De novo design of picomolar SARS-CoV-2 miniprotein inhibitors
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. d...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 370; no. 6515; pp. 426 - 431 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
23.10.2020
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao
et al.
designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system.
Science
, this issue p.
426
Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor.
Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC
50
) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC
50
~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. |
---|---|
AbstractList | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao
et al.
designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system.
Science
, this issue p.
426
Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor.
Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC
50
) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC
50
~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system. Science , this issue p. 426 Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC 50 ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC 50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. Miniproteins against SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system.Science, this issue p. 426Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics. |
Author | Coventry, Brian Strauch, Eva-Maria Chen, Rita E. Baker, David Veesler, David Diamond, Michael S. Carter, Lauren Walls, Alexandra C. Goreshnik, Inna Miller, Lauren Case, James Brett Stewart, Lance Park, Young-Jun Cao, Longxing Kozodoy, Lisa |
Author_xml | – sequence: 1 givenname: Longxing orcidid: 0000-0003-4002-3648 surname: Cao fullname: Cao, Longxing organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 2 givenname: Inna surname: Goreshnik fullname: Goreshnik, Inna organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 3 givenname: Brian orcidid: 0000-0002-6910-6255 surname: Coventry fullname: Coventry, Brian organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA., Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: James Brett orcidid: 0000-0001-7331-5511 surname: Case fullname: Case, James Brett organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 5 givenname: Lauren orcidid: 0000-0001-5935-4549 surname: Miller fullname: Miller, Lauren organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 6 givenname: Lisa surname: Kozodoy fullname: Kozodoy, Lisa organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 7 givenname: Rita E. surname: Chen fullname: Chen, Rita E. organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA., Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 8 givenname: Lauren orcidid: 0000-0002-9837-9068 surname: Carter fullname: Carter, Lauren organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 9 givenname: Alexandra C. orcidid: 0000-0002-9636-8330 surname: Walls fullname: Walls, Alexandra C. organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 10 givenname: Young-Jun surname: Park fullname: Park, Young-Jun organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 11 givenname: Eva-Maria orcidid: 0000-0001-7382-747X surname: Strauch fullname: Strauch, Eva-Maria organization: Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA – sequence: 12 givenname: Lance orcidid: 0000-0003-4264-5125 surname: Stewart fullname: Stewart, Lance organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA – sequence: 13 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA., The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 14 givenname: David orcidid: 0000-0002-6019-8675 surname: Veesler fullname: Veesler, David organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA – sequence: 15 givenname: David orcidid: 0000-0001-7896-6217 surname: Baker fullname: Baker, David organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32907861$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLAzEUhYMotlbX7mTAjZvRPCbJZKFQ6hMEwdc2ZDJpmzKT1GRa8N-b0lpUcHUX9zuHc-85ALvOOwPAMYLnCGF2EbU1TptzVdVCQLED-ggKmgsMyS7oQ0hYXkJOe-AgxhmEaSfIPugRLCAvGeqDy2uTOb_0WW2inbjMj7O51b71jQrZy_D5JR_59xxnrXV2HnxnrMusm9rKdj7EQ7A3Vk00R5s5AG-3N6-j-_zx6e5hNHzMNUW0y9FYsbqiqCDUME4w4gpjKEhVFQUjTHNaa8yIINqIgqgSamUqpVNAoYuSIzIAV2vf-aJqTa2N64Jq5DzYVoVP6ZWVvzfOTuXELyUvKS8gSQZnG4PgPxYmdrK1UZumUc74RZS4KBBL30l_G4DTP-jML4JL5yWKEi5oyVfUyc9E2yjfn03AxRrQwccYzHiLIChX3clNd3LTXVLQPwptO9VZvzrJNv_qvgBctJ-2 |
CitedBy_id | crossref_primary_10_1038_s41587_022_01280_8 crossref_primary_10_1002_prot_26336 crossref_primary_10_1093_bib_bbac102 crossref_primary_10_1093_infdis_jiab305 crossref_primary_10_1002_pro_5106 crossref_primary_10_1038_s41467_024_54560_z crossref_primary_10_1016_j_cej_2024_154826 crossref_primary_10_1017_S0033583524000131 crossref_primary_10_1016_j_sbi_2021_03_011 crossref_primary_10_1002_pro_4484 crossref_primary_10_1002_cbic_202200561 crossref_primary_10_1021_acsomega_4c04023 crossref_primary_10_1128_CMR_00109_21 crossref_primary_10_1093_bib_bbab243 crossref_primary_10_1002_advs_202500859 crossref_primary_10_1038_s41422_024_01014_2 crossref_primary_10_1002_2211_5463_13855 crossref_primary_10_1002_chem_202403039 crossref_primary_10_1021_acsomega_3c01436 crossref_primary_10_1002_ange_202210883 crossref_primary_10_1002_prot_26474 crossref_primary_10_1016_j_sbi_2021_03_009 crossref_primary_10_1038_s41586_024_08121_5 crossref_primary_10_1073_pnas_2307371120 crossref_primary_10_1038_s41423_021_00663_2 crossref_primary_10_1093_protein_gzab029 crossref_primary_10_1038_s42003_023_04860_9 crossref_primary_10_1371_journal_pone_0292589 crossref_primary_10_3389_fmicb_2022_910343 crossref_primary_10_1039_D4SC02233E crossref_primary_10_1038_s41598_023_42442_1 crossref_primary_10_1002_pro_4355 crossref_primary_10_1002_prot_26480 crossref_primary_10_1016_j_ijbiomac_2025_140803 crossref_primary_10_1126_science_abe0075 crossref_primary_10_1093_protein_gzab020 crossref_primary_10_1021_acs_jpcb_2c03918 crossref_primary_10_1038_s41589_022_01060_0 crossref_primary_10_1371_journal_ppat_1009683 crossref_primary_10_1038_s41586_024_07948_2 crossref_primary_10_1016_j_peptides_2021_170638 crossref_primary_10_1080_07391102_2021_1937319 crossref_primary_10_1021_acs_jpcb_1c10718 crossref_primary_10_1038_s41594_023_01147_9 crossref_primary_10_1016_j_micres_2022_127206 crossref_primary_10_1038_s41467_023_38039_x crossref_primary_10_1016_j_bej_2022_108596 crossref_primary_10_1007_s40588_024_00229_6 crossref_primary_10_1021_acs_jchemed_2c00779 crossref_primary_10_1002_chem_202301180 crossref_primary_10_1021_acs_jpcb_3c04542 crossref_primary_10_1016_j_cell_2024_05_052 crossref_primary_10_1016_j_celrep_2022_111004 crossref_primary_10_1021_acs_jcim_1c00766 crossref_primary_10_1107_S2059798321005787 crossref_primary_10_1093_bioinformatics_btac733 crossref_primary_10_1016_j_csbj_2021_06_041 crossref_primary_10_1128_mBio_03447_20 crossref_primary_10_1016_j_jhazmat_2021_127923 crossref_primary_10_1038_s41589_022_01206_0 crossref_primary_10_3390_diagnostics14111100 crossref_primary_10_1038_s41467_022_34937_8 crossref_primary_10_1021_jacs_2c04192 crossref_primary_10_1039_D1CC02267A crossref_primary_10_1016_j_chembiol_2021_06_008 crossref_primary_10_1021_acsinfecdis_2c00006 crossref_primary_10_1002_prot_26422 crossref_primary_10_1016_j_heliyon_2023_e14115 crossref_primary_10_1038_s41467_023_42836_9 crossref_primary_10_1134_S1607672922060126 crossref_primary_10_1063_5_0057533 crossref_primary_10_1016_j_str_2024_01_006 crossref_primary_10_1360_TB_2024_1178 crossref_primary_10_3390_covid3040034 crossref_primary_10_3389_fcimb_2021_676451 crossref_primary_10_1002_adfm_202305120 crossref_primary_10_1002_pro_4322 crossref_primary_10_1038_s41591_021_01294_w crossref_primary_10_1039_D1RA00426C crossref_primary_10_1021_acs_jcim_1c00783 crossref_primary_10_1016_j_sbi_2022_102434 crossref_primary_10_34133_2022_9787581 crossref_primary_10_1021_acs_biochem_4c00671 crossref_primary_10_3390_ijms25020971 crossref_primary_10_1016_j_jmb_2021_167160 crossref_primary_10_1021_acsbiomedchemau_2c00008 crossref_primary_10_1039_D2CP05644E crossref_primary_10_1038_s42256_024_00838_2 crossref_primary_10_1038_s41586_021_03258_z crossref_primary_10_3390_ijms252212319 crossref_primary_10_1080_07391102_2022_2143426 crossref_primary_10_1016_j_meegid_2024_105626 crossref_primary_10_1002_adma_202101707 crossref_primary_10_1021_acschembio_2c00411 crossref_primary_10_3389_fbioe_2020_618615 crossref_primary_10_3389_fddsv_2022_899477 crossref_primary_10_1016_j_jmb_2021_167154 crossref_primary_10_1039_D0RA09555A crossref_primary_10_1021_acs_bioconjchem_0c00664 crossref_primary_10_1002_prot_26203 crossref_primary_10_1021_acs_jpcb_3c01467 crossref_primary_10_1016_j_coisb_2021_100374 crossref_primary_10_3390_v15040820 crossref_primary_10_1016_j_biotechadv_2022_107986 crossref_primary_10_1016_j_isci_2022_104798 crossref_primary_10_1016_j_tibs_2022_04_004 crossref_primary_10_1016_j_bpj_2021_06_016 crossref_primary_10_1016_j_bpj_2021_06_017 crossref_primary_10_1186_s12859_024_05637_5 crossref_primary_10_1021_acsomega_2c01707 crossref_primary_10_1016_j_str_2021_12_011 crossref_primary_10_1016_j_fmre_2021_02_001 crossref_primary_10_1126_sciadv_abf1738 crossref_primary_10_1016_j_coviro_2021_08_010 crossref_primary_10_3390_ijms24043827 crossref_primary_10_1016_j_ijbiomac_2025_142293 crossref_primary_10_1073_pnas_2122676119 crossref_primary_10_1371_journal_pone_0265020 crossref_primary_10_1016_j_chom_2022_07_016 crossref_primary_10_1016_j_heliyon_2023_e12890 crossref_primary_10_1089_genbio_2023_0025 crossref_primary_10_1016_j_crstbi_2022_02_001 crossref_primary_10_1021_jacs_1c11554 crossref_primary_10_46234_ccdcw2021_235 crossref_primary_10_1186_s12929_022_00847_6 crossref_primary_10_1021_acs_analchem_2c05818 crossref_primary_10_1016_j_sbi_2022_102370 crossref_primary_10_1038_s41587_024_02127_0 crossref_primary_10_1016_j_antiviral_2022_105514 crossref_primary_10_1016_j_str_2021_04_005 crossref_primary_10_1021_acs_analchem_2c01221 crossref_primary_10_3390_vaccines9101083 crossref_primary_10_1007_s00894_023_05586_5 crossref_primary_10_1021_acs_chemrev_1c00757 crossref_primary_10_3389_feduc_2022_908936 crossref_primary_10_1016_j_cell_2023_01_039 crossref_primary_10_1126_sciadv_abp9540 crossref_primary_10_1039_D4NR05040A crossref_primary_10_1126_science_abf4896 crossref_primary_10_1016_j_bbrc_2024_150082 crossref_primary_10_1016_j_nbt_2021_01_010 crossref_primary_10_1097_JCMA_0000000000001043 crossref_primary_10_1016_j_cell_2021_08_001 crossref_primary_10_1021_acsnano_2c09015 crossref_primary_10_1073_pnas_2206240119 crossref_primary_10_1007_s00894_024_06006_y crossref_primary_10_3390_ijms23116083 crossref_primary_10_3389_fimmu_2023_1113175 crossref_primary_10_1039_D4EW00052H crossref_primary_10_3389_fimmu_2024_1365803 crossref_primary_10_1021_acsami_3c02447 crossref_primary_10_1002_pep2_24217 crossref_primary_10_1002_prot_26511 crossref_primary_10_1038_s41589_022_01076_6 crossref_primary_10_1038_d41586_020_02586_w crossref_primary_10_1016_j_biopha_2024_116423 crossref_primary_10_1126_scitranslmed_abn1252 crossref_primary_10_3389_fmolb_2023_1110567 crossref_primary_10_1021_acsinfecdis_1c00096 crossref_primary_10_1080_14756366_2023_2244693 crossref_primary_10_1016_j_medidd_2024_100198 crossref_primary_10_1038_s41467_021_27103_z crossref_primary_10_1016_j_scr_2021_102219 crossref_primary_10_1073_pnas_2114397119 crossref_primary_10_1016_j_csbj_2020_11_002 crossref_primary_10_1007_s12539_024_00662_7 crossref_primary_10_1038_s41594_023_01029_0 crossref_primary_10_3389_fcimb_2022_869832 crossref_primary_10_1021_acs_jmedchem_1c00655 crossref_primary_10_1093_bioinformatics_btab598 crossref_primary_10_1093_nargab_lqac058 crossref_primary_10_1080_07391102_2021_1889665 crossref_primary_10_1016_j_bpj_2021_05_022 crossref_primary_10_1021_acs_jpclett_1c00663 crossref_primary_10_1038_s41598_021_01603_w crossref_primary_10_1038_s41564_022_01288_5 crossref_primary_10_1089_nat_2023_0012 crossref_primary_10_1038_s42003_023_04789_z crossref_primary_10_3390_ijms25094642 crossref_primary_10_3390_pathogens11101201 crossref_primary_10_3390_v16020177 crossref_primary_10_3390_ijms24108765 crossref_primary_10_1093_protein_gzab007 crossref_primary_10_1093_protein_gzab008 crossref_primary_10_1021_acs_jpcb_1c02048 crossref_primary_10_1016_j_fmre_2021_01_013 crossref_primary_10_3389_fimmu_2022_834942 crossref_primary_10_1186_s12934_023_02229_5 crossref_primary_10_1016_j_chempr_2022_07_012 crossref_primary_10_3390_biom14091073 crossref_primary_10_1016_j_cellin_2023_100144 crossref_primary_10_1038_s43588_022_00273_6 crossref_primary_10_2174_1872208317666230523105759 crossref_primary_10_1016_j_jcis_2024_06_175 crossref_primary_10_1124_molpharm_120_000202 crossref_primary_10_1038_s41586_023_05993_x crossref_primary_10_1021_acs_biochem_2c00629 crossref_primary_10_1038_s43586_025_00383_1 crossref_primary_10_1093_nar_gkae893 crossref_primary_10_3390_ijms222111627 crossref_primary_10_3390_ijms241512146 crossref_primary_10_3390_molecules28176413 crossref_primary_10_1172_jci_insight_154882 crossref_primary_10_3724_abbs_2023075 crossref_primary_10_18632_oncotarget_28469 crossref_primary_10_1038_s41563_021_01020_4 crossref_primary_10_1016_j_talanta_2023_124937 crossref_primary_10_1093_infdis_jiad135 crossref_primary_10_1016_j_compbiomed_2022_105457 crossref_primary_10_3390_molecules28155848 crossref_primary_10_1016_j_hlife_2023_06_001 crossref_primary_10_1109_TNSE_2024_3513456 crossref_primary_10_1021_acscatal_2c05190 crossref_primary_10_1021_acs_jmedchem_3c01543 crossref_primary_10_1248_cpb_c24_00448 crossref_primary_10_1021_acscentsci_0c01708 crossref_primary_10_1016_j_celrep_2022_111030 crossref_primary_10_34133_bdr_0037 crossref_primary_10_1016_j_hlife_2024_07_003 crossref_primary_10_1080_07391102_2020_1869096 crossref_primary_10_1016_j_apsb_2021_08_027 crossref_primary_10_1038_s41467_024_50956_z crossref_primary_10_3389_fphar_2022_987816 crossref_primary_10_1016_j_hlife_2024_07_007 crossref_primary_10_1002_2211_5463_13908 crossref_primary_10_1080_14760584_2023_2227699 crossref_primary_10_1146_annurev_cellbio_112122_025214 crossref_primary_10_3389_fmolb_2021_636660 crossref_primary_10_1126_scitranslmed_adh7668 crossref_primary_10_1002_wcms_1646 crossref_primary_10_1016_j_csbj_2021_09_032 crossref_primary_10_1038_s41594_021_00596_4 crossref_primary_10_1038_s41598_021_00684_x crossref_primary_10_1126_scisignal_abm4484 crossref_primary_10_1246_bcsj_20210030 crossref_primary_10_1002_ange_202115695 crossref_primary_10_3892_ije_2021_8 crossref_primary_10_1016_j_trechm_2022_02_004 crossref_primary_10_1016_j_chom_2021_06_008 crossref_primary_10_1016_j_str_2025_01_002 crossref_primary_10_1016_j_molcel_2021_11_024 crossref_primary_10_1038_s41392_024_01934_w crossref_primary_10_3389_fmicb_2022_1093646 crossref_primary_10_1039_D0NR09052B crossref_primary_10_1039_D3CP03392A crossref_primary_10_1080_07391102_2022_2103587 crossref_primary_10_1073_pnas_2208275120 crossref_primary_10_1021_acs_jcim_1c01283 crossref_primary_10_3389_fmicb_2022_980903 crossref_primary_10_1021_acssynbio_1c00576 crossref_primary_10_3389_fddsv_2023_1222655 crossref_primary_10_3390_medsci9020030 crossref_primary_10_3390_ijms25105535 crossref_primary_10_1021_acs_chemrev_4c00066 crossref_primary_10_1038_s41467_024_52582_1 crossref_primary_10_3390_biom12071007 crossref_primary_10_1126_sciadv_abn4188 crossref_primary_10_1002_psc_3409 crossref_primary_10_1002_admt_202300590 crossref_primary_10_1007_s12551_025_01276_z crossref_primary_10_29296_25877305_2023_01_14 crossref_primary_10_1128_mBio_03681_20 crossref_primary_10_1021_acssensors_2c02386 crossref_primary_10_1016_j_csbj_2021_04_059 crossref_primary_10_1038_s41467_024_50919_4 crossref_primary_10_1021_acs_jcim_2c00500 crossref_primary_10_1016_j_abb_2021_108771 crossref_primary_10_1016_j_crmeth_2022_100252 crossref_primary_10_1021_acs_jpcb_2c05119 crossref_primary_10_1038_s41467_021_24874_3 crossref_primary_10_1002_prot_26801 crossref_primary_10_1021_acs_biomac_4c00372 crossref_primary_10_1021_acssensors_4c00282 crossref_primary_10_3390_ijms25010166 crossref_primary_10_1016_j_sbi_2021_07_011 crossref_primary_10_1016_j_bpj_2024_01_029 crossref_primary_10_3390_v16010036 crossref_primary_10_1016_j_biopha_2024_116709 crossref_primary_10_1016_j_medidd_2021_100081 crossref_primary_10_1021_acs_langmuir_2c01699 crossref_primary_10_1007_s10989_022_10397_y crossref_primary_10_1038_s41598_021_94873_3 crossref_primary_10_1007_s10822_023_00518_0 crossref_primary_10_1038_s41392_021_00653_w crossref_primary_10_1016_j_csbj_2022_04_030 crossref_primary_10_1021_acs_molpharmaceut_3c00039 crossref_primary_10_1063_4_0000179 crossref_primary_10_1021_acs_jpclett_0c03615 crossref_primary_10_1016_j_cej_2022_137048 crossref_primary_10_3390_ijms242417473 crossref_primary_10_3390_pathogens10121599 crossref_primary_10_1016_j_bpc_2021_106661 crossref_primary_10_34133_2022_9842315 crossref_primary_10_1021_acsinfecdis_1c00433 crossref_primary_10_1042_BCJ20200514 crossref_primary_10_3390_v16060878 crossref_primary_10_3390_v14010069 crossref_primary_10_1080_19420862_2021_1893426 crossref_primary_10_1021_acsabm_4c00222 crossref_primary_10_3390_v16050712 crossref_primary_10_1002_pep2_24245 crossref_primary_10_3389_fddsv_2022_1085701 crossref_primary_10_1016_j_addr_2020_11_007 crossref_primary_10_1039_D3LC01100C crossref_primary_10_1016_j_antiviral_2021_105147 crossref_primary_10_1039_D1CC06301D crossref_primary_10_1038_s41586_024_08435_4 crossref_primary_10_1016_j_antiviral_2023_105541 crossref_primary_10_1039_D1NJ02955J crossref_primary_10_3389_fphar_2023_1156855 crossref_primary_10_1002_chem_202302969 crossref_primary_10_1007_s00894_021_04779_0 crossref_primary_10_1038_s41598_021_01225_2 crossref_primary_10_1038_s41598_021_01019_6 crossref_primary_10_3390_ijms23020838 crossref_primary_10_1093_nar_gkae384 crossref_primary_10_1016_j_apsb_2021_06_016 crossref_primary_10_1038_s41421_022_00455_6 crossref_primary_10_1021_acscentsci_0c01309 crossref_primary_10_1038_s41467_024_45193_3 crossref_primary_10_1016_j_chemphys_2023_111995 crossref_primary_10_1021_acs_jcim_0c01320 crossref_primary_10_3390_v15041001 crossref_primary_10_1016_j_celrep_2022_110905 crossref_primary_10_1021_acsami_2c18305 crossref_primary_10_1021_acs_jpcb_4c00241 crossref_primary_10_1016_j_mcpro_2024_100901 crossref_primary_10_3390_ijms241310837 crossref_primary_10_1016_j_sbi_2021_01_007 crossref_primary_10_1128_spectrum_02364_21 crossref_primary_10_3389_fimmu_2023_1226880 crossref_primary_10_1186_s12985_021_01624_x crossref_primary_10_1016_j_ijbiomac_2024_131324 crossref_primary_10_3390_v13071320 crossref_primary_10_3389_fmolb_2025_1512788 crossref_primary_10_1146_annurev_chembioeng_100722_122348 crossref_primary_10_3389_fmolb_2021_671923 crossref_primary_10_1016_j_ijbiomac_2023_128666 crossref_primary_10_1038_s41467_023_43718_w crossref_primary_10_3390_molecules29133022 crossref_primary_10_3389_fimmu_2021_730099 crossref_primary_10_1038_s41589_022_00967_y crossref_primary_10_1073_pnas_2413465122 crossref_primary_10_1016_j_eng_2021_04_003 crossref_primary_10_1371_journal_pone_0246181 crossref_primary_10_1021_acscentsci_2c01513 crossref_primary_10_1021_acschembio_3c00568 crossref_primary_10_1016_j_jbc_2021_100558 crossref_primary_10_1073_pnas_2112942118 crossref_primary_10_1038_s41557_023_01210_4 crossref_primary_10_1021_acscentsci_4c01385 crossref_primary_10_1016_j_bios_2023_115169 crossref_primary_10_1038_s41564_021_00954_4 crossref_primary_10_1016_j_jmb_2021_167177 crossref_primary_10_1002_pro_4401 crossref_primary_10_1016_j_virol_2024_110149 crossref_primary_10_1186_s11658_022_00341_9 crossref_primary_10_1002_jmv_27820 crossref_primary_10_1021_jacs_1c07965 crossref_primary_10_1186_s12859_021_04380_5 crossref_primary_10_1021_acs_jpcb_1c00869 crossref_primary_10_1002_pro_4991 crossref_primary_10_1016_j_tibtech_2024_10_008 crossref_primary_10_4103_tcmj_tcmj_318_21 crossref_primary_10_1038_s41598_021_97330_3 crossref_primary_10_1080_17460441_2022_2050693 crossref_primary_10_1016_j_chempr_2024_10_013 crossref_primary_10_1016_j_ijbiomac_2024_133834 crossref_primary_10_1016_j_compbiolchem_2024_108271 crossref_primary_10_1016_j_eti_2023_103162 crossref_primary_10_1007_s11427_022_2214_2 crossref_primary_10_1021_acs_biochem_1c00356 crossref_primary_10_1021_acs_jafc_4c01942 crossref_primary_10_3390_biology12020166 crossref_primary_10_34133_2022_9783197 crossref_primary_10_1039_D0ME00161A crossref_primary_10_1186_s12951_024_02329_3 crossref_primary_10_3389_fnut_2024_1346510 crossref_primary_10_1016_j_jacbts_2020_10_003 crossref_primary_10_1038_s41551_024_01258_8 crossref_primary_10_1080_19420862_2023_2212415 crossref_primary_10_1002_prot_26086 crossref_primary_10_3390_ijms23116309 crossref_primary_10_1093_bib_bbae135 crossref_primary_10_1371_journal_pone_0260283 crossref_primary_10_1038_s43246_022_00278_8 crossref_primary_10_1080_07391102_2024_2310789 crossref_primary_10_1128_jvi_00684_23 crossref_primary_10_1016_j_ejps_2023_106609 crossref_primary_10_1080_17425247_2021_1922387 crossref_primary_10_1016_j_coviro_2021_02_006 crossref_primary_10_1002_adhm_202402744 crossref_primary_10_1016_S2666_5247_23_00011_3 crossref_primary_10_3390_ijms22126462 crossref_primary_10_1016_j_xcrm_2021_100230 crossref_primary_10_1021_acs_jctc_4c00744 crossref_primary_10_1111_imr_13084 crossref_primary_10_1016_j_chroma_2024_464851 crossref_primary_10_1021_acscatal_2c04311 crossref_primary_10_1016_j_celrep_2021_109452 crossref_primary_10_1038_s42003_021_01736_8 crossref_primary_10_3389_fmedt_2022_1009451 crossref_primary_10_1038_s41580_024_00718_y crossref_primary_10_1073_pnas_2414583121 crossref_primary_10_3390_ijms23105601 crossref_primary_10_1002_adtp_202100104 crossref_primary_10_26508_lsa_202101322 crossref_primary_10_1038_s41586_022_04654_9 crossref_primary_10_3390_v14061255 crossref_primary_10_1002_prot_26140 crossref_primary_10_1021_acs_jproteome_0c00637 crossref_primary_10_3390_jof7070553 crossref_primary_10_1016_j_ymthe_2024_04_003 crossref_primary_10_3390_ijms24054401 crossref_primary_10_1002_cbic_202300093 crossref_primary_10_1016_j_compbiomed_2025_109821 crossref_primary_10_3390_v15061335 crossref_primary_10_1016_j_tig_2024_09_002 crossref_primary_10_1016_j_compbiomed_2023_107258 crossref_primary_10_1093_bib_bbad459 crossref_primary_10_1002_prot_26279 crossref_primary_10_3389_fmicb_2022_1022006 crossref_primary_10_1016_j_bej_2024_109261 crossref_primary_10_1002_anie_202115695 crossref_primary_10_1016_j_compbiolchem_2023_107819 crossref_primary_10_1007_s00604_023_06113_2 crossref_primary_10_1039_D2NR00306F crossref_primary_10_1080_26895293_2021_1977186 crossref_primary_10_3389_fmolb_2022_933400 crossref_primary_10_1093_bib_bbad133 crossref_primary_10_1039_D3CP01167D crossref_primary_10_1073_pnas_2116097119 crossref_primary_10_1016_j_csbj_2023_07_022 crossref_primary_10_1002_anie_202210883 crossref_primary_10_1073_pnas_2303292120 crossref_primary_10_14348_molcells_2021_0026 crossref_primary_10_1021_acs_jpclett_0c03119 crossref_primary_10_1186_s12951_024_02627_w crossref_primary_10_1016_j_csbj_2021_11_040 crossref_primary_10_3390_v13061020 crossref_primary_10_1080_07391102_2022_2036640 crossref_primary_10_1038_s43246_022_00256_0 crossref_primary_10_2139_ssrn_4187487 crossref_primary_10_3390_v16050697 crossref_primary_10_1021_acssensors_1c01482 crossref_primary_10_1093_nar_gkab926 crossref_primary_10_1016_j_cej_2022_136143 crossref_primary_10_1016_j_heliyon_2025_e43084 crossref_primary_10_1038_s41594_020_00549_3 |
Cites_doi | 10.1038/s41586-020-2381-y 10.1038/nature11600 10.1101/2019.12.15.877092 10.7554/eLife.17219 10.4049/jimmunol.2000583 10.1038/s41586-018-0830-7 10.7554/eLife.18722 10.1038/s41586-018-0509-0 10.1016/j.ultramic.2013.06.004 10.1038/nmeth.3541 10.1101/2020.05.30.125484 10.1126/science.abb2762 10.1016/j.jsb.2005.03.010 10.1016/j.cell.2020.03.045 10.1002/pro.3330 10.1038/nmeth.4169 10.1107/S2059798319011471 10.1126/science.abb7269 10.1101/2020.02.19.956581 10.1126/science.abc2241 10.1038/s41586-020-2179-y 10.1002/pro.3791 10.1107/S205225251801463X 10.1371/journal.pone.0024109 10.1016/j.cell.2020.05.042 10.1002/pro.3235 10.1073/pnas.1821317116 10.1038/nsmb.3115 10.1038/s41592-019-0580-y 10.7554/eLife.42166 10.1016/j.str.2018.09.006 10.1093/nar/30.10.e43 10.1111/imr.12367 10.1038/nature23912 10.1038/s41586-020-2180-5 10.1002/jcc.20084 10.1126/science.abb8923 10.2210/pdb6ws6/pdb 10.1038/nmeth.3286 |
ContentType | Journal Article |
Copyright | Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abd9909 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 431 |
ExternalDocumentID | PMC7857403 32907861 10_1126_science_abd9909 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM120553 – fundername: NIAID NIH HHS grantid: R01 AI140245 – fundername: NIAID NIH HHS grantid: HHSN272201700059C – fundername: NIH HHS grantid: S10 OD023476 – fundername: ; – fundername: ; grantid: HHSN272201700059C – fundername: ; grantid: R01GM120553 – fundername: ; grantid: FA8750-17-C-0219 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c515t-1fa6db51435e673217a22093bb44636c75dc26393ce943a80caebac8619c48713 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:34:12 EDT 2025 Fri Jul 11 11:13:03 EDT 2025 Fri Jul 25 10:52:50 EDT 2025 Mon Jul 21 05:50:57 EDT 2025 Tue Jul 01 01:35:17 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6515 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-1fa6db51435e673217a22093bb44636c75dc26393ce943a80caebac8619c48713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9636-8330 0000-0002-8791-3165 0000-0002-6910-6255 0000-0001-7382-747X 0000-0001-7896-6217 0000-0003-4002-3648 0000-0003-4264-5125 0000-0001-5935-4549 0000-0001-7331-5511 0000-0002-9837-9068 0000-0002-6019-8675 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7857403 |
PMID | 32907861 |
PQID | 2453795870 |
PQPubID | 1256 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857403 proquest_miscellaneous_2441609520 proquest_journals_2453795870 pubmed_primary_32907861 crossref_primary_10_1126_science_abd9909 crossref_citationtrail_10_1126_science_abd9909 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-23 |
PublicationDateYYYYMMDD | 2020-10-23 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2020 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 32793905 - bioRxiv. 2020 Aug 03:2020.08.03.234914. doi: 10.1101/2020.08.03.234914 |
References_xml | – ident: e_1_3_2_3_2 doi: 10.1038/s41586-020-2381-y – ident: e_1_3_2_20_2 doi: 10.1038/nature11600 – ident: e_1_3_2_28_2 doi: 10.1101/2019.12.15.877092 – ident: e_1_3_2_35_2 doi: 10.7554/eLife.17219 – ident: e_1_3_2_14_2 doi: 10.4049/jimmunol.2000583 – ident: e_1_3_2_15_2 doi: 10.1038/s41586-018-0830-7 – ident: e_1_3_2_26_2 doi: 10.7554/eLife.18722 – ident: e_1_3_2_13_2 doi: 10.1038/s41586-018-0509-0 – ident: e_1_3_2_30_2 doi: 10.1016/j.ultramic.2013.06.004 – ident: e_1_3_2_39_2 doi: 10.1038/nmeth.3541 – ident: e_1_3_2_22_2 doi: 10.1101/2020.05.30.125484 – ident: e_1_3_2_18_2 doi: 10.1126/science.abb2762 – ident: e_1_3_2_23_2 doi: 10.1016/j.jsb.2005.03.010 – ident: e_1_3_2_17_2 doi: 10.1016/j.cell.2020.03.045 – ident: e_1_3_2_36_2 doi: 10.1002/pro.3330 – ident: e_1_3_2_25_2 doi: 10.1038/nmeth.4169 – ident: e_1_3_2_37_2 doi: 10.1107/S2059798319011471 – ident: e_1_3_2_6_2 doi: 10.1126/science.abb7269 – ident: e_1_3_2_11_2 doi: 10.1101/2020.02.19.956581 – ident: e_1_3_2_7_2 doi: 10.1126/science.abc2241 – ident: e_1_3_2_16_2 doi: 10.1038/s41586-020-2179-y – ident: e_1_3_2_32_2 doi: 10.1002/pro.3791 – ident: e_1_3_2_29_2 doi: 10.1107/S205225251801463X – ident: e_1_3_2_19_2 doi: 10.1371/journal.pone.0024109 – ident: e_1_3_2_2_2 doi: 10.1016/j.cell.2020.05.042 – ident: e_1_3_2_40_2 doi: 10.1002/pro.3235 – ident: e_1_3_2_8_2 doi: 10.1073/pnas.1821317116 – ident: e_1_3_2_38_2 doi: 10.1038/nsmb.3115 – ident: e_1_3_2_24_2 doi: 10.1038/s41592-019-0580-y – ident: e_1_3_2_27_2 doi: 10.7554/eLife.42166 – ident: e_1_3_2_33_2 doi: 10.1016/j.str.2018.09.006 – ident: e_1_3_2_21_2 doi: 10.1093/nar/30.10.e43 – ident: e_1_3_2_9_2 doi: 10.1111/imr.12367 – ident: e_1_3_2_12_2 doi: 10.1038/nature23912 – ident: e_1_3_2_5_2 doi: 10.1038/s41586-020-2180-5 – ident: e_1_3_2_31_2 doi: 10.1002/jcc.20084 – ident: e_1_3_2_10_2 doi: 10.1126/science.abb8923 – ident: e_1_3_2_4_2 doi: 10.2210/pdb6ws6/pdb – ident: e_1_3_2_34_2 doi: 10.1038/nmeth.3286 – reference: 32793905 - bioRxiv. 2020 Aug 03:2020.08.03.234914. doi: 10.1101/2020.08.03.234914 |
SSID | ssj0009593 |
Score | 2.7134278 |
Snippet | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the... Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2... Miniproteins against SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 426 |
SubjectTerms | ACE2 Affinity Amino Acid Sequence Amino acids Anatomy Angiotensin Angiotensin-Converting Enzyme 2 Animals Antiviral Agents - chemistry Betacoronavirus - drug effects Binding Binding Sites Biochem Cell size Chlorocebus aethiops Computer applications Coronaviridae Coronavirus Infections Coronaviruses COVID-19 Cryoelectron Microscopy Design Drug Design Electron microscopy Enzymes Immunotherapy Inhibitors Mammalian cells Mammals Mathematical models Microscopy Molec Biol Molecular Docking Simulation Monoclonal antibodies Pandemics Peptidyl-dipeptidase A Peptidyl-Dipeptidase A - chemistry Pneumonia, Viral Protein Binding - drug effects Proteins Receptors Respiratory diseases Respiratory system SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - antagonists & inhibitors Spike Glycoprotein, Coronavirus - chemistry Spike protein Stability Trimers Vero Cells Viral diseases |
Title | De novo design of picomolar SARS-CoV-2 miniprotein inhibitors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32907861 https://www.proquest.com/docview/2453795870 https://www.proquest.com/docview/2441609520 https://pubmed.ncbi.nlm.nih.gov/PMC7857403 |
Volume | 370 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExIvExu3wkBG4mGoSpU4iZM8dt2qCZUhsRb1LbIdh0awBNFsAn49x5dcug1p8BJFjlNX_j4fn-OcC0JvCde7gOcIL6IqqXbmcCq5EySquEgOt0wFOH84o6fL4P0qXHVuRTq6pOZj8fvWuJL_QRXaAFcVJfsPyLY_Cg1wD_jCFRCG650wPpajsrqqRpl2w9DOywDshbJWR-eTT-fOtPrskJFKH6LzMRTKrXFd8EKV2Omrpc0KB3Wz_YTTA671RZwYj4HGgcC-1jtNmDJ99Dqvyi8_m03RZN-Xm3VZfDUiqezcg6orXdrE0KxH1SkzFR-1Fy88knXdP6AAaxQku4khtjLVVeUgiWua5C1tVhD7poSIZZyq0d6TrIEJrL8p8Xs1KuWY8Qy216Tb3JoP-mcf09lyPk8XJ6vFfbRDwKggA7QzOTo-ml1P0tz-OZsKqhdk1QywrcXcME2ue9j2VJbFI7RrbQ08McTZQ_dkuY8emOqjv_bRnoVvgw9t8vF3jxFwCitOYcMpXOW45RTuOIV7nMIdp56g5exkMT11bIkNR8D01o6XM5pxrTRLGvlgnzJC3MTnPFCZ5EQUZoKAEusLmQQ-i13BYPWKGMxuAaau5z9Fg7Iq5XOEQ5mRKGcsoELZ_B6LvDymQsQ8py5zwyEaN1OWCpt_XpVB-ZZqO5TQ1M5xaud4iA7bF76b1Ct_73rQYJDa9blJSRD6URLChjREb9rHID3VJzFWyupS9QGDBOAm0OeZgawdyycJ6M_UG6JoC8y2g8rMvv2kLNY6Q3sUh1Hg-i_uMO5L9LBbNAdoUP-4lK9Az635a0vPP1ukq8w |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+design+of+picomolar+SARS-CoV-2+miniprotein+inhibitors&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cao%2C+Longxing&rft.au=Goreshnik%2C+Inna&rft.au=Coventry%2C+Brian&rft.au=Case%2C+James+Brett&rft.date=2020-10-23&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=370&rft.issue=6515&rft.spage=426&rft_id=info:doi/10.1126%2Fscience.abd9909&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |