Design and Development of Autotaxin Inhibitors
Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce vario...
Saved in:
Published in | Pharmaceuticals (Basel, Switzerland) Vol. 14; no. 11; p. 1203 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
22.11.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1424-8247 1424-8247 |
DOI | 10.3390/ph14111203 |
Cover
Loading…
Abstract | Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future. |
---|---|
AbstractList | Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future. Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future.Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which is mainly responsible for the hydrolysis of extracellular lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA). LPA can induce various responses, such as cell proliferation, migration, and cytokine production, through six G protein-coupled receptors (LPA1-6). This signaling pathway is associated with metabolic and inflammatory disorder, and inhibiting this pathway has a positive effect on the treatment of related diseases, while ATX, as an important role in the production of LPA, has been shown to be associated with the occurrence and metastasis of tumors, fibrosis and cardiovascular diseases. From mimics of ATX natural lipid substrates to the rational design of small molecule inhibitors, ATX inhibitors have made rapid progress in structural diversity and design over the past 20 years, and three drugs, GLPG1690, BBT-877, and BLD-0409, have entered clinical trials. In this paper, we will review the structure of ATX inhibitors from the perspective of the transformation of design ideas, discuss the advantages and disadvantages of each inhibitor type, and put forward prospects for the development of ATX inhibitors in the future. |
Author | Jia, Yi Tian, Yu Shang, Hai Li, Yan Xu, Xu-Dong |
AuthorAffiliation | Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; jiayi_91@163.com (Y.J.); w19990921ly@163.com (Y.L.); xdxu@implad.ac.cn (X.-D.X.) |
AuthorAffiliation_xml | – name: Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China; jiayi_91@163.com (Y.J.); w19990921ly@163.com (Y.L.); xdxu@implad.ac.cn (X.-D.X.) |
Author_xml | – sequence: 1 givenname: Yi surname: Jia fullname: Jia, Yi – sequence: 2 givenname: Yan surname: Li fullname: Li, Yan – sequence: 3 givenname: Xu-Dong surname: Xu fullname: Xu, Xu-Dong – sequence: 4 givenname: Yu orcidid: 0000-0002-5997-1456 surname: Tian fullname: Tian, Yu – sequence: 5 givenname: Hai surname: Shang fullname: Shang, Hai |
BookMark | eNptkUtrGzEQgEVIaRKnl_yChV5CwKkeo135Egh5GgK95C60q1lbZi25kjak_75yHJoHOWnQfPMxjyOy74NHQk4YPRdiRn9tlgwYY5yKPXLIgMNUcWj238UH5CilFaWyKeR3ciBACT5T8pCcX2NyC18Zb6trfMIhbNbocxX66nLMIZtn56u5X7rW5RDTMfnWmyHhj9d3Qh5vbx6v7qcPv-_mV5cP004ymafQ1iCFBMAauZEzMFSoXglTsrZTPRe0pdj3CiVF2wjJlWqtKgACdlRMyHyntcGs9Ca6tYl_dTBOv3yEuNAmZtcNqFEoU3QWTI0guG2FaAFUU1tFGQhWXBc712Zs12i7Ml00wwfpx4x3S70IT1rVnKuyqAk5fRXE8GfElPXapQ6HwXgMY9K8pkCpatQW_fkJXYUx-rKpLcUZ1EI2hTrbUV0MKUXs_zfDqN5eVL9dtMD0E9y5bLIL22bd8FXJP6NVoSQ |
CitedBy_id | crossref_primary_10_29413_ABS_2024_9_1_2 crossref_primary_10_1016_j_bmcl_2024_130006 crossref_primary_10_1097_MD_0000000000032599 crossref_primary_10_1021_acs_jmedchem_3c01827 crossref_primary_10_1126_scitranslmed_abk0135 crossref_primary_10_1016_j_molimm_2023_06_002 crossref_primary_10_1183_16000617_0015_2024 crossref_primary_10_3390_molecules27175487 crossref_primary_10_1186_s13395_025_00375_5 crossref_primary_10_1111_cas_15980 crossref_primary_10_1016_j_chembiol_2022_12_006 crossref_primary_10_1016_j_jcmgh_2022_07_012 crossref_primary_10_3390_cancers14215437 crossref_primary_10_1016_j_molstruc_2025_141573 crossref_primary_10_1055_a_1842_3378 crossref_primary_10_1186_s12967_024_05126_6 crossref_primary_10_1158_0008_5472_CAN_23_0104 crossref_primary_10_1016_j_bmc_2023_117374 |
Cites_doi | 10.1007/s12035-019-01719-1 10.1016/j.biochi.2013.04.010 10.1021/acs.jmedchem.7b00647 10.1016/j.bmc.2007.11.018 10.1021/jm9012328 10.7555/JBR.30.20150058 10.1016/j.jacbts.2020.06.012 10.1021/acsmedchemlett.0c00200 10.1074/jbc.M007552200 10.1021/acs.jmedchem.7b00032 10.1016/j.ejmech.2020.112456 10.14218/JCTH.2020.00045 10.1074/jbc.M205623200 10.3390/nu10040399 10.1074/jbc.RA118.004450 10.1016/j.bmcl.2011.03.068 10.1016/j.ejmech.2020.112614 10.1038/nsmb.1980 10.1021/jm1005012 10.1016/j.ejmech.2018.02.049 10.1016/j.bioorg.2020.104188 10.1016/j.bmcl.2010.09.030 10.1016/j.ejmech.2019.111904 10.1038/nm1685 10.1242/jcs.02438 10.1016/j.bmc.2020.115795 10.1038/s41598-019-43576-x 10.1002/med.21551 10.1507/endocrj.EJ18-0451 10.1021/acsmedchemlett.6b00207 10.1021/jm049609r 10.1371/journal.pone.0226050 10.1016/j.bmcl.2016.10.036 10.1021/acs.jmedchem.6b01743 10.1016/j.bcp.2019.03.035 10.3390/molecules24152808 10.1371/journal.pone.0070941 10.1038/ncomms11248 10.1111/cas.14689 10.1042/bj3400677 10.1038/nsmb.1998 10.3390/molecules24193419 10.1016/j.plipres.2015.02.001 10.3390/ijms21165938 10.1128/MCB.02419-05 10.1021/cb400150c 10.1053/j.gastro.2010.05.009 10.1074/jbc.M112.358416 10.1021/acs.jmedchem.6b01270 10.1021/acs.jmedchem.0c00506 10.1124/mol.115.100404 10.1016/j.bmcl.2017.07.022 10.1016/S0021-9258(18)45911-X 10.1016/j.bmcl.2005.08.096 10.3390/cancers11111626 10.1038/s41598-021-81048-3 10.1002/prot.1152 10.1186/1476-4598-9-140 10.1096/fj.13-232868 10.1124/mol.63.5.1032 10.1124/mol.113.087080 10.1002/cmdc.201000425 10.1124/jpet.110.165845 10.1371/journal.pone.0143083 10.1111/febs.12674 10.1016/j.prostaglandins.2020.106471 10.1016/j.bmcl.2010.09.115 10.1021/acs.jmedchem.9b01967 10.1016/j.bmcl.2020.127663 10.1073/pnas.1001529107 10.1242/jcs.184424 10.1194/jlr.R046391 10.1021/acsmedchemlett.7b00312 10.1182/blood-2014-04-568683 10.1007/s11302-005-5303-4 10.1016/j.bmc.2018.02.023 10.1016/j.ab.2007.05.004 10.1158/1535-7163.MCT-08-0463 10.1016/j.canlet.2008.02.052 10.1021/jm200310q 10.1016/j.bmc.2019.115216 10.7717/peerj.10328 10.1021/acs.jmedchem.8b00232 10.1002/hep.28973 10.1186/s12876-021-01635-6 10.1021/ml4003106 10.1016/j.plipres.2007.02.001 10.1021/acs.jmedchem.6b01597 10.1093/jb/mvr126 10.3390/molecules25051107 10.1186/1476-511X-4-5 10.1124/jpet.116.237156 10.1021/cr2003213 10.1016/j.bmcl.2005.10.031 10.1016/j.ejps.2017.07.002 10.1016/j.jaut.2019.102327 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION 3V. 7XB 8FK 8G5 ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ GUQSH M2O MBDVC PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.3390/ph14111203 |
DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Student ProQuest Research Library ProQuest Research Library Research Library (Corporate) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Research Library ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1424-8247 |
ExternalDocumentID | oai_doaj_org_article_e38a230d4a6e432db33b44876d801431 PMC8622848 10_3390_ph14111203 |
GroupedDBID | --- 2WC 53G 5VS 8G5 AADQD AAFWJ AAYXX ABDBF ABUWG ACGFO ACIHN ACUHS ADBBV AEAQA AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BPHCQ CCPQU CITATION DIK DWQXO EBD ESX GNUQQ GROUPED_DOAJ GUQSH GX1 HH5 HYE IAO IHR ITC KQ8 M2O M48 MK0 MODMG M~E OK1 P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC RPM TUS 3V. 7XB 8FK MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c515t-4b6453544e6e2a594a038f83a515dc8f230b0eff8e50ed735288bd883ae4ec03 |
IEDL.DBID | M48 |
ISSN | 1424-8247 |
IngestDate | Wed Aug 27 01:15:45 EDT 2025 Thu Aug 21 18:08:13 EDT 2025 Thu Jul 10 23:12:39 EDT 2025 Mon Jun 30 14:49:04 EDT 2025 Tue Jul 01 04:13:22 EDT 2025 Thu Apr 24 23:13:04 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-4b6453544e6e2a594a038f83a515dc8f230b0eff8e50ed735288bd883ae4ec03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-5997-1456 |
OpenAccessLink | https://doaj.org/article/e38a230d4a6e432db33b44876d801431 |
PMID | 34832985 |
PQID | 2602146357 |
PQPubID | 2032350 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e38a230d4a6e432db33b44876d801431 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8622848 proquest_miscellaneous_2604008788 proquest_journals_2602146357 crossref_primary_10_3390_ph14111203 crossref_citationtrail_10_3390_ph14111203 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211122 |
PublicationDateYYYYMMDD | 2021-11-22 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Pharmaceuticals (Basel, Switzerland) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Parrill (ref_60) 2008; 16 Desroy (ref_87) 2017; 60 ref_12 ref_96 ref_95 Jethwa (ref_25) 2016; 129 Stefan (ref_1) 2006; 2 Li (ref_69) 2020; 203 Bourgeois (ref_30) 2020; 5 Gerokonstantis (ref_72) 2020; 28 Iwaki (ref_67) 2020; 11 Albers (ref_63) 2010; 107 Nojiri (ref_27) 2019; 66 Fukui (ref_39) 2020; 150 Brinkmann (ref_54) 2008; 266 ref_26 Thomson (ref_97) 2021; 31 Clair (ref_46) 2005; 4 Jiang (ref_56) 2011; 21 Stracke (ref_2) 1992; 267 Matralis (ref_3) 2019; 39 Albers (ref_64) 2011; 54 Hashimoto (ref_20) 2011; 151 Fells (ref_78) 2014; 281 Balupuri (ref_76) 2017; 27 Sakai (ref_35) 2019; 9 Bain (ref_82) 2016; 360 Lei (ref_91) 2020; 63 Magkrioti (ref_41) 2019; 104 Fish (ref_24) 2018; 293 Jinno (ref_33) 2021; 112 Leblanc (ref_18) 2014; 124 Albers (ref_62) 2010; 53 Stein (ref_81) 2015; 88 Joncour (ref_86) 2017; 60 Ruurs (ref_40) 2006; 26 Virag (ref_47) 2003; 63 East (ref_58) 2010; 20 Fisher (ref_55) 2014; 5 Fells (ref_77) 2013; 84 Shah (ref_84) 2016; 26 Perrakis (ref_16) 2014; 55 Rahman (ref_31) 2020; 8 Houben (ref_15) 2013; 288 ref_53 Kuttruff (ref_70) 2017; 8 Rancoule (ref_75) 2014; 96 Benesch (ref_10) 2016; 30 Pantsar (ref_85) 2017; 107 Altman (ref_52) 2010; 9 Banerjee (ref_80) 2020; 103 Jia (ref_93) 2020; 28 Durgam (ref_49) 2006; 16 Gududuru (ref_50) 2006; 16 Zhao (ref_34) 2019; 164 Moolenaar (ref_7) 2007; 46 Keune (ref_23) 2016; 7 Hoeglund (ref_61) 2010; 53 Nakamura (ref_5) 2007; 367 ref_66 Nie (ref_29) 2020; 8 Durgam (ref_48) 2005; 48 Miller (ref_83) 2017; 60 Wu (ref_19) 2014; 28 Jansen (ref_17) 2005; 118 Jasinska (ref_6) 1999; 340 Jing (ref_89) 2018; 26 Kremer (ref_11) 2010; 139 Nishimasu (ref_22) 2011; 18 ref_36 Jones (ref_71) 2016; 7 Kawaguchi (ref_94) 2020; 63 ref_32 Gierse (ref_74) 2010; 334 Tokumura (ref_4) 2002; 277 Herr (ref_38) 2020; 57 Tager (ref_8) 2008; 14 ref_37 Lei (ref_92) 2020; 201 Galperin (ref_43) 2001; 45 Jiang (ref_90) 2019; 187 Gupte (ref_51) 2010; 20 Kawaguchi (ref_65) 2013; 8 Gijsbers (ref_44) 2001; 276 Barbayianni (ref_13) 2015; 58 Gupte (ref_57) 2011; 6 Banerjee (ref_79) 2017; 60 Nikolaou (ref_68) 2018; 61 Igarashi (ref_28) 2021; 11 Balupuri (ref_73) 2018; 148 Hausmann (ref_21) 2011; 18 ref_42 Clair (ref_45) 2003; 63 Albers (ref_14) 2012; 112 Saunders (ref_59) 2008; 7 Keune (ref_88) 2017; 60 Kaffe (ref_9) 2017; 65 |
References_xml | – volume: 57 start-page: 372 year: 2020 ident: ref_38 article-title: Pleotropic Roles of Autotaxin in the Nervous System Present Opportunities for the Development of Novel Therapeutics for Neurological Diseases publication-title: Mol. Neurobiol. doi: 10.1007/s12035-019-01719-1 – volume: 96 start-page: 140 year: 2014 ident: ref_75 article-title: Involvement of autotaxin/lysophosphatidic acid signaling in obesity and impaired glucose homeostasis publication-title: Biochimie doi: 10.1016/j.biochi.2013.04.010 – volume: 60 start-page: 7371 year: 2017 ident: ref_86 article-title: Discovery, Structure–Activity Relationship, and Binding Mode of an Imidazo[1,2-a]pyridine Series of Autotaxin Inhibitors publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b00647 – volume: 16 start-page: 1784 year: 2008 ident: ref_60 article-title: Virtual screening approaches for the identification of non-lipid autotaxin inhibitors publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2007.11.018 – volume: 53 start-page: 1056 year: 2010 ident: ref_61 article-title: Optimization of a Pipemidic Acid Autotaxin Inhibitor publication-title: J. Med. Chem. doi: 10.1021/jm9012328 – volume: 30 start-page: 272 year: 2016 ident: ref_10 article-title: Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo publication-title: J. Biomed. Res. doi: 10.7555/JBR.30.20150058 – volume: 5 start-page: 888 year: 2020 ident: ref_30 article-title: Interaction of Autotaxin with Lipoprotein(a) in Patients with Calcific Aortic Valve Stenosis publication-title: JACC Basic Transl. Sci. doi: 10.1016/j.jacbts.2020.06.012 – volume: 11 start-page: 1335 year: 2020 ident: ref_67 article-title: ONO-8430506: A Novel Autotaxin Inhibitor That Enhances the Antitumor Effect of Paclitaxel in a Breast Cancer Model publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.0c00200 – volume: 276 start-page: 1361 year: 2001 ident: ref_44 article-title: Structural and Catalytic Similarities between Nucleotide Pyrophosphatases/Phosphodiesterases and Alkaline Phosphatases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M007552200 – volume: 60 start-page: 3580 year: 2017 ident: ref_87 article-title: Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl]piperazin-1-yl]-8-methylimidazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a First-in-Class Autotaxin Inhibitor Undergoing Clinical Evaluation for the Treatment of Idiopathic Pulmonary Fibrosis publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b00032 – volume: 201 start-page: 112456 year: 2020 ident: ref_92 article-title: Structure guided design of potent indole-based ATX inhibitors bearing hydrazone moiety with tumor suppression effects publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112456 – volume: 8 start-page: 240 year: 2020 ident: ref_29 article-title: Autotaxin: An Early Warning Biomarker for Acute-on-chronic Liver Failure publication-title: J. Clin. Transl. Hepatol. doi: 10.14218/JCTH.2020.00045 – volume: 277 start-page: 39436 year: 2002 ident: ref_4 article-title: Identification of Human Plasma Lysophospholipase D, a Lysophosphatidic Acid-producing Enzyme, as Autotaxin, a Multifunctional Phosphodiesterase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205623200 – ident: ref_12 doi: 10.3390/nu10040399 – volume: 293 start-page: 14312 year: 2018 ident: ref_24 article-title: Lysophosphatidic acid produced by autotaxin acts as an allosteric modulator of its catalytic efficiency publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA118.004450 – volume: 21 start-page: 5098 year: 2011 ident: ref_56 article-title: Aromatic phosphonates inhibit the lysophospholipase D activity of autotaxin publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2011.03.068 – volume: 203 start-page: 112614 year: 2020 ident: ref_69 article-title: Design and synthesis of Leukotriene A4 hydrolase inhibitors to alleviate idiopathic pulmonary fibrosis and acute lung injury publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2020.112614 – volume: 18 start-page: 198 year: 2011 ident: ref_21 article-title: Structural basis of substrate discrimination and integrin binding by autotaxin publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1980 – volume: 53 start-page: 4958 year: 2010 ident: ref_62 article-title: Discovery and Optimization of Boronic Acid Based Inhibitors of Autotaxin publication-title: J. Med. Chem. doi: 10.1021/jm1005012 – volume: 148 start-page: 397 year: 2018 ident: ref_73 article-title: Discovery and optimization of ATX inhibitors via modeling, synthesis and biological evaluation publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.02.049 – volume: 103 start-page: 104188 year: 2020 ident: ref_80 article-title: Molecular modelling guided design, synthesis and QSAR analysis of new small molecule non-lipid autotaxin inhibitors publication-title: Bioorg. Chem. doi: 10.1016/j.bioorg.2020.104188 – volume: 20 start-page: 7132 year: 2010 ident: ref_58 article-title: Synthesis and structure–activity relationships of tyrosine-based inhibitors of autotaxin (ATX) publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.09.030 – volume: 187 start-page: 111904 year: 2019 ident: ref_90 article-title: Optimization and evaluation of novel tetrahydropyrido[4,3-d]pyrimidine derivatives as ATX inhibitors for cardiac and hepatic fibrosis publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2019.111904 – volume: 14 start-page: 45 year: 2008 ident: ref_8 article-title: The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak publication-title: Nat. Med. doi: 10.1038/nm1685 – volume: 118 start-page: 3081 year: 2005 ident: ref_17 article-title: Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D publication-title: J. Cell Sci. doi: 10.1242/jcs.02438 – volume: 28 start-page: 115795 year: 2020 ident: ref_93 article-title: Structure-based linker exploration: Discovery of 1-ethyl-1H-indole analogs as novel ATX inhibitors publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2020.115795 – volume: 9 start-page: 7414 year: 2019 ident: ref_35 article-title: The involvement of autotaxin in renal interstitial fibrosis through regulation of fibroblast functions and induction of vascular leakage publication-title: Sci. Rep. doi: 10.1038/s41598-019-43576-x – volume: 39 start-page: 976 year: 2019 ident: ref_3 article-title: Development and therapeutic potential of autotaxin small molecule inhibitors: From bench to advanced clinical trials publication-title: Med. Res. Rev. doi: 10.1002/med.21551 – volume: 66 start-page: 409 year: 2019 ident: ref_27 article-title: Serum autotaxin levels are associated with Graves’ disease publication-title: Endocr. J. doi: 10.1507/endocrj.EJ18-0451 – volume: 7 start-page: 857 year: 2016 ident: ref_71 article-title: Novel Autotaxin Inhibitors for the Treatment of Osteoarthritis Pain: Lead Optimization via Structure-Based Drug Design publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.6b00207 – volume: 48 start-page: 4919 year: 2005 ident: ref_48 article-title: Synthesis, Structure−Activity Relationships, and Biological Evaluation of Fatty Alcohol Phosphates as Lysophosphatidic Acid Receptor Ligands, Activators of PPARγ, and Inhibitors of Autotaxin publication-title: J. Med. Chem. doi: 10.1021/jm049609r – ident: ref_37 doi: 10.1371/journal.pone.0226050 – volume: 26 start-page: 5403 year: 2016 ident: ref_84 article-title: Discovery of potent inhibitors of the lysophospholipase autotaxin publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2016.10.036 – volume: 60 start-page: 2006 year: 2017 ident: ref_88 article-title: Rational Design of Autotaxin Inhibitors by Structural Evolution of Endogenous Modulators publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01743 – volume: 164 start-page: 74 year: 2019 ident: ref_34 article-title: Targeting the autotaxin-Lysophosphatidic acid receptor axis in cardiovascular diseases publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2019.03.035 – ident: ref_96 doi: 10.3390/molecules24152808 – ident: ref_53 doi: 10.1371/journal.pone.0070941 – volume: 7 start-page: 1 year: 2016 ident: ref_23 article-title: Steroid binding to Autotaxin links bile salts and lysophosphatidic acid signalling publication-title: Nat. Commun. doi: 10.1038/ncomms11248 – volume: 112 start-page: 668 year: 2021 ident: ref_33 article-title: Autotaxin in ascites promotes peritoneal dissemination in pancreatic cancer publication-title: Cancer Sci. doi: 10.1111/cas.14689 – volume: 340 start-page: 677 year: 1999 ident: ref_6 article-title: Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters publication-title: Biochem. J. doi: 10.1042/bj3400677 – volume: 18 start-page: 205 year: 2011 ident: ref_22 article-title: Crystal structure of autotaxin and insight into GPCR activation by lipid mediators publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1998 – ident: ref_66 doi: 10.3390/molecules24193419 – volume: 58 start-page: 76 year: 2015 ident: ref_13 article-title: Autotaxin, a secreted lysophospholipase D, as a promising therapeutic target in chronic inflammation and cancer publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2015.02.001 – ident: ref_32 doi: 10.3390/ijms21165938 – volume: 26 start-page: 5015 year: 2006 ident: ref_40 article-title: Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.02419-05 – volume: 8 start-page: 1713 year: 2013 ident: ref_65 article-title: Screening and X-ray Crystal Structure-based Optimization of Autotaxin (ENPP2) Inhibitors, Using a Newly Developed Fluorescence Probe publication-title: ACS Chem. Biol. doi: 10.1021/cb400150c – volume: 139 start-page: 1008 year: 2010 ident: ref_11 article-title: Lysophosphatidic Acid Is a Potential Mediator of Cholestatic Pruritus publication-title: Gastroenterology doi: 10.1053/j.gastro.2010.05.009 – volume: 288 start-page: 510 year: 2013 ident: ref_15 article-title: The polybasic insertion in autotaxin α confers specific binding to heparin and cell surface heparan sulfate proteoglycans publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.358416 – volume: 60 start-page: 1309 year: 2017 ident: ref_79 article-title: Highly Potent Non-Carboxylic Acid Autotaxin Inhibitors Reduce Melanoma Metastasis and Chemotherapeutic Resistance of Breast Cancer Stem Cells publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01270 – volume: 63 start-page: 7326 year: 2020 ident: ref_91 article-title: Discovery of Novel Indole-Based Allosteric Highly Potent ATX Inhibitors with Great In Vivo Efficacy in a Mouse Lung Fibrosis Model publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.0c00506 – volume: 88 start-page: 982 year: 2015 ident: ref_81 article-title: Structural Basis for Inhibition of Human Autotaxin by Four Potent Compounds with Distinct Modes of Binding publication-title: Mol. Pharmacol. doi: 10.1124/mol.115.100404 – volume: 27 start-page: 4156 year: 2017 ident: ref_76 article-title: Design, synthesis, docking and biological evaluation of 4-phenyl-thiazole derivatives as autotaxin (ATX) inhibitors publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2017.07.022 – volume: 267 start-page: 2524 year: 1992 ident: ref_2 article-title: Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)45911-X – volume: 16 start-page: 451 year: 2006 ident: ref_50 article-title: Identification of Darmstoff analogs as selective agonists and antagonists of lysophosphatidic acid receptors publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.08.096 – ident: ref_36 doi: 10.3390/cancers11111626 – volume: 11 start-page: 1408 year: 2021 ident: ref_28 article-title: Aqueous autotaxin and TGF-βs are promising diagnostic biomarkers for distinguishing open-angle glaucoma subtypes publication-title: Sci. Rep. doi: 10.1038/s41598-021-81048-3 – volume: 45 start-page: 318 year: 2001 ident: ref_43 article-title: Conserved core structure and active site residues in alkaline phosphatase superfamily enzymes publication-title: Proteins Struct. Funct. Bioinform. doi: 10.1002/prot.1152 – volume: 9 start-page: 1 year: 2010 ident: ref_52 article-title: Targeting melanoma growth and viability reveals dualistic functionality of the phosphonothionate analogue of carba cyclic phosphatidic acid publication-title: Mol. Cancer doi: 10.1186/1476-4598-9-140 – volume: 28 start-page: 861 year: 2014 ident: ref_19 article-title: Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration publication-title: FASEB J. doi: 10.1096/fj.13-232868 – volume: 63 start-page: 1032 year: 2003 ident: ref_47 article-title: Fatty Alcohol Phosphates are Subtype-Selective Agonists and Antagonists of Lysophosphatidic Acid Receptors publication-title: Mol. Pharmacol. doi: 10.1124/mol.63.5.1032 – volume: 84 start-page: 415 year: 2013 ident: ref_77 article-title: Hits of a High-Throughput Screen Identify the Hydrophobic Pocket of Autotaxin/Lysophospholipase D As an Inhibitory Surface publication-title: Mol. Pharmacol. doi: 10.1124/mol.113.087080 – volume: 6 start-page: 922 year: 2011 ident: ref_57 article-title: Benzyl and Naphthalene Methylphosphonic Acid Inhibitors of Autotaxin with Anti-invasive and Anti-metastatic Activity publication-title: ChemMedChem doi: 10.1002/cmdc.201000425 – volume: 334 start-page: 310 year: 2010 ident: ref_74 article-title: A Novel Autotaxin Inhibitor Reduces Lysophosphatidic Acid Levels in Plasma and the Site of Inflammation publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.110.165845 – ident: ref_42 doi: 10.1371/journal.pone.0143083 – volume: 281 start-page: 1017 year: 2014 ident: ref_78 article-title: Targeting the hydrophobic pocket of autotaxin with virtual screening of inhibitors identifies a common aromatic sulfonamide structural motif publication-title: FEBS J. doi: 10.1111/febs.12674 – volume: 150 start-page: 106471 year: 2020 ident: ref_39 article-title: Distinct contributions of two choline-producing enzymatic activities to lysophosphatidic acid production in human amniotic fluid from pregnant women in the second trimester and after parturition publication-title: Prostaglandins Other Lipid Mediat. doi: 10.1016/j.prostaglandins.2020.106471 – volume: 20 start-page: 7525 year: 2010 ident: ref_51 article-title: Synthesis and pharmacological evaluation of the stereoisomers of 3-carba cyclic-phosphatidic acid publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2010.09.115 – volume: 63 start-page: 3188 year: 2020 ident: ref_94 article-title: Identification of Potent In Vivo Autotaxin Inhibitors that Bind to Both Hydrophobic Pockets and Channels in the Catalytic Domain publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.9b01967 – volume: 31 start-page: 127663 year: 2021 ident: ref_97 article-title: Development of autotaxin inhibitors: A series of tetrazole cinnamides publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2020.127663 – volume: 107 start-page: 7257 year: 2010 ident: ref_63 article-title: Boronic acid-based inhibitor of autotaxin reveals rapid turnover of LPA in the circulation publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1001529107 – volume: 129 start-page: 3948 year: 2016 ident: ref_25 article-title: Exosomes bind autotaxin and act as a physiological delivery mechanism to stimulate LPA receptor signalling in cells publication-title: J. Cell Sci. doi: 10.1242/jcs.184424 – volume: 55 start-page: 1010 year: 2014 ident: ref_16 article-title: Autotaxin: Structure-function and signaling publication-title: J. Lipid Res. doi: 10.1194/jlr.R046391 – volume: 8 start-page: 1252 year: 2017 ident: ref_70 article-title: Discovery of BI-2545: A Novel Autotaxin Inhibitor That Significantly Reduces LPA Levels in Vivo publication-title: ACS Med. Chem. Lett. doi: 10.1021/acsmedchemlett.7b00312 – volume: 124 start-page: 3141 year: 2014 ident: ref_18 article-title: Interaction of platelet-derived autotaxin with tumor integrin αVβ3 controls metastasis of breast cancer cells to bone publication-title: Blood doi: 10.1182/blood-2014-04-568683 – volume: 2 start-page: 361 year: 2006 ident: ref_1 article-title: Modulation of purinergic signaling by NPP-type ectophosphodiesterases publication-title: Purinergic Signal. doi: 10.1007/s11302-005-5303-4 – volume: 26 start-page: 1784 year: 2018 ident: ref_89 article-title: Discovery and optimization of tetrahydropyrido[4,3-d]pyrimidine derivatives as novel ATX and EGFR dual inhibitors publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2018.02.023 – volume: 367 start-page: 20 year: 2007 ident: ref_5 article-title: Suppression of lysophosphatidic acid and lysophosphatidylcholine formation in the plasma in vitro: Proposal of a plasma sample preparation method for laboratory testing of these lipids publication-title: Anal. Biochem. doi: 10.1016/j.ab.2007.05.004 – volume: 7 start-page: 3352 year: 2008 ident: ref_59 article-title: Identification of small-molecule inhibitors of autotaxin that inhibit melanoma cell migration and invasion publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-08-0463 – volume: 266 start-page: 203 year: 2008 ident: ref_54 article-title: Anticancer activity of FTY720: Phosphorylated FTY720 inhibits autotaxin, a metastasis-enhancing and angiogenic lysophospholipase D publication-title: Cancer Lett. doi: 10.1016/j.canlet.2008.02.052 – volume: 54 start-page: 4619 year: 2011 ident: ref_64 article-title: Structure-Based Design of Novel Boronic Acid-Based Inhibitors of Autotaxin publication-title: J. Med. Chem. doi: 10.1021/jm200310q – volume: 28 start-page: 115216 year: 2020 ident: ref_72 article-title: Synthesis of novel 2-pyrrolidinone and pyrrolidine derivatives and study of their inhibitory activity against autotaxin enzyme publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2019.115216 – volume: 63 start-page: 5446 year: 2003 ident: ref_45 article-title: Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate publication-title: Cancer Res. – volume: 8 start-page: e10328 year: 2020 ident: ref_31 article-title: Deregulation of lysophosphatidic acid metabolism in oral cancer promotes cell migration via the up-regulation of COX-2 publication-title: PeerJ doi: 10.7717/peerj.10328 – volume: 61 start-page: 3697 year: 2018 ident: ref_68 article-title: Hydroxamic Acids Constitute a Novel Class of Autotaxin Inhibitors that Exhibit in Vivo Efficacy in a Pulmonary Fibrosis Model publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00232 – volume: 65 start-page: 1369 year: 2017 ident: ref_9 article-title: Hepatocyte autotaxin expression promotes liver fibrosis and cancer publication-title: Hepatology doi: 10.1002/hep.28973 – ident: ref_26 doi: 10.1186/s12876-021-01635-6 – volume: 5 start-page: 34 year: 2014 ident: ref_55 article-title: Dendrimer Conjugate of [4-(Tetradecanoylamino)benzyl]phosphonic Acid (S32826) as an Autotaxin Inhibitor publication-title: ACS Med. Chem. Lett. doi: 10.1021/ml4003106 – volume: 46 start-page: 145 year: 2007 ident: ref_7 article-title: Regulation and biological activities of the autotaxin-LPA axis publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2007.02.001 – volume: 60 start-page: 722 year: 2017 ident: ref_83 article-title: Structure–Activity Relationships of Small Molecule Autotaxin Inhibitors with a Discrete Binding Mode publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01597 – volume: 151 start-page: 89 year: 2011 ident: ref_20 article-title: Identification and biochemical characterization of a novel autotaxin isoform, ATX, with a four-amino acid deletion publication-title: J. Biochem. doi: 10.1093/jb/mvr126 – ident: ref_95 doi: 10.3390/molecules25051107 – volume: 4 start-page: 1 year: 2005 ident: ref_46 article-title: L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin publication-title: Lipids Health Dis. doi: 10.1186/1476-511X-4-5 – volume: 360 start-page: 1 year: 2016 ident: ref_82 article-title: Selective Inhibition of Autotaxin Is Efficacious in Mouse Models of Liver Fibrosis publication-title: J. Pharmacol. Exp. Ther. doi: 10.1124/jpet.116.237156 – volume: 112 start-page: 2593 year: 2012 ident: ref_14 article-title: Chemical Evolution of Autotaxin Inhibitors publication-title: Chem. Rev. doi: 10.1021/cr2003213 – volume: 16 start-page: 633 year: 2006 ident: ref_49 article-title: Synthesis and pharmacological evaluation of second-generation phosphatidic acid derivatives as lysophosphatidic acid receptor ligands publication-title: Bioorg. Med. Chem. Lett. doi: 10.1016/j.bmcl.2005.10.031 – volume: 107 start-page: 97 year: 2017 ident: ref_85 article-title: Design, synthesis, and biological evaluation of 2,4-dihydropyrano[2,3-c]pyrazole derivatives as autotaxin inhibitors publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2017.07.002 – volume: 104 start-page: 102327 year: 2019 ident: ref_41 article-title: Autotaxin and chronic inflammatory diseases publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2019.102327 |
SSID | ssj0057141 |
Score | 2.3761413 |
SecondaryResourceType | review_article |
Snippet | Autotaxin (ATX) is the only enzyme of the ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP2) family with lysophospholipase D (lysoPLD) activity, which... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1203 |
SubjectTerms | Amino acids autotaxin Binding sites Cancer Cell growth development Disease inhibitor Lipids lysophosphatidic acid Melanoma Metabolism Motility Nervous system Physiology Pruritus Review structure design Zinc |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPoiogiC1TaPNh59ooLiYQVvJY8JuyDdRbug_95J230UBC8e28wh_SbpzEcm3xByZEWe-IxDzB2DWBgPsU6tjI3jOk2sEqY-inl6zu5fxeObfJtr9RVqwhp54Aa4c-BKY5rshM5AcOYM5wYpRZ65oHtS36BmGPMmZKr5B8s8FWkjRsqR1J-P-viMmcWkNVYbfmqV_k5q2S2MnIs0dytkuU0R6WUztVWyAOUaOX5pNKa_T2lvdmXq85Qe05eZ-vT3Ojm7qWsyqC4dnasIokNPL8fVsNJfg5I-lP2BGYRGOxukd3fbu76P26YIscXUo0I4MyG5FAIyYFpeCJ1w5RXXOOqs8oiVScB7BTIBlwfxFmWcQgMQYBO-SRbLYQlbhDLkWnmqM55KLaxHGyGtUACMG66Uj8jJBKrCtoLhoW_Fe4HEIcBazGCNyOHUdtTIZPxqdRUQn1oEaev6BTq8aB1e_OXwiOxO_FW0--2zQFYWOpRzmUfkYDqMOyUcf-gShuPaRgQFPqUiknf83JlQd6Qc9GvNbSR-GMjV9n98wQ5ZYqEyJk1jxnbJYvUxhj1MbSqzX6_iH3mT9nU priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBZpcumltE1L3KZFISFQiBPLkmzlFPIkKTQsZQu5GT1G3YVib7NeaP59R155N4bSo60B26OZ0Yw0_j5CDqwoM19wSLnLIRXGQ6qZlalxXLPMKmG6o5hv98XtD_H1QT7EDbd5bKvsY2IXqF1jwx75CebdgYOay_Js9jsNrFHhdDVSaLwgWxiCFVr41sX1_eh7H4tlyQRbgpJyLO5PZhO8xgyjp8iKy1CH1j9IMYcNks9WnJvX5FVMFen5cm7fkA2o35LD0RJr-umIjte_Ts2P6CEdrVGon7bJ8VXXm0F17eizziDaeHq-aJtW_5nW9K6eTM00EO68I-Ob6_HlbRrJEVKLKUiLai2E5FIIKCDX8lTojCuvuMZRZ5XH0sJk4L0CmYErA4iLMk6hAAiwGX9PNuumhh1Cc6y5SqYLzqQW1qOMkFYogJwbrpRPyJdeVZWNwOGBv-JXhQVEUGu1VmtC9leysyVcxj-lLoLGVxIB4rq70Tz-rKLHVMCVxo9wQhcgeO4M5wZrybJwAfCGs4Ts9vNVRb-bV2srScjeahg9JhyD6BqaRScjAhKfUgkpB_M8eKHhSD2ddNjbWADigq4-_P_hH8nLPPS-MJbm-S7ZbB8X8AmTl9Z8jhb6F5G88HM priority: 102 providerName: ProQuest |
Title | Design and Development of Autotaxin Inhibitors |
URI | https://www.proquest.com/docview/2602146357 https://www.proquest.com/docview/2604008788 https://pubmed.ncbi.nlm.nih.gov/PMC8622848 https://doaj.org/article/e38a230d4a6e432db33b44876d801431 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBYhufRS-qRuk0WlJVCIU1sPSz2UkrQJaSFhKRvIzegx6i4EO914IfvvM7K9u3HJoVdrDNZIw8xnjb6PkI9OqCwUHFLuGaTCBkhN7mRqPTd55rSw7VHM-UVxdil-XcmrLbLS7-wdePsotIt6Upfz68O7v8tvGPBfI-JEyP75ZpoLDFkWST93MCOpKOFwLtanCVJ1CpbxUleqmVAdTek_7w4SU8vfPyg6hy2TD3LQ6TPytC8e6VG32s_JFlQvyP64Y59eHtDJ5jLV7QHdp-MNL_XyJTn80XZrUFN5-qBXiNaBHi2aujF3s4r-rKYzO4sSPK_I5PRk8v0s7eUSUodFSYOOLoTkUggogBn5RZiM66C5wVHvdECwYTMIQYPMwKtI66Kt12gAAlzGX5Ptqq7gDaEMUZjKTcFzaYQLaCOkExqAccu1Dgn5tHJV6Xoq8ahocV0ipIhuLTduTciHte1NR6DxqNVx9PjaIpJetw_q-Z-yj6ESuDY4CS9MAYIzbzm3iC5V4SMFDs8Tsrtar3K1kUrEa1G7nEuVkPfrYYyheDBiKqgXrY2I3HxaJ0QN1nnwQcORajZt2bgREmKK12__a57vyBMWm2LyPGVsl2w38wXsYVXT2BHZOT65GP8etX8FRu0Gvge8YvcO |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9AAXxFMYCiwCKiHVrb0Pe3tAqKWtEtpGEQpSb9a-TCIhOzSJID-K_8isH0ktIW492juy17Mzu994Z78BeGd4GuUJcyGz1IVc5y5UsRGhtkzFkZFcV1sxl8Ok_41_uRJXW_CnPQvj0yrbObGaqG1p_D_yA8TdvgY1E-mn2c_QV43yu6ttCY3aLM7d6heGbPOPgxMc3_eUnp2OP_fDpqpAaHDtXmB_Ei6Y4NwljipxyFXEZC6ZwlZrZI6YXEcuz6UTkbOpZz-R2koUcNyZiOFj78A2Z4gUerB9fDocfW2nfpHGPK45UBk7jA5mE7xGQNNW5GpWvao4QAfRdvMxbyxwZw_gfoNMyVFtSg9hyxWPYHdUU1uv9sh4c1Jrvkd2yWhDer16DPsnVSoIUYUlNxKRSJmTo-WiXKjf04IMislUT319nycwvg2tPYVeURbuGRCKIV4aq4TFQnGTowwXhkvnKNNMyjyAD62qMtPwlPtyGT8yjFe8WrONWgN4u5ad1ewc_5Q69hpfS3hG7epGef09axw0c0wq_AjLVeI4o1YzpjF0TRPr-XVYHMBOO15Z4-bzbGOUAbxZN6OD-l0XVbhyWclwT_wnZQBpZ5w7Heq2FNNJRfWN8SbiB_n8_y9_DXf748uL7GIwPH8B96hPu4njkNId6C2ul-4l4qaFftVYK4Hslv3jLzfcLGU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkK8ID5FYIARMAlp2RLbSbwHhDa6amVQVahIe4v8SSuhpKypoH8a_x3nfLSrhHjbY-JT4pzv7Lv4_PsBvNE8i1zKbMgMtSFXzoYy1kmoDJNxpAVX9VbMl1F6_o1_ukwud-BPdxbGl1V2c2I9UZtS-3_kRxh3ew5qhgm8a8sixv3Bh_nP0DNI-Z3Wjk6jMZELu_qF6dvi_bCPY_2W0sHZ5ON52DIMhBrX8Qr7lvKEJZzb1FKZHHMZMeEEk9hqtHAYn6vIOidsElmTeSQUoYxAAcutjhg-9hbsZv70aA92T89G46_dMpBkMY8bPFTGjqOj-RSvMbjp2LnaFbAmCtiKbrdrM68tdoN7cLeNUslJY1b3YccWD2B_3MBcrw7IZHNqa3FA9sl4A4C9egiH_boshMjCkGtFSaR05GRZlZX8PSvIsJjO1Mxz_TyCyU1o7TH0irKwT4BQTPeyWKYsTiTXDmV4ormwljLFhHABvOtUlesWs9xTZ_zIMXfxas03ag3g9Vp23iB1_FPq1Gt8LeHRtesb5dX3vHXW3DIh8SMMl6nljBrFmMI0NkuNx9phcQB73Xjlrcsv8o2BBvBq3YzO6ndgZGHLZS3DPQigEAFkW-O81aHtlmI2rWG_MffEWEI8_f_LX8Jt9Iv883B08QzuUF-BE8chpXvQq66W9jmGUJV60RorgfyG3eMvHE8wow |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+Development+of+Autotaxin+Inhibitors&rft.jtitle=Pharmaceuticals+%28Basel%2C+Switzerland%29&rft.au=Jia%2C+Yi&rft.au=Li%2C+Yan&rft.au=Xu%2C+Xu-Dong&rft.au=Tian%2C+Yu&rft.date=2021-11-22&rft.issn=1424-8247&rft.eissn=1424-8247&rft.volume=14&rft.issue=11&rft.spage=1203&rft_id=info:doi/10.3390%2Fph14111203&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ph14111203 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8247&client=summon |