Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks
Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or o...
Saved in:
Published in | Nature materials Vol. 20; no. 2; pp. 222 - 228 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.02.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D
π
-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the
π
-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.
Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis. |
---|---|
AbstractList | Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D pi-conjugated MOFs derived from large single crystals of sizes up to 200 mu m, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the pi-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 mu m are grown, allowing in-plane transport measurements and atomic-resolution analysis. Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π -conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π -conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis. Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis. |
Author | Yang, Luming Arguilla, Maxx Q. Kong, Jing Hendon, Christopher H. Chen, Tianyang Sun, Chenyue Dincă, Mircea Yang, Min Chieh Skorupskii, Grigorii Zhang, Weizhe Dip, Phat Vinh Miller, Jeffrey T. Parent, Lucas R. Dou, Jin-Hu Mancuso, Jenna L. Libretto, Nicole J. Luo, Yi Sun, Lei Sun, Junliang Li, Jian Brignole, Edward J. |
Author_xml | – sequence: 1 givenname: Jin-Hu orcidid: 0000-0002-6920-9051 surname: Dou fullname: Dou, Jin-Hu organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 2 givenname: Maxx Q. surname: Arguilla fullname: Arguilla, Maxx Q. organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 3 givenname: Yi surname: Luo fullname: Luo, Yi organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University – sequence: 4 givenname: Jian surname: Li fullname: Li, Jian organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University – sequence: 5 givenname: Weizhe surname: Zhang fullname: Zhang, Weizhe organization: National Facility for Protein Science, Shanghai Advanced Research Institute – sequence: 6 givenname: Lei surname: Sun fullname: Sun, Lei organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 7 givenname: Jenna L. surname: Mancuso fullname: Mancuso, Jenna L. organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon – sequence: 8 givenname: Luming surname: Yang fullname: Yang, Luming organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 9 givenname: Tianyang surname: Chen fullname: Chen, Tianyang organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 10 givenname: Lucas R. surname: Parent fullname: Parent, Lucas R. organization: University of Connecticut, Innovation Partnership Building, University of Connecticut – sequence: 11 givenname: Grigorii surname: Skorupskii fullname: Skorupskii, Grigorii organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 12 givenname: Nicole J. orcidid: 0000-0002-6922-2790 surname: Libretto fullname: Libretto, Nicole J. organization: Davidson School of Chemical Engineering, Purdue University – sequence: 13 givenname: Chenyue orcidid: 0000-0002-7524-5323 surname: Sun fullname: Sun, Chenyue organization: Department of Chemistry, Massachusetts Institute of Technology – sequence: 14 givenname: Min Chieh surname: Yang fullname: Yang, Min Chieh organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon – sequence: 15 givenname: Phat Vinh orcidid: 0000-0002-1535-9644 surname: Dip fullname: Dip, Phat Vinh organization: Department of Biology, Massachusetts Institute of Technology – sequence: 16 givenname: Edward J. surname: Brignole fullname: Brignole, Edward J. organization: Department of Biology, Massachusetts Institute of Technology – sequence: 17 givenname: Jeffrey T. surname: Miller fullname: Miller, Jeffrey T. organization: Davidson School of Chemical Engineering, Purdue University – sequence: 18 givenname: Jing surname: Kong fullname: Kong, Jing organization: Department of Electrical and Engineering and Computer Science, Massachusetts Institute of Technology – sequence: 19 givenname: Christopher H. orcidid: 0000-0002-7132-768X surname: Hendon fullname: Hendon, Christopher H. organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon – sequence: 20 givenname: Junliang orcidid: 0000-0003-4074-0962 surname: Sun fullname: Sun, Junliang email: junliang.sun@pku.edu.cn organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University – sequence: 21 givenname: Mircea orcidid: 0000-0002-1262-1264 surname: Dincă fullname: Dincă, Mircea email: mdinca@mit.edu organization: Department of Chemistry, Massachusetts Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33230325$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-189356$$DView record from Swedish Publication Index |
BookMark | eNp9kUtqHDEQhkVw8Cu5QBahwZss3Ine070c_EgMhmySbIWkqR7kqKWxpMbMLnfIDXMSy5m2DV4YClRI319Vqv8I7YUYAKEPBH8mmHVfMidCshZT3GLc8UW7eIMOCV_IlkuJ9-acEEoP0FHONxhTIoTcRweMUYYZFYcIliWOzmrvt80mgXUZmuzC2kNr0zYX7Ztc0mTLlCA3cWjAgy1pVtgYVvWt8g09b0ao-L8_f2Na6-BsMyQ9wl1Mv_M79HbQPsP7-TxGPy8vfpx9a6-_f706W163VhBRWmoZM8QYzClnomem032_6sHovl4aQuQgOqMtN5RJTSUXZEUHI3vGsbZWsmN0uqub72AzGbVJbtRpq6J26tz9Wqo6msqTIl3PxAP-aYdvUrydIBc1umzBex0gTllRLjnhrEZFT16gN3FKoX6mUh3hhGLZVerjTE1mhNVT_8d9V6DbATbFnBMMyrqii4uhJO28Ilg9WKt21qpqrfpvrVpUKX0hfaz-qojNC6lwWEN6HvsV1T1MJ7d8 |
CitedBy_id | crossref_primary_10_1021_jacs_3c02741 crossref_primary_10_1002_anie_202500287 crossref_primary_10_1002_sstr_202100126 crossref_primary_10_1021_jacs_2c10717 crossref_primary_10_1039_D4TA05484A crossref_primary_10_1016_j_ceramint_2022_10_246 crossref_primary_10_1021_acsaelm_0c01135 crossref_primary_10_1002_ange_202017153 crossref_primary_10_1016_j_jssc_2022_122964 crossref_primary_10_1039_D4NR02600D crossref_primary_10_1039_D0NR09064F crossref_primary_10_1021_acs_accounts_3c00788 crossref_primary_10_1002_anie_202313591 crossref_primary_10_1002_adma_202311541 crossref_primary_10_1002_adfm_202409388 crossref_primary_10_1002_ange_202103398 crossref_primary_10_1021_acscentsci_1c00047 crossref_primary_10_1002_anie_202215234 crossref_primary_10_1021_jacs_0c10777 crossref_primary_10_1016_j_chempr_2023_06_005 crossref_primary_10_1126_sciadv_add2031 crossref_primary_10_1002_anie_202303890 crossref_primary_10_1021_jacs_3c07503 crossref_primary_10_1016_j_jechem_2024_06_001 crossref_primary_10_1021_acs_jpcc_2c00742 crossref_primary_10_1007_s12274_022_4184_y crossref_primary_10_1021_jacs_1c12596 crossref_primary_10_1002_anie_202421822 crossref_primary_10_1002_anie_202113569 crossref_primary_10_1146_annurev_matsci_080619_012811 crossref_primary_10_1016_j_scib_2022_06_005 crossref_primary_10_1038_s41596_022_00720_8 crossref_primary_10_1039_D4QI02257B crossref_primary_10_1021_jacs_4c11782 crossref_primary_10_1002_anie_202208163 crossref_primary_10_1039_D1DT01729B crossref_primary_10_1002_ange_202418390 crossref_primary_10_1021_jacs_1c01466 crossref_primary_10_1002_smll_202306159 crossref_primary_10_1002_ange_202217958 crossref_primary_10_1021_acs_langmuir_2c02685 crossref_primary_10_1016_j_chempr_2023_02_016 crossref_primary_10_1002_smll_202207547 crossref_primary_10_1021_jacs_2c10933 crossref_primary_10_1021_acsnano_4c16212 crossref_primary_10_1021_acs_jpcc_2c06019 crossref_primary_10_1039_D3NR01170D crossref_primary_10_1002_anie_202207834 crossref_primary_10_1002_anie_202408189 crossref_primary_10_1021_acs_energyfuels_4c01515 crossref_primary_10_2139_ssrn_4045991 crossref_primary_10_1002_cjoc_202200651 crossref_primary_10_1002_anie_202106259 crossref_primary_10_1002_cphc_202400769 crossref_primary_10_1021_acsami_1c16180 crossref_primary_10_1002_chem_202100610 crossref_primary_10_1021_jacs_3c13985 crossref_primary_10_1016_j_nxmate_2023_100010 crossref_primary_10_1021_acs_chemmater_1c01034 crossref_primary_10_1021_acsenergylett_2c01714 crossref_primary_10_1002_anie_202105966 crossref_primary_10_1002_anie_202306224 crossref_primary_10_1038_s41467_021_27600_1 crossref_primary_10_1038_s41467_022_33443_1 crossref_primary_10_3390_batteries9020109 crossref_primary_10_1002_ange_202103729 crossref_primary_10_1038_s41557_024_01693_9 crossref_primary_10_1002_sstr_202100210 crossref_primary_10_1039_D2SC06085J crossref_primary_10_1007_s11581_024_05406_7 crossref_primary_10_1039_D3CY00408B crossref_primary_10_1002_anie_202112811 crossref_primary_10_1021_acsnano_1c10544 crossref_primary_10_1039_D3NH00494E crossref_primary_10_1080_15421406_2022_2038451 crossref_primary_10_1002_anie_202409387 crossref_primary_10_1039_D1SC03709A crossref_primary_10_1016_j_heliyon_2024_e33902 crossref_primary_10_1002_anie_202106389 crossref_primary_10_1002_adma_202204140 crossref_primary_10_1002_ange_202110373 crossref_primary_10_1039_D1TA02968A crossref_primary_10_1016_j_matt_2023_02_009 crossref_primary_10_1002_ange_202306224 crossref_primary_10_1002_ange_202114293 crossref_primary_10_1002_smll_202308264 crossref_primary_10_1038_s43246_024_00620_2 crossref_primary_10_1002_advs_202205760 crossref_primary_10_1021_acsaelm_1c00297 crossref_primary_10_1021_acsami_4c17699 crossref_primary_10_1021_jacs_4c05343 crossref_primary_10_3390_cryst11030263 crossref_primary_10_1002_ange_202317413 crossref_primary_10_1038_s41570_022_00457_8 crossref_primary_10_1039_D2TA09579C crossref_primary_10_1002_ange_202300658 crossref_primary_10_1021_acs_accounts_4c00280 crossref_primary_10_1021_acsenergylett_4c00544 crossref_primary_10_1002_adfm_202302659 crossref_primary_10_1002_anie_202103729 crossref_primary_10_1002_anie_202419266 crossref_primary_10_1002_ange_202308034 crossref_primary_10_1002_ange_202500287 crossref_primary_10_1021_acs_accounts_1c00172 crossref_primary_10_1021_jacs_2c03793 crossref_primary_10_1002_anie_202110373 crossref_primary_10_1002_adom_202100622 crossref_primary_10_1002_ange_202303819 crossref_primary_10_1021_jacs_5c01223 crossref_primary_10_1039_D4SC00932K crossref_primary_10_1002_adma_202203791 crossref_primary_10_1002_smll_202305308 crossref_primary_10_1002_adma_202409959 crossref_primary_10_1002_admi_202301009 crossref_primary_10_1088_1674_1056_ad5af0 crossref_primary_10_1007_s40843_024_3109_5 crossref_primary_10_1039_D3NJ05650C crossref_primary_10_1021_acsaenm_4c00480 crossref_primary_10_1002_smll_202305548 crossref_primary_10_1039_D1TC02543K crossref_primary_10_1039_D2DT01359B crossref_primary_10_1039_D4QI02507E crossref_primary_10_1016_j_ensm_2024_103199 crossref_primary_10_1039_D4CC04738A crossref_primary_10_1039_D3EE03819J crossref_primary_10_1039_D0NR09167G crossref_primary_10_1002_adom_202302309 crossref_primary_10_1093_oxfmat_itab019 crossref_primary_10_1039_D4SC07025A crossref_primary_10_1002_anie_202017153 crossref_primary_10_1063_5_0170175 crossref_primary_10_1016_j_cclet_2022_108100 crossref_primary_10_1021_acs_chemmater_1c03533 crossref_primary_10_1016_j_apsusc_2025_162541 crossref_primary_10_1039_D2CP01840C crossref_primary_10_1002_anie_202418390 crossref_primary_10_1016_j_susmat_2021_e00354 crossref_primary_10_1016_j_jcis_2023_05_151 crossref_primary_10_1021_acsmaterialslett_2c00669 crossref_primary_10_1016_j_trechm_2024_03_008 crossref_primary_10_1039_D1TA04026J crossref_primary_10_1002_smll_202303580 crossref_primary_10_1021_acs_inorgchem_2c03226 crossref_primary_10_1021_jacs_2c07692 crossref_primary_10_1021_acs_accounts_3c00718 crossref_primary_10_1021_acsnanoscienceau_3c00024 crossref_primary_10_1002_adfm_202210702 crossref_primary_10_1002_admt_202101623 crossref_primary_10_1016_j_psep_2022_03_078 crossref_primary_10_1002_anie_202317413 crossref_primary_10_1038_s41467_022_34820_6 crossref_primary_10_1016_j_matchemphys_2022_126878 crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1002_ange_202113569 crossref_primary_10_1002_adma_202312325 crossref_primary_10_1039_D4GC05419A crossref_primary_10_1021_jacs_3c07682 crossref_primary_10_1002_smll_202306732 crossref_primary_10_1002_adma_202404249 crossref_primary_10_1002_anie_202308034 crossref_primary_10_1021_acscatal_3c05314 crossref_primary_10_1002_ange_202419266 crossref_primary_10_1021_acs_inorgchem_0c03801 crossref_primary_10_1039_D1SC01827B crossref_primary_10_1016_j_ccr_2022_214693 crossref_primary_10_1016_j_gee_2024_12_009 crossref_primary_10_1038_s41467_023_43405_w crossref_primary_10_1002_adma_202200999 crossref_primary_10_1002_smsc_202400469 crossref_primary_10_1002_smll_202405636 crossref_primary_10_1016_j_ccr_2022_214459 crossref_primary_10_1002_anie_202104461 crossref_primary_10_1021_acsami_2c22665 crossref_primary_10_1038_s44160_023_00316_4 crossref_primary_10_1002_ange_202423341 crossref_primary_10_1002_anie_202303819 crossref_primary_10_1021_jacs_3c11172 crossref_primary_10_1021_acsmaterialslett_4c00078 crossref_primary_10_1039_D1NR02641K crossref_primary_10_1002_ange_202106389 crossref_primary_10_1002_ange_202405239 crossref_primary_10_1002_anie_202401005 crossref_primary_10_1021_acsmaterialslett_4c01721 crossref_primary_10_1016_j_cej_2024_155639 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1002_cnma_202300171 crossref_primary_10_1039_D4CE00360H crossref_primary_10_1002_adfm_202204065 crossref_primary_10_1038_s41467_024_53786_1 crossref_primary_10_1126_sciadv_add9627 crossref_primary_10_1016_j_aca_2024_342210 crossref_primary_10_1021_acscatal_1c05889 crossref_primary_10_1002_anie_202405168 crossref_primary_10_1016_j_microc_2024_111878 crossref_primary_10_1021_acs_iecr_4c00491 crossref_primary_10_1021_jacs_4c02326 crossref_primary_10_1002_ange_202112811 crossref_primary_10_1002_ange_202106259 crossref_primary_10_1002_anie_202300658 crossref_primary_10_1021_jacs_4c09993 crossref_primary_10_1039_D3CE00407D crossref_primary_10_1246_bcsj_20220283 crossref_primary_10_1002_adfm_202315911 crossref_primary_10_1002_ange_202105966 crossref_primary_10_1002_adma_202106204 crossref_primary_10_1002_ange_202300186 crossref_primary_10_1016_j_carbon_2024_119145 crossref_primary_10_1002_anie_202423939 crossref_primary_10_1021_jacs_4c06935 crossref_primary_10_1002_ange_202421822 crossref_primary_10_1039_D4TA01820F crossref_primary_10_1016_j_ccr_2024_216098 crossref_primary_10_1021_acs_accounts_4c00335 crossref_primary_10_1021_acsapm_3c02805 crossref_primary_10_1021_acscatal_1c05532 crossref_primary_10_1016_j_cej_2022_136574 crossref_primary_10_1039_D2CE00051B crossref_primary_10_1002_ange_202409387 crossref_primary_10_1021_acs_jpclett_0c02988 crossref_primary_10_1002_ange_202208163 crossref_primary_10_1016_j_jcis_2024_04_065 crossref_primary_10_1021_acscatal_4c01091 crossref_primary_10_1038_s41563_020_00912_1 crossref_primary_10_1002_anie_202416178 crossref_primary_10_1002_advs_202305551 crossref_primary_10_1007_s11426_024_2069_2 crossref_primary_10_1002_anie_202114293 crossref_primary_10_1002_smll_202403808 crossref_primary_10_1021_jacs_0c13310 crossref_primary_10_1021_jacs_2c08344 crossref_primary_10_1039_D3TA04490D crossref_primary_10_1016_j_eti_2022_103001 crossref_primary_10_1016_j_mtsust_2024_100899 crossref_primary_10_1039_D1DT02323C crossref_primary_10_1021_jacs_1c08354 crossref_primary_10_1002_adfm_202308497 crossref_primary_10_1021_jacs_2c11511 crossref_primary_10_1002_ange_202408189 crossref_primary_10_1021_acs_chemrev_4c00565 crossref_primary_10_1016_j_mtchem_2021_100517 crossref_primary_10_1002_ange_202215234 crossref_primary_10_1016_j_chempr_2022_03_027 crossref_primary_10_1002_anie_202103398 crossref_primary_10_1038_s41578_024_00740_8 crossref_primary_10_1021_jacs_4c10636 crossref_primary_10_1039_D1SC00095K crossref_primary_10_1039_D2EE01010K crossref_primary_10_1039_D4SC03524K crossref_primary_10_1002_adma_202414362 crossref_primary_10_1002_batt_202300536 crossref_primary_10_1007_s40820_023_01124_3 crossref_primary_10_1039_D1TA05283G crossref_primary_10_1016_j_ccr_2022_214650 crossref_primary_10_1039_D4SC02699C crossref_primary_10_1021_acs_chemmater_3c01049 crossref_primary_10_1016_j_chempr_2023_09_022 crossref_primary_10_1021_jacs_3c12866 crossref_primary_10_1039_D1CC03333F crossref_primary_10_1021_acsnano_4c04213 crossref_primary_10_1073_pnas_2305125120 crossref_primary_10_1021_jacs_4c11195 crossref_primary_10_1016_j_cej_2021_133247 crossref_primary_10_1002_ange_202109336 crossref_primary_10_1016_j_mtchem_2022_100885 crossref_primary_10_1002_anie_202300186 crossref_primary_10_1246_bcsj_20210277 crossref_primary_10_2139_ssrn_4188433 crossref_primary_10_1021_acsnano_1c06402 crossref_primary_10_1021_jacs_3c02378 crossref_primary_10_1039_D4TC00421C crossref_primary_10_1039_D5QI00119F crossref_primary_10_1002_adom_202200213 crossref_primary_10_1002_ange_202401005 crossref_primary_10_1002_anie_202106055 crossref_primary_10_1021_acssensors_3c00715 crossref_primary_10_1016_j_ijhydene_2023_02_039 crossref_primary_10_1016_j_cej_2024_154294 crossref_primary_10_1002_ange_202207834 crossref_primary_10_1016_j_xcrp_2023_101656 crossref_primary_10_1080_23746149_2022_2046157 crossref_primary_10_1002_anie_202405239 crossref_primary_10_1016_j_jpowsour_2024_234449 crossref_primary_10_1002_ange_202405168 crossref_primary_10_1002_ange_202106055 crossref_primary_10_3390_nano13111742 crossref_primary_10_1039_D2CS01027E crossref_primary_10_1039_D4TA08063G crossref_primary_10_1002_adma_202412045 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1002_ange_202303890 crossref_primary_10_1016_j_rineng_2024_103076 crossref_primary_10_1002_ange_202423939 crossref_primary_10_1002_ange_202416178 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1016_j_xcrp_2022_101004 crossref_primary_10_1021_acs_chemmater_3c02233 crossref_primary_10_1002_adfm_202403656 crossref_primary_10_1088_2515_7639_acf524 crossref_primary_10_1021_acssensors_3c00362 crossref_primary_10_1039_D2NJ01373H crossref_primary_10_1002_ange_202404290 crossref_primary_10_1016_j_jallcom_2022_167974 crossref_primary_10_1021_acsmaterialslett_3c00122 crossref_primary_10_1039_D2NR00398H crossref_primary_10_1002_ange_202104461 crossref_primary_10_1002_anie_202217958 crossref_primary_10_1007_s11664_023_10229_9 crossref_primary_10_1007_s12274_024_6813_0 crossref_primary_10_1021_acsaelm_2c01694 crossref_primary_10_1002_anie_202305977 crossref_primary_10_1016_j_mtchem_2022_100981 crossref_primary_10_1021_jacs_4c10444 crossref_primary_10_1021_acs_langmuir_2c00554 crossref_primary_10_1002_smll_202309841 crossref_primary_10_1039_D3CE00270E crossref_primary_10_1002_anie_202404290 crossref_primary_10_1002_smtd_202401461 crossref_primary_10_1021_acs_accounts_4c00305 crossref_primary_10_1021_acs_cgd_3c01427 crossref_primary_10_1038_s41578_022_00476_3 crossref_primary_10_1021_acs_analchem_2c03766 crossref_primary_10_1039_D1CC06440A crossref_primary_10_1016_j_xcrp_2023_101679 crossref_primary_10_1002_anie_202423341 crossref_primary_10_1021_jacs_2c11676 crossref_primary_10_1016_j_chempr_2023_08_026 crossref_primary_10_1002_ange_202305977 crossref_primary_10_1021_acs_nanolett_3c02522 crossref_primary_10_1002_ange_202313591 crossref_primary_10_1002_anie_202109336 crossref_primary_10_1039_D4CC06478J crossref_primary_10_1021_acsmaterialslett_4c00923 crossref_primary_10_1002_adfm_202416717 crossref_primary_10_1039_D1FD00020A |
Cites_doi | 10.1126/science.aar7883 10.1021/cm051870o 10.1021/acs.chemrev.9b00766 10.1002/anie.201506219 10.1021/acs.chemmater.9b04665 10.1039/C7CS00122C 10.1016/j.chempr.2016.12.002 10.1021/jacs.6b09345 10.1038/s41557-019-0372-0 10.1107/S2053229614024218 10.1021/ja502765n 10.1002/anie.201802521 10.1038/s41557-019-0263-4 10.1016/j.matt.2019.06.001 10.1107/S2053229614024929 10.1038/nmat4766 10.1107/S0907444909047337 10.1002/adma.201305497 10.1002/cctc.201700519 10.1021/jacs.7b07234 10.1021/ja312380b 10.1039/C7CS00490G 10.1038/s41563-018-0098-1 10.1021/cr990322p 10.1107/S2053273314026370 10.1107/S1600576718009500 10.1039/C7TA00194K 10.1126/science.aao0865 10.1039/C8CS00268A 10.1038/s41578-019-0140-1 10.1038/s41560-017-0044-5 10.1126/science.aax9385 10.1021/acs.chemrev.7b00582 10.1038/s41557-019-0327-5 10.1126/sciadv.aaz0632 10.1021/acs.chemrev.7b00581 10.1021/acscentsci.9b01006 10.1038/ncomms10942 10.1021/cm301194a 10.1038/nature26160 10.1038/s41563-018-0189-z 10.1039/C7CC03180G 10.1126/science.aan8285 10.1126/science.aat7679 10.1126/science.1246738 10.1107/S0021889813027714 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2020 The Author(s), under exclusive licence to Springer Nature Limited 2020. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020 – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020. |
DBID | AAYXX CITATION NPM 3V. 7SR 7X7 7XB 88E 88I 8AO 8BQ 8FD 8FE 8FG 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ JG9 K9. KB. L6V M0S M1P M2P M7S PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7X8 ADTPV AOWAS DG7 |
DOI | 10.1038/s41563-020-00847-7 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Engineered Materials Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Engineering Collection Health & Medical Collection (Alumni) Medical Database Science Database Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic MEDLINE - Academic SwePub SwePub Articles SWEPUB Stockholms universitet |
DatabaseTitle | CrossRef PubMed Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Engineered Materials Abstracts ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection Materials Science Database ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) METADEX ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1476-4660 |
EndPage | 228 |
ExternalDocumentID | oai_DiVA_org_su_189356 33230325 10_1038_s41563_020_00847_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Army Research Office grant number W911NF-17-1-0174 – fundername: CNSF (21527803,21621061), MSTC (2016YFA0301004) |
GroupedDBID | --- 0R~ 29M 39C 3V. 4.4 5BI 70F 7X7 88E 88I 8AO 8FE 8FG 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFS ACGOD ACIWK ACUHS ADBBV AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BKKNO BPHCQ BVXVI CCPQU CZ9 D1I DB5 DU5 DWQXO EBS EE. EJD EMOBN ESN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ HCIFZ HMCUK HVGLF HZ~ I-F KB. KC. L6V M1P M2P M7S MK~ NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO PTHSS Q2X RIG RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT NFIDA NPM PJZUB PPXIY PQGLB 7SR 7XB 8BQ 8FD 8FK JG9 K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 ADTPV AOWAS DG7 |
ID | FETCH-LOGICAL-c515t-2c33b1bb04243593b8a99d9eba9bb0b116f58bac4b236a26451d2fb69340acc63 |
IEDL.DBID | 7X7 |
ISSN | 1476-1122 1476-4660 |
IngestDate | Thu Aug 21 06:37:55 EDT 2025 Fri Jul 11 10:34:05 EDT 2025 Sat Aug 23 12:51:20 EDT 2025 Mon Jul 21 05:51:06 EDT 2025 Tue Jul 01 02:14:01 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:40:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-2c33b1bb04243593b8a99d9eba9bb0b116f58bac4b236a26451d2fb69340acc63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7132-768X 0000-0002-6922-2790 0000-0002-7524-5323 0000-0002-6920-9051 0000-0002-1535-9644 0000-0003-4074-0962 0000-0002-1262-1264 |
PMID | 33230325 |
PQID | 2481412068 |
PQPubID | 27576 |
PageCount | 7 |
ParticipantIDs | swepub_primary_oai_DiVA_org_su_189356 proquest_miscellaneous_2464143143 proquest_journals_2481412068 pubmed_primary_33230325 crossref_citationtrail_10_1038_s41563_020_00847_7 crossref_primary_10_1038_s41563_020_00847_7 springer_journals_10_1038_s41563_020_00847_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature materials |
PublicationTitleAbbrev | Nat. Mater |
PublicationTitleAlternate | Nat Mater |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mayoral, Mahugo, Sánchez-Sánchez, Díaz (CR35) 2017; 9 Liu (CR30) 2019; 11 Wiktor, Meledina, Turner, Lebedev, Fischer (CR32) 2017; 5 Miner (CR13) 2016; 7 Miao (CR22) 2014; 26 Skorupskii (CR28) 2020; 12 Hestand, Spano (CR39) 2018; 118 Sheldrick (CR41) 2015; 71 Li (CR34) 2019; 1 Aubrey (CR6) 2018; 17 Wang, Dong, Jiang, Hu (CR23) 2018; 47 Dong (CR3) 2018; 17 Sheberla (CR10) 2017; 16 Dou (CR20) 2017; 139 Day (CR21) 2019; 5 Ma (CR16) 2018; 361 Pomerantseva, Bonaccorso, Feng, Cui, Gogotsi (CR9) 2019; 366 Talin (CR5) 2014; 343 Feng (CR12) 2018; 3 Rieth, Wright, Dincă (CR26) 2019; 4 Zhou (CR37) 2020; 32 Kambe (CR4) 2013; 135 Nam (CR7) 2019; 10 Okamoto (CR25) 2020; 6 Wang, Zhu, Zou, Xu (CR11) 2017; 2 Sun, Park, Sheberla, Dincă (CR48) 2016; 138 Sheberla (CR2) 2014; 136 Sun, Campbell, Dincă (CR19) 2016; 55 Zhao (CR17) 2018; 47 Shen, Chen, Shen, Xiong, Wei (CR36) 2020; 11 Wang (CR44) 2017; 53 Spek (CR43) 2015; 71 Liu (CR33) 2019; 11 Lebedev, Millange, Serre, Van Tendeloo, Férey (CR31) 2005; 17 Xie, Skorupskii, Dincǎ (CR40) 2020; 120 Hmadeh (CR1) 2012; 24 Wada, Sakaushi, Sasaki, Nishihara (CR8) 2018; 57 Zhong (CR18) 2019; 9385 Zhang (CR29) 2018; 359 Van Vleet, Weng, Li, Schmidt (CR27) 2018; 118 Smeets, Zou, Wan (CR45) 2018; 51 Wan, Sun, Su, Hovmöller, Zou (CR46) 2013; 46 Evans (CR15) 2018; 361 Watson, Fechtenkötter, Müllen (CR24) 2001; 101 Stassen (CR14) 2017; 46 Cao (CR38) 2018; 556 Sheldrick (CR42) 2015; 71 Kabsch (CR47) 2010; 66 KW Nam (847_CR7) 2019; 10 NJ Hestand (847_CR39) 2018; 118 J-H Dou (847_CR20) 2017; 139 Q Miao (847_CR22) 2014; 26 MD Watson (847_CR24) 2001; 101 T Ma (847_CR16) 2018; 361 AJ Rieth (847_CR26) 2019; 4 D Zhang (847_CR29) 2018; 359 Y Li (847_CR34) 2019; 1 AA Talin (847_CR5) 2014; 343 MJ Van Vleet (847_CR27) 2018; 118 D Sheberla (847_CR2) 2014; 136 RW Day (847_CR21) 2019; 5 OI Lebedev (847_CR31) 2005; 17 D Sheberla (847_CR10) 2017; 16 R Dong (847_CR3) 2018; 17 L Sun (847_CR19) 2016; 55 W Wan (847_CR46) 2013; 46 E Pomerantseva (847_CR9) 2019; 366 GM Sheldrick (847_CR42) 2015; 71 M Hmadeh (847_CR1) 2012; 24 Y Cao (847_CR38) 2018; 556 Y Wang (847_CR44) 2017; 53 ML Aubrey (847_CR6) 2018; 17 D Feng (847_CR12) 2018; 3 H Wang (847_CR11) 2017; 2 T Kambe (847_CR4) 2013; 135 C Wiktor (847_CR32) 2017; 5 AM Evans (847_CR15) 2018; 361 LS Xie (847_CR40) 2020; 120 AL Spek (847_CR43) 2015; 71 M Zhao (847_CR17) 2018; 47 K Wada (847_CR8) 2018; 57 K Liu (847_CR30) 2019; 11 C Wang (847_CR23) 2018; 47 EM Miner (847_CR13) 2016; 7 I Stassen (847_CR14) 2017; 46 L Liu (847_CR33) 2019; 11 S Smeets (847_CR45) 2018; 51 T Okamoto (847_CR25) 2020; 6 B Shen (847_CR36) 2020; 11 Y Zhou (847_CR37) 2020; 32 GM Sheldrick (847_CR41) 2015; 71 Y Zhong (847_CR18) 2019; 9385 W Kabsch (847_CR47) 2010; 66 L Sun (847_CR48) 2016; 138 G Skorupskii (847_CR28) 2020; 12 A Mayoral (847_CR35) 2017; 9 |
References_xml | – volume: 57 start-page: 8886 year: 2018 end-page: 8890 ident: CR8 article-title: Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands publication-title: Angew. Chem. Int. Ed. – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR38 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature – volume: 118 start-page: 3681 year: 2018 end-page: 3721 ident: CR27 article-title: In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth publication-title: Chem. Rev. – volume: 66 start-page: 125 year: 2010 end-page: 132 ident: CR47 article-title: XDS publication-title: Acta Crystallogr. Sect. D. Biol. Crystallogr. – volume: 53 start-page: 7018 year: 2017 end-page: 7021 ident: CR44 article-title: Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction publication-title: Chem. Commun. – volume: 136 start-page: 8859 year: 2014 end-page: 8862 ident: CR2 article-title: High electrical conductivity in Ni (2,3,6,7,10,11- hexaiminotriphenylene) , a semiconducting metal–organic graphene analogue publication-title: J. Am. Chem. Soc. – volume: 118 start-page: 7069 year: 2018 end-page: 7163 ident: CR39 article-title: Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer publication-title: Chem. Rev. – volume: 343 start-page: 66 year: 2014 end-page: 69 ident: CR5 article-title: Tunable electrical conductivity in metal-organic framework thin-film devices publication-title: Science – volume: 11 start-page: 994 year: 2019 end-page: 1000 ident: CR30 article-title: On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers publication-title: Nat. Chem. – volume: 9 start-page: 3497 year: 2017 end-page: 3502 ident: CR35 article-title: Cs-corrected STEM imaging of both pure and silver-supported metal-organic framework MIL-100(Fe) publication-title: ChemCatChem – volume: 101 start-page: 1267 year: 2001 end-page: 1300 ident: CR24 article-title: Big is beautiful - ‘Aromaticity’ revisited from the viewpoint of macromolecular and supramolecular benzene chemistry publication-title: Chem. Rev. – volume: 32 start-page: 4966 year: 2020 end-page: 4972 ident: CR37 article-title: Local structure evolvement in MOF single crystals unveiled by scanning transmission electron microscopy publication-title: Chem. Mater. – volume: 47 start-page: 6267 year: 2018 end-page: 6295 ident: CR17 article-title: Two-dimensional metal–organic framework nanosheets: synthesis and applications publication-title: Chem. Soc. Rev. – volume: 9385 start-page: 1379 year: 2019 end-page: 1384 ident: CR18 article-title: Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices publication-title: Science – volume: 361 start-page: 52 year: 2018 end-page: 57 ident: CR15 article-title: Seeded growth of single-crystal two-dimensional covalent organic frameworks publication-title: Science – volume: 7 year: 2016 ident: CR13 article-title: Electrochemical oxygen reduction catalysed by Ni (hexaiminotriphenylene) publication-title: Nat. Commun. – volume: 6 start-page: eaaz0632 year: 2020 ident: CR25 article-title: Robust, high-performance n-type organic semiconductors publication-title: Sci. Adv. – volume: 120 start-page: 8536 year: 2020 end-page: 8580 ident: CR40 article-title: Electrically conductive metal–organic frameworks publication-title: Chem. Rev. – volume: 359 start-page: 675 year: 2018 end-page: 679 ident: CR29 article-title: Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials publication-title: Science – volume: 17 start-page: 1027 year: 2018 end-page: 1032 ident: CR3 article-title: High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework publication-title: Nat. Mater. – volume: 16 start-page: 220 year: 2017 end-page: 224 ident: CR10 article-title: Conductive MOF electrodes for stable supercapacitors with high areal capacitance publication-title: Nat. Mater. – volume: 71 start-page: 9 year: 2015 end-page: 18 ident: CR43 article-title: PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors publication-title: Acta Crystallogr. Sect. C. Struct. Chem. – volume: 138 start-page: 14772 year: 2016 end-page: 14782 ident: CR48 article-title: Measuring and reporting electrical conductivity in metal–organic frameworks: Cd (TTFTB) as a case study publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 6525 year: 2005 end-page: 6527 ident: CR31 article-title: First direct imaging of giant pores of the metal–organic framework MIL-101 publication-title: Chem. Mater. – volume: 11 start-page: 622 year: 2019 end-page: 628 ident: CR33 article-title: Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution publication-title: Nat. Chem. – volume: 71 start-page: 3 year: 2015 end-page: 8 ident: CR42 article-title: Crystal structure refinement with SHELXL publication-title: Acta Crystallogr. Sect. C. Struct. Chem. – volume: 2 start-page: 52 year: 2017 end-page: 80 ident: CR11 article-title: Metal-organic frameworks for energy applications publication-title: Chem – volume: 5 start-page: 14969 year: 2017 end-page: 14989 ident: CR32 article-title: Transmission electron microscopy on metal–organic frameworks - a review publication-title: J. Mater. Chem. A – volume: 55 start-page: 3566 year: 2016 end-page: 3579 ident: CR19 article-title: Electrically conductive porous metal–organic frameworks publication-title: Angew. Chem. Int. Ed. – volume: 135 start-page: 2462 year: 2013 end-page: 2465 ident: CR4 article-title: π-Conjugated nickel bis(dithiolene) complex nanosheet publication-title: J. Am. Chem. Soc. – volume: 47 start-page: 422 year: 2018 end-page: 500 ident: CR23 article-title: Organic semiconductor crystals publication-title: Chem. Soc. Rev. – volume: 1 start-page: 428 year: 2019 end-page: 438 ident: CR34 article-title: Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks publication-title: Matter – volume: 10 year: 2019 ident: CR7 article-title: Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries publication-title: Nat. Commun. – volume: 139 start-page: 13608 year: 2017 end-page: 13611 ident: CR20 article-title: Signature of metallic behavior in the metal–organic frameworks M (hexaiminobenzene) (M = Ni, Cu) publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 625 year: 2018 end-page: 632 ident: CR6 article-title: Electron delocalization and charge mobility as a function of reduction in a metal–organic framework publication-title: Nat. Mater. – volume: 46 start-page: 3185 year: 2017 end-page: 3241 ident: CR14 article-title: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors publication-title: Chem. Soc. Rev. – volume: 12 start-page: 131 year: 2020 end-page: 136 ident: CR28 article-title: Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks publication-title: Nat. Chem. – volume: 51 start-page: 1262 year: 2018 end-page: 1273 ident: CR45 article-title: Serial electron crystallography for structure determination and phase analysis of nanocrystalline materials publication-title: J. Appl. Crystallogr. – volume: 26 start-page: 5541 year: 2014 end-page: 5549 ident: CR22 article-title: Ten years of N-heteropentacenes as semiconductors for organic thin-film transistors publication-title: Adv. Mater. – volume: 71 start-page: 3 year: 2015 end-page: 8 ident: CR41 article-title: SHELXT - Integrated space-group and crystal-structure determination publication-title: Acta Crystallogr. Sect. A Found. Crystallogr. – volume: 46 start-page: 1863 year: 2013 end-page: 1873 ident: CR46 article-title: Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing publication-title: J. Appl. Crystallogr. – volume: 3 start-page: 30 year: 2018 end-page: 36 ident: CR12 article-title: Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance publication-title: Nat. Energy – volume: 361 start-page: 48 year: 2018 end-page: 52 ident: CR16 article-title: Single-crystal X-ray diffraction structures of covalent organic frameworks publication-title: Science – volume: 4 start-page: 708 year: 2019 end-page: 725 ident: CR26 article-title: Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture publication-title: Nat. Rev. Mater. – volume: 366 start-page: eaan8285 year: 2019 ident: CR9 article-title: Energy storage: the future enabled by nanomaterials publication-title: Science – volume: 24 start-page: 3511 year: 2012 end-page: 3513 ident: CR1 article-title: New porous crystals of extended metal-catecholates publication-title: Chem. Mater. – volume: 5 start-page: 1959 year: 2019 end-page: 1964 ident: CR21 article-title: Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties publication-title: ACS Cent. Sci. – volume: 11 year: 2020 ident: CR36 article-title: Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks publication-title: Nat. Commun. – volume: 361 start-page: 52 year: 2018 ident: 847_CR15 publication-title: Science doi: 10.1126/science.aar7883 – volume: 17 start-page: 6525 year: 2005 ident: 847_CR31 publication-title: Chem. Mater. doi: 10.1021/cm051870o – volume: 120 start-page: 8536 year: 2020 ident: 847_CR40 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00766 – volume: 55 start-page: 3566 year: 2016 ident: 847_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201506219 – volume: 32 start-page: 4966 year: 2020 ident: 847_CR37 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04665 – volume: 46 start-page: 3185 year: 2017 ident: 847_CR14 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00122C – volume: 2 start-page: 52 year: 2017 ident: 847_CR11 publication-title: Chem doi: 10.1016/j.chempr.2016.12.002 – volume: 138 start-page: 14772 year: 2016 ident: 847_CR48 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b09345 – volume: 12 start-page: 131 year: 2020 ident: 847_CR28 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0372-0 – volume: 71 start-page: 3 year: 2015 ident: 847_CR42 publication-title: Acta Crystallogr. Sect. C. Struct. Chem. doi: 10.1107/S2053229614024218 – volume: 136 start-page: 8859 year: 2014 ident: 847_CR2 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502765n – volume: 57 start-page: 8886 year: 2018 ident: 847_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201802521 – volume: 11 start-page: 622 year: 2019 ident: 847_CR33 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0263-4 – volume: 1 start-page: 428 year: 2019 ident: 847_CR34 publication-title: Matter doi: 10.1016/j.matt.2019.06.001 – volume: 71 start-page: 9 year: 2015 ident: 847_CR43 publication-title: Acta Crystallogr. Sect. C. Struct. Chem. doi: 10.1107/S2053229614024929 – volume: 16 start-page: 220 year: 2017 ident: 847_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat4766 – volume: 66 start-page: 125 year: 2010 ident: 847_CR47 publication-title: Acta Crystallogr. Sect. D. Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 26 start-page: 5541 year: 2014 ident: 847_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201305497 – volume: 9 start-page: 3497 year: 2017 ident: 847_CR35 publication-title: ChemCatChem doi: 10.1002/cctc.201700519 – volume: 139 start-page: 13608 year: 2017 ident: 847_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07234 – volume: 135 start-page: 2462 year: 2013 ident: 847_CR4 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja312380b – volume: 47 start-page: 422 year: 2018 ident: 847_CR23 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00490G – volume: 17 start-page: 625 year: 2018 ident: 847_CR6 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0098-1 – volume: 101 start-page: 1267 year: 2001 ident: 847_CR24 publication-title: Chem. Rev. doi: 10.1021/cr990322p – volume: 71 start-page: 3 year: 2015 ident: 847_CR41 publication-title: Acta Crystallogr. Sect. A Found. Crystallogr. doi: 10.1107/S2053273314026370 – volume: 51 start-page: 1262 year: 2018 ident: 847_CR45 publication-title: J. Appl. Crystallogr. doi: 10.1107/S1600576718009500 – volume: 5 start-page: 14969 year: 2017 ident: 847_CR32 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00194K – volume: 10 year: 2019 ident: 847_CR7 publication-title: Nat. Commun. – volume: 359 start-page: 675 year: 2018 ident: 847_CR29 publication-title: Science doi: 10.1126/science.aao0865 – volume: 47 start-page: 6267 year: 2018 ident: 847_CR17 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00268A – volume: 4 start-page: 708 year: 2019 ident: 847_CR26 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0140-1 – volume: 3 start-page: 30 year: 2018 ident: 847_CR12 publication-title: Nat. Energy doi: 10.1038/s41560-017-0044-5 – volume: 9385 start-page: 1379 year: 2019 ident: 847_CR18 publication-title: Science doi: 10.1126/science.aax9385 – volume: 118 start-page: 3681 year: 2018 ident: 847_CR27 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00582 – volume: 11 start-page: 994 year: 2019 ident: 847_CR30 publication-title: Nat. Chem. doi: 10.1038/s41557-019-0327-5 – volume: 6 start-page: eaaz0632 year: 2020 ident: 847_CR25 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0632 – volume: 118 start-page: 7069 year: 2018 ident: 847_CR39 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00581 – volume: 5 start-page: 1959 year: 2019 ident: 847_CR21 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.9b01006 – volume: 7 year: 2016 ident: 847_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms10942 – volume: 11 year: 2020 ident: 847_CR36 publication-title: Nat. Commun. – volume: 24 start-page: 3511 year: 2012 ident: 847_CR1 publication-title: Chem. Mater. doi: 10.1021/cm301194a – volume: 556 start-page: 43 year: 2018 ident: 847_CR38 publication-title: Nature doi: 10.1038/nature26160 – volume: 17 start-page: 1027 year: 2018 ident: 847_CR3 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0189-z – volume: 53 start-page: 7018 year: 2017 ident: 847_CR44 publication-title: Chem. Commun. doi: 10.1039/C7CC03180G – volume: 366 start-page: eaan8285 year: 2019 ident: 847_CR9 publication-title: Science doi: 10.1126/science.aan8285 – volume: 361 start-page: 48 year: 2018 ident: 847_CR16 publication-title: Science doi: 10.1126/science.aat7679 – volume: 343 start-page: 66 year: 2014 ident: 847_CR5 publication-title: Science doi: 10.1126/science.1246738 – volume: 46 start-page: 1863 year: 2013 ident: 847_CR46 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889813027714 |
SSID | ssj0021556 |
Score | 2.6978912 |
Snippet | Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van... Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van... |
SourceID | swepub proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 222 |
SubjectTerms | 119/118 140/131 142/126 639/301/299/1013 639/638/263/915 639/638/298/921 Biomaterials Chemistry and Materials Science Condensed Matter Physics Crystal growth Crystal structure Crystals Electrical resistivity Lattices Materials Science Metal-organic frameworks Nanotechnology Optical and Electronic Materials Porosity Sheets Single crystals |
Title | Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks |
URI | https://link.springer.com/article/10.1038/s41563-020-00847-7 https://www.ncbi.nlm.nih.gov/pubmed/33230325 https://www.proquest.com/docview/2481412068 https://www.proquest.com/docview/2464143143 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-189356 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZg9wIHxD-BZWUkOIG1jR079gm17JYVEhVCLOrNsh1HWqk0hbSHvfEOvCFPwkyctAtIlaJESuwkykzsbzwz3xDyMtYcVNeXzIhQswKTuFyUgeVFbqrK1zDLY3Lyx5k6vyg-zOW8X3Br-7DKYUzsBuqqCbhGfsILDf35SOm3q-8Mq0ahd7UvoXGTHCJ1GYZ0lfOdwQVzZcouKhUDXMH7pJmR0CctGi7owcS8ahihWfn3xPQf2rzmKf2HVbSbiaZ3yZ0eQtJxkvk9ciMu75Pb14gFH5A4XjcdD8Diiq6Qv6KNFBcFFpGFH1cACBc0EcduwNqmTU1TNZy-B5jIyAIL7Sk_pd8iNP_981eq_xRoPYRztQ_JxfTsy7tz1hdUYAFgy5rxIITPvUd3p5BGeO2MqUz0zsBJn-eqltq7UHgulAOoJPOK114ZUYxcCEo8IgfLZhmfECq8NFGBBmBoYhmdBrMk6uCkAwQBcspIPnxNG3q2cSx6sbCd11tomyRgQQK2k4AtM_J622eVuDb2tj4ahGT7_661Oy3JyIvtZfhj0A3ilrHZYBtVAEqELSOPk3C3jxMCTDLBZUbeDNLe3Xzfu7xKGrG9EbJ2n15-HVsQjm03NgdcKNXT_e_8jNziGDLTBYUfkQNQhPgcMM_aH3eKDXs9fX9MDsfTyWQGx8nZ7NPnP3c8AYM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tywE4IP4JLGAk9gTRNnbixAeEKkrpsj-nXbQ3YzuOhFSaQlqh3ngH3oOH4kmYiZPuAlJvK-WU2E6U-ZyZycx8A_DCVxyha_NYCVfFKRVxGZ-5OEkTVZa2Qi1PxclHx3Jymn44y8624FdfC0Nplf03sf1Ql7Wjf-R7PC1wPh_I4s38a0xdoyi62rfQCLA48Kvv6LI1r_dHKN9dzsfvTt5O4q6rQOxQdy9i7oSwibUU8xOZErYwSpXKW6PwpE0SWWWFNS61XEiD9kKWlLyyUol0YJyTAte9AldTIRTtqGL8fu3goW4O1Uy5jNGO4V2RzkAUew05ShQxpTpu1Ahx_rci_M-6vRCZ_YfFtNV841twszNZ2TBg7DZs-dkduHGByPAu-OGibnkHpis2J76MxjP6CTH1sfu2QgN0ygJR7RK9e1ZXLHTf6WagS06sszie8RH74nH47x8_Q78px6o-fay5B6eX8qrvw_asnvmHwITNlJeIOEqFzL0p0A3yhTOZQYsFcRFB0r9N7Tp2c2qyMdVtlF0UOkhAowR0KwGdR_ByPWceuD02jt7phaS7fd7oc1RG8Hx9GXcohV3MzNdLGiNTtErxiOBBEO76dkKgCyh4FsGrXtrni296lt2AiPVCxBI--vxxqFE4ulnqBO3QTD7a_MzP4Nrk5OhQH-4fHzyG65zSddqE9B3YRlD4J2hvLezTFuQMPl32rvoDb206UQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4ti4TggPhdAgsYiT1B1MaOneSAUEWpdllYcWBRb8Z2HAmptN1NK9Qb78Db8Dg8CTNx0i4g9bZST63tRplvMjOZmW8AnvuKI3RtFhfCVXFKTVzGSxcnaVKUpa3QylNz8ocTdXiavhvL8Q786nphqKyyeyY2D-py5ugdeY-nOe7nfZX3qrYs4uNw9Hp-FtMEKcq0duM0AkSO_eo7hm_1q6MhyvqA89HbT28O43bCQOzQji9i7oSwibWU_xOyEDY3RVEW3poCv7RJoiqZW-NSy4Uy6DvIpOSVVYVI-8Y5JfDcK3A1EzIhHcvGm2AP7XTobMpUjD4Nbxt2-iLv1RQ0UfaUerrROsTZ30bxP0_3Qpb2H0bTxgqObsHN1n1lg4C327Djp3fgxgVSw7vgB4tZw0EwWbE5cWfUntELiYmP3fkKndEJC6S1S4z02axiYRJPuwPDc2KgxfWMD9k3j8t___gZZk85VnWlZPU9OL2UW30fdqezqX8ATFhZeIXoo7LIzJscQyKfOyMNei-IkQiS7m5q1zKd08CNiW4y7iLXQQIaJaAbCegsghfrPfPA87F19X4nJN3qfK03CI3g2fpn1FZKwZipny1pjUrRQ8VPBHtBuOu_EwLDQcFlBC87aW8O33YtBwER64OIMXz49fNAo3B0vdQJ-qRSPdx-zU_hGuqTfn90cvwIrnOq3Glq0_dhFzHhH6PrtbBPGowz-HLZSvUHBis-fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+single-crystal+structures+of+electrically+conducting+2D+metal%E2%80%93organic+frameworks&rft.jtitle=Nature+materials&rft.au=Jin-Hu%2C+Dou&rft.au=Arguilla+Maxx+Q&rft.au=Luo%2C+Yi&rft.au=Li%2C+Jian&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=2&rft.spage=222&rft.epage=228&rft_id=info:doi/10.1038%2Fs41563-020-00847-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon |