Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks

Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or o...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 20; no. 2; pp. 222 - 228
Main Authors Dou, Jin-Hu, Arguilla, Maxx Q., Luo, Yi, Li, Jian, Zhang, Weizhe, Sun, Lei, Mancuso, Jenna L., Yang, Luming, Chen, Tianyang, Parent, Lucas R., Skorupskii, Grigorii, Libretto, Nicole J., Sun, Chenyue, Yang, Min Chieh, Dip, Phat Vinh, Brignole, Edward J., Miller, Jeffrey T., Kong, Jing, Hendon, Christopher H., Sun, Junliang, Dincă, Mircea
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π -conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π -conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis.
AbstractList Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.
Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D pi-conjugated MOFs derived from large single crystals of sizes up to 200 mu m, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the pi-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 mu m are grown, allowing in-plane transport measurements and atomic-resolution analysis.
Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.
Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π -conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π -conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif. Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis.
Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 μm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.Two-dimensional MOFs can possess porosity and electrical conductivity but are difficult to grow as single crystals. Here, by balancing in-plane and out-of-plane interactions, single crystals of sizes up to 200 µm are grown, allowing in-plane transport measurements and atomic-resolution analysis.
Author Yang, Luming
Arguilla, Maxx Q.
Kong, Jing
Hendon, Christopher H.
Chen, Tianyang
Sun, Chenyue
Dincă, Mircea
Yang, Min Chieh
Skorupskii, Grigorii
Zhang, Weizhe
Dip, Phat Vinh
Miller, Jeffrey T.
Parent, Lucas R.
Dou, Jin-Hu
Mancuso, Jenna L.
Libretto, Nicole J.
Luo, Yi
Sun, Lei
Sun, Junliang
Li, Jian
Brignole, Edward J.
Author_xml – sequence: 1
  givenname: Jin-Hu
  orcidid: 0000-0002-6920-9051
  surname: Dou
  fullname: Dou, Jin-Hu
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 2
  givenname: Maxx Q.
  surname: Arguilla
  fullname: Arguilla, Maxx Q.
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 3
  givenname: Yi
  surname: Luo
  fullname: Luo, Yi
  organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University
– sequence: 4
  givenname: Jian
  surname: Li
  fullname: Li, Jian
  organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University
– sequence: 5
  givenname: Weizhe
  surname: Zhang
  fullname: Zhang, Weizhe
  organization: National Facility for Protein Science, Shanghai Advanced Research Institute
– sequence: 6
  givenname: Lei
  surname: Sun
  fullname: Sun, Lei
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 7
  givenname: Jenna L.
  surname: Mancuso
  fullname: Mancuso, Jenna L.
  organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon
– sequence: 8
  givenname: Luming
  surname: Yang
  fullname: Yang, Luming
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 9
  givenname: Tianyang
  surname: Chen
  fullname: Chen, Tianyang
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 10
  givenname: Lucas R.
  surname: Parent
  fullname: Parent, Lucas R.
  organization: University of Connecticut, Innovation Partnership Building, University of Connecticut
– sequence: 11
  givenname: Grigorii
  surname: Skorupskii
  fullname: Skorupskii, Grigorii
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 12
  givenname: Nicole J.
  orcidid: 0000-0002-6922-2790
  surname: Libretto
  fullname: Libretto, Nicole J.
  organization: Davidson School of Chemical Engineering, Purdue University
– sequence: 13
  givenname: Chenyue
  orcidid: 0000-0002-7524-5323
  surname: Sun
  fullname: Sun, Chenyue
  organization: Department of Chemistry, Massachusetts Institute of Technology
– sequence: 14
  givenname: Min Chieh
  surname: Yang
  fullname: Yang, Min Chieh
  organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon
– sequence: 15
  givenname: Phat Vinh
  orcidid: 0000-0002-1535-9644
  surname: Dip
  fullname: Dip, Phat Vinh
  organization: Department of Biology, Massachusetts Institute of Technology
– sequence: 16
  givenname: Edward J.
  surname: Brignole
  fullname: Brignole, Edward J.
  organization: Department of Biology, Massachusetts Institute of Technology
– sequence: 17
  givenname: Jeffrey T.
  surname: Miller
  fullname: Miller, Jeffrey T.
  organization: Davidson School of Chemical Engineering, Purdue University
– sequence: 18
  givenname: Jing
  surname: Kong
  fullname: Kong, Jing
  organization: Department of Electrical and Engineering and Computer Science, Massachusetts Institute of Technology
– sequence: 19
  givenname: Christopher H.
  orcidid: 0000-0002-7132-768X
  surname: Hendon
  fullname: Hendon, Christopher H.
  organization: Material Science Institute, Department of Chemistry and Biochemistry, University of Oregon
– sequence: 20
  givenname: Junliang
  orcidid: 0000-0003-4074-0962
  surname: Sun
  fullname: Sun, Junliang
  email: junliang.sun@pku.edu.cn
  organization: College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Department of Materials and Environmental Chemistry, Stockholm University
– sequence: 21
  givenname: Mircea
  orcidid: 0000-0002-1262-1264
  surname: Dincă
  fullname: Dincă, Mircea
  email: mdinca@mit.edu
  organization: Department of Chemistry, Massachusetts Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33230325$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-189356$$DView record from Swedish Publication Index
BookMark eNp9kUtqHDEQhkVw8Cu5QBahwZss3Ine070c_EgMhmySbIWkqR7kqKWxpMbMLnfIDXMSy5m2DV4YClRI319Vqv8I7YUYAKEPBH8mmHVfMidCshZT3GLc8UW7eIMOCV_IlkuJ9-acEEoP0FHONxhTIoTcRweMUYYZFYcIliWOzmrvt80mgXUZmuzC2kNr0zYX7Ztc0mTLlCA3cWjAgy1pVtgYVvWt8g09b0ao-L8_f2Na6-BsMyQ9wl1Mv_M79HbQPsP7-TxGPy8vfpx9a6-_f706W163VhBRWmoZM8QYzClnomem032_6sHovl4aQuQgOqMtN5RJTSUXZEUHI3vGsbZWsmN0uqub72AzGbVJbtRpq6J26tz9Wqo6msqTIl3PxAP-aYdvUrydIBc1umzBex0gTllRLjnhrEZFT16gN3FKoX6mUh3hhGLZVerjTE1mhNVT_8d9V6DbATbFnBMMyrqii4uhJO28Ilg9WKt21qpqrfpvrVpUKX0hfaz-qojNC6lwWEN6HvsV1T1MJ7d8
CitedBy_id crossref_primary_10_1021_jacs_3c02741
crossref_primary_10_1002_anie_202500287
crossref_primary_10_1002_sstr_202100126
crossref_primary_10_1021_jacs_2c10717
crossref_primary_10_1039_D4TA05484A
crossref_primary_10_1016_j_ceramint_2022_10_246
crossref_primary_10_1021_acsaelm_0c01135
crossref_primary_10_1002_ange_202017153
crossref_primary_10_1016_j_jssc_2022_122964
crossref_primary_10_1039_D4NR02600D
crossref_primary_10_1039_D0NR09064F
crossref_primary_10_1021_acs_accounts_3c00788
crossref_primary_10_1002_anie_202313591
crossref_primary_10_1002_adma_202311541
crossref_primary_10_1002_adfm_202409388
crossref_primary_10_1002_ange_202103398
crossref_primary_10_1021_acscentsci_1c00047
crossref_primary_10_1002_anie_202215234
crossref_primary_10_1021_jacs_0c10777
crossref_primary_10_1016_j_chempr_2023_06_005
crossref_primary_10_1126_sciadv_add2031
crossref_primary_10_1002_anie_202303890
crossref_primary_10_1021_jacs_3c07503
crossref_primary_10_1016_j_jechem_2024_06_001
crossref_primary_10_1021_acs_jpcc_2c00742
crossref_primary_10_1007_s12274_022_4184_y
crossref_primary_10_1021_jacs_1c12596
crossref_primary_10_1002_anie_202421822
crossref_primary_10_1002_anie_202113569
crossref_primary_10_1146_annurev_matsci_080619_012811
crossref_primary_10_1016_j_scib_2022_06_005
crossref_primary_10_1038_s41596_022_00720_8
crossref_primary_10_1039_D4QI02257B
crossref_primary_10_1021_jacs_4c11782
crossref_primary_10_1002_anie_202208163
crossref_primary_10_1039_D1DT01729B
crossref_primary_10_1002_ange_202418390
crossref_primary_10_1021_jacs_1c01466
crossref_primary_10_1002_smll_202306159
crossref_primary_10_1002_ange_202217958
crossref_primary_10_1021_acs_langmuir_2c02685
crossref_primary_10_1016_j_chempr_2023_02_016
crossref_primary_10_1002_smll_202207547
crossref_primary_10_1021_jacs_2c10933
crossref_primary_10_1021_acsnano_4c16212
crossref_primary_10_1021_acs_jpcc_2c06019
crossref_primary_10_1039_D3NR01170D
crossref_primary_10_1002_anie_202207834
crossref_primary_10_1002_anie_202408189
crossref_primary_10_1021_acs_energyfuels_4c01515
crossref_primary_10_2139_ssrn_4045991
crossref_primary_10_1002_cjoc_202200651
crossref_primary_10_1002_anie_202106259
crossref_primary_10_1002_cphc_202400769
crossref_primary_10_1021_acsami_1c16180
crossref_primary_10_1002_chem_202100610
crossref_primary_10_1021_jacs_3c13985
crossref_primary_10_1016_j_nxmate_2023_100010
crossref_primary_10_1021_acs_chemmater_1c01034
crossref_primary_10_1021_acsenergylett_2c01714
crossref_primary_10_1002_anie_202105966
crossref_primary_10_1002_anie_202306224
crossref_primary_10_1038_s41467_021_27600_1
crossref_primary_10_1038_s41467_022_33443_1
crossref_primary_10_3390_batteries9020109
crossref_primary_10_1002_ange_202103729
crossref_primary_10_1038_s41557_024_01693_9
crossref_primary_10_1002_sstr_202100210
crossref_primary_10_1039_D2SC06085J
crossref_primary_10_1007_s11581_024_05406_7
crossref_primary_10_1039_D3CY00408B
crossref_primary_10_1002_anie_202112811
crossref_primary_10_1021_acsnano_1c10544
crossref_primary_10_1039_D3NH00494E
crossref_primary_10_1080_15421406_2022_2038451
crossref_primary_10_1002_anie_202409387
crossref_primary_10_1039_D1SC03709A
crossref_primary_10_1016_j_heliyon_2024_e33902
crossref_primary_10_1002_anie_202106389
crossref_primary_10_1002_adma_202204140
crossref_primary_10_1002_ange_202110373
crossref_primary_10_1039_D1TA02968A
crossref_primary_10_1016_j_matt_2023_02_009
crossref_primary_10_1002_ange_202306224
crossref_primary_10_1002_ange_202114293
crossref_primary_10_1002_smll_202308264
crossref_primary_10_1038_s43246_024_00620_2
crossref_primary_10_1002_advs_202205760
crossref_primary_10_1021_acsaelm_1c00297
crossref_primary_10_1021_acsami_4c17699
crossref_primary_10_1021_jacs_4c05343
crossref_primary_10_3390_cryst11030263
crossref_primary_10_1002_ange_202317413
crossref_primary_10_1038_s41570_022_00457_8
crossref_primary_10_1039_D2TA09579C
crossref_primary_10_1002_ange_202300658
crossref_primary_10_1021_acs_accounts_4c00280
crossref_primary_10_1021_acsenergylett_4c00544
crossref_primary_10_1002_adfm_202302659
crossref_primary_10_1002_anie_202103729
crossref_primary_10_1002_anie_202419266
crossref_primary_10_1002_ange_202308034
crossref_primary_10_1002_ange_202500287
crossref_primary_10_1021_acs_accounts_1c00172
crossref_primary_10_1021_jacs_2c03793
crossref_primary_10_1002_anie_202110373
crossref_primary_10_1002_adom_202100622
crossref_primary_10_1002_ange_202303819
crossref_primary_10_1021_jacs_5c01223
crossref_primary_10_1039_D4SC00932K
crossref_primary_10_1002_adma_202203791
crossref_primary_10_1002_smll_202305308
crossref_primary_10_1002_adma_202409959
crossref_primary_10_1002_admi_202301009
crossref_primary_10_1088_1674_1056_ad5af0
crossref_primary_10_1007_s40843_024_3109_5
crossref_primary_10_1039_D3NJ05650C
crossref_primary_10_1021_acsaenm_4c00480
crossref_primary_10_1002_smll_202305548
crossref_primary_10_1039_D1TC02543K
crossref_primary_10_1039_D2DT01359B
crossref_primary_10_1039_D4QI02507E
crossref_primary_10_1016_j_ensm_2024_103199
crossref_primary_10_1039_D4CC04738A
crossref_primary_10_1039_D3EE03819J
crossref_primary_10_1039_D0NR09167G
crossref_primary_10_1002_adom_202302309
crossref_primary_10_1093_oxfmat_itab019
crossref_primary_10_1039_D4SC07025A
crossref_primary_10_1002_anie_202017153
crossref_primary_10_1063_5_0170175
crossref_primary_10_1016_j_cclet_2022_108100
crossref_primary_10_1021_acs_chemmater_1c03533
crossref_primary_10_1016_j_apsusc_2025_162541
crossref_primary_10_1039_D2CP01840C
crossref_primary_10_1002_anie_202418390
crossref_primary_10_1016_j_susmat_2021_e00354
crossref_primary_10_1016_j_jcis_2023_05_151
crossref_primary_10_1021_acsmaterialslett_2c00669
crossref_primary_10_1016_j_trechm_2024_03_008
crossref_primary_10_1039_D1TA04026J
crossref_primary_10_1002_smll_202303580
crossref_primary_10_1021_acs_inorgchem_2c03226
crossref_primary_10_1021_jacs_2c07692
crossref_primary_10_1021_acs_accounts_3c00718
crossref_primary_10_1021_acsnanoscienceau_3c00024
crossref_primary_10_1002_adfm_202210702
crossref_primary_10_1002_admt_202101623
crossref_primary_10_1016_j_psep_2022_03_078
crossref_primary_10_1002_anie_202317413
crossref_primary_10_1038_s41467_022_34820_6
crossref_primary_10_1016_j_matchemphys_2022_126878
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1002_ange_202113569
crossref_primary_10_1002_adma_202312325
crossref_primary_10_1039_D4GC05419A
crossref_primary_10_1021_jacs_3c07682
crossref_primary_10_1002_smll_202306732
crossref_primary_10_1002_adma_202404249
crossref_primary_10_1002_anie_202308034
crossref_primary_10_1021_acscatal_3c05314
crossref_primary_10_1002_ange_202419266
crossref_primary_10_1021_acs_inorgchem_0c03801
crossref_primary_10_1039_D1SC01827B
crossref_primary_10_1016_j_ccr_2022_214693
crossref_primary_10_1016_j_gee_2024_12_009
crossref_primary_10_1038_s41467_023_43405_w
crossref_primary_10_1002_adma_202200999
crossref_primary_10_1002_smsc_202400469
crossref_primary_10_1002_smll_202405636
crossref_primary_10_1016_j_ccr_2022_214459
crossref_primary_10_1002_anie_202104461
crossref_primary_10_1021_acsami_2c22665
crossref_primary_10_1038_s44160_023_00316_4
crossref_primary_10_1002_ange_202423341
crossref_primary_10_1002_anie_202303819
crossref_primary_10_1021_jacs_3c11172
crossref_primary_10_1021_acsmaterialslett_4c00078
crossref_primary_10_1039_D1NR02641K
crossref_primary_10_1002_ange_202106389
crossref_primary_10_1002_ange_202405239
crossref_primary_10_1002_anie_202401005
crossref_primary_10_1021_acsmaterialslett_4c01721
crossref_primary_10_1016_j_cej_2024_155639
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1002_cnma_202300171
crossref_primary_10_1039_D4CE00360H
crossref_primary_10_1002_adfm_202204065
crossref_primary_10_1038_s41467_024_53786_1
crossref_primary_10_1126_sciadv_add9627
crossref_primary_10_1016_j_aca_2024_342210
crossref_primary_10_1021_acscatal_1c05889
crossref_primary_10_1002_anie_202405168
crossref_primary_10_1016_j_microc_2024_111878
crossref_primary_10_1021_acs_iecr_4c00491
crossref_primary_10_1021_jacs_4c02326
crossref_primary_10_1002_ange_202112811
crossref_primary_10_1002_ange_202106259
crossref_primary_10_1002_anie_202300658
crossref_primary_10_1021_jacs_4c09993
crossref_primary_10_1039_D3CE00407D
crossref_primary_10_1246_bcsj_20220283
crossref_primary_10_1002_adfm_202315911
crossref_primary_10_1002_ange_202105966
crossref_primary_10_1002_adma_202106204
crossref_primary_10_1002_ange_202300186
crossref_primary_10_1016_j_carbon_2024_119145
crossref_primary_10_1002_anie_202423939
crossref_primary_10_1021_jacs_4c06935
crossref_primary_10_1002_ange_202421822
crossref_primary_10_1039_D4TA01820F
crossref_primary_10_1016_j_ccr_2024_216098
crossref_primary_10_1021_acs_accounts_4c00335
crossref_primary_10_1021_acsapm_3c02805
crossref_primary_10_1021_acscatal_1c05532
crossref_primary_10_1016_j_cej_2022_136574
crossref_primary_10_1039_D2CE00051B
crossref_primary_10_1002_ange_202409387
crossref_primary_10_1021_acs_jpclett_0c02988
crossref_primary_10_1002_ange_202208163
crossref_primary_10_1016_j_jcis_2024_04_065
crossref_primary_10_1021_acscatal_4c01091
crossref_primary_10_1038_s41563_020_00912_1
crossref_primary_10_1002_anie_202416178
crossref_primary_10_1002_advs_202305551
crossref_primary_10_1007_s11426_024_2069_2
crossref_primary_10_1002_anie_202114293
crossref_primary_10_1002_smll_202403808
crossref_primary_10_1021_jacs_0c13310
crossref_primary_10_1021_jacs_2c08344
crossref_primary_10_1039_D3TA04490D
crossref_primary_10_1016_j_eti_2022_103001
crossref_primary_10_1016_j_mtsust_2024_100899
crossref_primary_10_1039_D1DT02323C
crossref_primary_10_1021_jacs_1c08354
crossref_primary_10_1002_adfm_202308497
crossref_primary_10_1021_jacs_2c11511
crossref_primary_10_1002_ange_202408189
crossref_primary_10_1021_acs_chemrev_4c00565
crossref_primary_10_1016_j_mtchem_2021_100517
crossref_primary_10_1002_ange_202215234
crossref_primary_10_1016_j_chempr_2022_03_027
crossref_primary_10_1002_anie_202103398
crossref_primary_10_1038_s41578_024_00740_8
crossref_primary_10_1021_jacs_4c10636
crossref_primary_10_1039_D1SC00095K
crossref_primary_10_1039_D2EE01010K
crossref_primary_10_1039_D4SC03524K
crossref_primary_10_1002_adma_202414362
crossref_primary_10_1002_batt_202300536
crossref_primary_10_1007_s40820_023_01124_3
crossref_primary_10_1039_D1TA05283G
crossref_primary_10_1016_j_ccr_2022_214650
crossref_primary_10_1039_D4SC02699C
crossref_primary_10_1021_acs_chemmater_3c01049
crossref_primary_10_1016_j_chempr_2023_09_022
crossref_primary_10_1021_jacs_3c12866
crossref_primary_10_1039_D1CC03333F
crossref_primary_10_1021_acsnano_4c04213
crossref_primary_10_1073_pnas_2305125120
crossref_primary_10_1021_jacs_4c11195
crossref_primary_10_1016_j_cej_2021_133247
crossref_primary_10_1002_ange_202109336
crossref_primary_10_1016_j_mtchem_2022_100885
crossref_primary_10_1002_anie_202300186
crossref_primary_10_1246_bcsj_20210277
crossref_primary_10_2139_ssrn_4188433
crossref_primary_10_1021_acsnano_1c06402
crossref_primary_10_1021_jacs_3c02378
crossref_primary_10_1039_D4TC00421C
crossref_primary_10_1039_D5QI00119F
crossref_primary_10_1002_adom_202200213
crossref_primary_10_1002_ange_202401005
crossref_primary_10_1002_anie_202106055
crossref_primary_10_1021_acssensors_3c00715
crossref_primary_10_1016_j_ijhydene_2023_02_039
crossref_primary_10_1016_j_cej_2024_154294
crossref_primary_10_1002_ange_202207834
crossref_primary_10_1016_j_xcrp_2023_101656
crossref_primary_10_1080_23746149_2022_2046157
crossref_primary_10_1002_anie_202405239
crossref_primary_10_1016_j_jpowsour_2024_234449
crossref_primary_10_1002_ange_202405168
crossref_primary_10_1002_ange_202106055
crossref_primary_10_3390_nano13111742
crossref_primary_10_1039_D2CS01027E
crossref_primary_10_1039_D4TA08063G
crossref_primary_10_1002_adma_202412045
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1002_ange_202303890
crossref_primary_10_1016_j_rineng_2024_103076
crossref_primary_10_1002_ange_202423939
crossref_primary_10_1002_ange_202416178
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1016_j_xcrp_2022_101004
crossref_primary_10_1021_acs_chemmater_3c02233
crossref_primary_10_1002_adfm_202403656
crossref_primary_10_1088_2515_7639_acf524
crossref_primary_10_1021_acssensors_3c00362
crossref_primary_10_1039_D2NJ01373H
crossref_primary_10_1002_ange_202404290
crossref_primary_10_1016_j_jallcom_2022_167974
crossref_primary_10_1021_acsmaterialslett_3c00122
crossref_primary_10_1039_D2NR00398H
crossref_primary_10_1002_ange_202104461
crossref_primary_10_1002_anie_202217958
crossref_primary_10_1007_s11664_023_10229_9
crossref_primary_10_1007_s12274_024_6813_0
crossref_primary_10_1021_acsaelm_2c01694
crossref_primary_10_1002_anie_202305977
crossref_primary_10_1016_j_mtchem_2022_100981
crossref_primary_10_1021_jacs_4c10444
crossref_primary_10_1021_acs_langmuir_2c00554
crossref_primary_10_1002_smll_202309841
crossref_primary_10_1039_D3CE00270E
crossref_primary_10_1002_anie_202404290
crossref_primary_10_1002_smtd_202401461
crossref_primary_10_1021_acs_accounts_4c00305
crossref_primary_10_1021_acs_cgd_3c01427
crossref_primary_10_1038_s41578_022_00476_3
crossref_primary_10_1021_acs_analchem_2c03766
crossref_primary_10_1039_D1CC06440A
crossref_primary_10_1016_j_xcrp_2023_101679
crossref_primary_10_1002_anie_202423341
crossref_primary_10_1021_jacs_2c11676
crossref_primary_10_1016_j_chempr_2023_08_026
crossref_primary_10_1002_ange_202305977
crossref_primary_10_1021_acs_nanolett_3c02522
crossref_primary_10_1002_ange_202313591
crossref_primary_10_1002_anie_202109336
crossref_primary_10_1039_D4CC06478J
crossref_primary_10_1021_acsmaterialslett_4c00923
crossref_primary_10_1002_adfm_202416717
crossref_primary_10_1039_D1FD00020A
Cites_doi 10.1126/science.aar7883
10.1021/cm051870o
10.1021/acs.chemrev.9b00766
10.1002/anie.201506219
10.1021/acs.chemmater.9b04665
10.1039/C7CS00122C
10.1016/j.chempr.2016.12.002
10.1021/jacs.6b09345
10.1038/s41557-019-0372-0
10.1107/S2053229614024218
10.1021/ja502765n
10.1002/anie.201802521
10.1038/s41557-019-0263-4
10.1016/j.matt.2019.06.001
10.1107/S2053229614024929
10.1038/nmat4766
10.1107/S0907444909047337
10.1002/adma.201305497
10.1002/cctc.201700519
10.1021/jacs.7b07234
10.1021/ja312380b
10.1039/C7CS00490G
10.1038/s41563-018-0098-1
10.1021/cr990322p
10.1107/S2053273314026370
10.1107/S1600576718009500
10.1039/C7TA00194K
10.1126/science.aao0865
10.1039/C8CS00268A
10.1038/s41578-019-0140-1
10.1038/s41560-017-0044-5
10.1126/science.aax9385
10.1021/acs.chemrev.7b00582
10.1038/s41557-019-0327-5
10.1126/sciadv.aaz0632
10.1021/acs.chemrev.7b00581
10.1021/acscentsci.9b01006
10.1038/ncomms10942
10.1021/cm301194a
10.1038/nature26160
10.1038/s41563-018-0189-z
10.1039/C7CC03180G
10.1126/science.aan8285
10.1126/science.aat7679
10.1126/science.1246738
10.1107/S0021889813027714
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2020
The Author(s), under exclusive licence to Springer Nature Limited 2020.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2020
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2020.
DBID AAYXX
CITATION
NPM
3V.
7SR
7X7
7XB
88E
88I
8AO
8BQ
8FD
8FE
8FG
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JG9
K9.
KB.
L6V
M0S
M1P
M2P
M7S
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7X8
ADTPV
AOWAS
DG7
DOI 10.1038/s41563-020-00847-7
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Engineered Materials Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Engineering Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle CrossRef
PubMed
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Engineered Materials Abstracts
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
Materials Science Database
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
METADEX
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1476-4660
EndPage 228
ExternalDocumentID oai_DiVA_org_su_189356
33230325
10_1038_s41563_020_00847_7
Genre Journal Article
GrantInformation_xml – fundername: Army Research Office grant number W911NF-17-1-0174
– fundername: CNSF (21527803,21621061), MSTC (2016YFA0301004)
GroupedDBID ---
0R~
29M
39C
3V.
4.4
5BI
70F
7X7
88E
88I
8AO
8FE
8FG
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFS
ACGOD
ACIWK
ACUHS
ADBBV
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BKKNO
BPHCQ
BVXVI
CCPQU
CZ9
D1I
DB5
DU5
DWQXO
EBS
EE.
EJD
EMOBN
ESN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
HCIFZ
HMCUK
HVGLF
HZ~
I-F
KB.
KC.
L6V
M1P
M2P
M7S
MK~
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
PTHSS
Q2X
RIG
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7SR
7XB
8BQ
8FD
8FK
JG9
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-c515t-2c33b1bb04243593b8a99d9eba9bb0b116f58bac4b236a26451d2fb69340acc63
IEDL.DBID 7X7
ISSN 1476-1122
1476-4660
IngestDate Thu Aug 21 06:37:55 EDT 2025
Fri Jul 11 10:34:05 EDT 2025
Sat Aug 23 12:51:20 EDT 2025
Mon Jul 21 05:51:06 EDT 2025
Tue Jul 01 02:14:01 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:40:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-2c33b1bb04243593b8a99d9eba9bb0b116f58bac4b236a26451d2fb69340acc63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7132-768X
0000-0002-6922-2790
0000-0002-7524-5323
0000-0002-6920-9051
0000-0002-1535-9644
0000-0003-4074-0962
0000-0002-1262-1264
PMID 33230325
PQID 2481412068
PQPubID 27576
PageCount 7
ParticipantIDs swepub_primary_oai_DiVA_org_su_189356
proquest_miscellaneous_2464143143
proquest_journals_2481412068
pubmed_primary_33230325
crossref_citationtrail_10_1038_s41563_020_00847_7
crossref_primary_10_1038_s41563_020_00847_7
springer_journals_10_1038_s41563_020_00847_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature materials
PublicationTitleAbbrev Nat. Mater
PublicationTitleAlternate Nat Mater
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mayoral, Mahugo, Sánchez-Sánchez, Díaz (CR35) 2017; 9
Liu (CR30) 2019; 11
Wiktor, Meledina, Turner, Lebedev, Fischer (CR32) 2017; 5
Miner (CR13) 2016; 7
Miao (CR22) 2014; 26
Skorupskii (CR28) 2020; 12
Hestand, Spano (CR39) 2018; 118
Sheldrick (CR41) 2015; 71
Li (CR34) 2019; 1
Aubrey (CR6) 2018; 17
Wang, Dong, Jiang, Hu (CR23) 2018; 47
Dong (CR3) 2018; 17
Sheberla (CR10) 2017; 16
Dou (CR20) 2017; 139
Day (CR21) 2019; 5
Ma (CR16) 2018; 361
Pomerantseva, Bonaccorso, Feng, Cui, Gogotsi (CR9) 2019; 366
Talin (CR5) 2014; 343
Feng (CR12) 2018; 3
Rieth, Wright, Dincă (CR26) 2019; 4
Zhou (CR37) 2020; 32
Kambe (CR4) 2013; 135
Nam (CR7) 2019; 10
Okamoto (CR25) 2020; 6
Wang, Zhu, Zou, Xu (CR11) 2017; 2
Sun, Park, Sheberla, Dincă (CR48) 2016; 138
Sheberla (CR2) 2014; 136
Sun, Campbell, Dincă (CR19) 2016; 55
Zhao (CR17) 2018; 47
Shen, Chen, Shen, Xiong, Wei (CR36) 2020; 11
Wang (CR44) 2017; 53
Spek (CR43) 2015; 71
Liu (CR33) 2019; 11
Lebedev, Millange, Serre, Van Tendeloo, Férey (CR31) 2005; 17
Xie, Skorupskii, Dincǎ (CR40) 2020; 120
Hmadeh (CR1) 2012; 24
Wada, Sakaushi, Sasaki, Nishihara (CR8) 2018; 57
Zhong (CR18) 2019; 9385
Zhang (CR29) 2018; 359
Van Vleet, Weng, Li, Schmidt (CR27) 2018; 118
Smeets, Zou, Wan (CR45) 2018; 51
Wan, Sun, Su, Hovmöller, Zou (CR46) 2013; 46
Evans (CR15) 2018; 361
Watson, Fechtenkötter, Müllen (CR24) 2001; 101
Stassen (CR14) 2017; 46
Cao (CR38) 2018; 556
Sheldrick (CR42) 2015; 71
Kabsch (CR47) 2010; 66
KW Nam (847_CR7) 2019; 10
NJ Hestand (847_CR39) 2018; 118
J-H Dou (847_CR20) 2017; 139
Q Miao (847_CR22) 2014; 26
MD Watson (847_CR24) 2001; 101
T Ma (847_CR16) 2018; 361
AJ Rieth (847_CR26) 2019; 4
D Zhang (847_CR29) 2018; 359
Y Li (847_CR34) 2019; 1
AA Talin (847_CR5) 2014; 343
MJ Van Vleet (847_CR27) 2018; 118
D Sheberla (847_CR2) 2014; 136
RW Day (847_CR21) 2019; 5
OI Lebedev (847_CR31) 2005; 17
D Sheberla (847_CR10) 2017; 16
R Dong (847_CR3) 2018; 17
L Sun (847_CR19) 2016; 55
W Wan (847_CR46) 2013; 46
E Pomerantseva (847_CR9) 2019; 366
GM Sheldrick (847_CR42) 2015; 71
M Hmadeh (847_CR1) 2012; 24
Y Cao (847_CR38) 2018; 556
Y Wang (847_CR44) 2017; 53
ML Aubrey (847_CR6) 2018; 17
D Feng (847_CR12) 2018; 3
H Wang (847_CR11) 2017; 2
T Kambe (847_CR4) 2013; 135
C Wiktor (847_CR32) 2017; 5
AM Evans (847_CR15) 2018; 361
LS Xie (847_CR40) 2020; 120
AL Spek (847_CR43) 2015; 71
M Zhao (847_CR17) 2018; 47
K Wada (847_CR8) 2018; 57
K Liu (847_CR30) 2019; 11
C Wang (847_CR23) 2018; 47
EM Miner (847_CR13) 2016; 7
I Stassen (847_CR14) 2017; 46
L Liu (847_CR33) 2019; 11
S Smeets (847_CR45) 2018; 51
T Okamoto (847_CR25) 2020; 6
B Shen (847_CR36) 2020; 11
Y Zhou (847_CR37) 2020; 32
GM Sheldrick (847_CR41) 2015; 71
Y Zhong (847_CR18) 2019; 9385
W Kabsch (847_CR47) 2010; 66
L Sun (847_CR48) 2016; 138
G Skorupskii (847_CR28) 2020; 12
A Mayoral (847_CR35) 2017; 9
References_xml – volume: 57
  start-page: 8886
  year: 2018
  end-page: 8890
  ident: CR8
  article-title: Multielectron-transfer-based rechargeable energy storage of two-dimensional coordination frameworks with non-innocent ligands
  publication-title: Angew. Chem. Int. Ed.
– volume: 556
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR38
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
– volume: 118
  start-page: 3681
  year: 2018
  end-page: 3721
  ident: CR27
  article-title: In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth
  publication-title: Chem. Rev.
– volume: 66
  start-page: 125
  year: 2010
  end-page: 132
  ident: CR47
  article-title: XDS
  publication-title: Acta Crystallogr. Sect. D. Biol. Crystallogr.
– volume: 53
  start-page: 7018
  year: 2017
  end-page: 7021
  ident: CR44
  article-title: Elucidation of the elusive structure and formula of the active pharmaceutical ingredient bismuth subgallate by continuous rotation electron diffraction
  publication-title: Chem. Commun.
– volume: 136
  start-page: 8859
  year: 2014
  end-page: 8862
  ident: CR2
  article-title: High electrical conductivity in Ni (2,3,6,7,10,11- hexaiminotriphenylene) , a semiconducting metal–organic graphene analogue
  publication-title: J. Am. Chem. Soc.
– volume: 118
  start-page: 7069
  year: 2018
  end-page: 7163
  ident: CR39
  article-title: Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer
  publication-title: Chem. Rev.
– volume: 343
  start-page: 66
  year: 2014
  end-page: 69
  ident: CR5
  article-title: Tunable electrical conductivity in metal-organic framework thin-film devices
  publication-title: Science
– volume: 11
  start-page: 994
  year: 2019
  end-page: 1000
  ident: CR30
  article-title: On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers
  publication-title: Nat. Chem.
– volume: 9
  start-page: 3497
  year: 2017
  end-page: 3502
  ident: CR35
  article-title: Cs-corrected STEM imaging of both pure and silver-supported metal-organic framework MIL-100(Fe)
  publication-title: ChemCatChem
– volume: 101
  start-page: 1267
  year: 2001
  end-page: 1300
  ident: CR24
  article-title: Big is beautiful - ‘Aromaticity’ revisited from the viewpoint of macromolecular and supramolecular benzene chemistry
  publication-title: Chem. Rev.
– volume: 32
  start-page: 4966
  year: 2020
  end-page: 4972
  ident: CR37
  article-title: Local structure evolvement in MOF single crystals unveiled by scanning transmission electron microscopy
  publication-title: Chem. Mater.
– volume: 47
  start-page: 6267
  year: 2018
  end-page: 6295
  ident: CR17
  article-title: Two-dimensional metal–organic framework nanosheets: synthesis and applications
  publication-title: Chem. Soc. Rev.
– volume: 9385
  start-page: 1379
  year: 2019
  end-page: 1384
  ident: CR18
  article-title: Wafer-scale synthesis of monolayer two-dimensional porphyrin polymers for hybrid superlattices
  publication-title: Science
– volume: 361
  start-page: 52
  year: 2018
  end-page: 57
  ident: CR15
  article-title: Seeded growth of single-crystal two-dimensional covalent organic frameworks
  publication-title: Science
– volume: 7
  year: 2016
  ident: CR13
  article-title: Electrochemical oxygen reduction catalysed by Ni (hexaiminotriphenylene)
  publication-title: Nat. Commun.
– volume: 6
  start-page: eaaz0632
  year: 2020
  ident: CR25
  article-title: Robust, high-performance n-type organic semiconductors
  publication-title: Sci. Adv.
– volume: 120
  start-page: 8536
  year: 2020
  end-page: 8580
  ident: CR40
  article-title: Electrically conductive metal–organic frameworks
  publication-title: Chem. Rev.
– volume: 359
  start-page: 675
  year: 2018
  end-page: 679
  ident: CR29
  article-title: Atomic-resolution transmission electron microscopy of electron beam-sensitive crystalline materials
  publication-title: Science
– volume: 17
  start-page: 1027
  year: 2018
  end-page: 1032
  ident: CR3
  article-title: High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework
  publication-title: Nat. Mater.
– volume: 16
  start-page: 220
  year: 2017
  end-page: 224
  ident: CR10
  article-title: Conductive MOF electrodes for stable supercapacitors with high areal capacitance
  publication-title: Nat. Mater.
– volume: 71
  start-page: 9
  year: 2015
  end-page: 18
  ident: CR43
  article-title: PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors
  publication-title: Acta Crystallogr. Sect. C. Struct. Chem.
– volume: 138
  start-page: 14772
  year: 2016
  end-page: 14782
  ident: CR48
  article-title: Measuring and reporting electrical conductivity in metal–organic frameworks: Cd (TTFTB) as a case study
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 6525
  year: 2005
  end-page: 6527
  ident: CR31
  article-title: First direct imaging of giant pores of the metal–organic framework MIL-101
  publication-title: Chem. Mater.
– volume: 11
  start-page: 622
  year: 2019
  end-page: 628
  ident: CR33
  article-title: Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution
  publication-title: Nat. Chem.
– volume: 71
  start-page: 3
  year: 2015
  end-page: 8
  ident: CR42
  article-title: Crystal structure refinement with SHELXL
  publication-title: Acta Crystallogr. Sect. C. Struct. Chem.
– volume: 2
  start-page: 52
  year: 2017
  end-page: 80
  ident: CR11
  article-title: Metal-organic frameworks for energy applications
  publication-title: Chem
– volume: 5
  start-page: 14969
  year: 2017
  end-page: 14989
  ident: CR32
  article-title: Transmission electron microscopy on metal–organic frameworks - a review
  publication-title: J. Mater. Chem. A
– volume: 55
  start-page: 3566
  year: 2016
  end-page: 3579
  ident: CR19
  article-title: Electrically conductive porous metal–organic frameworks
  publication-title: Angew. Chem. Int. Ed.
– volume: 135
  start-page: 2462
  year: 2013
  end-page: 2465
  ident: CR4
  article-title: π-Conjugated nickel bis(dithiolene) complex nanosheet
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 422
  year: 2018
  end-page: 500
  ident: CR23
  article-title: Organic semiconductor crystals
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 428
  year: 2019
  end-page: 438
  ident: CR34
  article-title: Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks
  publication-title: Matter
– volume: 10
  year: 2019
  ident: CR7
  article-title: Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries
  publication-title: Nat. Commun.
– volume: 139
  start-page: 13608
  year: 2017
  end-page: 13611
  ident: CR20
  article-title: Signature of metallic behavior in the metal–organic frameworks M (hexaiminobenzene) (M = Ni, Cu)
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 625
  year: 2018
  end-page: 632
  ident: CR6
  article-title: Electron delocalization and charge mobility as a function of reduction in a metal–organic framework
  publication-title: Nat. Mater.
– volume: 46
  start-page: 3185
  year: 2017
  end-page: 3241
  ident: CR14
  article-title: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors
  publication-title: Chem. Soc. Rev.
– volume: 12
  start-page: 131
  year: 2020
  end-page: 136
  ident: CR28
  article-title: Efficient and tunable one-dimensional charge transport in layered lanthanide metal–organic frameworks
  publication-title: Nat. Chem.
– volume: 51
  start-page: 1262
  year: 2018
  end-page: 1273
  ident: CR45
  article-title: Serial electron crystallography for structure determination and phase analysis of nanocrystalline materials
  publication-title: J. Appl. Crystallogr.
– volume: 26
  start-page: 5541
  year: 2014
  end-page: 5549
  ident: CR22
  article-title: Ten years of N-heteropentacenes as semiconductors for organic thin-film transistors
  publication-title: Adv. Mater.
– volume: 71
  start-page: 3
  year: 2015
  end-page: 8
  ident: CR41
  article-title: SHELXT - Integrated space-group and crystal-structure determination
  publication-title: Acta Crystallogr. Sect. A Found. Crystallogr.
– volume: 46
  start-page: 1863
  year: 2013
  end-page: 1873
  ident: CR46
  article-title: Three-dimensional rotation electron diffraction: software RED for automated data collection and data processing
  publication-title: J. Appl. Crystallogr.
– volume: 3
  start-page: 30
  year: 2018
  end-page: 36
  ident: CR12
  article-title: Robust and conductive two-dimensional metal–organic frameworks with exceptionally high volumetric and areal capacitance
  publication-title: Nat. Energy
– volume: 361
  start-page: 48
  year: 2018
  end-page: 52
  ident: CR16
  article-title: Single-crystal X-ray diffraction structures of covalent organic frameworks
  publication-title: Science
– volume: 4
  start-page: 708
  year: 2019
  end-page: 725
  ident: CR26
  article-title: Kinetic stability of metal–organic frameworks for corrosive and coordinating gas capture
  publication-title: Nat. Rev. Mater.
– volume: 366
  start-page: eaan8285
  year: 2019
  ident: CR9
  article-title: Energy storage: the future enabled by nanomaterials
  publication-title: Science
– volume: 24
  start-page: 3511
  year: 2012
  end-page: 3513
  ident: CR1
  article-title: New porous crystals of extended metal-catecholates
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1959
  year: 2019
  end-page: 1964
  ident: CR21
  article-title: Single crystals of electrically conductive two-dimensional metal–organic frameworks: structural and electrical transport properties
  publication-title: ACS Cent. Sci.
– volume: 11
  year: 2020
  ident: CR36
  article-title: Imaging the node-linker coordination in the bulk and local structures of metal-organic frameworks
  publication-title: Nat. Commun.
– volume: 361
  start-page: 52
  year: 2018
  ident: 847_CR15
  publication-title: Science
  doi: 10.1126/science.aar7883
– volume: 17
  start-page: 6525
  year: 2005
  ident: 847_CR31
  publication-title: Chem. Mater.
  doi: 10.1021/cm051870o
– volume: 120
  start-page: 8536
  year: 2020
  ident: 847_CR40
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00766
– volume: 55
  start-page: 3566
  year: 2016
  ident: 847_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506219
– volume: 32
  start-page: 4966
  year: 2020
  ident: 847_CR37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04665
– volume: 46
  start-page: 3185
  year: 2017
  ident: 847_CR14
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00122C
– volume: 2
  start-page: 52
  year: 2017
  ident: 847_CR11
  publication-title: Chem
  doi: 10.1016/j.chempr.2016.12.002
– volume: 138
  start-page: 14772
  year: 2016
  ident: 847_CR48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09345
– volume: 12
  start-page: 131
  year: 2020
  ident: 847_CR28
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0372-0
– volume: 71
  start-page: 3
  year: 2015
  ident: 847_CR42
  publication-title: Acta Crystallogr. Sect. C. Struct. Chem.
  doi: 10.1107/S2053229614024218
– volume: 136
  start-page: 8859
  year: 2014
  ident: 847_CR2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502765n
– volume: 57
  start-page: 8886
  year: 2018
  ident: 847_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201802521
– volume: 11
  start-page: 622
  year: 2019
  ident: 847_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0263-4
– volume: 1
  start-page: 428
  year: 2019
  ident: 847_CR34
  publication-title: Matter
  doi: 10.1016/j.matt.2019.06.001
– volume: 71
  start-page: 9
  year: 2015
  ident: 847_CR43
  publication-title: Acta Crystallogr. Sect. C. Struct. Chem.
  doi: 10.1107/S2053229614024929
– volume: 16
  start-page: 220
  year: 2017
  ident: 847_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4766
– volume: 66
  start-page: 125
  year: 2010
  ident: 847_CR47
  publication-title: Acta Crystallogr. Sect. D. Biol. Crystallogr.
  doi: 10.1107/S0907444909047337
– volume: 26
  start-page: 5541
  year: 2014
  ident: 847_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201305497
– volume: 9
  start-page: 3497
  year: 2017
  ident: 847_CR35
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201700519
– volume: 139
  start-page: 13608
  year: 2017
  ident: 847_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07234
– volume: 135
  start-page: 2462
  year: 2013
  ident: 847_CR4
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja312380b
– volume: 47
  start-page: 422
  year: 2018
  ident: 847_CR23
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00490G
– volume: 17
  start-page: 625
  year: 2018
  ident: 847_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0098-1
– volume: 101
  start-page: 1267
  year: 2001
  ident: 847_CR24
  publication-title: Chem. Rev.
  doi: 10.1021/cr990322p
– volume: 71
  start-page: 3
  year: 2015
  ident: 847_CR41
  publication-title: Acta Crystallogr. Sect. A Found. Crystallogr.
  doi: 10.1107/S2053273314026370
– volume: 51
  start-page: 1262
  year: 2018
  ident: 847_CR45
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S1600576718009500
– volume: 5
  start-page: 14969
  year: 2017
  ident: 847_CR32
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00194K
– volume: 10
  year: 2019
  ident: 847_CR7
  publication-title: Nat. Commun.
– volume: 359
  start-page: 675
  year: 2018
  ident: 847_CR29
  publication-title: Science
  doi: 10.1126/science.aao0865
– volume: 47
  start-page: 6267
  year: 2018
  ident: 847_CR17
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00268A
– volume: 4
  start-page: 708
  year: 2019
  ident: 847_CR26
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0140-1
– volume: 3
  start-page: 30
  year: 2018
  ident: 847_CR12
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0044-5
– volume: 9385
  start-page: 1379
  year: 2019
  ident: 847_CR18
  publication-title: Science
  doi: 10.1126/science.aax9385
– volume: 118
  start-page: 3681
  year: 2018
  ident: 847_CR27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00582
– volume: 11
  start-page: 994
  year: 2019
  ident: 847_CR30
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-019-0327-5
– volume: 6
  start-page: eaaz0632
  year: 2020
  ident: 847_CR25
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz0632
– volume: 118
  start-page: 7069
  year: 2018
  ident: 847_CR39
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00581
– volume: 5
  start-page: 1959
  year: 2019
  ident: 847_CR21
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.9b01006
– volume: 7
  year: 2016
  ident: 847_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10942
– volume: 11
  year: 2020
  ident: 847_CR36
  publication-title: Nat. Commun.
– volume: 24
  start-page: 3511
  year: 2012
  ident: 847_CR1
  publication-title: Chem. Mater.
  doi: 10.1021/cm301194a
– volume: 556
  start-page: 43
  year: 2018
  ident: 847_CR38
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 17
  start-page: 1027
  year: 2018
  ident: 847_CR3
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0189-z
– volume: 53
  start-page: 7018
  year: 2017
  ident: 847_CR44
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC03180G
– volume: 366
  start-page: eaan8285
  year: 2019
  ident: 847_CR9
  publication-title: Science
  doi: 10.1126/science.aan8285
– volume: 361
  start-page: 48
  year: 2018
  ident: 847_CR16
  publication-title: Science
  doi: 10.1126/science.aat7679
– volume: 343
  start-page: 66
  year: 2014
  ident: 847_CR5
  publication-title: Science
  doi: 10.1126/science.1246738
– volume: 46
  start-page: 1863
  year: 2013
  ident: 847_CR46
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889813027714
SSID ssj0021556
Score 2.6978912
Snippet Electrically conducting 2D metal–organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van...
Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van...
SourceID swepub
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 222
SubjectTerms 119/118
140/131
142/126
639/301/299/1013
639/638/263/915
639/638/298/921
Biomaterials
Chemistry and Materials Science
Condensed Matter Physics
Crystal growth
Crystal structure
Crystals
Electrical resistivity
Lattices
Materials Science
Metal-organic frameworks
Nanotechnology
Optical and Electronic Materials
Porosity
Sheets
Single crystals
Title Atomically precise single-crystal structures of electrically conducting 2D metal–organic frameworks
URI https://link.springer.com/article/10.1038/s41563-020-00847-7
https://www.ncbi.nlm.nih.gov/pubmed/33230325
https://www.proquest.com/docview/2481412068
https://www.proquest.com/docview/2464143143
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-189356
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NjtMwELZg9wIHxD-BZWUkOIG1jR079gm17JYVEhVCLOrNsh1HWqk0hbSHvfEOvCFPwkyctAtIlaJESuwkykzsbzwz3xDyMtYcVNeXzIhQswKTuFyUgeVFbqrK1zDLY3Lyx5k6vyg-zOW8X3Br-7DKYUzsBuqqCbhGfsILDf35SOm3q-8Mq0ahd7UvoXGTHCJ1GYZ0lfOdwQVzZcouKhUDXMH7pJmR0CctGi7owcS8ahihWfn3xPQf2rzmKf2HVbSbiaZ3yZ0eQtJxkvk9ciMu75Pb14gFH5A4XjcdD8Diiq6Qv6KNFBcFFpGFH1cACBc0EcduwNqmTU1TNZy-B5jIyAIL7Sk_pd8iNP_981eq_xRoPYRztQ_JxfTsy7tz1hdUYAFgy5rxIITPvUd3p5BGeO2MqUz0zsBJn-eqltq7UHgulAOoJPOK114ZUYxcCEo8IgfLZhmfECq8NFGBBmBoYhmdBrMk6uCkAwQBcspIPnxNG3q2cSx6sbCd11tomyRgQQK2k4AtM_J622eVuDb2tj4ahGT7_661Oy3JyIvtZfhj0A3ilrHZYBtVAEqELSOPk3C3jxMCTDLBZUbeDNLe3Xzfu7xKGrG9EbJ2n15-HVsQjm03NgdcKNXT_e_8jNziGDLTBYUfkQNQhPgcMM_aH3eKDXs9fX9MDsfTyWQGx8nZ7NPnP3c8AYM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4tywE4IP4JLGAk9gTRNnbixAeEKkrpsj-nXbQ3YzuOhFSaQlqh3ngH3oOH4kmYiZPuAlJvK-WU2E6U-ZyZycx8A_DCVxyha_NYCVfFKRVxGZ-5OEkTVZa2Qi1PxclHx3Jymn44y8624FdfC0Nplf03sf1Ql7Wjf-R7PC1wPh_I4s38a0xdoyi62rfQCLA48Kvv6LI1r_dHKN9dzsfvTt5O4q6rQOxQdy9i7oSwibUU8xOZErYwSpXKW6PwpE0SWWWFNS61XEiD9kKWlLyyUol0YJyTAte9AldTIRTtqGL8fu3goW4O1Uy5jNGO4V2RzkAUew05ShQxpTpu1Ahx_rci_M-6vRCZ_YfFtNV841twszNZ2TBg7DZs-dkduHGByPAu-OGibnkHpis2J76MxjP6CTH1sfu2QgN0ygJR7RK9e1ZXLHTf6WagS06sszie8RH74nH47x8_Q78px6o-fay5B6eX8qrvw_asnvmHwITNlJeIOEqFzL0p0A3yhTOZQYsFcRFB0r9N7Tp2c2qyMdVtlF0UOkhAowR0KwGdR_ByPWceuD02jt7phaS7fd7oc1RG8Hx9GXcohV3MzNdLGiNTtErxiOBBEO76dkKgCyh4FsGrXtrni296lt2AiPVCxBI--vxxqFE4ulnqBO3QTD7a_MzP4Nrk5OhQH-4fHzyG65zSddqE9B3YRlD4J2hvLezTFuQMPl32rvoDb206UQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NjtMwEB4ti4TggPhdAgsYiT1B1MaOneSAUEWpdllYcWBRb8Z2HAmptN1NK9Qb78Db8Dg8CTNx0i4g9bZST63tRplvMjOZmW8AnvuKI3RtFhfCVXFKTVzGSxcnaVKUpa3QylNz8ocTdXiavhvL8Q786nphqKyyeyY2D-py5ugdeY-nOe7nfZX3qrYs4uNw9Hp-FtMEKcq0duM0AkSO_eo7hm_1q6MhyvqA89HbT28O43bCQOzQji9i7oSwibWU_xOyEDY3RVEW3poCv7RJoiqZW-NSy4Uy6DvIpOSVVYVI-8Y5JfDcK3A1EzIhHcvGm2AP7XTobMpUjD4Nbxt2-iLv1RQ0UfaUerrROsTZ30bxP0_3Qpb2H0bTxgqObsHN1n1lg4C327Djp3fgxgVSw7vgB4tZw0EwWbE5cWfUntELiYmP3fkKndEJC6S1S4z02axiYRJPuwPDc2KgxfWMD9k3j8t___gZZk85VnWlZPU9OL2UW30fdqezqX8ATFhZeIXoo7LIzJscQyKfOyMNei-IkQiS7m5q1zKd08CNiW4y7iLXQQIaJaAbCegsghfrPfPA87F19X4nJN3qfK03CI3g2fpn1FZKwZipny1pjUrRQ8VPBHtBuOu_EwLDQcFlBC87aW8O33YtBwER64OIMXz49fNAo3B0vdQJ-qRSPdx-zU_hGuqTfn90cvwIrnOq3Glq0_dhFzHhH6PrtbBPGowz-HLZSvUHBis-fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atomically+precise+single-crystal+structures+of+electrically+conducting+2D+metal%E2%80%93organic+frameworks&rft.jtitle=Nature+materials&rft.au=Jin-Hu%2C+Dou&rft.au=Arguilla+Maxx+Q&rft.au=Luo%2C+Yi&rft.au=Li%2C+Jian&rft.date=2021-02-01&rft.pub=Nature+Publishing+Group&rft.issn=1476-1122&rft.eissn=1476-4660&rft.volume=20&rft.issue=2&rft.spage=222&rft.epage=228&rft_id=info:doi/10.1038%2Fs41563-020-00847-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-1122&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-1122&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-1122&client=summon