Isolation and characterization of microcrystalline cellulose from roselle fibers
•Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74...
Saved in:
Published in | International journal of biological macromolecules Vol. 103; pp. 931 - 940 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74%).•Obtained R-MCC also has considerably good thermal stability.
In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. |
---|---|
AbstractList | In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. •Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The unsymmetrical broad size distribution can be observed for R-pulp and R-MCC.•Crystallinity value of R-MCC (78%) is more than Commercial MCC (74%).•Obtained R-MCC also has considerably good thermal stability. In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research. |
Author | Kian, Lau Kia Jawaid, Mohammad Ariffin, Hidayah Alothman, Othman Y. |
Author_xml | – sequence: 1 givenname: Lau Kia surname: Kian fullname: Kian, Lau Kia organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia – sequence: 2 givenname: Mohammad surname: Jawaid fullname: Jawaid, Mohammad email: jawaid_md@yahoo.co.in, jawaid@upm.edu.my organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia – sequence: 3 givenname: Hidayah surname: Ariffin fullname: Ariffin, Hidayah organization: Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia – sequence: 4 givenname: Othman Y. surname: Alothman fullname: Alothman, Othman Y. organization: Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28549863$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P3DAQxa2KqizQr4By5JLUE_9JInEAIaBISO0BzpbtjFWvnBjsLBL99PWy7KWXPXk8-r2x570TcjTHGQk5B9oABflj3fi18XHStmkpdA0VDTDxhayg74aaUsqOyIoCh7oHRo_JSc7r0pUC-m_kuO0FH3rJVuT3Q45BLz7OlZ7Hyv7RSdsFk_-7a0ZXTd6maNN7XnQIfsbKYgibEDNWLsWpSqUKoVy8wZTPyFenQ8bvn-cpeb67fbr5WT_-un-4uX6srQCx1B03YnAODO9GwVE75K4HyVHCKLk0LRrWjs4yYFo4bsyg3dAb3UqhYRgZOyUXu7kvKb5uMC9q8nn7Mz1j3GTVlm0FZx2VB1EYKAMJjNGCnn-iGzPhqF6Sn3R6V3vDCnC5A4onOSd0yvrlw6olaR8UULXNR63VPh-1zUdRoUo-RS7_k-9fOCi82gmxePrmMalsPc4WR5_QLmqM_tCIf8Grr0Y |
CitedBy_id | crossref_primary_10_1016_j_powtec_2018_07_076 crossref_primary_10_1080_15440478_2022_2079582 crossref_primary_10_3390_polym11071124 crossref_primary_10_1007_s10570_021_03983_8 crossref_primary_10_3390_polym13142275 crossref_primary_10_1016_j_carbpol_2025_123373 crossref_primary_10_1002_slct_202302812 crossref_primary_10_1007_s13399_024_05722_y crossref_primary_10_35812_CelluloseChemTechnol_2022_56_06 crossref_primary_10_1080_15440478_2020_1764441 crossref_primary_10_3390_polym13020231 crossref_primary_10_3390_molecules28052009 crossref_primary_10_14710_jksa_23_5_147_151 crossref_primary_10_1016_j_ijbiomac_2018_10_162 crossref_primary_10_1007_s10570_019_02672_x crossref_primary_10_1016_j_ijbiomac_2020_03_158 crossref_primary_10_1007_s12649_019_00799_3 crossref_primary_10_1016_j_carbpol_2018_11_013 crossref_primary_10_1007_s42452_019_0769_9 crossref_primary_10_1016_j_foodres_2025_116212 crossref_primary_10_1007_s10570_019_02712_6 crossref_primary_10_1016_j_ijbiomac_2018_12_056 crossref_primary_10_1016_j_conbuildmat_2021_124064 crossref_primary_10_1134_S1990793121080194 crossref_primary_10_22159_ijap_2023_v15s2_09 crossref_primary_10_1002_marc_202100862 crossref_primary_10_1016_j_ijbiomac_2022_10_230 crossref_primary_10_1002_ceat_202300379 crossref_primary_10_1007_s13399_024_05462_z crossref_primary_10_1016_j_carpta_2024_100423 crossref_primary_10_1016_j_ijbiomac_2018_06_052 crossref_primary_10_1016_j_ijggc_2023_103876 crossref_primary_10_1016_j_rineng_2025_104655 crossref_primary_10_1016_j_fbio_2024_105362 crossref_primary_10_3390_molecules29112618 crossref_primary_10_1016_j_carbpol_2024_122432 crossref_primary_10_1016_j_ijbiomac_2019_02_044 crossref_primary_10_1016_j_cherd_2023_03_037 crossref_primary_10_3390_ma15175992 crossref_primary_10_1016_j_indcrop_2023_117129 crossref_primary_10_3390_molecules25122824 crossref_primary_10_1016_j_carbpol_2022_119837 crossref_primary_10_1021_acsomega_4c08298 crossref_primary_10_1007_s10570_023_05684_w crossref_primary_10_1080_15440478_2020_1764454 crossref_primary_10_1016_j_cscee_2024_100743 crossref_primary_10_1016_j_carbpol_2021_118968 crossref_primary_10_1016_j_wasman_2018_10_023 crossref_primary_10_1002_mame_201900832 crossref_primary_10_1016_j_enzmictec_2023_110376 crossref_primary_10_1038_s41598_023_41119_z crossref_primary_10_1016_j_carpta_2020_100031 crossref_primary_10_1016_j_biteb_2024_101764 crossref_primary_10_3390_ma11071057 crossref_primary_10_3390_polym15051062 crossref_primary_10_1016_j_carbpol_2023_121692 crossref_primary_10_1016_j_jmrt_2019_05_024 crossref_primary_10_1039_D1MA00429H crossref_primary_10_1007_s10098_024_03110_8 crossref_primary_10_1016_j_foodchem_2024_142429 crossref_primary_10_1016_j_foodhyd_2021_106771 crossref_primary_10_1016_j_ijbiomac_2021_12_179 crossref_primary_10_1021_acsomega_3c09350 crossref_primary_10_1002_pen_25874 crossref_primary_10_3390_ma16020648 crossref_primary_10_1007_s13580_022_00436_4 crossref_primary_10_1016_j_ijbiomac_2020_03_255 crossref_primary_10_1021_acssuschemeng_3c07633 crossref_primary_10_1080_15440478_2023_2198278 crossref_primary_10_3390_nano9121702 crossref_primary_10_1016_j_ijbiomac_2019_07_176 crossref_primary_10_1016_j_ijbiomac_2022_11_172 crossref_primary_10_1080_00986445_2021_2001458 crossref_primary_10_1016_j_carbpol_2022_119485 crossref_primary_10_1007_s10570_020_03485_z crossref_primary_10_1016_j_carbpol_2021_118317 crossref_primary_10_1016_j_indcrop_2021_114247 crossref_primary_10_1016_j_carbpol_2022_119886 crossref_primary_10_1016_j_ecmx_2021_100159 crossref_primary_10_1007_s10904_021_02212_w crossref_primary_10_1016_j_kjs_2023_06_005 crossref_primary_10_1016_j_matpr_2022_06_071 crossref_primary_10_1007_s10570_019_02543_5 crossref_primary_10_1016_j_bcdf_2024_100416 crossref_primary_10_1021_acsomega_3c01222 crossref_primary_10_1002_pen_26838 crossref_primary_10_1016_j_biteb_2023_101731 crossref_primary_10_1002_slct_202300746 crossref_primary_10_1080_15440478_2023_2283549 crossref_primary_10_1016_j_arabjc_2021_103178 crossref_primary_10_3390_micro3030046 crossref_primary_10_1088_1742_6596_2190_1_012007 crossref_primary_10_1016_j_fpsl_2022_100937 crossref_primary_10_1016_j_ijbiomac_2024_137620 crossref_primary_10_1016_j_carbpol_2020_117030 crossref_primary_10_1007_s13399_024_06009_y crossref_primary_10_3390_polym12051021 crossref_primary_10_1088_1755_1315_1201_1_012101 crossref_primary_10_1016_j_carpta_2023_100396 crossref_primary_10_1515_rams_2023_0103 crossref_primary_10_1016_j_heliyon_2023_e17258 crossref_primary_10_1002_slct_202203248 crossref_primary_10_35812_CelluloseChemTechnol_2022_56_64 crossref_primary_10_1080_25740881_2024_2375366 crossref_primary_10_1021_acsomega_4c00497 crossref_primary_10_1016_j_cej_2023_144776 crossref_primary_10_3390_pharmaceutics12111063 crossref_primary_10_1016_j_mtcomm_2025_112247 crossref_primary_10_1002_slct_202304996 crossref_primary_10_1016_j_ijbiomac_2024_135558 crossref_primary_10_3390_polym14101974 crossref_primary_10_1007_s12668_023_01080_7 crossref_primary_10_1016_j_tca_2021_178882 crossref_primary_10_1016_j_ijft_2024_100844 crossref_primary_10_1016_j_matchemphys_2021_124769 crossref_primary_10_1016_j_ijengsci_2021_103500 crossref_primary_10_1021_acsomega_1c02568 crossref_primary_10_1016_j_ijbiomac_2020_03_199 crossref_primary_10_1007_s10570_023_05161_4 crossref_primary_10_3390_polym15204141 crossref_primary_10_4028_www_scientific_net_KEM_867_109 crossref_primary_10_1007_s10570_022_05022_6 crossref_primary_10_1007_s11696_021_01844_z crossref_primary_10_1016_j_jclepro_2023_138555 crossref_primary_10_1016_j_carbpol_2021_118537 crossref_primary_10_1016_j_jenvman_2023_119928 crossref_primary_10_1016_j_fuel_2020_118258 crossref_primary_10_1016_j_ijbiomac_2018_03_065 crossref_primary_10_1080_15440478_2022_2058674 crossref_primary_10_15328_cb1238 crossref_primary_10_1016_j_jmro_2025_100189 crossref_primary_10_1016_j_ijbiomac_2024_130532 crossref_primary_10_1016_j_polymdegradstab_2019_01_022 crossref_primary_10_1007_s10570_022_04527_4 crossref_primary_10_1039_D4TA03284E crossref_primary_10_1080_15440478_2020_1848712 crossref_primary_10_1016_j_carbpol_2018_12_080 crossref_primary_10_1016_j_ijbiomac_2024_136116 crossref_primary_10_1016_j_ijbiomac_2024_129273 crossref_primary_10_1016_j_nanoen_2023_108769 crossref_primary_10_1021_acs_chemrev_2c00816 crossref_primary_10_1016_j_ijbiomac_2023_123556 crossref_primary_10_1016_j_indcrop_2020_112457 crossref_primary_10_1002_fsn3_4439 crossref_primary_10_1016_j_tsep_2024_102836 crossref_primary_10_1007_s10924_020_02012_2 crossref_primary_10_1007_s12649_019_00627_8 crossref_primary_10_1039_D3FB00052D crossref_primary_10_1016_j_fpsl_2023_101048 crossref_primary_10_1016_j_scitotenv_2019_135070 crossref_primary_10_3390_pr11051322 crossref_primary_10_1016_j_carbpol_2020_116937 crossref_primary_10_15328_cb1386 crossref_primary_10_3390_molecules29204806 crossref_primary_10_1007_s13399_024_05373_z crossref_primary_10_1016_j_biombioe_2024_107525 crossref_primary_10_1016_j_ibiod_2024_105852 crossref_primary_10_1007_s10570_019_02866_3 crossref_primary_10_1016_j_polymertesting_2019_105910 crossref_primary_10_1007_s12221_020_1353_z crossref_primary_10_1007_s10570_022_04494_w crossref_primary_10_1007_s13399_019_00400_w crossref_primary_10_1007_s13399_024_06328_0 crossref_primary_10_1016_j_molliq_2023_122928 crossref_primary_10_1021_acsagscitech_3c00184 crossref_primary_10_1016_j_ijbiomac_2023_127687 crossref_primary_10_1016_j_nanoen_2024_109650 crossref_primary_10_1515_ntrev_2021_0053 crossref_primary_10_1016_j_microc_2020_105510 crossref_primary_10_1007_s10853_021_06215_3 crossref_primary_10_1111_jfpp_17071 crossref_primary_10_1007_s42452_024_05870_w crossref_primary_10_1016_j_ijbiomac_2024_131444 crossref_primary_10_1016_j_ijbiomac_2020_05_170 crossref_primary_10_1016_j_ijbiomac_2020_03_222 crossref_primary_10_1016_j_conbuildmat_2023_132014 crossref_primary_10_1016_j_ijbiomac_2025_140217 crossref_primary_10_4236_ojapps_2024_149161 crossref_primary_10_52711_0974_4150_2024_00038 crossref_primary_10_1111_jfpp_15613 crossref_primary_10_1007_s10924_020_01725_8 crossref_primary_10_1155_2024_1088430 |
Cites_doi | 10.1016/j.cemconcomp.2016.09.003 10.1007/s10570-010-9430-x 10.1080/15440478.2010.529299 10.1016/j.cocis.2017.01.005 10.1016/j.cocis.2017.04.001 10.1016/j.biortech.2009.01.074 10.1016/j.carbpol.2011.08.084 10.1016/j.atmosenv.2011.11.022 10.1016/j.jclepro.2016.03.091 10.1016/j.colsurfb.2013.02.016 10.1007/s10570-009-9280-6 10.26438/jpcm/v5i1.17 10.1016/j.polymdegradstab.2010.02.009 10.1016/j.ijbiomac.2016.11.016 10.1016/j.carbpol.2010.11.032 10.1016/j.carbpol.2016.04.055 10.1007/s10570-017-1228-7 10.1016/j.foodres.2015.03.020 10.1016/j.msea.2009.04.027 10.1021/cr900339w 10.1016/j.carbpol.2015.08.082 10.15376/biores.10.1.1803-1824 10.1016/j.carbpol.2012.09.015 10.1186/2251-7715-1-9 10.1007/s10570-011-9546-7 10.1016/j.reactfunctpolym.2014.09.009 10.1016/j.carbpol.2013.01.035 10.1016/j.indcrop.2016.02.016 10.1016/j.indcrop.2012.06.041 10.1016/j.ijbiomac.2016.09.056 10.1016/j.biortech.2007.04.029 10.1016/j.carbpol.2011.11.023 10.1016/j.carbpol.2014.01.058 10.1177/0734242X09339324 10.1016/j.carbpol.2011.06.034 10.1016/j.egypro.2014.07.151 10.1016/j.compscitech.2009.02.022 10.1007/s10570-013-9921-7 10.1016/j.ijbiomac.2016.06.094 10.1016/j.biortech.2010.01.047 10.1016/j.carbpol.2009.12.043 10.1007/s10570-010-9481-z 10.1016/j.ijpharm.2014.06.055 10.1016/j.ijbiomac.2012.08.003 10.1016/j.indcrop.2016.02.014 10.1016/j.indcrop.2011.12.016 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright © 2017 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright © 2017 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2017.05.135 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
EndPage | 940 |
ExternalDocumentID | 28549863 10_1016_j_ijbiomac_2017_05_135 S0141813017317300 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c515t-74b59ff1b47d54eafe4f8164e61d646b2eb32dfc313a5f4bb9af98ba265a19d33 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 02:28:15 EDT 2025 Fri Jul 11 00:00:42 EDT 2025 Wed Feb 19 02:42:22 EST 2025 Tue Jul 01 02:18:52 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 23 02:30:54 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal properties Scanning electron microscopy Fourier transform infrared spectroscopy Roselle fiber Microcrystalline cellulose |
Language | English |
License | Copyright © 2017 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-74b59ff1b47d54eafe4f8164e61d646b2eb32dfc313a5f4bb9af98ba265a19d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.ijbiomac.2017.05.135 |
PMID | 28549863 |
PQID | 1903161330 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2000543706 proquest_miscellaneous_1903161330 pubmed_primary_28549863 crossref_citationtrail_10_1016_j_ijbiomac_2017_05_135 crossref_primary_10_1016_j_ijbiomac_2017_05_135 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2017_05_135 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 2017-Oct 20171001 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2017 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Athijayamani, Thiruchitrambalam, Natarajan, Pazhanivel (bib0040) 2009; 517 Nuruddin, Chowdhury, Haque, Rahman, Farhad, Jahan (bib0155) 2011; 45 Zeni, Favero, Pacheco, Grisa (bib0005) 2015; 1 Chauchan, Sapkal, Sapkal, Zamre (bib0140) 2009; 7 Husgafvel, Vanhatalo, Chiang, Linkosalmi, Dahl (bib0105) 2016; 126 Chuayjuljit, Su-uthai, Charuchinda (bib0115) 2010; 28 Thoorens, Krier, Leclercq, Carlin, Evrard (bib0110) 2014; 473 Anju, Ramamurthy, Dhamodharan (bib0100) 2016; 74 Jahan, Saeed, He, Ni (bib0225) 2011; 18 Habibi, Lucia, Rojas (bib0015) 2010; 110 Haafiz, Eichhorn, Hassan, Jawaid (bib0090) 2013; 93 Johar, Ahmad, Dufresne (bib0180) 2012; 37 Grishkewich, Mohammed, Tang, Tam (bib0080) 2017; 29 Kalita, Nath, Ochubiojo, Buragohain (bib0130) 2013; 108 Sullivan, Ball (bib0275) 2012; 47 Loo, Afandi, Mohammed, Baharuddin (bib0120) 2016; 148 Sofla, Brown, Tsuzuki, Rainey (bib0200) 2016; 7 Adel, El-Shinnawy (bib0285) 2012; 51 Sonia, Dasan (bib0240) 2013; 92 Kumar, Negi, Choudhary, Bhardwaj (bib0205) 2014; 2 Krishnan, Ramesh (bib0195) 2013; 6 Simmons, Loque, Ralph (bib0290) 2010; 13 Trache, Hussin, Chuin, Sabar, Fazita, Taiwo, Hassan, Haafiz (bib0165) 2016; 93 Chandramohan, Marimuthu (bib0030) 2011; 13 Azubuike, Okhamafe (bib0220) 2012; 1 Trache, Donnot, Khimeche, Benelmir, Brosse (bib0125) 2014; 104 Thiruchitrambalam, Athijayamani, Sathiyamurthy (bib0035) 2010; 7 Kim, Eom, Wada (bib0250) 2010; 95 Suryanegara, Nakagaito, Yano (bib0050) 2009; 69 Nadji, Diouf, Benaboura, Bedard, Riedl (bib0160) 2009; 100 Chauhan, Kaith (bib0055) 2012; 7 Abraham, Deepa, Pothan, Jacob, Thomas, Cvelbar, Anandjiwala (bib0150) 2011; 86 Owolabi, Haafiz, Hossain, Hussin, Fazita (bib0185) 2017; 95 Neto, Silverio, Dantas, Pasquini (bib0255) 2013; 42 Navaneetha krishnan, Athijayamani (bib0060) 2016; 7 Nechyporchuk, Belgacem, Bras (bib0070) 2016; 93 Chowdhury, Beg, Khan, Mina (bib0235) 2013; 20 Maria, Garcia, Lagaron (bib0045) 2010; 17 Bajpai, Singh, Madaan (bib0075) 2012; 31 Hussin, Pohan, Garba, Kassim, Rahim, Brosse, Yemloul, Fazita, Haafiz (bib0215) 2016; 92 Das, Ray, Bandyopadhyay, Ghosh, Mohanty, Misra (bib0280) 2009; 16 Alemdar, Sain (bib0170) 2008; 99 Bandera, Sapkota, Josset, Weder, Tingaut, Gao, Foster, Zimmermann (bib0085) 2014; 85 Luddee, Pivsa-Art, Sirisansaneeyakul, Pechyen (bib0270) 2014; 56 Salminen, Reza, Paakkonen, Peyre, Kontturi (bib0095) 2017; 24 Rosa, Rehman, De Miranda, Nachtigall, Bica (bib0230) 2012; 87 Adel, El-Wahab, Ibrahim, Al-Shemy (bib0190) 2010; 101 Shankar, Rhim (bib0020) 2016; 135 Elanthikkal, Gopalakrishnapanicker, Varghese, Guthrie (bib0145) 2010; 80 Jonoobi, Khazaeian, Md Tahir, Azry, Oksman (bib0245) 2011; 18 Merci, Urbano, Grossmann, Tischer, Mali (bib0135) 2015; 73 Lu, Hsieh (bib0260) 2012; 87 Wanrosli, Rohaizu, Ghazali (bib0265) 2011; 84 Wulandari, Rochliadi, Arcana (bib0210) 2016; 107 Capron, Rojas, Bordes (bib0065) 2017; 29 Ciolacu, Ciolacu, Popa (bib0175) 2011; 45 Ferrer, Salas, Rojas (bib0010) 2016; 84 Razali, Sapuan, Jawaid, Ishak, Yusriah (bib0025) 2015; 10 Elanthikkal (10.1016/j.ijbiomac.2017.05.135_bib0145) 2010; 80 Bajpai (10.1016/j.ijbiomac.2017.05.135_bib0075) 2012; 31 Suryanegara (10.1016/j.ijbiomac.2017.05.135_bib0050) 2009; 69 Chandramohan (10.1016/j.ijbiomac.2017.05.135_bib0030) 2011; 13 Abraham (10.1016/j.ijbiomac.2017.05.135_bib0150) 2011; 86 Kim (10.1016/j.ijbiomac.2017.05.135_bib0250) 2010; 95 Ferrer (10.1016/j.ijbiomac.2017.05.135_bib0010) 2016; 84 Sonia (10.1016/j.ijbiomac.2017.05.135_bib0240) 2013; 92 Shankar (10.1016/j.ijbiomac.2017.05.135_bib0020) 2016; 135 Navaneetha krishnan (10.1016/j.ijbiomac.2017.05.135_bib0060) 2016; 7 Kalita (10.1016/j.ijbiomac.2017.05.135_bib0130) 2013; 108 Neto (10.1016/j.ijbiomac.2017.05.135_bib0255) 2013; 42 Thiruchitrambalam (10.1016/j.ijbiomac.2017.05.135_bib0035) 2010; 7 Loo (10.1016/j.ijbiomac.2017.05.135_bib0120) 2016; 148 Nadji (10.1016/j.ijbiomac.2017.05.135_bib0160) 2009; 100 Chowdhury (10.1016/j.ijbiomac.2017.05.135_bib0235) 2013; 20 Capron (10.1016/j.ijbiomac.2017.05.135_bib0065) 2017; 29 Jahan (10.1016/j.ijbiomac.2017.05.135_bib0225) 2011; 18 Habibi (10.1016/j.ijbiomac.2017.05.135_bib0015) 2010; 110 Maria (10.1016/j.ijbiomac.2017.05.135_bib0045) 2010; 17 Jonoobi (10.1016/j.ijbiomac.2017.05.135_bib0245) 2011; 18 Trache (10.1016/j.ijbiomac.2017.05.135_bib0165) 2016; 93 Azubuike (10.1016/j.ijbiomac.2017.05.135_bib0220) 2012; 1 Chauhan (10.1016/j.ijbiomac.2017.05.135_bib0055) 2012; 7 Haafiz (10.1016/j.ijbiomac.2017.05.135_bib0090) 2013; 93 Husgafvel (10.1016/j.ijbiomac.2017.05.135_bib0105) 2016; 126 Kumar (10.1016/j.ijbiomac.2017.05.135_bib0205) 2014; 2 Chuayjuljit (10.1016/j.ijbiomac.2017.05.135_bib0115) 2010; 28 Wulandari (10.1016/j.ijbiomac.2017.05.135_bib0210) 2016; 107 Das (10.1016/j.ijbiomac.2017.05.135_bib0280) 2009; 16 Anju (10.1016/j.ijbiomac.2017.05.135_bib0100) 2016; 74 Simmons (10.1016/j.ijbiomac.2017.05.135_bib0290) 2010; 13 Zeni (10.1016/j.ijbiomac.2017.05.135_bib0005) 2015; 1 Krishnan (10.1016/j.ijbiomac.2017.05.135_bib0195) 2013; 6 Nechyporchuk (10.1016/j.ijbiomac.2017.05.135_bib0070) 2016; 93 Merci (10.1016/j.ijbiomac.2017.05.135_bib0135) 2015; 73 Luddee (10.1016/j.ijbiomac.2017.05.135_bib0270) 2014; 56 Thoorens (10.1016/j.ijbiomac.2017.05.135_bib0110) 2014; 473 Ciolacu (10.1016/j.ijbiomac.2017.05.135_bib0175) 2011; 45 Razali (10.1016/j.ijbiomac.2017.05.135_bib0025) 2015; 10 Adel (10.1016/j.ijbiomac.2017.05.135_bib0190) 2010; 101 Sofla (10.1016/j.ijbiomac.2017.05.135_bib0200) 2016; 7 Nuruddin (10.1016/j.ijbiomac.2017.05.135_bib0155) 2011; 45 Lu (10.1016/j.ijbiomac.2017.05.135_bib0260) 2012; 87 Rosa (10.1016/j.ijbiomac.2017.05.135_bib0230) 2012; 87 Wanrosli (10.1016/j.ijbiomac.2017.05.135_bib0265) 2011; 84 Adel (10.1016/j.ijbiomac.2017.05.135_bib0285) 2012; 51 Hussin (10.1016/j.ijbiomac.2017.05.135_bib0215) 2016; 92 Trache (10.1016/j.ijbiomac.2017.05.135_bib0125) 2014; 104 Sullivan (10.1016/j.ijbiomac.2017.05.135_bib0275) 2012; 47 Chauchan (10.1016/j.ijbiomac.2017.05.135_bib0140) 2009; 7 Johar (10.1016/j.ijbiomac.2017.05.135_bib0180) 2012; 37 Bandera (10.1016/j.ijbiomac.2017.05.135_bib0085) 2014; 85 Alemdar (10.1016/j.ijbiomac.2017.05.135_bib0170) 2008; 99 Salminen (10.1016/j.ijbiomac.2017.05.135_bib0095) 2017; 24 Owolabi (10.1016/j.ijbiomac.2017.05.135_bib0185) 2017; 95 Grishkewich (10.1016/j.ijbiomac.2017.05.135_bib0080) 2017; 29 Athijayamani (10.1016/j.ijbiomac.2017.05.135_bib0040) 2009; 517 |
References_xml | – volume: 69 start-page: 1187 year: 2009 end-page: 1192 ident: bib0050 article-title: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites publication-title: Compos. Sci. Technol. – volume: 84 start-page: 262 year: 2011 end-page: 267 ident: bib0265 article-title: Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose publication-title: Carbohydr. Polym. – volume: 1 start-page: 9 year: 2012 ident: bib0220 article-title: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs publication-title: Int. J. Recycl. Org. Waste Agric. – volume: 93 start-page: 628 year: 2013 end-page: 634 ident: bib0090 article-title: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue publication-title: Carbohydr. Polym. – volume: 10 start-page: 1803 year: 2015 end-page: 1824 ident: bib0025 article-title: A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity publication-title: Bioresources – volume: 85 start-page: 134 year: 2014 end-page: 141 ident: bib0085 article-title: Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose publication-title: React. Funct. Polym. – volume: 1 start-page: 1 year: 2015 end-page: 7 ident: bib0005 article-title: Preparation of microcellulose (mcc) and nanocellulose (ncc) from Eucalyptus Kraft ssp pulp publication-title: Polym. Sci. – volume: 108 start-page: 85 year: 2013 end-page: 89 ident: bib0130 article-title: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid a first line antituberculosis drug publication-title: Colloids Surf. B: Biointerfaces – volume: 93 start-page: 2 year: 2016 end-page: 25 ident: bib0070 article-title: Production of cellulose nanofibrils: a review of recent advances publication-title: Ind. Crops Prod. – volume: 473 start-page: 64 year: 2014 end-page: 72 ident: bib0110 article-title: Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review publication-title: Int. J. Pharm. – volume: 95 start-page: 778 year: 2010 end-page: 781 ident: bib0250 article-title: Thermal decomposition of native cellulose: influence on crystallite size publication-title: Polym. Degrad. Stab. – volume: 13 start-page: 313 year: 2010 end-page: 320 ident: bib0290 article-title: Advances in modifying lignin for enhanced biofuel production publication-title: J. Curr. Opin. Plant Biol. – volume: 7 start-page: 681 year: 2009 end-page: 688 ident: bib0140 article-title: Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries) publication-title: Int. J. Chem. Sci. – volume: 107 year: 2016 ident: bib0210 article-title: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse publication-title: Mater. Sci. Eng. – volume: 28 start-page: 109 year: 2010 end-page: 117 ident: bib0115 article-title: Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study publication-title: Waste Manage. Res. – volume: 126 start-page: 620 year: 2016 end-page: 629 ident: bib0105 article-title: Comparative global warming potential assessment of eight microcrystalline cellulose manufacturing systems publication-title: J. Clean. Prod. – volume: 37 start-page: 93 year: 2012 end-page: 99 ident: bib0180 article-title: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk publication-title: Ind. Crops Prod. – volume: 24 start-page: 1657 year: 2017 end-page: 1667 ident: bib0095 article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield publication-title: Cellulose – volume: 13 start-page: 77 year: 2011 end-page: 84 ident: bib0030 article-title: Characterization of natural fibers and their application in bone grafting substitutes publication-title: Acta Bioeng. Biomech. – volume: 93 start-page: 789 year: 2016 end-page: 804 ident: bib0165 article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application −A review publication-title: Int. J. Biol. Macromol. – volume: 110 start-page: 3479 year: 2010 end-page: 3500 ident: bib0015 article-title: Cellulose nanocrystals: chemistry, selfassembly, and applications publication-title: Chem. Rev. – volume: 148 start-page: 11 year: 2016 end-page: 20 ident: bib0120 article-title: Characterisation of microcrystalline cellulose from oil palm fibres for food applications publication-title: Carbohydr. Polym. – volume: 20 start-page: 1477 year: 2013 end-page: 1490 ident: bib0235 article-title: Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment publication-title: Cellulose – volume: 74 start-page: 147 year: 2016 end-page: 153 ident: bib0100 article-title: Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite publication-title: Cem. Concr. Compos. – volume: 6 start-page: 18 year: 2013 end-page: 23 ident: bib0195 article-title: Synthesis and characterization of cellulose nanofibers from coconut coir fibers publication-title: J. Appl. Chem. – volume: 92 start-page: 11 year: 2016 end-page: 19 ident: bib0215 article-title: Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents publication-title: Int. J. Biol. Macromol. – volume: 517 start-page: 344 year: 2009 end-page: 353 ident: bib0040 article-title: Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite publication-title: Mater. Sci. Eng.: A – volume: 47 start-page: 133 year: 2012 end-page: 141 ident: bib0275 article-title: Thermal decomposition and combustion chemistry of cellulosic biomass publication-title: Atmos. Environ. – volume: 17 start-page: 987 year: 2010 end-page: 1004 ident: bib0045 article-title: On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid publication-title: Cellulose – volume: 31 start-page: 5 year: 2012 end-page: 8 ident: bib0075 article-title: Development and characterization of PLA-based green composites: a review publication-title: J. Thermoplast. Compos. Mater. – volume: 56 start-page: 211 year: 2014 end-page: 218 ident: bib0270 article-title: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites publication-title: Energy Procedia – volume: 18 start-page: 451 year: 2011 end-page: 459 ident: bib0225 article-title: Jute as raw material for the preparation of microcrystalline cellulose publication-title: Cellulose – volume: 51 start-page: 1091 year: 2012 end-page: 1102 ident: bib0285 article-title: Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues publication-title: Int. J. Biol. Macromol. – volume: 86 start-page: 1468 year: 2011 end-page: 1475 ident: bib0150 article-title: Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach publication-title: Carbohydr. Polym. – volume: 99 start-page: 1664 year: 2008 end-page: 1671 ident: bib0170 article-title: Isolation and characterization of nanofibers from agricultural residues-wheat strawand soy hulls publication-title: Bioresour. Technol. – volume: 73 start-page: 38 year: 2015 end-page: 43 ident: bib0135 article-title: Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion publication-title: Food Res. Int. – volume: 18 start-page: 1085 year: 2011 end-page: 1095 ident: bib0245 article-title: Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process publication-title: Cellulose – volume: 87 start-page: 2546 year: 2012 end-page: 2553 ident: bib0260 article-title: Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins publication-title: Carbohydr. Polym. – volume: 101 start-page: 4446 year: 2010 end-page: 4455 ident: bib0190 article-title: Characterization of microcrystalline cellulose prepared form lignocellulisic material. Part I. Acid catalyzed hydrolysis publication-title: Bioresour. Technol. – volume: 2 start-page: 1 year: 2014 end-page: 8 ident: bib0205 article-title: Characterization of cellulose nanocrystals produced by acid-Hydrolysis from sugarcane bagasse as agro-waste publication-title: J. Mater. Phys. Chem. – volume: 87 start-page: 1131 year: 2012 end-page: 1138 ident: bib0230 article-title: Chlorine-free extraction of cellulose from rice husk and whisker isolation publication-title: Carbohydr. Polym. – volume: 29 start-page: 83 year: 2017 end-page: 95 ident: bib0065 article-title: Behavior of nanocelluloses at interfaces publication-title: Curr. Opin. Colloid Interface Sci. – volume: 95 start-page: 1228 year: 2017 end-page: 1234 ident: bib0185 article-title: Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds publication-title: Int. J. Biol. Macromol. – volume: 7 start-page: 307 year: 2010 end-page: 323 ident: bib0035 article-title: A review on the natural fiber- Reinforced polymer composites for the development of roselle fiber reinforced polyester composite publication-title: J. Nat. Fibers – volume: 16 start-page: 783 year: 2009 end-page: 793 ident: bib0280 article-title: A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations publication-title: Cellulose – volume: 42 start-page: 480 year: 2013 end-page: 488 ident: bib0255 article-title: Extraction and characterization of cellulose nanocrystals from agro-industrial residue −Soy hulls publication-title: Ind. Crops Prod. – volume: 7 year: 2012 ident: bib0055 article-title: Accreditation of novel roselle grafted fiber reinforced bio-composites publication-title: J. Eng. Fibers Fabr. – volume: 100 start-page: 3585 year: 2009 end-page: 3592 ident: bib0160 article-title: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.) publication-title: Bioresour. Technol. – volume: 92 start-page: 668 year: 2013 end-page: 674 ident: bib0240 article-title: Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus Sabdariffa publication-title: Carbohydr. Polym. – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: bib0200 article-title: A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods publication-title: J. Nanosci. Nanotechnol. – volume: 7 start-page: 1674 year: 2016 end-page: 1680 ident: bib0060 article-title: Mechanical properties and absorption behavior of CSP filled roselle fiber reinforced hybrid composites publication-title: J. Mater. Environ. Sci. – volume: 104 start-page: 223 year: 2014 end-page: 230 ident: bib0125 article-title: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibers publication-title: Carbohydr. Polym. – volume: 45 start-page: 13 year: 2011 end-page: 21 ident: bib0175 article-title: Amorphous cellulose — structure and characterization publication-title: Cellul. Chem. Technol. – volume: 45 start-page: 347 year: 2011 end-page: 354 ident: bib0155 article-title: Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative publication-title: Cellul. Chem. Technol. – volume: 135 start-page: 18 year: 2016 end-page: 26 ident: bib0020 article-title: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based compositefilms publication-title: Carbohydr. Polym. – volume: 29 start-page: 32 year: 2017 end-page: 45 ident: bib0080 article-title: Recent advances in the application of cellulose nanocrystals publication-title: Curr. Opin. Colloid Interface Sci. – volume: 80 start-page: 852 year: 2010 end-page: 859 ident: bib0145 article-title: Cellulose microfibres produced from banana plant wastes: isolation and characterization publication-title: Carbohydr. Polym. – volume: 84 start-page: 337 year: 2016 end-page: 343 ident: bib0010 article-title: Physical thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls publication-title: Ind. Crops Prod. – volume: 74 start-page: 147 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0100 article-title: Surface modified microcrystalline cellulose from cotton as a potential mineral admixture in cement mortar composite publication-title: Cem. Concr. Compos. doi: 10.1016/j.cemconcomp.2016.09.003 – volume: 107 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0210 article-title: Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse publication-title: Mater. Sci. Eng. – volume: 7 issue: 2 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0055 article-title: Accreditation of novel roselle grafted fiber reinforced bio-composites publication-title: J. Eng. Fibers Fabr. – volume: 17 start-page: 987 issue: 5 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0045 article-title: On the use of plant cellulose nanowhiskers to enhance the barrier properties of polylactic acid publication-title: Cellulose doi: 10.1007/s10570-010-9430-x – volume: 7 start-page: 307 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0035 article-title: A review on the natural fiber- Reinforced polymer composites for the development of roselle fiber reinforced polyester composite publication-title: J. Nat. Fibers doi: 10.1080/15440478.2010.529299 – volume: 29 start-page: 32 year: 2017 ident: 10.1016/j.ijbiomac.2017.05.135_bib0080 article-title: Recent advances in the application of cellulose nanocrystals publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.005 – volume: 29 start-page: 83 year: 2017 ident: 10.1016/j.ijbiomac.2017.05.135_bib0065 article-title: Behavior of nanocelluloses at interfaces publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.04.001 – volume: 6 start-page: 18 issue: 3 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0195 article-title: Synthesis and characterization of cellulose nanofibers from coconut coir fibers publication-title: J. Appl. Chem. – volume: 100 start-page: 3585 year: 2009 ident: 10.1016/j.ijbiomac.2017.05.135_bib0160 article-title: Comparative study of lignins isolated from Alfa grass (Stipa tenacissima L.) publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.01.074 – volume: 87 start-page: 1131 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0230 article-title: Chlorine-free extraction of cellulose from rice husk and whisker isolation publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.08.084 – volume: 47 start-page: 133 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0275 article-title: Thermal decomposition and combustion chemistry of cellulosic biomass publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.11.022 – volume: 126 start-page: 620 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0105 article-title: Comparative global warming potential assessment of eight microcrystalline cellulose manufacturing systems publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.03.091 – volume: 108 start-page: 85 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0130 article-title: Extraction and characterization of microcrystalline cellulose from fodder grass; Setaria glauca (L) P. Beauv, and its potential as a drug delivery vehicle for isoniazid a first line antituberculosis drug publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2013.02.016 – volume: 16 start-page: 783 year: 2009 ident: 10.1016/j.ijbiomac.2017.05.135_bib0280 article-title: A study of the mechanical, thermal and morphological properties of microcrystalline cellulose particles prepared from cotton slivers using different acid concentrations publication-title: Cellulose doi: 10.1007/s10570-009-9280-6 – volume: 2 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.ijbiomac.2017.05.135_bib0205 article-title: Characterization of cellulose nanocrystals produced by acid-Hydrolysis from sugarcane bagasse as agro-waste publication-title: J. Mater. Phys. Chem. doi: 10.26438/jpcm/v5i1.17 – volume: 7 start-page: 1674 issue: 5 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0060 article-title: Mechanical properties and absorption behavior of CSP filled roselle fiber reinforced hybrid composites publication-title: J. Mater. Environ. Sci. – volume: 95 start-page: 778 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0250 article-title: Thermal decomposition of native cellulose: influence on crystallite size publication-title: Polym. Degrad. Stab. doi: 10.1016/j.polymdegradstab.2010.02.009 – volume: 95 start-page: 1228 year: 2017 ident: 10.1016/j.ijbiomac.2017.05.135_bib0185 article-title: Influence of alkaline hydrogen peroxide pre-hydrolysis on the isolation of microcrystalline cellulose from oil palm fronds publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.11.016 – volume: 84 start-page: 262 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0265 article-title: Synthesis and characterization of cellulose phosphate from oil palm empty fruit bunches microcrystalline cellulose publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2010.11.032 – volume: 7 start-page: 681 year: 2009 ident: 10.1016/j.ijbiomac.2017.05.135_bib0140 article-title: Microcrystalline cellulose from cotton rags (waste from garment and hosiery industries) publication-title: Int. J. Chem. Sci. – volume: 148 start-page: 11 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0120 article-title: Characterisation of microcrystalline cellulose from oil palm fibres for food applications publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2016.04.055 – volume: 24 start-page: 1657 year: 2017 ident: 10.1016/j.ijbiomac.2017.05.135_bib0095 article-title: TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield publication-title: Cellulose doi: 10.1007/s10570-017-1228-7 – volume: 73 start-page: 38 year: 2015 ident: 10.1016/j.ijbiomac.2017.05.135_bib0135 article-title: Properties of microcrystalline cellulose extracted from soybean hulls by reactive extrusion publication-title: Food Res. Int. doi: 10.1016/j.foodres.2015.03.020 – volume: 517 start-page: 344 issue: 12 year: 2009 ident: 10.1016/j.ijbiomac.2017.05.135_bib0040 article-title: Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite publication-title: Mater. Sci. Eng.: A doi: 10.1016/j.msea.2009.04.027 – volume: 110 start-page: 3479 issue: 6 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0015 article-title: Cellulose nanocrystals: chemistry, selfassembly, and applications publication-title: Chem. Rev. doi: 10.1021/cr900339w – volume: 135 start-page: 18 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0020 article-title: Preparation of nanocellulose from micro-crystalline cellulose: the effect on the performance and properties of agar-based compositefilms publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2015.08.082 – volume: 13 start-page: 313 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0290 article-title: Advances in modifying lignin for enhanced biofuel production publication-title: J. Curr. Opin. Plant Biol. – volume: 10 start-page: 1803 issue: 1 year: 2015 ident: 10.1016/j.ijbiomac.2017.05.135_bib0025 article-title: A study on chemical composition, physical, tensile, morphological, and thermal properties roselle fibre: effect of fibre maturity publication-title: Bioresources doi: 10.15376/biores.10.1.1803-1824 – volume: 92 start-page: 668 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0240 article-title: Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus Sabdariffa publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2012.09.015 – volume: 1 start-page: 9 issue: 1 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0220 article-title: Physicochemical, spectroscopic and thermal properties of microcrystalline cellulose derived from corn cobs publication-title: Int. J. Recycl. Org. Waste Agric. doi: 10.1186/2251-7715-1-9 – volume: 18 start-page: 1085 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0245 article-title: Characteristics of cellulose nanofibers isolated from rubberwood and empty fruit bunches of oil palm using chemo-mechanical process publication-title: Cellulose doi: 10.1007/s10570-011-9546-7 – volume: 85 start-page: 134 year: 2014 ident: 10.1016/j.ijbiomac.2017.05.135_bib0085 article-title: Influence of mechanical treatments on the properties of cellulose nanofibers isolated from microcrystalline cellulose publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2014.09.009 – volume: 1 start-page: 1 year: 2015 ident: 10.1016/j.ijbiomac.2017.05.135_bib0005 article-title: Preparation of microcellulose (mcc) and nanocellulose (ncc) from Eucalyptus Kraft ssp pulp publication-title: Polym. Sci. – volume: 93 start-page: 628 issue: 2 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0090 article-title: Isolation and characterization of microcrystalline cellulose from oil palm biomass residue publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2013.01.035 – volume: 93 start-page: 2 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0070 article-title: Production of cellulose nanofibrils: a review of recent advances publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2016.02.016 – volume: 42 start-page: 480 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0255 article-title: Extraction and characterization of cellulose nanocrystals from agro-industrial residue −Soy hulls publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2012.06.041 – volume: 31 start-page: 5 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0075 article-title: Development and characterization of PLA-based green composites: a review publication-title: J. Thermoplast. Compos. Mater. – volume: 13 start-page: 77 issue: 1 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0030 article-title: Characterization of natural fibers and their application in bone grafting substitutes publication-title: Acta Bioeng. Biomech. – volume: 93 start-page: 789 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0165 article-title: Microcrystalline cellulose: isolation, characterization and bio-composites application −A review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.09.056 – volume: 99 start-page: 1664 year: 2008 ident: 10.1016/j.ijbiomac.2017.05.135_bib0170 article-title: Isolation and characterization of nanofibers from agricultural residues-wheat strawand soy hulls publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2007.04.029 – volume: 87 start-page: 2546 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0260 article-title: Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.11.023 – volume: 104 start-page: 223 year: 2014 ident: 10.1016/j.ijbiomac.2017.05.135_bib0125 article-title: Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibers publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2014.01.058 – volume: 28 start-page: 109 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0115 article-title: Poly(vinyl chloride) film filled with microcrystalline cellulose prepared from cotton fabric waste: properties and biodegradability study publication-title: Waste Manage. Res. doi: 10.1177/0734242X09339324 – volume: 86 start-page: 1468 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0150 article-title: Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2011.06.034 – volume: 56 start-page: 211 year: 2014 ident: 10.1016/j.ijbiomac.2017.05.135_bib0270 article-title: Particle size of ground bacterial cellulose affecting mechanical, thermal, and moisture barrier properties of PLA/BC biocomposites publication-title: Energy Procedia doi: 10.1016/j.egypro.2014.07.151 – volume: 45 start-page: 13 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0175 article-title: Amorphous cellulose — structure and characterization publication-title: Cellul. Chem. Technol. – volume: 69 start-page: 1187 year: 2009 ident: 10.1016/j.ijbiomac.2017.05.135_bib0050 article-title: The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2009.02.022 – volume: 20 start-page: 1477 issue: 3 year: 2013 ident: 10.1016/j.ijbiomac.2017.05.135_bib0235 article-title: Modification of oil palm empty fruit bunch fibers by nanoparticle impregnation and alkali treatment publication-title: Cellulose doi: 10.1007/s10570-013-9921-7 – volume: 92 start-page: 11 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0215 article-title: Physicochemical of microcrystalline cellulose from oil palm fronds as potential methylene blue adsorbents publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.06.094 – volume: 101 start-page: 4446 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0190 article-title: Characterization of microcrystalline cellulose prepared form lignocellulisic material. Part I. Acid catalyzed hydrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.047 – volume: 7 start-page: 1 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0200 article-title: A comparison of cellulose nanocrystals and cellulose nanofibres extracted from bagasse using acid and ball milling methods publication-title: J. Nanosci. Nanotechnol. – volume: 80 start-page: 852 year: 2010 ident: 10.1016/j.ijbiomac.2017.05.135_bib0145 article-title: Cellulose microfibres produced from banana plant wastes: isolation and characterization publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2009.12.043 – volume: 18 start-page: 451 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0225 article-title: Jute as raw material for the preparation of microcrystalline cellulose publication-title: Cellulose doi: 10.1007/s10570-010-9481-z – volume: 473 start-page: 64 issue: 12 year: 2014 ident: 10.1016/j.ijbiomac.2017.05.135_bib0110 article-title: Microcrystalline cellulose, a direct compression binder in a quality by design environment-A review publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2014.06.055 – volume: 51 start-page: 1091 issue: 5 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0285 article-title: Hypolipidemic applications of microcrystalline cellulose composite synthesized from different agricultural residues publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2012.08.003 – volume: 84 start-page: 337 year: 2016 ident: 10.1016/j.ijbiomac.2017.05.135_bib0010 article-title: Physical thermal, chemical and rheological characterization of cellulosic microfibrils and microparticles produced from soybean hulls publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2016.02.014 – volume: 37 start-page: 93 year: 2012 ident: 10.1016/j.ijbiomac.2017.05.135_bib0180 article-title: Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2011.12.016 – volume: 45 start-page: 347 year: 2011 ident: 10.1016/j.ijbiomac.2017.05.135_bib0155 article-title: Extraction and characterization of cellulose microfibrils from agricultural wastes in an integrated biorefinery initiative publication-title: Cellul. Chem. Technol. |
SSID | ssj0006518 |
Score | 2.5930347 |
Snippet | •Roselle fiber-Microcrystalline cellulose (R-MCC) extracted by chemical process.•R-MCC demonstrates altered and non-uniform shape of micro-sized fibrils.•The... In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 931 |
SubjectTerms | acid hydrolysis biocomposites cellulose Cellulose - chemistry Cellulose - isolation & purification crystal structure differential scanning calorimetry elemental composition energy-dispersive X-ray analysis Fourier transform infrared spectroscopy Hibiscus - chemistry Hibiscus sabdariffa lignin Microcrystalline cellulose nanocomposites particle size pulp Roselle fiber Scanning electron microscopy Surface Properties Temperature Thermal properties thermal stability thermogravimetry X-ray diffraction |
Title | Isolation and characterization of microcrystalline cellulose from roselle fibers |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2017.05.135 https://www.ncbi.nlm.nih.gov/pubmed/28549863 https://www.proquest.com/docview/1903161330 https://www.proquest.com/docview/2000543706 |
Volume | 103 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG7EPehF3PU1vmjBa5xJ-pU-yrAy7rLiQcFb0510wQyaEWfm4MXfblUeo8KKB29JqIaiqlL1dVEPxk5DBt4UHhIr0pjIDJ8CRoXEC8AAWyCiAEro_7vSo1v5507drbBh1wtDZZWt7298eu2t2y_9Vpr9x_G4T2VJGJ7QQA3GQDGge7uUhqz87OWtzEOrOsdHxAlRv-sSnpyNJ9Tk7mmUYVpP8EzrtW__DVCfAdA6EF1sso0WQfLzhsmfbCVWv9jasFvctsWuL9GeaoFzX5W8WI5kbjou-RT4A5XhFU_PCA1pJnfklL9f3E9nkVO_CUfOKKHPgepJZtvs9uL3zXCUtIsTkgLhyTwxMigLkAZpSiWjhyghx3tR1GmppQ4Z3qCzEgqRCq9AhmA92Dz4TCuf2lKIHbZaTau4x7hBhALaRGMA__VYWg2QF6r0Kua5hazHVCctV7RTxWm5xb3ryscmrpOyIym7gXIo5R7rL889NnM1vjxhO2W4Dxbi0Pl_efak055DZZBMfRWni5lDPCQQ9Aox-Jwmq4GtMAPdY7uN6pc8UwOqzbXY_wZ3B2yd3poSwUO2On9axCOEOvNwXNvyMftxfvl3dPUKFbsABw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK9NBdhrV7Ze02DdjVS2xZknUsghVJH8EOLdCbINkikKB1iiY57N-P9CPogBU97GbYIkCQNPmJ4APge8jQm9JjYmUakzyjp0BRIfESKcCWhCiQE_pXcz29yc9v1e0eTPpeGC6r7Hx_69Mbb929GXXSHD0sFiMuS6LwRAZqKAbKMd3b93k6lRrA_unsYjrfOWStmjQfn0-Y4Emj8PLHYsl97p6nGabNEM-02fz2zxj1HAZtYtHZG3jdgUhx2vJ5CHuxPoKDSb-77S38mpFJNTIXvq5EuZvK3DZdihWKe67EKx9_EzrksdxRcAp_e7daR8EtJ4I445y-QC4pWb-Dm7Of15Np0u1OSEpCKJvE5EFZxDTkplJ59BhzLOhqFHVa6VyHjC7RWYWlTKVXmIdgPdoi-Ewrn9pKyvcwqFd1_AjCEEhBbaIxSL97rKxGLEpVeRWLwmI2BNVLy5XdYHHeb3Hn-gqypeul7FjKbqwcSXkIox3dQzta40UK2yvD_WUkjvz_i7Tfeu05UgbL1NdxtV07gkSScK-U4-fPZA22lWash_ChVf2OZ-5BtYWWn_6Du69wML2-unSXs_nFMbziL23F4AkMNo_b-JmQzyZ86Sz7D9H5Arg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isolation+and+characterization+of+microcrystalline+cellulose+from+roselle+fibers&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Kian%2C+Lau+Kia&rft.au=Jawaid%2C+Mohammad&rft.au=Ariffin%2C+Hidayah&rft.au=Alothman%2C+Othman+Y&rft.date=2017-10-01&rft.issn=0141-8130&rft.volume=103+p.931-940&rft.spage=931&rft.epage=940&rft_id=info:doi/10.1016%2Fj.ijbiomac.2017.05.135&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |