: 236
  start-page: 3920
  year: 2012
  ident: 9771_CR6
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.007
– volume-title: Numerical Solution of Stochastic Differential Equations, Volume 23 of Applications of Mathematics
  year: 1992
  ident: 9771_CR30
  doi: 10.1007/978-3-662-12616-5
– volume: 56
  start-page: 1317
  issue: 4
  year: 2016
  ident: 9771_CR31
  publication-title: BIT
  doi: 10.1007/s10543-016-0608-y
– volume: 49
  start-page: 2017
  issue: 5
  year: 2011
  ident: 9771_CR28
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/090771880
– ident: 9771_CR32
  doi: 10.1007/978-3-319-33507-0_25
– volume: 83
  start-page: 1689
  issue: 288
  year: 2014
  ident: 9771_CR7
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2014-02805-6
– volume: 82
  start-page: 1478
  issue: 8
  year: 2012
  ident: 9771_CR10
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2012.02.004
– volume: 56
  start-page: 607
  issue: 3
  year: 2008
  ident: 9771_CR20
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0496
– volume: 335
  start-page: 51
  year: 2018
  ident: 9771_CR3
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2017.11.043
– ident: 9771_CR16
  doi: 10.1007/s10444-020-09771-5
– volume: 236
  start-page: 3905
  issue: 16
  year: 2012
  ident: 9771_CR4
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2012.03.026
– volume: 14
  start-page: 1
  issue: 1
  year: 2006
  ident: 9771_CR26
  publication-title: Neural Parallel Sci. Comput.
– volume: 57
  start-page: 123
  issue: 1
  year: 2017
  ident: 9771_CR17
  publication-title: BIT
  doi: 10.1007/s10543-016-0620-2
– volume: 56
  start-page: 1497
  issue: 4
  year: 2016
  ident: 9771_CR42
  publication-title: BIT
  doi: 10.1007/s10543-016-0614-0
– volume-title: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edn, Volume 31 of Springer Series in Computational Mathematics
  year: 2006
  ident: 9771_CR23
– volume: 87
  start-page: 38
  year: 2015
  ident: 9771_CR27
  publication-title: Appl. Numer Math.
  doi: 10.1016/j.apnum.2014.08.003
– volume: 41
  start-page: 045206, 7
  issue: 4
  year: 2008
  ident: 9771_CR37
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/41/4/045206
– volume: 54
  start-page: 777
  issue: 3
  year: 2014
  ident: 9771_CR35
  publication-title: BIT
  doi: 10.1007/s10543-014-0474-4
– volume: 5
  start-page: 73
  issue: 1-2
  year: 2010
  ident: 9771_CR22
  publication-title: J. Numer. Anal. Ind. Appl. Math.
– volume: 1
  start-page: 353
  issue: 2
  year: 2008
  ident: 9771_CR38
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
– volume: 346
  start-page: 575
  year: 2019
  ident: 9771_CR24
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.cam.2018.07.006
– volume: 121
  start-page: 1
  issue: 1
  year: 2012
  ident: 9771_CR15
  publication-title: Numer. Math.
  doi: 10.1007/s00211-011-0426-8
– volume: 36
  start-page: 276
  issue: 2
  year: 2018
  ident: 9771_CR1
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1701-m2016-0525
– volume: 12
  start-page: 1523
  issue: 8
  year: 2014
  ident: 9771_CR12
  publication-title: Commun. Math Sci.
  doi: 10.4310/CMS.2014.v12.n8.a7
– ident: 9771_CR11
  doi: 10.1016/j.jcp.2020.109382
– volume: 235
  start-page: 587
  year: 2013
  ident: 9771_CR41
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.10.015
– volume: 51
  start-page: 91
  issue: 1
  year: 2011
  ident: 9771_CR13
  publication-title: BIT
  doi: 10.1007/s10543-011-0310-z
– volume: 6
  start-page: 449
  issue: 5
  year: 1996
  ident: 9771_CR21
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/BF02440162
– volume-title: Stochastic Numerics for Mathematical Physics. Scientific Computation
  year: 2004
  ident: 9771_CR34
  doi: 10.1007/978-3-662-10063-9
– volume: 55
  start-page: 515
  issue: 2
  year: 2015
  ident: 9771_CR39
  publication-title: BIT
  doi: 10.1007/s10543-014-0507-z
– volume: 51
  start-page: 89
  issue: 1
  year: 2004
  ident: 9771_CR40
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.02.003
– volume: 78
  start-page: 2047
  issue: 268
  year: 2009
  ident: 9771_CR19
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-09-02220-0
– volume: 65
  start-page: 519
  issue: 3
  year: 2014
  ident: 9771_CR5
  publication-title: Numer. Algor.
  doi: 10.1007/s11075-013-9796-6
– volume: 54
  start-page: 1993
  issue: 3
  year: 2016
  ident: 9771_CR36
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1020861
– volume: 357
  start-page: 1021
  issue: 1754
  year: 1999
  ident: 9771_CR33
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0363
– volume: 4
  start-page: 87
  issue: 1-2
  year: 2009
  ident: 9771_CR29
  publication-title: J. Numer. Anal. Ind. Appl Math.
SSID ssj0009675
Score 2.3951914
Snippet The paper deals with numerical discretizations of separable nonlinear Hamiltonian systems with additive noise. For such problems, the expected value of the...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
convergence
differential-equations
discretization
driven
Energy
Exact solutions
Hamiltonian functions
Integrators
invariants
Matematik
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical sciences
Mathematics
Mathematics and Statistics
Multilevel Monte Carlo
Nonlinear systems
Numerical schemes
runge-kutta methods
simulation
stage
Stochastic differential equations
Stochastic Hamiltonian systems
Strong convergence
Trace formula
Visualization
wave-equations
Weak
Weak convergence
Title Drift-preserving numerical integrators for stochastic Hamiltonian systems
URI https://link.springer.com/article/10.1007/s10444-020-09771-5
https://www.proquest.com/docview/2377702981
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-167824
https://gup.ub.gu.se/publication/292400
https://research.chalmers.se/publication/516178
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9gIHHgXUhbLKAXEBS_ErsY_bbZfl1ROLysmKH9lWKtlqs_n_jPPYBbSqxClRYk8Uj8fzjT3-DPCWIQTVKitJKXNPBEJ2UmTKExYcemNWUN9l-V5m84X4fCWv-k1h9ZDtPixJtiP1H5vdBEqK4U6KoIUSeQBHEmP32K8XbLKj2s1ael3sa5pgNKD6rTL7ZfztjnYYc7ss-g-FaOt2Zk_hcY8Xk0mn4GfwIFTH8KTHjklvmfUxPPq25V-tn8On8_VNuSExyTWOBdUyqZpuaeY2GQgiVus6QcSaIPpz10Wka07mcbYDwSB2maSjeK5fwGJ28X06J_2hCcQhNNkQxYX21CPO86GQPLdplmo06jJ45jS3rvTKy9Iy5bRKeek0QjiXMbRLj-jL8pdwWK2qcAJJLqzNeGq5dChU06LgqnAYwgT0e9amI6BD2xnXM4rHgy1uzY4LOba3wfY2bXsbOYL32zp3HZ_GvaVPB5WY3rZqw3ie55E5no7gw6Cm3ev7pL3rVLn9cuTWPr_5MTGr9dI0vxpD0Xczsb_gsrkz-GjZmDoYpmPy7Qi-7inY0zRdG9RePAOnbisUqbClxptcBiOE5UYXXhquqWeBeqVd9ur__uc1PGRtV44TQqdwuFk34Q1CpI0dw9FkdnZ2Ga8ff365GMPBNJuOWzv5DbAiC_c
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAcKBQQWwrkgLiAq8SPJD6uaMuWbnvqonKy4ke2Fe1utUku_HrGibML1apSb1HiTGLPjP2NPf4M8IkiBJV5WpJSZJZwhOykSHNLqDM4GtMisV2W71k6nvIfF-IibAqr-mz3fkmy7an_2ezGUZIPd2IELQkRj2GLYwwuBrA1-v7r5HBNtpu2BLtobZJgPJCHzTKbpfw_IK1R5mph9A6JaDvwHG3DtP_lLt_k935T633z5w6b40Pr9AKeByQajTrTeQmP3HwHtgMqjYLPVzvw7HTF7Fq9guOD5VVZE58-63uZ-SyaN92iz3XUU08sllWEWDhCXGkuC08EHY39PArCTDTGqCOPrl7D9Ojw_NuYhOMYiEHQU5OccWkTiwjSukKwTMdpLLG7KJ2lRjJtSptbUWqaG5nHrDQSwaFJKXq8RVyn2RsYzBdz9xaijGudslgzYVCoTIqC5YXB4MjhiKp1PISk14kygavcH5lxrdYsy77lFLacaltOiSF8Wb1z2zF13Ft6r1e1Cl5bKcqyLPOc9MkQvvYKWz--T9rnzkRWX_as3QdXP0dqsZyp5qZRCaICyjcXnDW3Cm_NGlU5RaVP6x3CZEPBQAB1qVB7_nSdqn2hiLkuJV5kwinONVOysEIxmVjqEptLk-4-rD4f4cn4_HSiJsdnJ-_gKW0N1E877cGgXjbuPQKxWn8IfvcXOQkn8Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSAgOBQoVW1rwAXEBq_EriY_VbldbKBUHinqz4te2UsmuNsn_Z5zHbqlWlXqLEttRZjyZb-yZzwh9ZgBBVZ4GEmTmiADIToo0d4R5C96YFdR1Wb4X6exSfL-SV3eq-Nts92FLsqtpiCxNZX28dOH4TuGbgFFj6JMAgKFEPkXPIFKhMalvnI43tLtpS7UL804RiAzyvmxm-xj_u6YN3lxvkd6jE21d0PQ12u2xIz7plP0GPfHlHnrV40jcW2m1h17-XHOxVm_R2WR1E2oSE17jf6Gc47Lptmlu8UAWsVhVGNArBiRor4tI3YxnceUDgCFMH9zRPVfv0OX09Pd4RvoDFIgFmFKTnAvlqAPM53wheWaSNFFg4ME7ZhU3NrjcyWBYblWe8GAVwDmbMrBRB0jM8H20Uy5K_x7hTBiT8sRwaWFQRYuC54WFcMaDDzQmGSE6yE7bnl08HnJxqze8yFHeGuStW3lrOUJf132WHbfGg60PB5Xo3s4qzXiWZZFFno7Qt0FNm8cPjfalU-X6zZFne3Lz50QvVnPd_G00BT_OxPaG82ap4da80ZXXTMVE3BE639Kwp2y61qC9eB5O1XYoEmGCgotMei2E4VoVTmquqGOeulzZ9OBx3_MJPf81merzs4sfH9AL1s7quE50iHbqVeOPADnV5mNrHP8AbgIPIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Drift-preserving+numerical+integrators+for+stochastic+Hamiltonian+systems&rft.jtitle=Advances+in+computational+mathematics&rft.au=Chen%2C+Chuchu&rft.au=Cohen%2C+David&rft.au=D%E2%80%99Ambrosio%2C+Raffaele&rft.au=Lang%2C+Annika&rft.date=2020&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=46&rft.issue=2&rft_id=info:doi/10.1007%2Fs10444-020-09771-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_020_09771_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon