EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review
Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning mod...
Saved in:
Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 20 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Hindawi
17.06.2022
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG’s noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG’s low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection. |
---|---|
AbstractList | Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG’s noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG’s low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection. Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection.Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel and efficient technology for epileptic seizure management, recent diagnostic approaches have focused on developing machine/deep learning model (ML/DL)-based electroencephalogram (EEG) methods. Importantly, EEG's noninvasiveness and ability to offer repeated patterns of epileptic-related electrophysiological information have motivated the development of varied ML/DL algorithms for epileptic seizure diagnosis in the recent years. However, EEG's low amplitude and nonstationary characteristics make it difficult for existing ML/DL models to achieve a consistent and satisfactory diagnosis outcome, especially in clinical settings, where environmental factors could hardly be avoided. Though several recent works have explored the use of EEG-based ML/DL methods and statistical feature for seizure diagnosis, it is unclear what the advantages and limitations of these works are, which might preclude the advancement of research and development in the field of epileptic seizure diagnosis and appropriate criteria for selecting ML/DL models and statistical feature extraction methods for EEG-based epileptic seizure diagnosis. Therefore, this paper attempts to bridge this research gap by conducting an extensive systematic review on the recent developments of EEG-based ML/DL technologies for epileptic seizure diagnosis. In the review, current development in seizure diagnosis, various statistical feature extraction methods, ML/DL models, their performances, limitations, and core challenges as applied in EEG-based epileptic seizure diagnosis were meticulously reviewed and compared. In addition, proper criteria for selecting appropriate and efficient feature extraction techniques and ML/DL models for epileptic seizure diagnosis were also discussed. Findings from this study will aid researchers in deciding the most efficient ML/DL models with optimal feature extraction methods to improve the performance of EEG-based epileptic seizure detection. |
Audience | Academic |
Author | Khan, Siyab Ahmad, Ijaz Pi, Yao Samuel, Oluwarotimi Williams Khan, Javed Ali Chen, Shixiong Zhu, Mingxing Wang, Xin Wang, Cheng Li, Guanglin |
AuthorAffiliation | 5 School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China 1 CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China 3 Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China 7 Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan 4 School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China 6 Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan |
AuthorAffiliation_xml | – name: 1 CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China – name: 3 Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Chinese Academy of Sciences, Shenzhen, China – name: 5 School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, China – name: 4 School of Electronics and Information Engineering, Harbin Institute of Technology, Shenzhen, China – name: 7 Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan – name: 6 Department of Software Engineering, University of Science and Technology, Bannu, Khyber Pakhtunkhwa, Pakistan – name: 2 Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China |
Author_xml | – sequence: 1 givenname: Ijaz orcidid: 0000-0003-3974-2207 surname: Ahmad fullname: Ahmad, Ijaz organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn – sequence: 2 givenname: Xin orcidid: 0000-0003-3352-6829 surname: Wang fullname: Wang, Xin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn – sequence: 3 givenname: Mingxing orcidid: 0000-0002-1204-118X surname: Zhu fullname: Zhu, Mingxing organization: Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhenChinaucas.ac.cn – sequence: 4 givenname: Cheng surname: Wang fullname: Wang, Cheng organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn – sequence: 5 givenname: Yao surname: Pi fullname: Pi, Yao organization: School of Biomedical EngineeringSun Yat-Sen UniversityGuangzhouChinasysu.edu.cn – sequence: 6 givenname: Javed Ali orcidid: 0000-0002-6205-6232 surname: Khan fullname: Khan, Javed Ali organization: Department of Software EngineeringUniversity of Science and TechnologyBannuKhyber PakhtunkhwaPakistanustb.edu.pk – sequence: 7 givenname: Siyab surname: Khan fullname: Khan, Siyab organization: Institute of Computer Science and Information TechnologyThe University of AgriculturePeshawarKhyber PakhtunkhwaPakistanaup.edu.pk – sequence: 8 givenname: Oluwarotimi Williams orcidid: 0000-0003-1945-1402 surname: Samuel fullname: Samuel, Oluwarotimi Williams organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn – sequence: 9 givenname: Shixiong orcidid: 0000-0002-5868-6952 surname: Chen fullname: Chen, Shixiong organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn – sequence: 10 givenname: Guanglin orcidid: 0000-0001-9016-2617 surname: Li fullname: Li, Guanglin organization: CAS Key Laboratory of Human-Machine Intelligence-Synergy SystemsShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChinacas.cn |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35755757$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kt9rFDEQx4NU7A9981kWfBF0e_md3T4IZ3tW4USw-hyS7Ow1ZS-7bnav1L_eLHeetqgkkIH5zHcyfOcYHYQ2AELPCT4lRIgZxZTOJC-kUPgROiKyULmgih3sYykO0XGMNxgLJTB9gg5ZCtJVR0gvFpf5OxOhyhadb6AbvMuuwP8Ye8guYAA3-DZkG2-yT8Zd-wCzC4AuW4Lpgw-rbN51fZsyEM-yeXZ1FwdYm0nkC2w83D5Fj2vTRHi2e0_Qt_eLr-cf8uXny4_n82XuBBFDrjB3plCVLKnkZaV45awsqK25MliWDFdKWOUos6SgnClrMS-sNcJCKZUAdoLebnW70a6hchCG3jS66_3a9He6NV7fzwR_rVftRpeUUcZEEni1E-jb7yPEQa99dNA0JkA7Rk1lQTjnRJKEvnyA3rRjH9J4E4VLwlnBf1Mr04D2oW5TXzeJ6rnCBeNK4ok6_QuVTgVr75LTdTLlfsGLPwfdT_jL0gS82QKub2Psod4jBOtpY_S0MXq3MQmnD3DnBzOZnj7im38Vvd4WpYWozK3_f4ufLQTMxQ |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_03_243 crossref_primary_10_3390_s22197575 crossref_primary_10_1016_j_dajour_2023_100280 crossref_primary_10_1109_ACCESS_2023_3251105 crossref_primary_10_3390_electronics11213457 crossref_primary_10_3390_computers12100197 crossref_primary_10_3390_electronics11193168 crossref_primary_10_1016_j_sasc_2023_200062 crossref_primary_10_1109_ACCESS_2022_3232563 crossref_primary_10_1016_j_eswa_2023_121359 crossref_primary_10_1016_j_physa_2023_129230 crossref_primary_10_1056_AIoa2300331 crossref_primary_10_1038_s41551_023_01029_x crossref_primary_10_1016_j_eswa_2023_121040 crossref_primary_10_1016_j_bspc_2025_107574 crossref_primary_10_1016_j_medengphy_2024_104206 crossref_primary_10_3390_electronics11182813 crossref_primary_10_3390_diagnostics13010162 crossref_primary_10_3390_s23208375 crossref_primary_10_3389_fninf_2023_1272791 crossref_primary_10_1007_s11227_023_05299_9 crossref_primary_10_1155_2023_9814248 crossref_primary_10_3390_life12121946 crossref_primary_10_3390_s24092863 crossref_primary_10_3390_s22197269 crossref_primary_10_1016_j_jisa_2023_103654 crossref_primary_10_3390_su141710717 crossref_primary_10_1109_TIM_2022_3220287 crossref_primary_10_12720_jait_14_5_883_891 crossref_primary_10_1016_j_ymssp_2024_111880 crossref_primary_10_1109_JIOT_2024_3395496 crossref_primary_10_1136_pn_2023_003757 crossref_primary_10_3390_app13158747 crossref_primary_10_1016_j_dajour_2024_100420 crossref_primary_10_1088_1741_2552_acf7f5 crossref_primary_10_1016_j_bspc_2024_107484 crossref_primary_10_1631_jzus_A2200469 crossref_primary_10_3390_diagnostics12102541 crossref_primary_10_1007_s11042_023_15052_2 crossref_primary_10_3390_diagnostics13071292 crossref_primary_10_3390_s23062971 crossref_primary_10_3390_su14148374 crossref_primary_10_1007_s11571_024_10141_w crossref_primary_10_1016_j_compbiomed_2023_107782 crossref_primary_10_1109_ACCESS_2024_3376254 crossref_primary_10_3390_s22155921 crossref_primary_10_1016_j_yebeh_2023_109120 crossref_primary_10_1007_s42979_024_03488_8 crossref_primary_10_1002_epi4_12800 crossref_primary_10_1007_s11042_023_16696_w crossref_primary_10_3390_electronics11193077 crossref_primary_10_1002_cnm_3769 crossref_primary_10_1109_TNSRE_2023_3257306 crossref_primary_10_1016_j_mehy_2024_111405 crossref_primary_10_1109_TBME_2024_3458177 crossref_primary_10_1016_j_yebeh_2023_109518 crossref_primary_10_1109_JSEN_2023_3305504 crossref_primary_10_1136_bmjopen_2023_079785 |
Cites_doi | 10.1088/1757-899x/853/1/012055 10.1007/s00521-014-1786-7 10.1016/j.neucom.2018.03.074 10.1109/tnsre.2019.2940485 10.1142/s0129065715500239 10.1007/s11517-012-0904-x 10.3390/brainsci9050115 10.1109/ais.2010.5547053 10.1007/s13755-019-0069-1 10.1109/tim.2018.2855518 10.1016/j.knosys.2018.07.019 10.1111/mice.12363 10.1109/tencon.2016.7848724 10.1016/j.neulet.2018.10.062 10.1109/TBME.2015.2512276 10.3390/s21144884 10.1007/s40815-018-0455-x 10.1155/2020/7902072 10.1109/tkde.2004.1269594 10.1038/sdata.2019.39 10.1016/j.compbiomed.2017.01.011 10.1177/0022034509359125 10.1016/j.imu.2021.100721 10.1016/j.cmpb.2010.08.011 10.1016/j.jneumeth.2010.05.020 10.1155/2021/9500304 10.1007/978-3-319-69179-4_27 10.1016/j.eswa.2014.08.030 10.1097/wnp.0b013e3181775993 10.3390/ijerph18052356 10.1016/j.bspc.2017.07.022 10.1016/j.neucom.2018.10.108 10.1155/2021/6013448 10.1016/j.neunet.2020.01.017 10.1109/iceca.2018.8474658 10.1007/978-3-030-19823-7_27 10.1007/s13246-015-0333-x 10.1007/978-981-10-1678-3_80 10.1016/j.eswa.2011.07.008 10.1016/s0140-6736(98)02158-8 10.5391/ijfis.2016.16.1.27 10.1109/msp.2010.939038 10.3390/e20020043 10.1016/j.compbiomed.2019.04.031 10.1016/j.bspc.2017.02.001 10.1109/titb.2009.2017939 10.1109/icpr.2014.583 10.1109/access.2019.2915610 10.1007/978-3-030-03511-2 10.1016/j.cmpb.2018.04.005 10.1007/s11517-015-1303-x 10.1111/j.1528-1167.2011.03121.x 10.3389/fnhum.2019.00052 10.1109/BHI.2016.7455968 10.21833/ijaas.2019.03.008 10.1016/j.neucom.2014.05.044 10.1007/s11517-015-1351-2 10.1145/3233547.3233566 10.1007/bf00058655 10.1109/JBHI.2020.2984238 10.1155/2022/7751263 10.1109/ICASSP.2018.8462029 10.1186/s13638-017-0931-2 10.1155/2018/3145947 10.1109/tnsre.2018.2864306 10.1016/j.nicl.2019.101663 10.1016/j.ensci.2021.100352 10.21928/uhdjst.v3n2y2019.pp41-50 10.1155/2014/730218 10.3233/bme-171663 10.1007/s10916-019-1234-4 10.1155/2016/7481946 10.1016/j.patrec.2017.03.023 10.1017/CBO9781139103992 10.1007/s11910-017-0758-6 10.1155/2021/1972662 10.47277/ijcncs/8(5)1 10.1007/978-3-662-48365-7_21 10.1007/978-3-030-31764-5 10.1088/1757-899x/853/1/012054 10.1016/j.amc.2006.09.022 10.1038/nature14539 10.1371/journal.pone.0173138 10.3390/e19030092 10.3390/bs11030030 10.1103/physreve.64.061907 10.3127/ajis.v21i0.1539 10.3389/fnhum.2019.00076 10.3390/electronics11071146 10.1186/s13638-017-0993-1 10.5121/hiij.2020.9102 10.1007/978-3-319-10590-1_53 10.1007/s00521-018-3381-9 10.1016/j.cmpb.2016.08.013 10.1016/j.yebeh.2018.02.010 10.1142/s0129065711002808 10.1007/s12652-019-01613-7 10.1016/j.clinph.2018.10.010 10.1007/978-3-319-95918-4 10.1023/b:brat.0000006333.93597.9d 10.1016/j.clinph.2019.01.027 10.1016/j.artmed.2017.12.004 10.1155/2007/80510 10.1016/j.bbe.2018.11.004 10.1016/j.clinph.2014.02.015 10.1002/aisy.202000198 10.1103/physreve.86.046206 |
ContentType | Journal Article |
Copyright | Copyright © 2022 Ijaz Ahmad et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Ijaz Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Ijaz Ahmad et al. 2022 |
Copyright_xml | – notice: Copyright © 2022 Ijaz Ahmad et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Ijaz Ahmad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Ijaz Ahmad et al. 2022 |
DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM |
DOI | 10.1155/2022/6486570 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Health & Medical Collection Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1687-5273 |
Editor | Asghar, Muhammad Zubair |
Editor_xml | – sequence: 1 givenname: Muhammad Zubair surname: Asghar fullname: Asghar, Muhammad Zubair |
EndPage | 20 |
ExternalDocumentID | PMC9232335 A708347604 35755757 10_1155_2022_6486570 |
Genre | Retracted Publication Systematic Review Journal Article |
GeographicLocations | China Germany |
GeographicLocations_xml | – name: China – name: Germany |
GrantInformation_xml | – fundername: Shenzhen Governmental Basic Research grantid: #JCYJ20180507182241622 – fundername: National Natural Science Foundation of China grantid: #81927804; #62101538 – fundername: SIAT Innovation Program for Excellent Young Researchers grantid: E1G027 – fundername: Science and Technology Planning Project of Shenzhen Municipality grantid: #JSGG20210713091808027; #JSGG20211029095801002 |
GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAYXX ACCMX ACUHS CITATION H13 IHR OVT PGMZT PHGZM PHGZT 2UF AAMMB AEFGJ AGXDD AIDQK AIDYY C1A CGR CUY CVF ECM EIF EJD IL9 NPM PJZUB PPXIY PQGLB UZ4 PMFND 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c515t-704ca87d692649d74dcb682bf47a06930d75b7c23b182437bb048bba5be9675e3 |
IEDL.DBID | 7X7 |
ISSN | 1687-5265 1687-5273 |
IngestDate | Thu Aug 21 13:48:16 EDT 2025 Fri Jul 11 04:03:04 EDT 2025 Fri Jul 25 09:32:52 EDT 2025 Tue Jun 17 21:58:41 EDT 2025 Tue Jun 10 20:58:33 EDT 2025 Mon Jul 21 06:05:17 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Tue Jul 01 01:39:05 EDT 2025 Sun Jun 02 19:22:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Ijaz Ahmad et al. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-704ca87d692649d74dcb682bf47a06930d75b7c23b182437bb048bba5be9675e3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Article-1 ObjectType-Correction/Retraction-5 ObjectType-Review-3 content type line 23 ObjectType-Feature-2 ObjectType-Undefined-4 Academic Editor: Muhammad Zubair Asghar |
ORCID | 0000-0003-1945-1402 0000-0002-5868-6952 0000-0003-3974-2207 0000-0001-9016-2617 0000-0002-6205-6232 0000-0003-3352-6829 0000-0002-1204-118X |
OpenAccessLink | https://www.proquest.com/docview/2680914384?pq-origsite=%requestingapplication% |
PMID | 35755757 |
PQID | 2680914384 |
PQPubID | 237303 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9232335 proquest_miscellaneous_2681444161 proquest_journals_2680914384 gale_infotracmisc_A708347604 gale_infotracacademiconefile_A708347604 pubmed_primary_35755757 crossref_primary_10_1155_2022_6486570 crossref_citationtrail_10_1155_2022_6486570 hindawi_primary_10_1155_2022_6486570 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-17 |
PublicationDateYYYYMMDD | 2022-06-17 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Computational intelligence and neuroscience |
PublicationTitleAlternate | Comput Intell Neurosci |
PublicationYear | 2022 |
Publisher | Hindawi John Wiley & Sons, Inc |
Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
References | A. H. Shoeb (115) E. Pippa (88) 89 I. Goodfellow (66) 2016 110 111 112 J. Li (131) C. Park (58) 113 114 116 90 Y. Yuan (100) 117 91 119 93 94 95 M. Zabihi (121) 96 97 11 12 13 14 16 17 19 K. Fountas (7) 2019 1 122 D. Lu (63) 2019 123 3 124 125 5 126 6 127 128 8 129 9 A. Antoniades (57) 21 22 23 24 25 26 27 28 29 Z. Fang (82) 130 132 134 135 X. Yao (80) 2019 136 137 138 139 A. M. Karim (99) 30 31 32 33 34 35 36 37 P. Bizopoulos (56) 38 M. Qaisar (10) 2020 140 141 V. Sharathappriyaa (92) 142 143 D. Ahmed-Aristizabal (79) 2020; 25 N. Srivastava (68) 2012 40 41 42 43 G. Alarcón (4) 2012 44 45 46 47 48 R. Hussein (81) 49 J. Cepukenas (104) J. Birjandtalab (39) M. Mursalin (118) 2019 K. E. Muslims (15) 2013 Y. Wang (103) CHB-MIT Scalp EEG Database (18) 2022 C. Chen (133) 2012; 25 W. Pedrycz (67) 2020 J. Cepukenas (74) 50 S. S. Talathi (78) 2015 51 52 53 54 55 59 S. Roy (83) S. K. Satapathy (120) 2017; 41 X. Yao (75) 2019 60 61 62 64 65 D. E. Olsen (73) 1994; 5 69 H. Ravi Prakash (84) 2019 (20) 2022 71 72 76 77 M. Sazgar (2) 2019 J. Birjandtalab (106) G. Choi (87) 101 102 M.-P. Hosseini (98) M. Golmohammadi (70) 2017 105 107 108 109 85 86 38074358 - Comput Intell Neurosci. 2023 Nov 29;2023:9814248. doi: 10.1155/2023/9814248. |
References_xml | – ident: 53 doi: 10.1088/1757-899x/853/1/012055 – start-page: 976 ident: 92 article-title: Auto-encoder based automated epilepsy diagnosis – start-page: 7 ident: 121 article-title: Patient-specific epileptic seizure detection in long-term EEG recording in paediatric patients with intractable seizures – start-page: 1 ident: 57 article-title: Deep learning for epileptic intracranial EEG data – year: 2019 ident: 84 article-title: Deep learning provides exceptional accuracy to ecog-based functional language mapping for epilepsy surgery publication-title: BioRxiv – ident: 114 doi: 10.1007/s00521-014-1786-7 – ident: 97 doi: 10.1016/j.neucom.2018.03.074 – ident: 61 doi: 10.1109/tnsre.2019.2940485 – ident: 139 doi: 10.1142/s0129065715500239 – start-page: 1 year: 2020 ident: 10 article-title: Effective epileptic seizure detection based on the event-driven processing and machine learning for mobile healthcare publication-title: Journal of Ambient Intelligence and Humanized Computing – ident: 16 doi: 10.1007/s11517-012-0904-x – ident: 59 doi: 10.3390/brainsci9050115 – ident: 105 doi: 10.1109/ais.2010.5547053 – ident: 65 doi: 10.1007/s13755-019-0069-1 – ident: 125 doi: 10.1109/tim.2018.2855518 – ident: 91 doi: 10.1016/j.knosys.2018.07.019 – ident: 26 doi: 10.1111/mice.12363 – ident: 136 doi: 10.1109/tencon.2016.7848724 – ident: 123 doi: 10.1016/j.neulet.2018.10.062 – ident: 27 doi: 10.1109/TBME.2015.2512276 – ident: 47 doi: 10.3390/s21144884 – ident: 119 doi: 10.1007/s40815-018-0455-x – ident: 45 doi: 10.1155/2020/7902072 – ident: 71 doi: 10.1109/tkde.2004.1269594 – ident: 23 doi: 10.1038/sdata.2019.39 – ident: 138 doi: 10.1016/j.compbiomed.2017.01.011 – ident: 111 doi: 10.1177/0022034509359125 – ident: 43 doi: 10.1016/j.imu.2021.100721 – ident: 21 doi: 10.1016/j.cmpb.2010.08.011 – ident: 37 doi: 10.1016/j.jneumeth.2010.05.020 – ident: 50 doi: 10.1155/2021/9500304 – ident: 130 doi: 10.1007/978-3-319-69179-4_27 – ident: 11 doi: 10.1016/j.eswa.2014.08.030 – volume-title: Atlas of EEG, Seizure Semiology, and Management year: 2013 ident: 15 – ident: 89 doi: 10.1097/wnp.0b013e3181775993 – volume-title: Deep Learning year: 2016 ident: 66 – start-page: 585 ident: 131 article-title: Ensembles of cascading trees – start-page: 1 ident: 58 article-title: Epileptic seizure detection for multi-channel EEG with deep convolutional neural network – ident: 8 doi: 10.3390/ijerph18052356 – ident: 46 doi: 10.1016/j.bspc.2017.07.022 – ident: 86 doi: 10.1016/j.neucom.2018.10.108 – ident: 17 doi: 10.1155/2021/6013448 – start-page: 87 ident: 88 article-title: Classification of epileptic and non-epileptic EEG events – ident: 117 doi: 10.1016/j.neunet.2020.01.017 – volume: 25 start-page: 23 year: 2012 ident: 133 article-title: Application of chaos theory and data mining to seizure detection of epilepsy publication-title: Proc Conf. IPCSIT/Hong Kong – ident: 90 doi: 10.1109/iceca.2018.8474658 – start-page: 1 ident: 103 article-title: An EEG signal classification method based on sparse auto-encoders and support vector machine – ident: 55 doi: 10.1007/978-3-030-19823-7_27 – ident: 33 doi: 10.1007/s13246-015-0333-x – ident: 41 doi: 10.1007/978-981-10-1678-3_80 – start-page: 702 ident: 56 article-title: Signal 2image modules in deep neural networks for EEG classification – ident: 112 doi: 10.1016/j.eswa.2011.07.008 – ident: 3 doi: 10.1016/s0140-6736(98)02158-8 – ident: 35 doi: 10.5391/ijfis.2016.16.1.27 – ident: 69 doi: 10.1109/msp.2010.939038 – ident: 95 doi: 10.3390/e20020043 – start-page: 206 ident: 100 article-title: A novel channel-aware attention framework for multi-channel EEG seizure detection via multi-view deep learning – ident: 64 doi: 10.1016/j.compbiomed.2019.04.031 – ident: 49 doi: 10.1016/j.bspc.2017.02.001 – ident: 127 doi: 10.1109/titb.2009.2017939 – year: 2019 ident: 63 article-title: Residual deep convolutional neural network for eeg signal classification in epilepsy – volume: 41 start-page: 99 issue: 1 year: 2017 ident: 120 article-title: Weighted majority voting based ensemble of classifiers using different machine learning techniques for classification of EEG signal to detect epileptic seizure publication-title: Informatica – ident: 113 doi: 10.1109/icpr.2014.583 – ident: 116 doi: 10.1109/access.2019.2915610 – volume-title: Absolute Epilepsy and EEG Rotation Review: Essentials for Trainees year: 2019 ident: 2 doi: 10.1007/978-3-030-03511-2 – ident: 60 doi: 10.1016/j.cmpb.2018.04.005 – ident: 107 doi: 10.1007/s11517-015-1303-x – ident: 12 doi: 10.1111/j.1528-1167.2011.03121.x – ident: 137 doi: 10.3389/fnhum.2019.00052 – ident: 39 article-title: Nonlinear dimension reduction for EEG-based epileptic seizure detection doi: 10.1109/BHI.2016.7455968 – ident: 30 doi: 10.21833/ijaas.2019.03.008 – ident: 110 doi: 10.1016/j.neucom.2014.05.044 – ident: 128 doi: 10.1007/s11517-015-1351-2 – ident: 72 doi: 10.1145/3233547.3233566 – ident: 135 doi: 10.1007/bf00058655 – volume: 25 start-page: 69 year: 2020 ident: 79 article-title: Identification of children at risk of schizophrenia via deep learning and EEG responses publication-title: IEEE Journal of biomedical and health informatics doi: 10.1109/JBHI.2020.2984238 – ident: 142 doi: 10.1155/2022/7751263 – ident: 81 article-title: Robust detection of epileptic seizures using deep neural networks doi: 10.1109/ICASSP.2018.8462029 – start-page: 1 ident: 104 article-title: Applying rule extraction & rule refinement techniques to (blackbox) classifiers – start-page: 2222 volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 68 article-title: Multimodal learning with deep Boltzmann machines – ident: 143 doi: 10.1186/s13638-017-0931-2 – start-page: 1151 ident: 98 article-title: Cloud-based deep learning of big EEG data for epileptic seizure prediction – ident: 102 doi: 10.1155/2018/3145947 – year: 2017 ident: 70 article-title: Deep architectures for automated seizure detection in scalp eegs – ident: 93 doi: 10.1109/tnsre.2018.2864306 – ident: 5 doi: 10.1016/j.nicl.2019.101663 – ident: 1 doi: 10.1016/j.ensci.2021.100352 – ident: 77 doi: 10.21928/uhdjst.v3n2y2019.pp41-50 – ident: 25 doi: 10.1155/2014/730218 – ident: 38 doi: 10.3233/bme-171663 – ident: 124 doi: 10.1007/s10916-019-1234-4 – start-page: 2756 ident: 83 article-title: Deep learning enabled automatic abnormal EEG identification – year: 2019 ident: 118 article-title: Epileptic seizure classification using statistical sampling and a novel feature selection algorithm – ident: 42 doi: 10.1155/2016/7481946 – ident: 48 doi: 10.1016/j.patrec.2017.03.023 – year: 2022 ident: 20 article-title: Seizure prediction challenge – volume-title: Introduction to Epilepsy year: 2012 ident: 4 doi: 10.1017/CBO9781139103992 – ident: 13 doi: 10.1007/s11910-017-0758-6 – ident: 28 doi: 10.1155/2021/1972662 – ident: 132 doi: 10.47277/ijcncs/8(5)1 – start-page: 1 ident: 106 article-title: Imbalance learning using neural networks for seizure detection – year: 2022 ident: 18 – ident: 40 doi: 10.1007/978-3-662-48365-7_21 – volume-title: Development and Analysis of Deep Learning Architectures year: 2020 ident: 67 doi: 10.1007/978-3-030-31764-5 – start-page: 27 ident: 74 article-title: Applying rule extraction and rule refinement techniques to (BlackBox) classifiers – year: 2019 ident: 80 article-title: Automated classification of seizures against non-seizures: a deep learning approach – ident: 52 doi: 10.1088/1757-899x/853/1/012054 – ident: 134 doi: 10.1016/j.amc.2006.09.022 – ident: 32 doi: 10.1007/s11517-012-0904-x – ident: 62 doi: 10.1038/nature14539 – ident: 109 doi: 10.1371/journal.pone.0173138 – ident: 115 article-title: Application of machine learning to epileptic seizure detection – ident: 126 doi: 10.3390/e19030092 – ident: 9 doi: 10.3390/bs11030030 – start-page: 1026 ident: 82 article-title: Spatial-temporal GRU convnets for vision-based real-time epileptic seizure detection – ident: 19 doi: 10.1103/physreve.64.061907 – ident: 36 doi: 10.3127/ajis.v21i0.1539 – ident: 94 doi: 10.3389/fnhum.2019.00076 – ident: 51 doi: 10.3390/electronics11071146 – ident: 24 doi: 10.1186/s13638-017-0993-1 – ident: 44 doi: 10.5121/hiij.2020.9102 – ident: 108 doi: 10.1007/978-3-319-10590-1_53 – ident: 140 doi: 10.1007/s00521-018-3381-9 – ident: 122 doi: 10.1016/j.cmpb.2016.08.013 – ident: 85 doi: 10.1016/j.yebeh.2018.02.010 – ident: 29 doi: 10.1142/s0129065711002808 – ident: 54 doi: 10.1016/j.cmpb.2018.04.005 – volume: 5 start-page: 876 issue: 311 year: 1994 ident: 73 article-title: Automatic detection of seizures using electroencephalographic signals publication-title: Google Patents. US Patent – ident: 96 doi: 10.1007/s12652-019-01613-7 – ident: 76 doi: 10.1016/j.clinph.2018.10.010 – volume-title: Epilepsy Surgery and Intrinsic Brain Tumor Surgery year: 2019 ident: 7 doi: 10.1007/978-3-319-95918-4 – ident: 14 doi: 10.1023/b:brat.0000006333.93597.9d – start-page: 1 ident: 87 article-title: A novel multi-scale 3d cnn with deep neural network for epileptic seizure detection – ident: 6 doi: 10.1016/j.clinph.2019.01.027 – year: 2015 ident: 78 article-title: Improving performance of recurrent neural network with relu nonlinearity – start-page: 15 ident: 99 article-title: A new automatic epilepsy serious detection method by using deep learning based on discrete wavelet transform – ident: 141 doi: 10.1016/j.artmed.2017.12.004 – year: 2019 ident: 75 article-title: A novel independent rnn approach to classification of seizures against non-seizures – ident: 129 doi: 10.1155/2007/80510 – ident: 101 doi: 10.1016/j.bbe.2018.11.004 – ident: 34 doi: 10.1016/j.clinph.2014.02.015 – ident: 31 doi: 10.1002/aisy.202000198 – ident: 22 doi: 10.1103/physreve.86.046206 – reference: 38074358 - Comput Intell Neurosci. 2023 Nov 29;2023:9814248. doi: 10.1155/2023/9814248. |
SSID | ssj0057502 |
Score | 2.5787966 |
SecondaryResourceType | retracted_publication review_article |
Snippet | Epileptic seizure is one of the most chronic neurological diseases that instantaneously disrupts the lifestyle of affected individuals. Toward developing novel... |
SourceID | pubmedcentral proquest gale pubmed crossref hindawi |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Artificial intelligence Brain research Citation indexes Convulsions & seizures Criteria Data collection Datasets Deep Learning Diagnosis Disease EEG Electroencephalography Electroencephalography - methods Environmental factors Epilepsy Epilepsy - diagnosis Feature extraction Humans Keywords Learning algorithms Machine learning Mathematical models Nervous system diseases Neurological diseases R&D Research & development Review Reviews Seizures Seizures (Medicine) Seizures - diagnosis Signal Processing, Computer-Assisted Statistical analysis Statistical methods Support Vector Machine Systematic review Technology application Tomography Workloads |
SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7aQmEvo1v3w202NOi2h2HqWLJk781b04ZB99IV8iYsWWkDmxuapKX763cnK6buNjbwi9HFMrk73ffZ508ABwiCSSRExjUWXyQomcWcE1XM6xwJV50Uqf8q7fSrHJ-LL5NsEkSSFr-_wsdqR_Q8PZQipyaNTdjEACNSPp6sF1wEHG1rocR8IbX3dX_7g9_2Kk9Yf7cvifnezv6ELx-2Sd6rO8c78DgARla2Hn4CG655Crtlg2T5xx17x3wLp382vgt6NDqJP2FdqtlojumOy4FlZ272c3Xt2JFb-rarht3MKnbqmyjd4ZFzcxZEVi9YGRTG3eIjK9lZp_LM2lcIz-D8ePTt8zgOOyjEFnHKMlaJsFWualkg7ilqJWprZJ6aqVBVQpsg1iozyqbcIM0QXBmDCW1MlRlXIJNw_DlsNVeNewls6tDZuRMVScSZaVGo4bCSyuS4TLmMJxF8WP-72gZ5cdrl4rv2NCPLNPlCB19E8LaznreyGn-xe0-O0pRteDVbhY8G8J5It0qXCiGkUDIREQx6lpgltjd8EFz9j_kG6zjQIZkXOpU5oirBc7zKm26YJqAGtcZdrbwNUlNiixG8aMOmm4hjhOKhIlC9gOoMSOK7P9LMLr3UN8LvlPNs7__ufh8e0Sl1sg3VALaW1yv3CjHT0rz2GfMLcx0K2A priority: 102 providerName: Hindawi Publishing – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELbGEBIvCBiwjA4ZacADCkvjX8kkhALrmJDKy6i0Nyt2XFZpy0rXso2_njvHicg0QMqbL3Ea3_m-r7l8R8gOgGAUCZFxBckXCIqwEHO8jFmVAeGqkjz1X6WNv8rDCf9yLI7XSNttNDzAi1upHfaTmixO3139uP4AAf_eB7wQyN_TXckzrOK4Q-5CTlIYomPevU8ATNJUH0oIKRSEb0vgb5zdS05hi753guT4cnYbBL1ZSflHajp4SB4ETEmLxgkekTVXPyYbRQ18-uyavqa-ytP_fb5B9Gj0Of4IqauioznsCLBjWHrkZr9WC0f33dJXZtX056ykY19n6Xb3nZvToMP6nRZBhNxd7NGCHnVC0LR5y_CETA5G3z4dxqHJQmwByixjlXBbZqqSOUCjvFK8skZmqZlyVSbYJ7FSwiibMgNMhDNlDMS8MaUwLgey4dhTsl6f126T0KkDf8gcL1FFzkzzXA2HpVQmg53MCZZE5G37dLUNCuTYCONUeyYihMa10GEtIvKqs543yht_sXuDC6XRReBqtgzfFcA9obSVLhSgTK5kwiMy6FlCINne8E5Y6v_MN2j9QLfuqlOZAfDiLIOrvOyGcQKsYavd-crbAHtFQhmRZ43bdBMx8FA4VERUz6E6A1QB74_UsxOvBg4IPWVMbP37tp6T-_gjsMhtqAZkfblYuW2AU0vzwkfKb8lWFtg priority: 102 providerName: Scholars Portal |
Title | EEG-Based Epileptic Seizure Detection via Machine/Deep Learning Approaches: A Systematic Review |
URI | https://dx.doi.org/10.1155/2022/6486570 https://www.ncbi.nlm.nih.gov/pubmed/35755757 https://www.proquest.com/docview/2680914384 https://www.proquest.com/docview/2681444161 https://pubmed.ncbi.nlm.nih.gov/PMC9232335 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZgExIvCBg_AmUy0oAHFDWN7djhBWUsbYXUCW1MylsUOy6rBGlZWxD89dw5biCIH1JlqfKpTuq7833Ol8-EHEERjCIhSVjD4gsARRiIOV6FrFYAuOoojd1babPTZHrB3xai8Btua0-r3OVEl6jrpcE98mGcKFjaOFP89epziKdG4dNVf4TGdbKP0mVI6ZJFB7igEmk5hwkEEsrA74jvQiDmj4cJV8j86C1JPjHfuERI_HXxp8Lzd_7kLwvS-Da55StJmrVTf4dcs81dcpA1gKI_faPPqeN2uk3zA1Lm-SQ8hgWrpvkK8gDkCUPP7eL79srSE7txfKyGfllUdObYlXZ4Yu2KevXVDzTz0uN2_Ypm9LyTf6bts4V75GKcv38zDf3RCqGBAmYTyoibSsk6SaEgSmvJa6MTFes5l1WEpyPWUmhpYqYBf3AmtYZI17oS2qYAMSy7T_aaZWMfEjq34AXK8gq14_Q8TeVoVCVSK8hfVrAoIC93_25pvO44Hn_xsXT4Q4gS56L0cxGQZ531qtXb-IvdC5yoEsMQfs1U_m0CuCYUtCozCbUll0nEAzLoWUL4mF73kZ_q_4w32PlB6aN8Xf70yYA87bpxAGSuNXa5dTaAWRFGBuRB6zbdQAw8FD4yILLnUJ0Ban_3e5rFpdMAh7o8Zkw8-vdlPSY38SaQ2jaSA7K3udraJ1BEbfShixRo1XhySPaP89N3Z_BtUoygnXEF7dm0-AF5VRp6 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VVoheeJVHYAEjtXBA6WYTO06QOITutlva7aWt2puJHW-7ArKrbpaq_Sv8FX4c48QJbMXjVAkpN4_iPGa-mUk-fwZYxSLYiISEbobJFxsUpjDmaOoGWYQNV-bFfrkqbbAX9g_ph2N2vADf6rUwhlZZY2IJ1NlYmW_kbT-MMLXRIKKWQbmjL86xP5u-2-7iy1zz_c3ewUbftVsIuAoTdeFyj6o04lkYY-KPM04zJcPIl0PKU8_sAphxJrnyA4l1Ng24lOjRUqZM6hhLaR3geW_AEnYVDMNnaeOou9WvgR4LnYrSGGKcGpX5mlfPmPmk4LdDGhliyVzGs7h_89R03Oej39W1V-mZv-S7zTvwvX5SFc3l0_qskOvq8oqI5H_6KO_CbVtnk6QKjHuwoPP7sJLkaTH-ckFekZL5Wv5SWAHR62257zGdZ6Q3QZREFFVkX48uZ2eadHVRstVy8nWUkkHJPdXtrtYTYrVpT0hihdn19C1JyH4jjk2qPy8P4PBabvUhLObjXD8GMtQYI5GmqVHWk8M45p1OGnIZIbprFngOvKmdQyirym42B_ksyu6MMWFcSVhXcmCtsZ5UaiR_sHtt_EwYkMKzqdSutcBrMnJfIuFYeVMeetSB1pwlgouaG161nvqP-Vq1pwmLgVPx080ceNkMmwkMry_X41lpgx29abIdeFR5fTNRgAGGB3eAz8VDY2CU0edH8tFpqZCOXYsfBOzJ3y_rBdzqHwx2xe723s5TWDY3ZEiAHd6CxeJspp9huVnI5zbsCXy87vD4AdgmheI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qqUBseJWHIcAgtbBAbhx77LGREDJN0pTSCqlUdGc84wmNACc0DlX7afwKP8O99jjgiseqC6TsZuSxnfs413PmXIBVBMEkEhLYGSZfLFB8hT7HU9vLQiy4Midyy1NpO7vBcJ-_OvAPluBbfRaGaJV1TCwDdTZR9I284wYhpjbuhbwzMrSIN73Bi-kXmzpI0U5r3U6jMpFtfXKM5dvs-VYP_-s11x30324MbdNhwFaYxwtbOFylociCCHFBlAmeKRmErhxxkTrUJDATvhTK9STCcO4JKdHgpUx9qSNE2trD616AZerqxFuwvPGutzms8wDioIrxGKAbkwh9Tbv3ffri4HYCHhLvpJEQTVq4eEgF-fH4d7D3LHvzl3Q4uArf6xdZsWA-rs8Lua5Oz2hM_p9v-hpcMSidxZVbXYclnd-AlThPi8nnE_aYlbzZckNiBZJ-f9N-iWAgY_0pxliMwYrt6fHp_Eizni5KrlvOvo5TtlMyV3Wnp_WUGWXbDyw2su569ozFbG8hrc2qfZubsH8uj3oLWvkk13eAjTR6WKh5Srp8chRFottNAyFDzA3a9xwLnta2kyij6U6tRT4lZW3n-wlZWmIszYK1xexppWXyh3lPyAwTCnF4NZWakxp4TyQWlsQCcTsXgcMtaDdmYmhSjeFVY8j_WK9dG2JiIugs-WmFFjxaDNMCxArM9WRezulyTiW6Bbcrp1gs5KH_4U9YIBrusphAuurNkXx8WOqrY83jep5_9--39RAuoVskr7d2t-_BZXoeYhB2RRtaxdFc30esWsgHJigweH_e3vEDSGWdsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-Based+Epileptic+Seizure+Detection+via+Machine%2FDeep+Learning+Approaches%3A+A+Systematic+Review&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ijaz%2C+Ahmad&rft.au=Wang%2C+Xin&rft.au=Zhu%2C+Mingxing&rft.au=Wang%2C+Cheng&rft.date=2022-06-17&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F6486570&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |