Isolation and characterization of microcrystalline cellulose from roselle fibers

•Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 103; pp. 931 - 940
Main Authors Kian, Lau Kia, Jawaid, Mohammad, Ariffin, Hidayah, Alothman, Othman Y.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74%).•Obtained R-MCC also has considerably good thermal stability. In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
AbstractList In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
•Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74%).•Obtained R-MCC also has considerably good thermal stability. In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
Author Kian, Lau Kia
Jawaid, Mohammad
Ariffin, Hidayah
Alothman, Othman Y.
Author_xml – sequence: 1
  givenname: Lau Kia
  surname: Kian
  fullname: Kian, Lau Kia
  organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
– sequence: 2
  givenname: Mohammad
  surname: Jawaid
  fullname: Jawaid, Mohammad
  email: jawaid_md@yahoo.co.in, jawaid@upm.edu.my
  organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
– sequence: 3
  givenname: Hidayah
  surname: Ariffin
  fullname: Ariffin, Hidayah
  organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
– sequence: 4
  givenname: Othman Y.
  surname: Alothman
  fullname: Alothman, Othman Y.
  organization: Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28549863$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxa2KqizQr4By5JLUE_9JInEAIaBISO0BzpbtjFWvnBjsLBL99PWy7KWXPXk8-r2x570TcjTHGQk5B9oABflj3fi18XHStmkpdA0VDTDxhayg74aaUsqOyIoCh7oHRo_JSc7r0pUC-m_kuO0FH3rJVuT3Q45BLz7OlZ7Hyv7RSdsFk_-7a0ZXTd6maNN7XnQIfsbKYgibEDNWLsWpSqUKoVy8wZTPyFenQ8bvn-cpeb67fbr5WT_-un-4uX6srQCx1B03YnAODO9GwVE75K4HyVHCKLk0LRrWjs4yYFo4bsyg3dAb3UqhYRgZOyUXu7kvKb5uMC9q8nn7Mz1j3GTVlm0FZx2VB1EYKAMJjNGCnn-iGzPhqF6Sn3R6V3vDCnC5A4onOSd0yvrlw6olaR8UULXNR63VPh-1zUdRoUo-RS7_k-9fOCi82gmxePrmMalsPc4WR5_QLmqM_tCIf8Grr0Y
CitedBy_id crossref_primary_10_1016_j_powtec_2018_07_076
crossref_primary_10_1080_15440478_2022_2079582
crossref_primary_10_3390_polym11071124
crossref_primary_10_1007_s10570_021_03983_8
crossref_primary_10_3390_polym13142275
crossref_primary_10_1016_j_carbpol_2025_123373
crossref_primary_10_1002_slct_202302812
crossref_primary_10_1007_s13399_024_05722_y
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_06
crossref_primary_10_1080_15440478_2020_1764441
crossref_primary_10_3390_polym13020231
crossref_primary_10_3390_molecules28052009
crossref_primary_10_14710_jksa_23_5_147_151
crossref_primary_10_1016_j_ijbiomac_2018_10_162
crossref_primary_10_1007_s10570_019_02672_x
crossref_primary_10_1016_j_ijbiomac_2020_03_158
crossref_primary_10_1007_s12649_019_00799_3
crossref_primary_10_1016_j_carbpol_2018_11_013
crossref_primary_10_1007_s42452_019_0769_9
crossref_primary_10_1016_j_foodres_2025_116212
crossref_primary_10_1007_s10570_019_02712_6
crossref_primary_10_1016_j_ijbiomac_2018_12_056
crossref_primary_10_1016_j_conbuildmat_2021_124064
crossref_primary_10_1134_S1990793121080194
crossref_primary_10_22159_ijap_2023_v15s2_09
crossref_primary_10_1002_marc_202100862
crossref_primary_10_1016_j_ijbiomac_2022_10_230
crossref_primary_10_1002_ceat_202300379
crossref_primary_10_1007_s13399_024_05462_z
crossref_primary_10_1016_j_carpta_2024_100423
crossref_primary_10_1016_j_ijbiomac_2018_06_052
crossref_primary_10_1016_j_ijggc_2023_103876
crossref_primary_10_1016_j_rineng_2025_104655
crossref_primary_10_1016_j_fbio_2024_105362
crossref_primary_10_3390_molecules29112618
crossref_primary_10_1016_j_carbpol_2024_122432
crossref_primary_10_1016_j_ijbiomac_2019_02_044
crossref_primary_10_1016_j_cherd_2023_03_037
crossref_primary_10_3390_ma15175992
crossref_primary_10_1016_j_indcrop_2023_117129
crossref_primary_10_3390_molecules25122824
crossref_primary_10_1016_j_carbpol_2022_119837
crossref_primary_10_1021_acsomega_4c08298
crossref_primary_10_1007_s10570_023_05684_w
crossref_primary_10_1080_15440478_2020_1764454
crossref_primary_10_1016_j_cscee_2024_100743
crossref_primary_10_1016_j_carbpol_2021_118968
crossref_primary_10_1016_j_wasman_2018_10_023
crossref_primary_10_1002_mame_201900832
crossref_primary_10_1016_j_enzmictec_2023_110376
crossref_primary_10_1038_s41598_023_41119_z
crossref_primary_10_1016_j_carpta_2020_100031
crossref_primary_10_1016_j_biteb_2024_101764
crossref_primary_10_3390_ma11071057
crossref_primary_10_3390_polym15051062
crossref_primary_10_1016_j_carbpol_2023_121692
crossref_primary_10_1016_j_jmrt_2019_05_024
crossref_primary_10_1039_D1MA00429H
crossref_primary_10_1007_s10098_024_03110_8
crossref_primary_10_1016_j_foodchem_2024_142429
crossref_primary_10_1016_j_foodhyd_2021_106771
crossref_primary_10_1016_j_ijbiomac_2021_12_179
crossref_primary_10_1021_acsomega_3c09350
crossref_primary_10_1002_pen_25874
crossref_primary_10_3390_ma16020648
crossref_primary_10_1007_s13580_022_00436_4
crossref_primary_10_1016_j_ijbiomac_2020_03_255
crossref_primary_10_1021_acssuschemeng_3c07633
crossref_primary_10_1080_15440478_2023_2198278
crossref_primary_10_3390_nano9121702
crossref_primary_10_1016_j_ijbiomac_2019_07_176
crossref_primary_10_1016_j_ijbiomac_2022_11_172
crossref_primary_10_1080_00986445_2021_2001458
crossref_primary_10_1016_j_carbpol_2022_119485
crossref_primary_10_1007_s10570_020_03485_z
crossref_primary_10_1016_j_carbpol_2021_118317
crossref_primary_10_1016_j_indcrop_2021_114247
crossref_primary_10_1016_j_carbpol_2022_119886
crossref_primary_10_1016_j_ecmx_2021_100159
crossref_primary_10_1007_s10904_021_02212_w
crossref_primary_10_1016_j_kjs_2023_06_005
crossref_primary_10_1016_j_matpr_2022_06_071
crossref_primary_10_1007_s10570_019_02543_5
crossref_primary_10_1016_j_bcdf_2024_100416
crossref_primary_10_1021_acsomega_3c01222
crossref_primary_10_1002_pen_26838
crossref_primary_10_1016_j_biteb_2023_101731
crossref_primary_10_1002_slct_202300746
crossref_primary_10_1080_15440478_2023_2283549
crossref_primary_10_1016_j_arabjc_2021_103178
crossref_primary_10_3390_micro3030046
crossref_primary_10_1088_1742_6596_2190_1_012007
crossref_primary_10_1016_j_fpsl_2022_100937
crossref_primary_10_1016_j_ijbiomac_2024_137620
crossref_primary_10_1016_j_carbpol_2020_117030
crossref_primary_10_1007_s13399_024_06009_y
crossref_primary_10_3390_polym12051021
crossref_primary_10_1088_1755_1315_1201_1_012101
crossref_primary_10_1016_j_carpta_2023_100396
crossref_primary_10_1515_rams_2023_0103
crossref_primary_10_1016_j_heliyon_2023_e17258
crossref_primary_10_1002_slct_202203248
crossref_primary_10_35812_CelluloseChemTechnol_2022_56_64
crossref_primary_10_1080_25740881_2024_2375366
crossref_primary_10_1021_acsomega_4c00497
crossref_primary_10_1016_j_cej_2023_144776
crossref_primary_10_3390_pharmaceutics12111063
crossref_primary_10_1016_j_mtcomm_2025_112247
crossref_primary_10_1002_slct_202304996
crossref_primary_10_1016_j_ijbiomac_2024_135558
crossref_primary_10_3390_polym14101974
crossref_primary_10_1007_s12668_023_01080_7
crossref_primary_10_1016_j_tca_2021_178882
crossref_primary_10_1016_j_ijft_2024_100844
crossref_primary_10_1016_j_matchemphys_2021_124769
crossref_primary_10_1016_j_ijengsci_2021_103500
crossref_primary_10_1021_acsomega_1c02568
crossref_primary_10_1016_j_ijbiomac_2020_03_199
crossref_primary_10_1007_s10570_023_05161_4
crossref_primary_10_3390_polym15204141
crossref_primary_10_4028_www_scientific_net_KEM_867_109
crossref_primary_10_1007_s10570_022_05022_6
crossref_primary_10_1007_s11696_021_01844_z
crossref_primary_10_1016_j_jclepro_2023_138555
crossref_primary_10_1016_j_carbpol_2021_118537
crossref_primary_10_1016_j_jenvman_2023_119928
crossref_primary_10_1016_j_fuel_2020_118258
crossref_primary_10_1016_j_ijbiomac_2018_03_065
crossref_primary_10_1080_15440478_2022_2058674
crossref_primary_10_15328_cb1238
crossref_primary_10_1016_j_jmro_2025_100189
crossref_primary_10_1016_j_ijbiomac_2024_130532
crossref_primary_10_1016_j_polymdegradstab_2019_01_022
crossref_primary_10_1007_s10570_022_04527_4
crossref_primary_10_1039_D4TA03284E
crossref_primary_10_1080_15440478_2020_1848712
crossref_primary_10_1016_j_carbpol_2018_12_080
crossref_primary_10_1016_j_ijbiomac_2024_136116
crossref_primary_10_1016_j_ijbiomac_2024_129273
crossref_primary_10_1016_j_nanoen_2023_108769
crossref_primary_10_1021_acs_chemrev_2c00816
crossref_primary_10_1016_j_ijbiomac_2023_123556
crossref_primary_10_1016_j_indcrop_2020_112457
crossref_primary_10_1002_fsn3_4439
crossref_primary_10_1016_j_tsep_2024_102836
crossref_primary_10_1007_s10924_020_02012_2
crossref_primary_10_1007_s12649_019_00627_8
crossref_primary_10_1039_D3FB00052D
crossref_primary_10_1016_j_fpsl_2023_101048
crossref_primary_10_1016_j_scitotenv_2019_135070
crossref_primary_10_3390_pr11051322
crossref_primary_10_1016_j_carbpol_2020_116937
crossref_primary_10_15328_cb1386
crossref_primary_10_3390_molecules29204806
crossref_primary_10_1007_s13399_024_05373_z
crossref_primary_10_1016_j_biombioe_2024_107525
crossref_primary_10_1016_j_ibiod_2024_105852
crossref_primary_10_1007_s10570_019_02866_3
crossref_primary_10_1016_j_polymertesting_2019_105910
crossref_primary_10_1007_s12221_020_1353_z
crossref_primary_10_1007_s10570_022_04494_w
crossref_primary_10_1007_s13399_019_00400_w
crossref_primary_10_1007_s13399_024_06328_0
crossref_primary_10_1016_j_molliq_2023_122928
crossref_primary_10_1021_acsagscitech_3c00184
crossref_primary_10_1016_j_ijbiomac_2023_127687
crossref_primary_10_1016_j_nanoen_2024_109650
crossref_primary_10_1515_ntrev_2021_0053
crossref_primary_10_1016_j_microc_2020_105510
crossref_primary_10_1007_s10853_021_06215_3
crossref_primary_10_1111_jfpp_17071
crossref_primary_10_1007_s42452_024_05870_w
crossref_primary_10_1016_j_ijbiomac_2024_131444
crossref_primary_10_1016_j_ijbiomac_2020_05_170
crossref_primary_10_1016_j_ijbiomac_2020_03_222
crossref_primary_10_1016_j_conbuildmat_2023_132014
crossref_primary_10_1016_j_ijbiomac_2025_140217
crossref_primary_10_4236_ojapps_2024_149161
crossref_primary_10_52711_0974_4150_2024_00038
crossref_primary_10_1111_jfpp_15613
crossref_primary_10_1007_s10924_020_01725_8
crossref_primary_10_1155_2024_1088430
Cites_doi 10.1016/j.cemconcomp.2016.09.003
10.1007/s10570-010-9430-x
10.1080/15440478.2010.529299
10.1016/j.cocis.2017.01.005
10.1016/j.cocis.2017.04.001
10.1016/j.biortech.2009.01.074
10.1016/j.carbpol.2011.08.084
10.1016/j.atmosenv.2011.11.022
10.1016/j.jclepro.2016.03.091
10.1016/j.colsurfb.2013.02.016
10.1007/s10570-009-9280-6
10.26438/jpcm/v5i1.17
10.1016/j.polymdegradstab.2010.02.009
10.1016/j.ijbiomac.2016.11.016
10.1016/j.carbpol.2010.11.032
10.1016/j.carbpol.2016.04.055
10.1007/s10570-017-1228-7
10.1016/j.foodres.2015.03.020
10.1016/j.msea.2009.04.027
10.1021/cr900339w
10.1016/j.carbpol.2015.08.082
10.15376/biores.10.1.1803-1824
10.1016/j.carbpol.2012.09.015
10.1186/2251-7715-1-9
10.1007/s10570-011-9546-7
10.1016/j.reactfunctpolym.2014.09.009
10.1016/j.carbpol.2013.01.035
10.1016/j.indcrop.2016.02.016
10.1016/j.indcrop.2012.06.041
10.1016/j.ijbiomac.2016.09.056
10.1016/j.biortech.2007.04.029
10.1016/j.carbpol.2011.11.023
10.1016/j.carbpol.2014.01.058
10.1177/0734242X09339324
10.1016/j.carbpol.2011.06.034
10.1016/j.egypro.2014.07.151
10.1016/j.compscitech.2009.02.022
10.1007/s10570-013-9921-7
10.1016/j.ijbiomac.2016.06.094
10.1016/j.biortech.2010.01.047
10.1016/j.carbpol.2009.12.043
10.1007/s10570-010-9481-z
10.1016/j.ijpharm.2014.06.055
10.1016/j.ijbiomac.2012.08.003
10.1016/j.indcrop.2016.02.014
10.1016/j.indcrop.2011.12.016
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright © 2017 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright © 2017 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2017.05.135
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
EndPage 940
ExternalDocumentID 28549863
10_1016_j_ijbiomac_2017_05_135
S0141813017317300
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c515t-74b59ff1b47d54eafe4f8164e61d646b2eb32dfc313a5f4bb9af98ba265a19d33
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Jul 11 02:28:15 EDT 2025
Fri Jul 11 00:00:42 EDT 2025
Wed Feb 19 02:42:22 EST 2025
Tue Jul 01 02:18:52 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 23 02:30:54 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Thermal properties
Scanning electron microscopy
Fourier transform infrared spectroscopy
Roselle fiber
Microcrystalline cellulose
Language English
License Copyright © 2017 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-74b59ff1b47d54eafe4f8164e61d646b2eb32dfc313a5f4bb9af98ba265a19d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.ijbiomac.2017.05.135
PMID 28549863
PQID 1903161330
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2000543706
proquest_miscellaneous_1903161330
pubmed_primary_28549863
crossref_citationtrail_10_1016_j_ijbiomac_2017_05_135
crossref_primary_10_1016_j_ijbiomac_2017_05_135
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2017_05_135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
2017-Oct
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Athijayamani, Thiruchitrambalam, Natarajan, Pazhanivel (bib0040) 2009; 517
Nuruddin, Chowdhury, Haque, Rahman, Farhad, Jahan (bib0155) 2011; 45
Zeni, Favero, Pacheco, Grisa (bib0005) 2015; 1
Chauchan, Sapkal, Sapkal, Zamre (bib0140) 2009; 7
Husgafvel, Vanhatalo, Chiang, Linkosalmi, Dahl (bib0105) 2016; 126
Chuayjuljit, Su-uthai, Charuchinda (bib0115) 2010; 28
Thoorens, Krier, Leclercq, Carlin, Evrard (bib0110) 2014; 473
Anju, Ramamurthy, Dhamodharan (bib0100) 2016; 74
Jahan, Saeed, He, Ni (bib0225) 2011; 18
Habibi, Lucia, Rojas (bib0015) 2010; 110
Haafiz, Eichhorn, Hassan, Jawaid (bib0090) 2013; 93
Johar, Ahmad, Dufresne (bib0180) 2012; 37
Grishkewich, Mohammed, Tang, Tam (bib0080) 2017; 29
Kalita, Nath, Ochubiojo, Buragohain (bib0130) 2013; 108
Sullivan, Ball (bib0275) 2012; 47
Loo, Afandi, Mohammed, Baharuddin (bib0120) 2016; 148
Sofla, Brown, Tsuzuki, Rainey (bib0200) 2016; 7
Adel, El-Shinnawy (bib0285) 2012; 51
Sonia, Dasan (bib0240) 2013; 92
Kumar, Negi, Choudhary, Bhardwaj (bib0205) 2014; 2
Krishnan, Ramesh (bib0195) 2013; 6
Simmons, Loque, Ralph (bib0290) 2010; 13
Trache, Hussin, Chuin, Sabar, Fazita, Taiwo, Hassan, Haafiz (bib0165) 2016; 93
Chandramohan, Marimuthu (bib0030) 2011; 13
Azubuike, Okhamafe (bib0220) 2012; 1
Trache, Donnot, Khimeche, Benelmir, Brosse (bib0125) 2014; 104
Thiruchitrambalam, Athijayamani, Sathiyamurthy (bib0035) 2010; 7
Kim, Eom, Wada (bib0250) 2010; 95
Suryanegara, Nakagaito, Yano (bib0050) 2009; 69
Nadji, Diouf, Benaboura, Bedard, Riedl (bib0160) 2009; 100
Chauhan, Kaith (bib0055) 2012; 7
Abraham, Deepa, Pothan, Jacob, Thomas, Cvelbar, Anandjiwala (bib0150) 2011; 86
Owolabi, Haafiz, Hossain, Hussin, Fazita (bib0185) 2017; 95
Neto, Silverio, Dantas, Pasquini (bib0255) 2013; 42
Navaneetha krishnan, Athijayamani (bib0060) 2016; 7
Nechyporchuk, Belgacem, Bras (bib0070) 2016; 93
Chowdhury, Beg, Khan, Mina (bib0235) 2013; 20
Maria, Garcia, Lagaron (bib0045) 2010; 17
Bajpai, Singh, Madaan (bib0075) 2012; 31
Hussin, Pohan, Garba, Kassim, Rahim, Brosse, Yemloul, Fazita, Haafiz (bib0215) 2016; 92
Das, Ray, Bandyopadhyay, Ghosh, Mohanty, Misra (bib0280) 2009; 16
Alemdar, Sain (bib0170) 2008; 99
Bandera, Sapkota, Josset, Weder, Tingaut, Gao, Foster, Zimmermann (bib0085) 2014; 85
Luddee, Pivsa-Art, Sirisansaneeyakul, Pechyen (bib0270) 2014; 56
Salminen, Reza, Paakkonen, Peyre, Kontturi (bib0095) 2017; 24
Rosa, Rehman, De Miranda, Nachtigall, Bica (bib0230) 2012; 87
Adel, El-Wahab, Ibrahim, Al-Shemy (bib0190) 2010; 101
Shankar, Rhim (bib0020) 2016; 135
Elanthikkal, Gopalakrishnapanicker, Varghese, Guthrie (bib0145) 2010; 80
Jonoobi, Khazaeian, Md Tahir, Azry, Oksman (bib0245) 2011; 18
Merci, Urbano, Grossmann, Tischer, Mali (bib0135) 2015; 73
Lu, Hsieh (bib0260) 2012; 87
Wanrosli, Rohaizu, Ghazali (bib0265) 2011; 84
Wulandari, Rochliadi, Arcana (bib0210) 2016; 107
Capron, Rojas, Bordes (bib0065) 2017; 29
Ciolacu, Ciolacu, Popa (bib0175) 2011; 45
Ferrer, Salas, Rojas (bib0010) 2016; 84
Razali, Sapuan, Jawaid, Ishak, Yusriah (bib0025) 2015; 10
Elanthikkal (10.1016/j.ijbiomac.2017.05.135_bib0145) 2010; 80
Bajpai (10.1016/j.ijbiomac.2017.05.135_bib0075) 2012; 31
Suryanegara (10.1016/j.ijbiomac.2017.05.135_bib0050) 2009; 69
Chandramohan (10.1016/j.ijbiomac.2017.05.135_bib0030) 2011; 13
Abraham (10.1016/j.ijbiomac.2017.05.135_bib0150) 2011; 86
Kim (10.1016/j.ijbiomac.2017.05.135_bib0250) 2010; 95
Ferrer (10.1016/j.ijbiomac.2017.05.135_bib0010) 2016; 84
Sonia (10.1016/j.ijbiomac.2017.05.135_bib0240) 2013; 92
Shankar (10.1016/j.ijbiomac.2017.05.135_bib0020) 2016; 135
Navaneetha krishnan (10.1016/j.ijbiomac.2017.05.135_bib0060) 2016; 7
Kalita (10.1016/j.ijbiomac.2017.05.135_bib0130) 2013; 108
Neto (10.1016/j.ijbiomac.2017.05.135_bib0255) 2013; 42
Thiruchitrambalam (10.1016/j.ijbiomac.2017.05.135_bib0035) 2010; 7
Loo (10.1016/j.ijbiomac.2017.05.135_bib0120) 2016; 148
Nadji (10.1016/j.ijbiomac.2017.05.135_bib0160) 2009; 100
Chowdhury (10.1016/j.ijbiomac.2017.05.135_bib0235) 2013; 20
Capron (10.1016/j.ijbiomac.2017.05.135_bib0065) 2017; 29
Jahan (10.1016/j.ijbiomac.2017.05.135_bib0225) 2011; 18
Habibi (10.1016/j.ijbiomac.2017.05.135_bib0015) 2010; 110
Maria (10.1016/j.ijbiomac.2017.05.135_bib0045) 2010; 17
Jonoobi (10.1016/j.ijbiomac.2017.05.135_bib0245) 2011; 18
Trache (10.1016/j.ijbiomac.2017.05.135_bib0165) 2016; 93
Azubuike (10.1016/j.ijbiomac.2017.05.135_bib0220) 2012; 1
Chauhan (10.1016/j.ijbiomac.2017.05.135_bib0055) 2012; 7
Haafiz (10.1016/j.ijbiomac.2017.05.135_bib0090) 2013; 93
Husgafvel (10.1016/j.ijbiomac.2017.05.135_bib0105) 2016; 126
Kumar (10.1016/j.ijbiomac.2017.05.135_bib0205) 2014; 2
Chuayjuljit (10.1016/j.ijbiomac.2017.05.135_bib0115) 2010; 28
Wulandari (10.1016/j.ijbiomac.2017.05.135_bib0210) 2016; 107
Das (10.1016/j.ijbiomac.2017.05.135_bib0280) 2009; 16
Anju (10.1016/j.ijbiomac.2017.05.135_bib0100) 2016; 74
Simmons (10.1016/j.ijbiomac.2017.05.135_bib0290) 2010; 13
Zeni (10.1016/j.ijbiomac.2017.05.135_bib0005) 2015; 1
Krishnan (10.1016/j.ijbiomac.2017.05.135_bib0195) 2013; 6
Nechyporchuk (10.1016/j.ijbiomac.2017.05.135_bib0070) 2016; 93
Merci (10.1016/j.ijbiomac.2017.05.135_bib0135) 2015; 73
Luddee (10.1016/j.ijbiomac.2017.05.135_bib0270) 2014; 56
Thoorens (10.1016/j.ijbiomac.2017.05.135_bib0110) 2014; 473
Ciolacu (10.1016/j.ijbiomac.2017.05.135_bib0175) 2011; 45
Razali (10.1016/j.ijbiomac.2017.05.135_bib0025) 2015; 10
Adel (10.1016/j.ijbiomac.2017.05.135_bib0190) 2010; 101
Sofla (10.1016/j.ijbiomac.2017.05.135_bib0200) 2016; 7
Nuruddin (10.1016/j.ijbiomac.2017.05.135_bib0155) 2011; 45
Lu (10.1016/j.ijbiomac.2017.05.135_bib0260) 2012; 87
Rosa (10.1016/j.ijbiomac.2017.05.135_bib0230) 2012; 87
Wanrosli (10.1016/j.ijbiomac.2017.05.135_bib0265) 2011; 84
Adel (10.1016/j.ijbiomac.2017.05.135_bib0285) 2012; 51
Hussin (10.1016/j.ijbiomac.2017.05.135_bib0215) 2016; 92
Trache (10.1016/j.ijbiomac.2017.05.135_bib0125) 2014; 104
Sullivan (10.1016/j.ijbiomac.2017.05.135_bib0275) 2012; 47
Chauchan (10.1016/j.ijbiomac.2017.05.135_bib0140) 2009; 7
Johar (10.1016/j.ijbiomac.2017.05.135_bib0180) 2012; 37
Bandera (10.1016/j.ijbiomac.2017.05.135_bib0085) 2014; 85
Alemdar (10.1016/j.ijbiomac.2017.05.135_bib0170) 2008; 99
Salminen (10.1016/j.ijbiomac.2017.05.135_bib0095) 2017; 24
Owolabi (10.1016/j.ijbiomac.2017.05.135_bib0185) 2017; 95
Grishkewich (10.1016/j.ijbiomac.2017.05.135_bib0080) 2017; 29
Athijayamani (10.1016/j.ijbiomac.2017.05.135_bib0040) 2009; 517
References_xml – volume: 69
  start-page: 1187
  year: 2009
  end-page: 1192
  ident: bib0050
  article-title: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites
  publication-title: Compos. Sci. Technol.
– volume: 84
  start-page: 262
  year: 2011
  end-page: 267
  ident: bib0265
  article-title: Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose
  publication-title: Carbohydr. Polym.
– volume: 1
  start-page: 9
  year: 2012
  ident: bib0220
  article-title: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs
  publication-title: Int. J. Recycl. Org. Waste Agric.
– volume: 93
  start-page: 628
  year: 2013
  end-page: 634
  ident: bib0090
  article-title: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue
  publication-title: Carbohydr. Polym.
– volume: 10
  start-page: 1803
  year: 2015
  end-page: 1824
  ident: bib0025
  article-title: A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity
  publication-title: Bioresources
– volume: 85
  start-page: 134
  year: 2014
  end-page: 141
  ident: bib0085
  article-title: Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose
  publication-title: React. Funct. Polym.
– volume: 1
  start-page: 1
  year: 2015
  end-page: 7
  ident: bib0005
  article-title: Preparation of microcellulose (mcc) and nanocellulose (ncc) from Eucalyptus Kraft ssp pulp
  publication-title: Polym. Sci.
– volume: 108
  start-page: 85
  year: 2013
  end-page: 89
  ident: bib0130
  article-title: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid a first line antituberculosis drug
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 93
  start-page: 2
  year: 2016
  end-page: 25
  ident: bib0070
  article-title: Production of cellulose nanofibrils: a review of recent advances
  publication-title: Ind. Crops Prod.
– volume: 473
  start-page: 64
  year: 2014
  end-page: 72
  ident: bib0110
  article-title: Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review
  publication-title: Int. J. Pharm.
– volume: 95
  start-page: 778
  year: 2010
  end-page: 781
  ident: bib0250
  article-title: Thermal decomposition of native cellulose: influence on crystallite size
  publication-title: Polym. Degrad. Stab.
– volume: 13
  start-page: 313
  year: 2010
  end-page: 320
  ident: bib0290
  article-title: Advances in modifying lignin for enhanced biofuel production
  publication-title: J. Curr. Opin. Plant Biol.
– volume: 7
  start-page: 681
  year: 2009
  end-page: 688
  ident: bib0140
  article-title: Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries)
  publication-title: Int. J. Chem. Sci.
– volume: 107
  year: 2016
  ident: bib0210
  article-title: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse
  publication-title: Mater. Sci. Eng.
– volume: 28
  start-page: 109
  year: 2010
  end-page: 117
  ident: bib0115
  article-title: Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study
  publication-title: Waste Manage. Res.
– volume: 126
  start-page: 620
  year: 2016
  end-page: 629
  ident: bib0105
  article-title: Comparative global warming potential assessment of eight microcrystalline cellulose manufacturing systems
  publication-title: J. Clean. Prod.
– volume: 37
  start-page: 93
  year: 2012
  end-page: 99
  ident: bib0180
  article-title: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk
  publication-title: Ind. Crops Prod.
– volume: 24
  start-page: 1657
  year: 2017
  end-page: 1667
  ident: bib0095
  article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield
  publication-title: Cellulose
– volume: 13
  start-page: 77
  year: 2011
  end-page: 84
  ident: bib0030
  article-title: Characterization of natural fibers and their application in bone grafting substitutes
  publication-title: Acta Bioeng. Biomech.
– volume: 93
  start-page: 789
  year: 2016
  end-page: 804
  ident: bib0165
  article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application −A review
  publication-title: Int. J. Biol. Macromol.
– volume: 110
  start-page: 3479
  year: 2010
  end-page: 3500
  ident: bib0015
  article-title: Cellulose nanocrystals: chemistry, selfassembly, and applications
  publication-title: Chem. Rev.
– volume: 148
  start-page: 11
  year: 2016
  end-page: 20
  ident: bib0120
  article-title: Characterisation of microcrystalline cellulose from oil palm fibres for food applications
  publication-title: Carbohydr. Polym.
– volume: 20
  start-page: 1477
  year: 2013
  end-page: 1490
  ident: bib0235
  article-title: Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment
  publication-title: Cellulose
– volume: 74
  start-page: 147
  year: 2016
  end-page: 153
  ident: bib0100
  article-title: Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite
  publication-title: Cem. Concr. Compos.
– volume: 6
  start-page: 18
  year: 2013
  end-page: 23
  ident: bib0195
  article-title: Synthesis and characterization of cellulose nanofibers from coconut coir fibers
  publication-title: J. Appl. Chem.
– volume: 92
  start-page: 11
  year: 2016
  end-page: 19
  ident: bib0215
  article-title: Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents
  publication-title: Int. J. Biol. Macromol.
– volume: 517
  start-page: 344
  year: 2009
  end-page: 353
  ident: bib0040
  article-title: Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite
  publication-title: Mater. Sci. Eng.: A
– volume: 47
  start-page: 133
  year: 2012
  end-page: 141
  ident: bib0275
  article-title: Thermal decomposition and combustion chemistry of cellulosic biomass
  publication-title: Atmos. Environ.
– volume: 17
  start-page: 987
  year: 2010
  end-page: 1004
  ident: bib0045
  article-title: On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid
  publication-title: Cellulose
– volume: 31
  start-page: 5
  year: 2012
  end-page: 8
  ident: bib0075
  article-title: Development and characterization of PLA-based green composites: a review
  publication-title: J. Thermoplast. Compos. Mater.
– volume: 56
  start-page: 211
  year: 2014
  end-page: 218
  ident: bib0270
  article-title: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites
  publication-title: Energy Procedia
– volume: 18
  start-page: 451
  year: 2011
  end-page: 459
  ident: bib0225
  article-title: Jute as raw material for the preparation of microcrystalline cellulose
  publication-title: Cellulose
– volume: 51
  start-page: 1091
  year: 2012
  end-page: 1102
  ident: bib0285
  article-title: Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues
  publication-title: Int. J. Biol. Macromol.
– volume: 86
  start-page: 1468
  year: 2011
  end-page: 1475
  ident: bib0150
  article-title: Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach
  publication-title: Carbohydr. Polym.
– volume: 99
  start-page: 1664
  year: 2008
  end-page: 1671
  ident: bib0170
  article-title: Isolation and characterization of nanofibers from agricultural residues-wheat strawand soy hulls
  publication-title: Bioresour. Technol.
– volume: 73
  start-page: 38
  year: 2015
  end-page: 43
  ident: bib0135
  article-title: Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion
  publication-title: Food Res. Int.
– volume: 18
  start-page: 1085
  year: 2011
  end-page: 1095
  ident: bib0245
  article-title: Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process
  publication-title: Cellulose
– volume: 87
  start-page: 2546
  year: 2012
  end-page: 2553
  ident: bib0260
  article-title: Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins
  publication-title: Carbohydr. Polym.
– volume: 101
  start-page: 4446
  year: 2010
  end-page: 4455
  ident: bib0190
  article-title: Characterization of microcrystalline cellulose prepared form lignocellulisic material. Part I. Acid catalyzed hydrolysis
  publication-title: Bioresour. Technol.
– volume: 2
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0205
  article-title: Characterization of cellulose nanocrystals produced by acid-Hydrolysis from sugarcane bagasse as agro-waste
  publication-title: J. Mater. Phys. Chem.
– volume: 87
  start-page: 1131
  year: 2012
  end-page: 1138
  ident: bib0230
  article-title: Chlorine-free extraction of cellulose from rice husk and whisker isolation
  publication-title: Carbohydr. Polym.
– volume: 29
  start-page: 83
  year: 2017
  end-page: 95
  ident: bib0065
  article-title: Behavior of nanocelluloses at interfaces
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 95
  start-page: 1228
  year: 2017
  end-page: 1234
  ident: bib0185
  article-title: Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds
  publication-title: Int. J. Biol. Macromol.
– volume: 7
  start-page: 307
  year: 2010
  end-page: 323
  ident: bib0035
  article-title: A review on the natural fiber- Reinforced polymer composites for the development of roselle fiber reinforced polyester composite
  publication-title: J. Nat. Fibers
– volume: 16
  start-page: 783
  year: 2009
  end-page: 793
  ident: bib0280
  article-title: A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations
  publication-title: Cellulose
– volume: 42
  start-page: 480
  year: 2013
  end-page: 488
  ident: bib0255
  article-title: Extraction and characterization of cellulose nanocrystals from agro-industrial residue −Soy hulls
  publication-title: Ind. Crops Prod.
– volume: 7
  year: 2012
  ident: bib0055
  article-title: Accreditation of novel roselle grafted fiber reinforced bio-composites
  publication-title: J. Eng. Fibers Fabr.
– volume: 100
  start-page: 3585
  year: 2009
  end-page: 3592
  ident: bib0160
  article-title: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.)
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 668
  year: 2013
  end-page: 674
  ident: bib0240
  article-title: Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus Sabdariffa
  publication-title: Carbohydr. Polym.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 9
  ident: bib0200
  article-title: A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods
  publication-title: J. Nanosci. Nanotechnol.
– volume: 7
  start-page: 1674
  year: 2016
  end-page: 1680
  ident: bib0060
  article-title: Mechanical properties and absorption behavior of CSP filled roselle fiber reinforced hybrid composites
  publication-title: J. Mater. Environ. Sci.
– volume: 104
  start-page: 223
  year: 2014
  end-page: 230
  ident: bib0125
  article-title: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibers
  publication-title: Carbohydr. Polym.
– volume: 45
  start-page: 13
  year: 2011
  end-page: 21
  ident: bib0175
  article-title: Amorphous cellulose — structure and characterization
  publication-title: Cellul. Chem. Technol.
– volume: 45
  start-page: 347
  year: 2011
  end-page: 354
  ident: bib0155
  article-title: Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative
  publication-title: Cellul. Chem. Technol.
– volume: 135
  start-page: 18
  year: 2016
  end-page: 26
  ident: bib0020
  article-title: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based compositefilms
  publication-title: Carbohydr. Polym.
– volume: 29
  start-page: 32
  year: 2017
  end-page: 45
  ident: bib0080
  article-title: Recent advances in the application of cellulose nanocrystals
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 80
  start-page: 852
  year: 2010
  end-page: 859
  ident: bib0145
  article-title: Cellulose microfibres produced from banana plant wastes: isolation and characterization
  publication-title: Carbohydr. Polym.
– volume: 84
  start-page: 337
  year: 2016
  end-page: 343
  ident: bib0010
  article-title: Physical thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls
  publication-title: Ind. Crops Prod.
– volume: 74
  start-page: 147
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0100
  article-title: Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite
  publication-title: Cem. Concr. Compos.
  doi: 10.1016/j.cemconcomp.2016.09.003
– volume: 107
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0210
  article-title: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse
  publication-title: Mater. Sci. Eng.
– volume: 7
  issue: 2
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0055
  article-title: Accreditation of novel roselle grafted fiber reinforced bio-composites
  publication-title: J. Eng. Fibers Fabr.
– volume: 17
  start-page: 987
  issue: 5
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0045
  article-title: On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9430-x
– volume: 7
  start-page: 307
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0035
  article-title: A review on the natural fiber- Reinforced polymer composites for the development of roselle fiber reinforced polyester composite
  publication-title: J. Nat. Fibers
  doi: 10.1080/15440478.2010.529299
– volume: 29
  start-page: 32
  year: 2017
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0080
  article-title: Recent advances in the application of cellulose nanocrystals
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.01.005
– volume: 29
  start-page: 83
  year: 2017
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0065
  article-title: Behavior of nanocelluloses at interfaces
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.04.001
– volume: 6
  start-page: 18
  issue: 3
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0195
  article-title: Synthesis and characterization of cellulose nanofibers from coconut coir fibers
  publication-title: J. Appl. Chem.
– volume: 100
  start-page: 3585
  year: 2009
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0160
  article-title: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.)
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.01.074
– volume: 87
  start-page: 1131
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0230
  article-title: Chlorine-free extraction of cellulose from rice husk and whisker isolation
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.08.084
– volume: 47
  start-page: 133
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0275
  article-title: Thermal decomposition and combustion chemistry of cellulosic biomass
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.11.022
– volume: 126
  start-page: 620
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0105
  article-title: Comparative global warming potential assessment of eight microcrystalline cellulose manufacturing systems
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.03.091
– volume: 108
  start-page: 85
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0130
  article-title: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid a first line antituberculosis drug
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2013.02.016
– volume: 16
  start-page: 783
  year: 2009
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0280
  article-title: A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations
  publication-title: Cellulose
  doi: 10.1007/s10570-009-9280-6
– volume: 2
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0205
  article-title: Characterization of cellulose nanocrystals produced by acid-Hydrolysis from sugarcane bagasse as agro-waste
  publication-title: J. Mater. Phys. Chem.
  doi: 10.26438/jpcm/v5i1.17
– volume: 7
  start-page: 1674
  issue: 5
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0060
  article-title: Mechanical properties and absorption behavior of CSP filled roselle fiber reinforced hybrid composites
  publication-title: J. Mater. Environ. Sci.
– volume: 95
  start-page: 778
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0250
  article-title: Thermal decomposition of native cellulose: influence on crystallite size
  publication-title: Polym. Degrad. Stab.
  doi: 10.1016/j.polymdegradstab.2010.02.009
– volume: 95
  start-page: 1228
  year: 2017
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0185
  article-title: Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.11.016
– volume: 84
  start-page: 262
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0265
  article-title: Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2010.11.032
– volume: 7
  start-page: 681
  year: 2009
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0140
  article-title: Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries)
  publication-title: Int. J. Chem. Sci.
– volume: 148
  start-page: 11
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0120
  article-title: Characterisation of microcrystalline cellulose from oil palm fibres for food applications
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2016.04.055
– volume: 24
  start-page: 1657
  year: 2017
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0095
  article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield
  publication-title: Cellulose
  doi: 10.1007/s10570-017-1228-7
– volume: 73
  start-page: 38
  year: 2015
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0135
  article-title: Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2015.03.020
– volume: 517
  start-page: 344
  issue: 12
  year: 2009
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0040
  article-title: Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite
  publication-title: Mater. Sci. Eng.: A
  doi: 10.1016/j.msea.2009.04.027
– volume: 110
  start-page: 3479
  issue: 6
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0015
  article-title: Cellulose nanocrystals: chemistry, selfassembly, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/cr900339w
– volume: 135
  start-page: 18
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0020
  article-title: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based compositefilms
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2015.08.082
– volume: 13
  start-page: 313
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0290
  article-title: Advances in modifying lignin for enhanced biofuel production
  publication-title: J. Curr. Opin. Plant Biol.
– volume: 10
  start-page: 1803
  issue: 1
  year: 2015
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0025
  article-title: A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity
  publication-title: Bioresources
  doi: 10.15376/biores.10.1.1803-1824
– volume: 92
  start-page: 668
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0240
  article-title: Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus Sabdariffa
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2012.09.015
– volume: 1
  start-page: 9
  issue: 1
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0220
  article-title: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs
  publication-title: Int. J. Recycl. Org. Waste Agric.
  doi: 10.1186/2251-7715-1-9
– volume: 18
  start-page: 1085
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0245
  article-title: Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process
  publication-title: Cellulose
  doi: 10.1007/s10570-011-9546-7
– volume: 85
  start-page: 134
  year: 2014
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0085
  article-title: Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2014.09.009
– volume: 1
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0005
  article-title: Preparation of microcellulose (mcc) and nanocellulose (ncc) from Eucalyptus Kraft ssp pulp
  publication-title: Polym. Sci.
– volume: 93
  start-page: 628
  issue: 2
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0090
  article-title: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2013.01.035
– volume: 93
  start-page: 2
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0070
  article-title: Production of cellulose nanofibrils: a review of recent advances
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2016.02.016
– volume: 42
  start-page: 480
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0255
  article-title: Extraction and characterization of cellulose nanocrystals from agro-industrial residue −Soy hulls
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2012.06.041
– volume: 31
  start-page: 5
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0075
  article-title: Development and characterization of PLA-based green composites: a review
  publication-title: J. Thermoplast. Compos. Mater.
– volume: 13
  start-page: 77
  issue: 1
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0030
  article-title: Characterization of natural fibers and their application in bone grafting substitutes
  publication-title: Acta Bioeng. Biomech.
– volume: 93
  start-page: 789
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0165
  article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application −A review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.09.056
– volume: 99
  start-page: 1664
  year: 2008
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0170
  article-title: Isolation and characterization of nanofibers from agricultural residues-wheat strawand soy hulls
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2007.04.029
– volume: 87
  start-page: 2546
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0260
  article-title: Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.11.023
– volume: 104
  start-page: 223
  year: 2014
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0125
  article-title: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibers
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2014.01.058
– volume: 28
  start-page: 109
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0115
  article-title: Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study
  publication-title: Waste Manage. Res.
  doi: 10.1177/0734242X09339324
– volume: 86
  start-page: 1468
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0150
  article-title: Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2011.06.034
– volume: 56
  start-page: 211
  year: 2014
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0270
  article-title: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.07.151
– volume: 45
  start-page: 13
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0175
  article-title: Amorphous cellulose — structure and characterization
  publication-title: Cellul. Chem. Technol.
– volume: 69
  start-page: 1187
  year: 2009
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0050
  article-title: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2009.02.022
– volume: 20
  start-page: 1477
  issue: 3
  year: 2013
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0235
  article-title: Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment
  publication-title: Cellulose
  doi: 10.1007/s10570-013-9921-7
– volume: 92
  start-page: 11
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0215
  article-title: Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.06.094
– volume: 101
  start-page: 4446
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0190
  article-title: Characterization of microcrystalline cellulose prepared form lignocellulisic material. Part I. Acid catalyzed hydrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.047
– volume: 7
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0200
  article-title: A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods
  publication-title: J. Nanosci. Nanotechnol.
– volume: 80
  start-page: 852
  year: 2010
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0145
  article-title: Cellulose microfibres produced from banana plant wastes: isolation and characterization
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2009.12.043
– volume: 18
  start-page: 451
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0225
  article-title: Jute as raw material for the preparation of microcrystalline cellulose
  publication-title: Cellulose
  doi: 10.1007/s10570-010-9481-z
– volume: 473
  start-page: 64
  issue: 12
  year: 2014
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0110
  article-title: Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2014.06.055
– volume: 51
  start-page: 1091
  issue: 5
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0285
  article-title: Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2012.08.003
– volume: 84
  start-page: 337
  year: 2016
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0010
  article-title: Physical thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2016.02.014
– volume: 37
  start-page: 93
  year: 2012
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0180
  article-title: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2011.12.016
– volume: 45
  start-page: 347
  year: 2011
  ident: 10.1016/j.ijbiomac.2017.05.135_bib0155
  article-title: Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative
  publication-title: Cellul. Chem. Technol.
SSID ssj0006518
Score 2.5930347
Snippet •Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The...
In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 931
SubjectTerms acid hydrolysis
biocomposites
cellulose
Cellulose - chemistry
Cellulose - isolation & purification
crystal structure
differential scanning calorimetry
elemental composition
energy-dispersive X-ray analysis
Fourier transform infrared spectroscopy
Hibiscus - chemistry
Hibiscus sabdariffa
lignin
Microcrystalline cellulose
nanocomposites
particle size
pulp
Roselle fiber
Scanning electron microscopy
Surface Properties
Temperature
Thermal properties
thermal stability
thermogravimetry
X-ray diffraction
Title Isolation and characterization of microcrystalline cellulose from roselle fibers
URI https://dx.doi.org/10.1016/j.ijbiomac.2017.05.135
https://www.ncbi.nlm.nih.gov/pubmed/28549863
https://www.proquest.com/docview/1903161330
https://www.proquest.com/docview/2000543706
Volume 103
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7EPehF3PU1vmjBa5xJ-pU-yrAy7rLiQcFb0510wQyaEWfm4MXfblUeo8KKB29JqIaiqlL1dVEPxk5DBt4UHhIr0pjIDJ8CRoXEC8AAWyCiAEro_7vSo1v5507drbBh1wtDZZWt7298eu2t2y_9Vpr9x_G4T2VJGJ7QQA3GQDGge7uUhqz87OWtzEOrOsdHxAlRv-sSnpyNJ9Tk7mmUYVpP8EzrtW__DVCfAdA6EF1sso0WQfLzhsmfbCVWv9jasFvctsWuL9GeaoFzX5W8WI5kbjou-RT4A5XhFU_PCA1pJnfklL9f3E9nkVO_CUfOKKHPgepJZtvs9uL3zXCUtIsTkgLhyTwxMigLkAZpSiWjhyghx3tR1GmppQ4Z3qCzEgqRCq9AhmA92Dz4TCuf2lKIHbZaTau4x7hBhALaRGMA__VYWg2QF6r0Kua5hazHVCctV7RTxWm5xb3ryscmrpOyIym7gXIo5R7rL889NnM1vjxhO2W4Dxbi0Pl_efak055DZZBMfRWni5lDPCQQ9Aox-Jwmq4GtMAPdY7uN6pc8UwOqzbXY_wZ3B2yd3poSwUO2On9axCOEOvNwXNvyMftxfvl3dPUKFbsABw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK9NBdhrV7Ze02DdjVS2xZknUsghVJH8EOLdCbINkikKB1iiY57N-P9CPogBU97GbYIkCQNPmJ4APge8jQm9JjYmUakzyjp0BRIfESKcCWhCiQE_pXcz29yc9v1e0eTPpeGC6r7Hx_69Mbb929GXXSHD0sFiMuS6LwRAZqKAbKMd3b93k6lRrA_unsYjrfOWStmjQfn0-Y4Emj8PLHYsl97p6nGabNEM-02fz2zxj1HAZtYtHZG3jdgUhx2vJ5CHuxPoKDSb-77S38mpFJNTIXvq5EuZvK3DZdihWKe67EKx9_EzrksdxRcAp_e7daR8EtJ4I445y-QC4pWb-Dm7Of15Np0u1OSEpCKJvE5EFZxDTkplJ59BhzLOhqFHVa6VyHjC7RWYWlTKVXmIdgPdoi-Ewrn9pKyvcwqFd1_AjCEEhBbaIxSL97rKxGLEpVeRWLwmI2BNVLy5XdYHHeb3Hn-gqypeul7FjKbqwcSXkIox3dQzta40UK2yvD_WUkjvz_i7Tfeu05UgbL1NdxtV07gkSScK-U4-fPZA22lWash_ChVf2OZ-5BtYWWn_6Du69wML2-unSXs_nFMbziL23F4AkMNo_b-JmQzyZ86Sz7D9H5Arg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolation+and+characterization+of+microcrystalline+cellulose+from+roselle+fibers&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Kian%2C+Lau+Kia&rft.au=Jawaid%2C+Mohammad&rft.au=Ariffin%2C+Hidayah&rft.au=Alothman%2C+Othman+Y&rft.date=2017-10-01&rft.issn=0141-8130&rft.volume=103+p.931-940&rft.spage=931&rft.epage=940&rft_id=info:doi/10.1016%2Fj.ijbiomac.2017.05.135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon