Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography

Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 66; no. 17; pp. 8558 - 8564
Main Authors PERUMAL, Meg, PILLAI, Radhakrishna G, BARTHEL, Henryk, LEYTON, Julius, LATIGO, John R, FORSTER, Martin, MITCHELL, Fraser, JACKMAN, Ann L, ABOAGYE, Eric O
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 01.09.2006
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) for early measurement of thymidylate synthase inhibition and to elucidate the cellular mechanisms involved. Radiation-induced fibrosarcoma-1 tumor-bearing mice were injected with a single i.p. dose of the thymidylate synthase inhibitor 5-fluorouracil (5-FU; 165 mg/kg) and imaged by [(18)F]FLT-PET at 1 to 2 hours after treatment. Deoxyuridine, thymidine kinase 1 (cytoplasmic thymidine kinase; EC2.7.1.21), and ATP levels in excised tumors were measured. Cellular assays for membrane transport were also done. There was a 1.8-fold increase in the 60-minute [(18)F]FLT tumor/heart radioactivity ratio in drug-treated mice compared with vehicle controls (P = 0.0016). Plasma and tumor deoxyuridine levels increased significantly but thymidine kinase and ATP levels were unchanged. Whole-cell assays implicated a (low level) functional role for the type-1 equilibrative nucleoside transporter (ENT). There was an increase in type-1 ENT-binding sites per cell from 49,110 in untreated cells to 73,142 (P = 0.03) in cells treated with 10 microg/mL 5-FU for 2 hours, without a change in transporter affinity (P = 0.41). We conclude that [(18)F]FLT-PET can be used to measure thymidylate synthase inhibition as early as 1 to 2 hours after treatment with 5-FU by a mechanism involving redistribution of nucleoside transporters to the plasma membrane.
AbstractList Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT) positron emission tomography (PET) for early measurement of thymidylate synthase inhibition and to elucidate the cellular mechanisms involved. Radiation-induced fibrosarcoma-1 tumor-bearing mice were injected with a single i.p. dose of the thymidylate synthase inhibitor 5-fluorouracil (5-FU; 165 mg/kg) and imaged by [(18)F]FLT-PET at 1 to 2 hours after treatment. Deoxyuridine, thymidine kinase 1 (cytoplasmic thymidine kinase; EC2.7.1.21), and ATP levels in excised tumors were measured. Cellular assays for membrane transport were also done. There was a 1.8-fold increase in the 60-minute [(18)F]FLT tumor/heart radioactivity ratio in drug-treated mice compared with vehicle controls (P = 0.0016). Plasma and tumor deoxyuridine levels increased significantly but thymidine kinase and ATP levels were unchanged. Whole-cell assays implicated a (low level) functional role for the type-1 equilibrative nucleoside transporter (ENT). There was an increase in type-1 ENT-binding sites per cell from 49,110 in untreated cells to 73,142 (P = 0.03) in cells treated with 10 microg/mL 5-FU for 2 hours, without a change in transporter affinity (P = 0.41). We conclude that [(18)F]FLT-PET can be used to measure thymidylate synthase inhibition as early as 1 to 2 hours after treatment with 5-FU by a mechanism involving redistribution of nucleoside transporters to the plasma membrane.
Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3'-deoxy-3'-[ super(18)F]fluorothymidine ([ super(18)F]FLT) positron emission tomography (PET) for early measurement of thymidylate synthase inhibition and to elucidate the cellular mechanisms involved. Radiation-induced fibrosarcoma-1 tumor-bearing mice were injected with a single i.p. dose of the thymidylate synthase inhibitor 5-fluorouracil (5-FU; 165 mg/kg) and imaged by [ super(18)F]FLT-PET at 1 to 2 hours after treatment. Deoxyuridine, thymidine kinase 1 (cytoplasmic thymidine kinase; EC2.7.1.21), and ATP levels in excised tumors were measured. Cellular assays for membrane transport were also done. There was a 1.8-fold increase in the 60-minute [ super(18)F]FLT tumor/heart radioactivity ratio in drug-treated mice compared with vehicle controls (P = 0.0016). Plasma and tumor deoxyuridine levels increased significantly but thymidine kinase and ATP levels were unchanged. Whole-cell assays implicated a (low level) functional role for the type-1 equilibrative nucleoside transporter (ENT). There was an increase in type-1 ENT-binding sites per cell from 49,110 in untreated cells to 73,142 (P = 0.03) in cells treated with 10 mu g/mL 5-FU for 2 hours, without a change in transporter affinity (P = 0.41). We conclude that [ super(18)F]FLT-PET can be used to measure thymidylate synthase inhibition as early as 1 to 2 hours after treatment with 5-FU by a mechanism involving redistribution of nucleoside transporters to the plasma membrane. (Cancer Res 2006; 66(17): 8558-64)
Abstract Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to develop noninvasive methods for assessing thymidylate synthase inhibition in tumors. The aim of this study was to assess the potential of 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) for early measurement of thymidylate synthase inhibition and to elucidate the cellular mechanisms involved. Radiation-induced fibrosarcoma-1 tumor-bearing mice were injected with a single i.p. dose of the thymidylate synthase inhibitor 5-fluorouracil (5-FU; 165 mg/kg) and imaged by [18F]FLT-PET at 1 to 2 hours after treatment. Deoxyuridine, thymidine kinase 1 (cytoplasmic thymidine kinase; EC2.7.1.21), and ATP levels in excised tumors were measured. Cellular assays for membrane transport were also done. There was a 1.8-fold increase in the 60-minute [18F]FLT tumor/heart radioactivity ratio in drug-treated mice compared with vehicle controls (P = 0.0016). Plasma and tumor deoxyuridine levels increased significantly but thymidine kinase and ATP levels were unchanged. Whole-cell assays implicated a (low level) functional role for the type-1 equilibrative nucleoside transporter (ENT). There was an increase in type-1 ENT-binding sites per cell from 49,110 in untreated cells to 73,142 (P = 0.03) in cells treated with 10 μg/mL 5-FU for 2 hours, without a change in transporter affinity (P = 0.41). We conclude that [18F]FLT-PET can be used to measure thymidylate synthase inhibition as early as 1 to 2 hours after treatment with 5-FU by a mechanism involving redistribution of nucleoside transporters to the plasma membrane. (Cancer Res 2006; 66(17): 8558-64)
Author LEYTON, Julius
PILLAI, Radhakrishna G
BARTHEL, Henryk
PERUMAL, Meg
FORSTER, Martin
JACKMAN, Ann L
LATIGO, John R
MITCHELL, Fraser
ABOAGYE, Eric O
Author_xml – sequence: 1
  givenname: Meg
  surname: PERUMAL
  fullname: PERUMAL, Meg
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
– sequence: 2
  givenname: Radhakrishna G
  surname: PILLAI
  fullname: PILLAI, Radhakrishna G
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
– sequence: 3
  givenname: Henryk
  surname: BARTHEL
  fullname: BARTHEL, Henryk
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
– sequence: 4
  givenname: Julius
  surname: LEYTON
  fullname: LEYTON, Julius
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
– sequence: 5
  givenname: John R
  surname: LATIGO
  fullname: LATIGO, John R
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
– sequence: 6
  givenname: Martin
  surname: FORSTER
  fullname: FORSTER, Martin
  organization: Section of Medicine, Institute of Cancer Research, Surrey, United Kingdom
– sequence: 7
  givenname: Fraser
  surname: MITCHELL
  fullname: MITCHELL, Fraser
  organization: Section of Medicine, Institute of Cancer Research, Surrey, United Kingdom
– sequence: 8
  givenname: Ann L
  surname: JACKMAN
  fullname: JACKMAN, Ann L
  organization: Section of Medicine, Institute of Cancer Research, Surrey, United Kingdom
– sequence: 9
  givenname: Eric O
  surname: ABOAGYE
  fullname: ABOAGYE, Eric O
  organization: Molecular Therapy Group, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18107246$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/16951168$$D View this record in MEDLINE/PubMed
BookMark eNpFkcGO1SAUhokZ49wZfQQNG911hBYoLCc36phMNDG6JpQebjFtqUAn6fv4oNKZG2cFHL7Dz3_-K3QxhxkQekvJDaVcfiSEyIqztr453n6riKiIVPIFOlDeyKpljF-gw3_mEl2l9LscOSX8FbqkQnFKhTygvz-g9ylH363ZhxkHh-fVjhCS7wHnaOa0hJghJpwDzgNgC-OIJ5i6cgd4ieGhkAkbPIcHGLFZSsnYAbsQsZ_Myc-n0rdNvt9GkwGnbc6DSYD9PPjOP6p2G16KYo5lD5NPaS_mMIVTNMuwvUYvnRkTvDmv1-jX508_j3fV_fcvX4-395XllOeq5lIppowSRPS2pVLUNTTWKEKappOulVYITpltTOeMdK7uG8tay5UE6nrSXKMPT-8WC39WSFmXv-x-i9OwJk0V44o2rID8CbQxpBTB6SUWr3HTlOg9Hr2PXu-j1yUeTYTe4yl9784CazdB_9x1zqMA78-ASdaMrszY-vTMSUramonmH5ybn3M
CODEN CNREA8
CitedBy_id crossref_primary_10_1016_j_jtocrr_2022_100382
crossref_primary_10_2967_jnumed_107_048231
crossref_primary_10_3390_diagnostics10030125
crossref_primary_10_1158_0008_5472_CAN_17_1406
crossref_primary_10_2967_jnumed_110_086967
crossref_primary_10_1016_j_bcp_2010_08_004
crossref_primary_10_1007_s00259_008_0960_5
crossref_primary_10_1007_s11307_012_0590_y
crossref_primary_10_1158_1078_0432_CCR_07_4294
crossref_primary_10_1371_journal_pone_0063705
crossref_primary_10_1016_j_ijrobp_2008_12_039
crossref_primary_10_1016_j_nucmedbio_2021_03_001
crossref_primary_10_1016_j_nucmedbio_2012_07_007
crossref_primary_10_1039_c0ib00066c
crossref_primary_10_3390_cancers15143718
crossref_primary_10_1007_s12149_009_0332_7
crossref_primary_10_1016_j_nucmedbio_2009_06_001
crossref_primary_10_1158_0008_5472_CAN_16_1479
crossref_primary_10_1158_1078_0432_CCR_09_1213
crossref_primary_10_1007_s10555_008_9148_5
crossref_primary_10_1259_bjr_77317821
crossref_primary_10_1016_j_nucmedbio_2016_05_009
crossref_primary_10_1371_journal_pone_0202384
crossref_primary_10_1016_j_jorganchem_2018_05_009
crossref_primary_10_1016_j_ejca_2011_11_035
crossref_primary_10_1002_hed_20770
crossref_primary_10_1053_j_semnuclmed_2007_11_006
crossref_primary_10_1016_j_ymeth_2009_03_009
crossref_primary_10_1021_bc900380n
crossref_primary_10_1038_nrd2290
crossref_primary_10_1007_s00259_007_0452_z
crossref_primary_10_1002_cmmi_368
crossref_primary_10_18632_oncotarget_12085
crossref_primary_10_18632_oncotarget_19751
crossref_primary_10_1097_RLU_0b013e31820aa1a1
crossref_primary_10_1158_0008_5472_CAN_08_0135
crossref_primary_10_3892_or_2012_2172
crossref_primary_10_2967_jnumed_112_117010
crossref_primary_10_1016_j_nucmedbio_2014_12_005
crossref_primary_10_2967_jnumed_114_140913
crossref_primary_10_1002_aoc_4424
crossref_primary_10_1016_j_critrevonc_2015_12_014
crossref_primary_10_1088_2050_6120_ac89cd
crossref_primary_10_1124_mol_108_048900
crossref_primary_10_1002_cam4_1113
crossref_primary_10_1007_s40336_013_0047_6
crossref_primary_10_1186_s13550_017_0302_3
crossref_primary_10_2967_jnumed_115_157958
crossref_primary_10_2967_jnumed_108_057281
crossref_primary_10_1016_j_nucmedbio_2012_03_009
crossref_primary_10_1007_s00280_015_2718_7
crossref_primary_10_1016_j_nucmedbio_2011_03_009
crossref_primary_10_1111_j_1476_5381_2010_01160_x
crossref_primary_10_1158_1535_7163_MCT_12_0905
crossref_primary_10_2967_jnumed_112_112201
crossref_primary_10_1016_j_nucmedbio_2011_12_002
crossref_primary_10_18632_oncotarget_2123
crossref_primary_10_1039_C7MD00635G
crossref_primary_10_1007_s11307_016_1021_2
crossref_primary_10_2967_jnumed_109_062208
crossref_primary_10_7314_APJCP_2014_15_10_4153
crossref_primary_10_1007_s00259_011_1802_4
crossref_primary_10_1158_1078_0432_CCR_11_0783
crossref_primary_10_2967_jnumed_110_076794
crossref_primary_10_1007_s11307_010_0351_8
crossref_primary_10_1007_s40336_014_0049_z
crossref_primary_10_1038_bjc_2014_207
crossref_primary_10_1007_s12149_018_1229_0
crossref_primary_10_2967_jnumed_108_052027
crossref_primary_10_1053_j_semnuclmed_2008_12_001
crossref_primary_10_1186_s13550_016_0234_3
crossref_primary_10_2967_jnumed_108_055335
crossref_primary_10_2967_jnumed_119_240598
Cites_doi 10.1016/S0959-8049(98)00226-3
10.1016/j.addr.2004.01.003
10.1073/pnas.80.21.6528
10.1016/j.clon.2003.10.009
10.1007/s002100000214
10.1038/sj.onc.1206952
10.1016/S0028-3908(97)00136-6
10.1016/S0378-4347(00)00260-7
10.1038/sj.bjc.6602216
10.1042/bj3270031
10.1007/s00259-005-0060-8
10.1093/jnci/95.9.675
10.1200/JCO.1988.6.10.1653
10.1042/bj3520363
10.1158/0008-5472.CAN-04-4008
10.1016/j.clinthera.2005.01.005
10.1200/JCO.1998.16.3.1131
10.1007/s002800050422
10.1158/0008-5472.CAN-05-2034
10.1074/jbc.M414337200
10.1074/jbc.M307938200
10.1007/s00259-002-0925-z
10.1200/JCO.2002.07.057
10.1056/NEJMra040958
10.1200/JCO.1994.12.10.2035
10.1002/jlcr.25804401306
10.1016/0065-2571(91)90008-A
10.1007/s00259-004-1611-0
10.1038/3337
10.1038/bjc.1998.1
10.1093/jnci/djj162
ContentType Journal Article
Copyright 2006 INIST-CNRS
Copyright_xml – notice: 2006 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
DOI 10.1158/0008-5472.CAN-06-0898
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE
Engineering Research Database
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 8564
ExternalDocumentID 10_1158_0008_5472_CAN_06_0898
16951168
18107246
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U120081322
GroupedDBID ---
-ET
.55
.GJ
08R
18M
29B
2WC
34G
39C
3O-
476
53G
5GY
5RE
5VS
6J9
8WZ
A6W
AAPBV
AAUGY
ABOCM
ABPTK
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFFNX
AFHIN
AFOSN
AFRAH
AI.
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CS3
D0S
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
IQODW
J5H
KQ8
L7B
LSO
MVM
OHT
OK1
P0W
P2P
PQQKQ
RCR
RHF
RHI
RNS
SJN
TR2
UDS
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
XFK
XJT
YKV
YZZ
ZA5
ZCG
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c515t-2589949a9606dc718622e3ca90033b8f78c66514c3abfa8ff2d3c47c598e1fd03
ISSN 0008-5472
IngestDate Sat Aug 17 02:08:02 EDT 2024
Thu Sep 26 17:49:12 EDT 2024
Sat Sep 28 08:22:37 EDT 2024
Sun Oct 29 17:06:59 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords Radionuclide study
Methyltransferases
Enzyme
Transferases
Plasma membrane
Medical imagery
Nucleoside
Inhibition
Thymidylate synthase
Positron emission tomography
Carrier protein
Emission tomography
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-2589949a9606dc718622e3ca90033b8f78c66514c3abfa8ff2d3c47c598e1fd03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/66/17/8558.full.pdf
PMID 16951168
PQID 19459134
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_19459134
crossref_primary_10_1158_0008_5472_CAN_06_0898
pubmed_primary_16951168
pascalfrancis_primary_18107246
PublicationCentury 2000
PublicationDate 2006-09-01
PublicationDateYYYYMMDD 2006-09-01
PublicationDate_xml – month: 09
  year: 2006
  text: 2006-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2006
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061622131586900_B14
2022061622131586900_B15
2022061622131586900_B12
2022061622131586900_B34
2022061622131586900_B13
2022061622131586900_B35
2022061622131586900_B18
2022061622131586900_B19
2022061622131586900_B16
2022061622131586900_B17
2022061622131586900_B10
2022061622131586900_B32
2022061622131586900_B11
2022061622131586900_B33
2022061622131586900_B30
2022061622131586900_B31
2022061622131586900_B25
2022061622131586900_B26
2022061622131586900_B23
2022061622131586900_B24
2022061622131586900_B29
2022061622131586900_B27
2022061622131586900_B28
2022061622131586900_B6
2022061622131586900_B5
2022061622131586900_B4
2022061622131586900_B3
2022061622131586900_B2
2022061622131586900_B1
2022061622131586900_B21
2022061622131586900_B9
2022061622131586900_B22
2022061622131586900_B8
2022061622131586900_B7
2022061622131586900_B20
References_xml – ident: 2022061622131586900_B4
  doi: 10.1016/S0959-8049(98)00226-3
– ident: 2022061622131586900_B6
  doi: 10.1016/j.addr.2004.01.003
– ident: 2022061622131586900_B12
  doi: 10.1073/pnas.80.21.6528
– ident: 2022061622131586900_B29
  doi: 10.1016/j.clon.2003.10.009
– ident: 2022061622131586900_B27
  doi: 10.1007/s002100000214
– ident: 2022061622131586900_B31
  doi: 10.1038/sj.onc.1206952
– ident: 2022061622131586900_B26
  doi: 10.1016/S0028-3908(97)00136-6
– ident: 2022061622131586900_B15
– ident: 2022061622131586900_B18
– ident: 2022061622131586900_B22
  doi: 10.1016/S0378-4347(00)00260-7
– ident: 2022061622131586900_B23
  doi: 10.1038/sj.bjc.6602216
– ident: 2022061622131586900_B25
  doi: 10.1042/bj3270031
– ident: 2022061622131586900_B24
  doi: 10.1007/s00259-005-0060-8
– ident: 2022061622131586900_B14
  doi: 10.1093/jnci/95.9.675
– ident: 2022061622131586900_B3
  doi: 10.1200/JCO.1988.6.10.1653
– ident: 2022061622131586900_B32
  doi: 10.1042/bj3520363
– ident: 2022061622131586900_B20
  doi: 10.1158/0008-5472.CAN-04-4008
– ident: 2022061622131586900_B5
  doi: 10.1016/j.clinthera.2005.01.005
– ident: 2022061622131586900_B7
– ident: 2022061622131586900_B8
  doi: 10.1200/JCO.1998.16.3.1131
– ident: 2022061622131586900_B9
  doi: 10.1007/s002800050422
– ident: 2022061622131586900_B11
  doi: 10.1158/0008-5472.CAN-05-2034
– ident: 2022061622131586900_B33
  doi: 10.1074/jbc.M414337200
– ident: 2022061622131586900_B10
– ident: 2022061622131586900_B30
  doi: 10.1074/jbc.M307938200
– ident: 2022061622131586900_B34
  doi: 10.1007/s00259-002-0925-z
– ident: 2022061622131586900_B28
  doi: 10.1200/JCO.2002.07.057
– ident: 2022061622131586900_B1
  doi: 10.1056/NEJMra040958
– ident: 2022061622131586900_B2
  doi: 10.1200/JCO.1994.12.10.2035
– ident: 2022061622131586900_B17
  doi: 10.1002/jlcr.25804401306
– ident: 2022061622131586900_B13
  doi: 10.1016/0065-2571(91)90008-A
– ident: 2022061622131586900_B21
  doi: 10.1007/s00259-004-1611-0
– ident: 2022061622131586900_B16
  doi: 10.1038/3337
– ident: 2022061622131586900_B19
  doi: 10.1038/bjc.1998.1
– ident: 2022061622131586900_B35
  doi: 10.1093/jnci/djj162
SSID ssj0005105
Score 2.2221854
Snippet Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a need to...
Abstract Thymidylate synthase (EC 2.1.1.45) is a key enzyme for the de novo synthesis of DNA and as such a target for anticancer drug development. There is a...
SourceID proquest
crossref
pubmed
pascalfrancis
SourceType Aggregation Database
Index Database
StartPage 8558
SubjectTerms Animals
Biological and medical sciences
Cell Line, Tumor
Cell Membrane - diagnostic imaging
Cell Membrane - physiology
Cell physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Fibrosarcoma - diagnostic imaging
Fluorine Radioisotopes
Fundamental and applied biological sciences. Psychology
Mice
Molecular and cellular biology
Neoplasms, Radiation-Induced - diagnostic imaging
Nucleoside Transport Proteins - metabolism
Positron-Emission Tomography
Thymidylate Synthase - antagonists & inhibitors
Title Redistribution of nucleoside transporters to the cell membrane provides a novel approach for imaging thymidylate synthase inhibition by positron emission tomography
URI https://www.ncbi.nlm.nih.gov/pubmed/16951168
https://search.proquest.com/docview/19459134
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2ISEkNDGuHTD8wFuVkpsT57FMRR20BaZW2lvkxM5aqU2mNkUqv4cfyrEdJykb4vISRVYTK_m-2uecfOcchN7avp8ENAgsz-OR5XPGLSZ4YHHH5iINgsxxZHLyeBIMZ_7HK3J1cHjSUi1ty6SXfr8zr-R_UIUxwFVmyf4DsvVNYQDOAV84AsJw_CuML2VSbd2ySmsy4CeFbMEpmz9UZcvXG2NhyjB9dyVW4CLnMkNKZeFtuqybF9_Esi4wrrSHi5VuYARIrhZ8twSjVNY3KOew73UX-XyRKLWXtF-V8msN57J5nAy_wXyrdi3sphRCKtbdqsDQXH1B1lIQtVQtl71WYOLL4HI27o9UxFZc16MXo1H_QhGDcSlJWGzmOWs6hL0HA304GOkdNV_v6kQkMMSnnycmJfx2uCPak46Y71gt9qqXUj2B0SvurfnUIr5uENQTzTIf-rqQpdkHdPcXw_ewtapTosvLGwuB6MLrt3cfQrVcU0_YO-9PlKqMRrTZbo3E4JdduNZGgsllh64fHKJ7bhgRGVD49LWpgE8qWa6ZpMpKg6nf3Tnxnr318IZt4K-f6Z4tv3eqlHE1fYSOK68I9zXFT9CByB-j--NK9_EE_dhnOi4y3DAdt5mOywID07FkOjZMx4bpmGHFdGyYjgFUXDEdt5iODdNxw3Sc7LBhOjZMxw3Tn6LZh8H0fGhV_UWsFKz40nIJjSI_YtKJ5ykYaYHrCi9lMrjvJTQLKSxW4FCkHksyRrPM5V7qhymJqHAybnvP0FFe5OIFwnYiK9-RVCRh4meMU1moEsZcm6cu3K-DegaF-EaXkYmV-02olH_QWMIWA2yxlJkCbB10todVc1VFjw56Y8CL4YnlW4X3WWw3sRP5ROppOui5xrS5NgB_ygno6Z9u_hI9aP57r9BRud6K12B8l8mZYuNP5b3fkw
link.rule.ids 315,786,790,27957,27958
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Redistribution+of+nucleoside+transporters+to+the+cell+membrane+provides+a+novel+approach+for+imaging+thymidylate+synthase+inhibition+by+positron+emission+tomography&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=PERUMAL%2C+Meg&rft.au=PILLAI%2C+Radhakrishna+G&rft.au=BARTHEL%2C+Henryk&rft.au=LEYTON%2C+Julius&rft.date=2006-09-01&rft.pub=American+Association+for+Cancer+Research&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=66&rft.issue=17&rft.spage=8558&rft.epage=8564&rft_id=info:doi/10.1158%2F0008-5472.CAN-06-0898&rft.externalDBID=n%2Fa&rft.externalDocID=18107246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon