EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review

Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning mod...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 20
Main Authors Ahmad, Ijaz, Wang, Xin, Zhu, Mingxing, Wang, Cheng, Pi, Yao, Khan, Javed Ali, Khan, Siyab, Samuel, Oluwarotimi Williams, Chen, Shixiong, Li, Guanglin
Format Journal Article
LanguageEnglish
Published United States Hindawi 17.06.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG’s noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG’s low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
AbstractList Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG’s noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG’s low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.
Audience Academic
Author Khan, Siyab
Ahmad, Ijaz
Pi, Yao
Samuel, Oluwarotimi Williams
Khan, Javed Ali
Chen, Shixiong
Zhu, Mingxing
Wang, Xin
Wang, Cheng
Li, Guanglin
AuthorAffiliation 5 School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
1 CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
3 Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
7 Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
4 School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
6 Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
AuthorAffiliation_xml – name: 1 CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
– name: 3 Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China
– name: 5 School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China
– name: 4 School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China
– name: 7 Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
– name: 6 Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan
– name: 2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
Author_xml – sequence: 1
  givenname: Ijaz
  orcidid: 0000-0003-3974-2207
  surname: Ahmad
  fullname: Ahmad, Ijaz
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
– sequence: 2
  givenname: Xin
  orcidid: 0000-0003-3352-6829
  surname: Wang
  fullname: Wang, Xin
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
– sequence: 3
  givenname: Mingxing
  orcidid: 0000-0002-1204-118X
  surname: Zhu
  fullname: Zhu, Mingxing
  organization: Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhenChinaucas.ac.cn
– sequence: 4
  givenname: Cheng
  surname: Wang
  fullname: Wang, Cheng
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
– sequence: 5
  givenname: Yao
  surname: Pi
  fullname: Pi, Yao
  organization: School of Biomedical EngineeringSun Yat-Sen UniversityGuangzhouChinasysu.edu.cn
– sequence: 6
  givenname: Javed Ali
  orcidid: 0000-0002-6205-6232
  surname: Khan
  fullname: Khan, Javed Ali
  organization: Department of Software EngineeringUniversity of Science and TechnologyBannuKhyber PakhtunkhwaPakistanustb.edu.pk
– sequence: 7
  givenname: Siyab
  surname: Khan
  fullname: Khan, Siyab
  organization: Institute of Computer Science and Information TechnologyThe University of AgriculturePeshawarKhyber PakhtunkhwaPakistanaup.edu.pk
– sequence: 8
  givenname: Oluwarotimi Williams
  orcidid: 0000-0003-1945-1402
  surname: Samuel
  fullname: Samuel, Oluwarotimi Williams
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
– sequence: 9
  givenname: Shixiong
  orcidid: 0000-0002-5868-6952
  surname: Chen
  fullname: Chen, Shixiong
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
– sequence: 10
  givenname: Guanglin
  orcidid: 0000-0001-9016-2617
  surname: Li
  fullname: Li, Guanglin
  organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35755757$$D View this record in MEDLINE/PubMed
BookMark eNp9kt9rFDEQx4NU7A9981kWfBF0e_md3T4IZ3tW4USw-hyS7Ow1ZS-7bnav1L_eLHeetqgkkIH5zHcyfOcYHYQ2AELPCT4lRIgZxZTOJC-kUPgROiKyULmgih3sYykO0XGMNxgLJTB9gg5ZCtJVR0gvFpf5OxOhyhadb6AbvMuuwP8Ye8guYAA3-DZkG2-yT8Zd-wCzC4AuW4Lpgw-rbN51fZsyEM-yeXZ1FwdYm0nkC2w83D5Fj2vTRHi2e0_Qt_eLr-cf8uXny4_n82XuBBFDrjB3plCVLKnkZaV45awsqK25MliWDFdKWOUos6SgnClrMS-sNcJCKZUAdoLebnW70a6hchCG3jS66_3a9He6NV7fzwR_rVftRpeUUcZEEni1E-jb7yPEQa99dNA0JkA7Rk1lQTjnRJKEvnyA3rRjH9J4E4VLwlnBf1Mr04D2oW5TXzeJ6rnCBeNK4ok6_QuVTgVr75LTdTLlfsGLPwfdT_jL0gS82QKub2Psod4jBOtpY_S0MXq3MQmnD3DnBzOZnj7im38Vvd4WpYWozK3_f4ufLQTMxQ
CitedBy_id crossref_primary_10_1016_j_procs_2024_03_243
crossref_primary_10_3390_s22197575
crossref_primary_10_1016_j_dajour_2023_100280
crossref_primary_10_1109_ACCESS_2023_3251105
crossref_primary_10_3390_electronics11213457
crossref_primary_10_3390_computers12100197
crossref_primary_10_3390_electronics11193168
crossref_primary_10_1016_j_sasc_2023_200062
crossref_primary_10_1109_ACCESS_2022_3232563
crossref_primary_10_1016_j_eswa_2023_121359
crossref_primary_10_1016_j_physa_2023_129230
crossref_primary_10_1056_AIoa2300331
crossref_primary_10_1038_s41551_023_01029_x
crossref_primary_10_1016_j_eswa_2023_121040
crossref_primary_10_1016_j_bspc_2025_107574
crossref_primary_10_1016_j_medengphy_2024_104206
crossref_primary_10_3390_electronics11182813
crossref_primary_10_3390_diagnostics13010162
crossref_primary_10_3390_s23208375
crossref_primary_10_3389_fninf_2023_1272791
crossref_primary_10_1007_s11227_023_05299_9
crossref_primary_10_1155_2023_9814248
crossref_primary_10_3390_life12121946
crossref_primary_10_3390_s24092863
crossref_primary_10_3390_s22197269
crossref_primary_10_1016_j_jisa_2023_103654
crossref_primary_10_3390_su141710717
crossref_primary_10_1109_TIM_2022_3220287
crossref_primary_10_12720_jait_14_5_883_891
crossref_primary_10_1016_j_ymssp_2024_111880
crossref_primary_10_1109_JIOT_2024_3395496
crossref_primary_10_1136_pn_2023_003757
crossref_primary_10_3390_app13158747
crossref_primary_10_1016_j_dajour_2024_100420
crossref_primary_10_1088_1741_2552_acf7f5
crossref_primary_10_1016_j_bspc_2024_107484
crossref_primary_10_1631_jzus_A2200469
crossref_primary_10_3390_diagnostics12102541
crossref_primary_10_1007_s11042_023_15052_2
crossref_primary_10_3390_diagnostics13071292
crossref_primary_10_3390_s23062971
crossref_primary_10_3390_su14148374
crossref_primary_10_1007_s11571_024_10141_w
crossref_primary_10_1016_j_compbiomed_2023_107782
crossref_primary_10_1109_ACCESS_2024_3376254
crossref_primary_10_3390_s22155921
crossref_primary_10_1016_j_yebeh_2023_109120
crossref_primary_10_1007_s42979_024_03488_8
crossref_primary_10_1002_epi4_12800
crossref_primary_10_1007_s11042_023_16696_w
crossref_primary_10_3390_electronics11193077
crossref_primary_10_1002_cnm_3769
crossref_primary_10_1109_TNSRE_2023_3257306
crossref_primary_10_1016_j_mehy_2024_111405
crossref_primary_10_1109_TBME_2024_3458177
crossref_primary_10_1016_j_yebeh_2023_109518
crossref_primary_10_1109_JSEN_2023_3305504
crossref_primary_10_1136_bmjopen_2023_079785
Cites_doi 10.1088/1757-899x/853/1/012055
10.1007/s00521-014-1786-7
10.1016/j.neucom.2018.03.074
10.1109/tnsre.2019.2940485
10.1142/s0129065715500239
10.1007/s11517-012-0904-x
10.3390/brainsci9050115
10.1109/ais.2010.5547053
10.1007/s13755-019-0069-1
10.1109/tim.2018.2855518
10.1016/j.knosys.2018.07.019
10.1111/mice.12363
10.1109/tencon.2016.7848724
10.1016/j.neulet.2018.10.062
10.1109/TBME.2015.2512276
10.3390/s21144884
10.1007/s40815-018-0455-x
10.1155/2020/7902072
10.1109/tkde.2004.1269594
10.1038/sdata.2019.39
10.1016/j.compbiomed.2017.01.011
10.1177/0022034509359125
10.1016/j.imu.2021.100721
10.1016/j.cmpb.2010.08.011
10.1016/j.jneumeth.2010.05.020
10.1155/2021/9500304
10.1007/978-3-319-69179-4_27
10.1016/j.eswa.2014.08.030
10.1097/wnp.0b013e3181775993
10.3390/ijerph18052356
10.1016/j.bspc.2017.07.022
10.1016/j.neucom.2018.10.108
10.1155/2021/6013448
10.1016/j.neunet.2020.01.017
10.1109/iceca.2018.8474658
10.1007/978-3-030-19823-7_27
10.1007/s13246-015-0333-x
10.1007/978-981-10-1678-3_80
10.1016/j.eswa.2011.07.008
10.1016/s0140-6736(98)02158-8
10.5391/ijfis.2016.16.1.27
10.1109/msp.2010.939038
10.3390/e20020043
10.1016/j.compbiomed.2019.04.031
10.1016/j.bspc.2017.02.001
10.1109/titb.2009.2017939
10.1109/icpr.2014.583
10.1109/access.2019.2915610
10.1007/978-3-030-03511-2
10.1016/j.cmpb.2018.04.005
10.1007/s11517-015-1303-x
10.1111/j.1528-1167.2011.03121.x
10.3389/fnhum.2019.00052
10.1109/BHI.2016.7455968
10.21833/ijaas.2019.03.008
10.1016/j.neucom.2014.05.044
10.1007/s11517-015-1351-2
10.1145/3233547.3233566
10.1007/bf00058655
10.1109/JBHI.2020.2984238
10.1155/2022/7751263
10.1109/ICASSP.2018.8462029
10.1186/s13638-017-0931-2
10.1155/2018/3145947
10.1109/tnsre.2018.2864306
10.1016/j.nicl.2019.101663
10.1016/j.ensci.2021.100352
10.21928/uhdjst.v3n2y2019.pp41-50
10.1155/2014/730218
10.3233/bme-171663
10.1007/s10916-019-1234-4
10.1155/2016/7481946
10.1016/j.patrec.2017.03.023
10.1017/CBO9781139103992
10.1007/s11910-017-0758-6
10.1155/2021/1972662
10.47277/ijcncs/8(5)1
10.1007/978-3-662-48365-7_21
10.1007/978-3-030-31764-5
10.1088/1757-899x/853/1/012054
10.1016/j.amc.2006.09.022
10.1038/nature14539
10.1371/journal.pone.0173138
10.3390/e19030092
10.3390/bs11030030
10.1103/physreve.64.061907
10.3127/ajis.v21i0.1539
10.3389/fnhum.2019.00076
10.3390/electronics11071146
10.1186/s13638-017-0993-1
10.5121/hiij.2020.9102
10.1007/978-3-319-10590-1_53
10.1007/s00521-018-3381-9
10.1016/j.cmpb.2016.08.013
10.1016/j.yebeh.2018.02.010
10.1142/s0129065711002808
10.1007/s12652-019-01613-7
10.1016/j.clinph.2018.10.010
10.1007/978-3-319-95918-4
10.1023/b:brat.0000006333.93597.9d
10.1016/j.clinph.2019.01.027
10.1016/j.artmed.2017.12.004
10.1155/2007/80510
10.1016/j.bbe.2018.11.004
10.1016/j.clinph.2014.02.015
10.1002/aisy.202000198
10.1103/physreve.86.046206
ContentType Journal Article
Copyright Copyright © 2022 Ijaz Ahmad et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Ijaz Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Ijaz Ahmad et al. 2022
Copyright_xml – notice: Copyright © 2022 Ijaz Ahmad et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Ijaz Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Ijaz Ahmad et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
DOI 10.1155/2022/6486570
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
Middle East & Africa Database
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef


Publicly Available Content Database
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Asghar, Muhammad Zubair
Editor_xml – sequence: 1
  givenname: Muhammad Zubair
  surname: Asghar
  fullname: Asghar, Muhammad Zubair
EndPage 20
ExternalDocumentID PMC9232335
A708347604
35755757
10_1155_2022_6486570
Genre Retracted Publication
Systematic Review
Journal Article
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GrantInformation_xml – fundername: Shenzhen Governmental Basic Research
  grantid: #JCYJ20180507182241622
– fundername: National Natural Science Foundation of China
  grantid: #81927804; #62101538
– fundername: SIAT Innovation Program for Excellent Young Researchers
  grantid: E1G027
– fundername: Science and Technology Planning Project of Shenzhen Municipality
  grantid: #JSGG20210713091808027; #JSGG20211029095801002
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAYXX
ACCMX
ACUHS
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
2UF
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1A
CGR
CUY
CVF
ECM
EIF
EJD
IL9
NPM
PJZUB
PPXIY
PQGLB
UZ4
PMFND
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c515t-704ca87d692649d74dcb682bf47a06930d75b7c23b182437bb048bba5be9675e3
IEDL.DBID 7X7
ISSN 1687-5265
1687-5273
IngestDate Thu Aug 21 13:48:16 EDT 2025
Fri Jul 11 04:03:04 EDT 2025
Fri Jul 25 09:32:52 EDT 2025
Tue Jun 17 21:58:41 EDT 2025
Tue Jun 10 20:58:33 EDT 2025
Mon Jul 21 06:05:17 EDT 2025
Thu Apr 24 23:12:19 EDT 2025
Tue Jul 01 01:39:05 EDT 2025
Sun Jun 02 19:22:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Ijaz Ahmad et al.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-704ca87d692649d74dcb682bf47a06930d75b7c23b182437bb048bba5be9675e3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Article-1
ObjectType-Correction/Retraction-5
ObjectType-Review-3
content type line 23
ObjectType-Feature-2
ObjectType-Undefined-4
Academic Editor: Muhammad Zubair Asghar
ORCID 0000-0003-1945-1402
0000-0002-5868-6952
0000-0003-3974-2207
0000-0001-9016-2617
0000-0002-6205-6232
0000-0003-3352-6829
0000-0002-1204-118X
OpenAccessLink https://www.proquest.com/docview/2680914384?pq-origsite=%requestingapplication%
PMID 35755757
PQID 2680914384
PQPubID 237303
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9232335
proquest_miscellaneous_2681444161
proquest_journals_2680914384
gale_infotracmisc_A708347604
gale_infotracacademiconefile_A708347604
pubmed_primary_35755757
crossref_primary_10_1155_2022_6486570
crossref_citationtrail_10_1155_2022_6486570
hindawi_primary_10_1155_2022_6486570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-17
PublicationDateYYYYMMDD 2022-06-17
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References A. H. Shoeb (115)
E. Pippa (88)
89
I. Goodfellow (66) 2016
110
111
112
J. Li (131)
C. Park (58)
113
114
116
90
Y. Yuan (100)
117
91
119
93
94
95
M. Zabihi (121)
96
97
11
12
13
14
16
17
19
K. Fountas (7) 2019
1
122
D. Lu (63) 2019
123
3
124
125
5
126
6
127
128
8
129
9
A. Antoniades (57)
21
22
23
24
25
26
27
28
29
Z. Fang (82)
130
132
134
135
X. Yao (80) 2019
136
137
138
139
A. M. Karim (99)
30
31
32
33
34
35
36
37
P. Bizopoulos (56)
38
M. Qaisar (10) 2020
140
141
V. Sharathappriyaa (92)
142
143
D. Ahmed-Aristizabal (79) 2020; 25
N. Srivastava (68) 2012
40
41
42
43
G. Alarcón (4) 2012
44
45
46
47
48
R. Hussein (81)
49
J. Cepukenas (104)
J. Birjandtalab (39)
M. Mursalin (118) 2019
K. E. Muslims (15) 2013
Y. Wang (103)
CHB-MIT Scalp EEG Database (18) 2022
C. Chen (133) 2012; 25
W. Pedrycz (67) 2020
J. Cepukenas (74)
50
S. S. Talathi (78) 2015
51
52
53
54
55
59
S. Roy (83)
S. K. Satapathy (120) 2017; 41
X. Yao (75) 2019
60
61
62
64
65
D. E. Olsen (73) 1994; 5
69
H. Ravi Prakash (84) 2019
(20) 2022
71
72
76
77
M. Sazgar (2) 2019
J. Birjandtalab (106)
G. Choi (87)
101
102
M.-P. Hosseini (98)
M. Golmohammadi (70) 2017
105
107
108
109
85
86
38074358 - Comput Intell Neurosci. 2023 Nov 29;2023:9814248. doi: 10.1155/2023/9814248.
References_xml – ident: 53
  doi: 10.1088/1757-899x/853/1/012055
– start-page: 976
  ident: 92
  article-title: Auto-encoder based automated epilepsy diagnosis
– start-page: 7
  ident: 121
  article-title: Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures
– start-page: 1
  ident: 57
  article-title: Deep learning for epileptic intracranial EEG data
– year: 2019
  ident: 84
  article-title: Deep learning provides exceptional accuracy to ecog-based functional language mapping for epilepsy surgery
  publication-title: BioRxiv
– ident: 114
  doi: 10.1007/s00521-014-1786-7
– ident: 97
  doi: 10.1016/j.neucom.2018.03.074
– ident: 61
  doi: 10.1109/tnsre.2019.2940485
– ident: 139
  doi: 10.1142/s0129065715500239
– start-page: 1
  year: 2020
  ident: 10
  article-title: Effective epileptic seizure detection based on the event-driven processing and machine learning for mobile healthcare
  publication-title: Journal of Ambient Intelligence and Humanized Computing
– ident: 16
  doi: 10.1007/s11517-012-0904-x
– ident: 59
  doi: 10.3390/brainsci9050115
– ident: 105
  doi: 10.1109/ais.2010.5547053
– ident: 65
  doi: 10.1007/s13755-019-0069-1
– ident: 125
  doi: 10.1109/tim.2018.2855518
– ident: 91
  doi: 10.1016/j.knosys.2018.07.019
– ident: 26
  doi: 10.1111/mice.12363
– ident: 136
  doi: 10.1109/tencon.2016.7848724
– ident: 123
  doi: 10.1016/j.neulet.2018.10.062
– ident: 27
  doi: 10.1109/TBME.2015.2512276
– ident: 47
  doi: 10.3390/s21144884
– ident: 119
  doi: 10.1007/s40815-018-0455-x
– ident: 45
  doi: 10.1155/2020/7902072
– ident: 71
  doi: 10.1109/tkde.2004.1269594
– ident: 23
  doi: 10.1038/sdata.2019.39
– ident: 138
  doi: 10.1016/j.compbiomed.2017.01.011
– ident: 111
  doi: 10.1177/0022034509359125
– ident: 43
  doi: 10.1016/j.imu.2021.100721
– ident: 21
  doi: 10.1016/j.cmpb.2010.08.011
– ident: 37
  doi: 10.1016/j.jneumeth.2010.05.020
– ident: 50
  doi: 10.1155/2021/9500304
– ident: 130
  doi: 10.1007/978-3-319-69179-4_27
– ident: 11
  doi: 10.1016/j.eswa.2014.08.030
– volume-title: Atlas of EEG, Seizure Semiology, and Management
  year: 2013
  ident: 15
– ident: 89
  doi: 10.1097/wnp.0b013e3181775993
– volume-title: Deep Learning
  year: 2016
  ident: 66
– start-page: 585
  ident: 131
  article-title: Ensembles of cascading trees
– start-page: 1
  ident: 58
  article-title: Epileptic seizure detection for multi-channel EEG with deep convolutional neural network
– ident: 8
  doi: 10.3390/ijerph18052356
– ident: 46
  doi: 10.1016/j.bspc.2017.07.022
– ident: 86
  doi: 10.1016/j.neucom.2018.10.108
– ident: 17
  doi: 10.1155/2021/6013448
– start-page: 87
  ident: 88
  article-title: Classification of epileptic and non-epileptic EEG events
– ident: 117
  doi: 10.1016/j.neunet.2020.01.017
– volume: 25
  start-page: 23
  year: 2012
  ident: 133
  article-title: Application of chaos theory and data mining to seizure detection of epilepsy
  publication-title: Proc Conf. IPCSIT/Hong Kong
– ident: 90
  doi: 10.1109/iceca.2018.8474658
– start-page: 1
  ident: 103
  article-title: An EEG signal classification method based on sparse auto-encoders and support vector machine
– ident: 55
  doi: 10.1007/978-3-030-19823-7_27
– ident: 33
  doi: 10.1007/s13246-015-0333-x
– ident: 41
  doi: 10.1007/978-981-10-1678-3_80
– start-page: 702
  ident: 56
  article-title: Signal 2image modules in deep neural networks for EEG classification
– ident: 112
  doi: 10.1016/j.eswa.2011.07.008
– ident: 3
  doi: 10.1016/s0140-6736(98)02158-8
– ident: 35
  doi: 10.5391/ijfis.2016.16.1.27
– ident: 69
  doi: 10.1109/msp.2010.939038
– ident: 95
  doi: 10.3390/e20020043
– start-page: 206
  ident: 100
  article-title: A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning
– ident: 64
  doi: 10.1016/j.compbiomed.2019.04.031
– ident: 49
  doi: 10.1016/j.bspc.2017.02.001
– ident: 127
  doi: 10.1109/titb.2009.2017939
– year: 2019
  ident: 63
  article-title: Residual deep convolutional neural network for eeg signal classification in epilepsy
– volume: 41
  start-page: 99
  issue: 1
  year: 2017
  ident: 120
  article-title: Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect epileptic seizure
  publication-title: Informatica
– ident: 113
  doi: 10.1109/icpr.2014.583
– ident: 116
  doi: 10.1109/access.2019.2915610
– volume-title: Absolute Epilepsy and EEG Rotation Review: Essentials for Trainees
  year: 2019
  ident: 2
  doi: 10.1007/978-3-030-03511-2
– ident: 60
  doi: 10.1016/j.cmpb.2018.04.005
– ident: 107
  doi: 10.1007/s11517-015-1303-x
– ident: 12
  doi: 10.1111/j.1528-1167.2011.03121.x
– ident: 137
  doi: 10.3389/fnhum.2019.00052
– ident: 39
  article-title: Nonlinear dimension reduction for EEG-based epileptic seizure detection
  doi: 10.1109/BHI.2016.7455968
– ident: 30
  doi: 10.21833/ijaas.2019.03.008
– ident: 110
  doi: 10.1016/j.neucom.2014.05.044
– ident: 128
  doi: 10.1007/s11517-015-1351-2
– ident: 72
  doi: 10.1145/3233547.3233566
– ident: 135
  doi: 10.1007/bf00058655
– volume: 25
  start-page: 69
  year: 2020
  ident: 79
  article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses
  publication-title: IEEE Journal of biomedical and health informatics
  doi: 10.1109/JBHI.2020.2984238
– ident: 142
  doi: 10.1155/2022/7751263
– ident: 81
  article-title: Robust detection of epileptic seizures using deep neural networks
  doi: 10.1109/ICASSP.2018.8462029
– start-page: 1
  ident: 104
  article-title: Applying rule extraction & rule refinement techniques to (blackbox) classifiers
– start-page: 2222
  volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 68
  article-title: Multimodal learning with deep Boltzmann machines
– ident: 143
  doi: 10.1186/s13638-017-0931-2
– start-page: 1151
  ident: 98
  article-title: Cloud-based deep learning of big EEG data for epileptic seizure prediction
– ident: 102
  doi: 10.1155/2018/3145947
– year: 2017
  ident: 70
  article-title: Deep architectures for automated seizure detection in scalp eegs
– ident: 93
  doi: 10.1109/tnsre.2018.2864306
– ident: 5
  doi: 10.1016/j.nicl.2019.101663
– ident: 1
  doi: 10.1016/j.ensci.2021.100352
– ident: 77
  doi: 10.21928/uhdjst.v3n2y2019.pp41-50
– ident: 25
  doi: 10.1155/2014/730218
– ident: 38
  doi: 10.3233/bme-171663
– ident: 124
  doi: 10.1007/s10916-019-1234-4
– start-page: 2756
  ident: 83
  article-title: Deep learning enabled automatic abnormal EEG identification
– year: 2019
  ident: 118
  article-title: Epileptic seizure classification using statistical sampling and a novel feature selection algorithm
– ident: 42
  doi: 10.1155/2016/7481946
– ident: 48
  doi: 10.1016/j.patrec.2017.03.023
– year: 2022
  ident: 20
  article-title: Seizure prediction challenge
– volume-title: Introduction to Epilepsy
  year: 2012
  ident: 4
  doi: 10.1017/CBO9781139103992
– ident: 13
  doi: 10.1007/s11910-017-0758-6
– ident: 28
  doi: 10.1155/2021/1972662
– ident: 132
  doi: 10.47277/ijcncs/8(5)1
– start-page: 1
  ident: 106
  article-title: Imbalance learning using neural networks for seizure detection
– year: 2022
  ident: 18
– ident: 40
  doi: 10.1007/978-3-662-48365-7_21
– volume-title: Development and Analysis of Deep Learning Architectures
  year: 2020
  ident: 67
  doi: 10.1007/978-3-030-31764-5
– start-page: 27
  ident: 74
  article-title: Applying rule extraction and rule refinement techniques to (BlackBox) classifiers
– year: 2019
  ident: 80
  article-title: Automated classification of seizures against non-seizures: a deep learning approach
– ident: 52
  doi: 10.1088/1757-899x/853/1/012054
– ident: 134
  doi: 10.1016/j.amc.2006.09.022
– ident: 32
  doi: 10.1007/s11517-012-0904-x
– ident: 62
  doi: 10.1038/nature14539
– ident: 109
  doi: 10.1371/journal.pone.0173138
– ident: 115
  article-title: Application of machine learning to epileptic seizure detection
– ident: 126
  doi: 10.3390/e19030092
– ident: 9
  doi: 10.3390/bs11030030
– start-page: 1026
  ident: 82
  article-title: Spatial-temporal GRU convnets for vision-based real-time epileptic seizure detection
– ident: 19
  doi: 10.1103/physreve.64.061907
– ident: 36
  doi: 10.3127/ajis.v21i0.1539
– ident: 94
  doi: 10.3389/fnhum.2019.00076
– ident: 51
  doi: 10.3390/electronics11071146
– ident: 24
  doi: 10.1186/s13638-017-0993-1
– ident: 44
  doi: 10.5121/hiij.2020.9102
– ident: 108
  doi: 10.1007/978-3-319-10590-1_53
– ident: 140
  doi: 10.1007/s00521-018-3381-9
– ident: 122
  doi: 10.1016/j.cmpb.2016.08.013
– ident: 85
  doi: 10.1016/j.yebeh.2018.02.010
– ident: 29
  doi: 10.1142/s0129065711002808
– ident: 54
  doi: 10.1016/j.cmpb.2018.04.005
– volume: 5
  start-page: 876
  issue: 311
  year: 1994
  ident: 73
  article-title: Automatic detection of seizures using electroencephalographic signals
  publication-title: Google Patents. US Patent
– ident: 96
  doi: 10.1007/s12652-019-01613-7
– ident: 76
  doi: 10.1016/j.clinph.2018.10.010
– volume-title: Epilepsy Surgery and Intrinsic Brain Tumor Surgery
  year: 2019
  ident: 7
  doi: 10.1007/978-3-319-95918-4
– ident: 14
  doi: 10.1023/b:brat.0000006333.93597.9d
– start-page: 1
  ident: 87
  article-title: A novel multi-scale 3d cnn with deep neural network for epileptic seizure detection
– ident: 6
  doi: 10.1016/j.clinph.2019.01.027
– year: 2015
  ident: 78
  article-title: Improving performance of recurrent neural network with relu nonlinearity
– start-page: 15
  ident: 99
  article-title: A new automatic epilepsy serious detection method by using deep learning based on discrete wavelet transform
– ident: 141
  doi: 10.1016/j.artmed.2017.12.004
– year: 2019
  ident: 75
  article-title: A novel independent rnn approach to classification of seizures against non-seizures
– ident: 129
  doi: 10.1155/2007/80510
– ident: 101
  doi: 10.1016/j.bbe.2018.11.004
– ident: 34
  doi: 10.1016/j.clinph.2014.02.015
– ident: 31
  doi: 10.1002/aisy.202000198
– ident: 22
  doi: 10.1103/physreve.86.046206
– reference: 38074358 - Comput Intell Neurosci. 2023 Nov 29;2023:9814248. doi: 10.1155/2023/9814248.
SSID ssj0057502
Score 2.5787966
SecondaryResourceType retracted_publication
review_article
Snippet Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel...
SourceID pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Artificial intelligence
Brain research
Citation indexes
Convulsions & seizures
Criteria
Data collection
Datasets
Deep Learning
Diagnosis
Disease
EEG
Electroencephalography
Electroencephalography - methods
Environmental factors
Epilepsy
Epilepsy - diagnosis
Feature extraction
Humans
Keywords
Learning algorithms
Machine learning
Mathematical models
Nervous system diseases
Neurological diseases
R&D
Research & development
Review
Reviews
Seizures
Seizures (Medicine)
Seizures - diagnosis
Signal Processing, Computer-Assisted
Statistical analysis
Statistical methods
Support Vector Machine
Systematic review
Technology application
Tomography
Workloads
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7aQmEvo1v3w202NOi2h2HqWLJk781b04ZB99IV8iYsWWkDmxuapKX763cnK6buNjbwi9HFMrk73ffZ508ABwiCSSRExjUWXyQomcWcE1XM6xwJV50Uqf8q7fSrHJ-LL5NsEkSSFr-_wsdqR_Q8PZQipyaNTdjEACNSPp6sF1wEHG1rocR8IbX3dX_7g9_2Kk9Yf7cvifnezv6ELx-2Sd6rO8c78DgARla2Hn4CG655Crtlg2T5xx17x3wLp382vgt6NDqJP2FdqtlojumOy4FlZ272c3Xt2JFb-rarht3MKnbqmyjd4ZFzcxZEVi9YGRTG3eIjK9lZp_LM2lcIz-D8ePTt8zgOOyjEFnHKMlaJsFWualkg7ilqJWprZJ6aqVBVQpsg1iozyqbcIM0QXBmDCW1MlRlXIJNw_DlsNVeNewls6tDZuRMVScSZaVGo4bCSyuS4TLmMJxF8WP-72gZ5cdrl4rv2NCPLNPlCB19E8LaznreyGn-xe0-O0pRteDVbhY8G8J5It0qXCiGkUDIREQx6lpgltjd8EFz9j_kG6zjQIZkXOpU5oirBc7zKm26YJqAGtcZdrbwNUlNiixG8aMOmm4hjhOKhIlC9gOoMSOK7P9LMLr3UN8LvlPNs7__ufh8e0Sl1sg3VALaW1yv3CjHT0rz2GfMLcx0K2A
  priority: 102
  providerName: Hindawi Publishing
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbGEBIvCBiwjA4ZacADCkvjX8kkhALrmJDKy6i0Nyt2XFZpy0rXso2_njvHicg0QMqbL3Ea3_m-r7l8R8gOgGAUCZFxBckXCIqwEHO8jFmVAeGqkjz1X6WNv8rDCf9yLI7XSNttNDzAi1upHfaTmixO3139uP4AAf_eB7wQyN_TXckzrOK4Q-5CTlIYomPevU8ATNJUH0oIKRSEb0vgb5zdS05hi753guT4cnYbBL1ZSflHajp4SB4ETEmLxgkekTVXPyYbRQ18-uyavqa-ytP_fb5B9Gj0Of4IqauioznsCLBjWHrkZr9WC0f33dJXZtX056ykY19n6Xb3nZvToMP6nRZBhNxd7NGCHnVC0LR5y_CETA5G3z4dxqHJQmwByixjlXBbZqqSOUCjvFK8skZmqZlyVSbYJ7FSwiibMgNMhDNlDMS8MaUwLgey4dhTsl6f126T0KkDf8gcL1FFzkzzXA2HpVQmg53MCZZE5G37dLUNCuTYCONUeyYihMa10GEtIvKqs543yht_sXuDC6XRReBqtgzfFcA9obSVLhSgTK5kwiMy6FlCINne8E5Y6v_MN2j9QLfuqlOZAfDiLIOrvOyGcQKsYavd-crbAHtFQhmRZ43bdBMx8FA4VERUz6E6A1QB74_UsxOvBg4IPWVMbP37tp6T-_gjsMhtqAZkfblYuW2AU0vzwkfKb8lWFtg
  priority: 102
  providerName: Scholars Portal
Title EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review
URI https://dx.doi.org/10.1155/2022/6486570
https://www.ncbi.nlm.nih.gov/pubmed/35755757
https://www.proquest.com/docview/2680914384
https://www.proquest.com/docview/2681444161
https://pubmed.ncbi.nlm.nih.gov/PMC9232335
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZgExIvCBg_AmUy0oAHFDWN7djhBWUsbYXUCW1MylsUOy6rBGlZWxD89dw5biCIH1JlqfKpTuq7833Ol8-EHEERjCIhSVjD4gsARRiIOV6FrFYAuOoojd1babPTZHrB3xai8Btua0-r3OVEl6jrpcE98mGcKFjaOFP89epziKdG4dNVf4TGdbKP0mVI6ZJFB7igEmk5hwkEEsrA74jvQiDmj4cJV8j86C1JPjHfuERI_HXxp8Lzd_7kLwvS-Da55StJmrVTf4dcs81dcpA1gKI_faPPqeN2uk3zA1Lm-SQ8hgWrpvkK8gDkCUPP7eL79srSE7txfKyGfllUdObYlXZ4Yu2KevXVDzTz0uN2_Ypm9LyTf6bts4V75GKcv38zDf3RCqGBAmYTyoibSsk6SaEgSmvJa6MTFes5l1WEpyPWUmhpYqYBf3AmtYZI17oS2qYAMSy7T_aaZWMfEjq34AXK8gq14_Q8TeVoVCVSK8hfVrAoIC93_25pvO44Hn_xsXT4Q4gS56L0cxGQZ531qtXb-IvdC5yoEsMQfs1U_m0CuCYUtCozCbUll0nEAzLoWUL4mF73kZ_q_4w32PlB6aN8Xf70yYA87bpxAGSuNXa5dTaAWRFGBuRB6zbdQAw8FD4yILLnUJ0Ban_3e5rFpdMAh7o8Zkw8-vdlPSY38SaQ2jaSA7K3udraJ1BEbfShixRo1XhySPaP89N3Z_BtUoygnXEF7dm0-AF5VRp6
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VVoheeJVHYAEjtXBA6WYTO06QOITutlva7aWt2puJHW-7ArKrbpaq_Sv8FX4c48QJbMXjVAkpN4_iPGa-mUk-fwZYxSLYiISEbobJFxsUpjDmaOoGWYQNV-bFfrkqbbAX9g_ph2N2vADf6rUwhlZZY2IJ1NlYmW_kbT-MMLXRIKKWQbmjL86xP5u-2-7iy1zz_c3ewUbftVsIuAoTdeFyj6o04lkYY-KPM04zJcPIl0PKU8_sAphxJrnyA4l1Ng24lOjRUqZM6hhLaR3geW_AEnYVDMNnaeOou9WvgR4LnYrSGGKcGpX5mlfPmPmk4LdDGhliyVzGs7h_89R03Oej39W1V-mZv-S7zTvwvX5SFc3l0_qskOvq8oqI5H_6KO_CbVtnk6QKjHuwoPP7sJLkaTH-ckFekZL5Wv5SWAHR62257zGdZ6Q3QZREFFVkX48uZ2eadHVRstVy8nWUkkHJPdXtrtYTYrVpT0hihdn19C1JyH4jjk2qPy8P4PBabvUhLObjXD8GMtQYI5GmqVHWk8M45p1OGnIZIbprFngOvKmdQyirym42B_ksyu6MMWFcSVhXcmCtsZ5UaiR_sHtt_EwYkMKzqdSutcBrMnJfIuFYeVMeetSB1pwlgouaG161nvqP-Vq1pwmLgVPx080ceNkMmwkMry_X41lpgx29abIdeFR5fTNRgAGGB3eAz8VDY2CU0edH8tFpqZCOXYsfBOzJ3y_rBdzqHwx2xe723s5TWDY3ZEiAHd6CxeJspp9huVnI5zbsCXy87vD4AdgmheI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qqUBseJWHIcAgtbBAbhx77LGREDJN0pTSCqlUdGc84wmNACc0DlX7afwKP8O99jjgiseqC6TsZuSxnfs413PmXIBVBMEkEhLYGSZfLFB8hT7HU9vLQiy4Midyy1NpO7vBcJ-_OvAPluBbfRaGaJV1TCwDdTZR9I284wYhpjbuhbwzMrSIN73Bi-kXmzpI0U5r3U6jMpFtfXKM5dvs-VYP_-s11x30324MbdNhwFaYxwtbOFylociCCHFBlAmeKRmErhxxkTrUJDATvhTK9STCcO4JKdHgpUx9qSNE2trD616AZerqxFuwvPGutzms8wDioIrxGKAbkwh9Tbv3ffri4HYCHhLvpJEQTVq4eEgF-fH4d7D3LHvzl3Q4uArf6xdZsWA-rs8Lua5Oz2hM_p9v-hpcMSidxZVbXYclnd-AlThPi8nnE_aYlbzZckNiBZJ-f9N-iWAgY_0pxliMwYrt6fHp_Eizni5KrlvOvo5TtlMyV3Wnp_WUGWXbDyw2su569ozFbG8hrc2qfZubsH8uj3oLWvkk13eAjTR6WKh5Srp8chRFottNAyFDzA3a9xwLnta2kyij6U6tRT4lZW3n-wlZWmIszYK1xexppWXyh3lPyAwTCnF4NZWakxp4TyQWlsQCcTsXgcMtaDdmYmhSjeFVY8j_WK9dG2JiIugs-WmFFjxaDNMCxArM9WRezulyTiW6Bbcrp1gs5KH_4U9YIBrusphAuurNkXx8WOqrY83jep5_9--39RAuoVskr7d2t-_BZXoeYhB2RRtaxdFc30esWsgHJigweH_e3vEDSGWdsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Epileptic+Seizure+Detection+via+Machine%2FDeep+Learning+Approaches%3A+A+Systematic+Review&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ijaz%2C+Ahmad&rft.au=Wang%2C+Xin&rft.au=Zhu%2C+Mingxing&rft.au=Wang%2C+Cheng&rft.date=2022-06-17&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F6486570&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon