De novo design of picomolar SARS-CoV-2 miniprotein inhibitors

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. d...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 370; no. 6515; pp. 426 - 431
Main Authors Cao, Longxing, Goreshnik, Inna, Coventry, Brian, Case, James Brett, Miller, Lauren, Kozodoy, Lisa, Chen, Rita E., Carter, Lauren, Walls, Alexandra C., Park, Young-Jun, Strauch, Eva-Maria, Stewart, Lance, Diamond, Michael S., Veesler, David, Baker, David
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 23.10.2020
American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system. Science , this issue p. 426 Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC 50 ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC 50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
AbstractList Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system. Science , this issue p. 426 Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC 50 ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC 50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system. Science , this issue p. 426 Designed miniproteins bind tightly to the SARS-CoV-2 spike protein and prevent binding to the host cell receptor. Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC 50 ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC 50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC ) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC ~ 0.16 nanograms per milliliter). Cryo-electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
Miniproteins against SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the host angiotensin-converting enzyme 2 (ACE2) receptor. Many monoclonal antibody therapies in development target the spike proteins. Cao et al. designed small, stable proteins that bind tightly to the spike and block it from binding to ACE2. The best designs bind with very high affinity and prevent SARS-CoV-2 infection of mammalian Vero E6 cells. Cryo–electron microscopy shows that the structures of the two most potent inhibitors are nearly identical to the computational models. Unlike antibodies, the miniproteins do not require expression in mammalian cells, and their small size and high stability may allow formulation for direct delivery to the nasal or respiratory system.Science, this issue p. 426Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor is a promising therapeutic strategy. We designed inhibitors using two de novo design approaches. Computer-generated scaffolds were either built around an ACE2 helix that interacts with the spike receptor binding domain (RBD) or docked against the RBD to identify new binding modes, and their amino acid sequences were designed to optimize target binding, folding, and stability. Ten designs bound the RBD, with affinities ranging from 100 picomolar to 10 nanomolar, and blocked SARS-CoV-2 infection of Vero E6 cells with median inhibitory concentration (IC50) values between 24 picomolar and 35 nanomolar. The most potent, with new binding modes, are 56- and 64-residue proteins (IC50 ~ 0.16 nanograms per milliliter). Cryo–electron microscopy structures of these minibinders in complex with the SARS-CoV-2 spike ectodomain trimer with all three RBDs bound are nearly identical to the computational models. These hyperstable minibinders provide starting points for SARS-CoV-2 therapeutics.
Author Coventry, Brian
Strauch, Eva-Maria
Chen, Rita E.
Baker, David
Veesler, David
Diamond, Michael S.
Carter, Lauren
Walls, Alexandra C.
Goreshnik, Inna
Miller, Lauren
Case, James Brett
Stewart, Lance
Park, Young-Jun
Cao, Longxing
Kozodoy, Lisa
Author_xml – sequence: 1
  givenname: Longxing
  orcidid: 0000-0003-4002-3648
  surname: Cao
  fullname: Cao, Longxing
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 2
  givenname: Inna
  surname: Goreshnik
  fullname: Goreshnik, Inna
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 3
  givenname: Brian
  orcidid: 0000-0002-6910-6255
  surname: Coventry
  fullname: Coventry, Brian
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA., Molecular Engineering Graduate Program, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: James Brett
  orcidid: 0000-0001-7331-5511
  surname: Case
  fullname: Case, James Brett
  organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Lauren
  orcidid: 0000-0001-5935-4549
  surname: Miller
  fullname: Miller, Lauren
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 6
  givenname: Lisa
  surname: Kozodoy
  fullname: Kozodoy, Lisa
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 7
  givenname: Rita E.
  surname: Chen
  fullname: Chen, Rita E.
  organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA., Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 8
  givenname: Lauren
  orcidid: 0000-0002-9837-9068
  surname: Carter
  fullname: Carter, Lauren
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 9
  givenname: Alexandra C.
  orcidid: 0000-0002-9636-8330
  surname: Walls
  fullname: Walls, Alexandra C.
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 10
  givenname: Young-Jun
  surname: Park
  fullname: Park, Young-Jun
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 11
  givenname: Eva-Maria
  orcidid: 0000-0001-7382-747X
  surname: Strauch
  fullname: Strauch, Eva-Maria
  organization: Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
– sequence: 12
  givenname: Lance
  orcidid: 0000-0003-4264-5125
  surname: Stewart
  fullname: Stewart, Lance
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
– sequence: 13
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
  organization: Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA., The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 14
  givenname: David
  orcidid: 0000-0002-6019-8675
  surname: Veesler
  fullname: Veesler, David
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
– sequence: 15
  givenname: David
  orcidid: 0000-0001-7896-6217
  surname: Baker
  fullname: Baker, David
  organization: Department of Biochemistry, University of Washington, Seattle, WA 98195, USA., Institute for Protein Design, University of Washington, Seattle, WA 98195, USA., Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32907861$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLAzEUhYMotlbX7mTAjZvRPCbJZKFQ6hMEwdc2ZDJpmzKT1GRa8N-b0lpUcHUX9zuHc-85ALvOOwPAMYLnCGF2EbU1TptzVdVCQLED-ggKmgsMyS7oQ0hYXkJOe-AgxhmEaSfIPugRLCAvGeqDy2uTOb_0WW2inbjMj7O51b71jQrZy_D5JR_59xxnrXV2HnxnrMusm9rKdj7EQ7A3Vk00R5s5AG-3N6-j-_zx6e5hNHzMNUW0y9FYsbqiqCDUME4w4gpjKEhVFQUjTHNaa8yIINqIgqgSamUqpVNAoYuSIzIAV2vf-aJqTa2N64Jq5DzYVoVP6ZWVvzfOTuXELyUvKS8gSQZnG4PgPxYmdrK1UZumUc74RZS4KBBL30l_G4DTP-jML4JL5yWKEi5oyVfUyc9E2yjfn03AxRrQwccYzHiLIChX3clNd3LTXVLQPwptO9VZvzrJNv_qvgBctJ-2
CitedBy_id crossref_primary_10_1038_s41587_022_01280_8
crossref_primary_10_1002_prot_26336
crossref_primary_10_1093_bib_bbac102
crossref_primary_10_1093_infdis_jiab305
crossref_primary_10_1002_pro_5106
crossref_primary_10_1038_s41467_024_54560_z
crossref_primary_10_1016_j_cej_2024_154826
crossref_primary_10_1017_S0033583524000131
crossref_primary_10_1016_j_sbi_2021_03_011
crossref_primary_10_1002_pro_4484
crossref_primary_10_1002_cbic_202200561
crossref_primary_10_1021_acsomega_4c04023
crossref_primary_10_1128_CMR_00109_21
crossref_primary_10_1093_bib_bbab243
crossref_primary_10_1002_advs_202500859
crossref_primary_10_1038_s41422_024_01014_2
crossref_primary_10_1002_2211_5463_13855
crossref_primary_10_1002_chem_202403039
crossref_primary_10_1021_acsomega_3c01436
crossref_primary_10_1002_ange_202210883
crossref_primary_10_1002_prot_26474
crossref_primary_10_1016_j_sbi_2021_03_009
crossref_primary_10_1038_s41586_024_08121_5
crossref_primary_10_1073_pnas_2307371120
crossref_primary_10_1038_s41423_021_00663_2
crossref_primary_10_1093_protein_gzab029
crossref_primary_10_1038_s42003_023_04860_9
crossref_primary_10_1371_journal_pone_0292589
crossref_primary_10_3389_fmicb_2022_910343
crossref_primary_10_1039_D4SC02233E
crossref_primary_10_1038_s41598_023_42442_1
crossref_primary_10_1002_pro_4355
crossref_primary_10_1002_prot_26480
crossref_primary_10_1016_j_ijbiomac_2025_140803
crossref_primary_10_1126_science_abe0075
crossref_primary_10_1093_protein_gzab020
crossref_primary_10_1021_acs_jpcb_2c03918
crossref_primary_10_1038_s41589_022_01060_0
crossref_primary_10_1371_journal_ppat_1009683
crossref_primary_10_1038_s41586_024_07948_2
crossref_primary_10_1016_j_peptides_2021_170638
crossref_primary_10_1080_07391102_2021_1937319
crossref_primary_10_1021_acs_jpcb_1c10718
crossref_primary_10_1038_s41594_023_01147_9
crossref_primary_10_1016_j_micres_2022_127206
crossref_primary_10_1038_s41467_023_38039_x
crossref_primary_10_1016_j_bej_2022_108596
crossref_primary_10_1007_s40588_024_00229_6
crossref_primary_10_1021_acs_jchemed_2c00779
crossref_primary_10_1002_chem_202301180
crossref_primary_10_1021_acs_jpcb_3c04542
crossref_primary_10_1016_j_cell_2024_05_052
crossref_primary_10_1016_j_celrep_2022_111004
crossref_primary_10_1021_acs_jcim_1c00766
crossref_primary_10_1107_S2059798321005787
crossref_primary_10_1093_bioinformatics_btac733
crossref_primary_10_1016_j_csbj_2021_06_041
crossref_primary_10_1128_mBio_03447_20
crossref_primary_10_1016_j_jhazmat_2021_127923
crossref_primary_10_1038_s41589_022_01206_0
crossref_primary_10_3390_diagnostics14111100
crossref_primary_10_1038_s41467_022_34937_8
crossref_primary_10_1021_jacs_2c04192
crossref_primary_10_1039_D1CC02267A
crossref_primary_10_1016_j_chembiol_2021_06_008
crossref_primary_10_1021_acsinfecdis_2c00006
crossref_primary_10_1002_prot_26422
crossref_primary_10_1016_j_heliyon_2023_e14115
crossref_primary_10_1038_s41467_023_42836_9
crossref_primary_10_1134_S1607672922060126
crossref_primary_10_1063_5_0057533
crossref_primary_10_1016_j_str_2024_01_006
crossref_primary_10_1360_TB_2024_1178
crossref_primary_10_3390_covid3040034
crossref_primary_10_3389_fcimb_2021_676451
crossref_primary_10_1002_adfm_202305120
crossref_primary_10_1002_pro_4322
crossref_primary_10_1038_s41591_021_01294_w
crossref_primary_10_1039_D1RA00426C
crossref_primary_10_1021_acs_jcim_1c00783
crossref_primary_10_1016_j_sbi_2022_102434
crossref_primary_10_34133_2022_9787581
crossref_primary_10_1021_acs_biochem_4c00671
crossref_primary_10_3390_ijms25020971
crossref_primary_10_1016_j_jmb_2021_167160
crossref_primary_10_1021_acsbiomedchemau_2c00008
crossref_primary_10_1039_D2CP05644E
crossref_primary_10_1038_s42256_024_00838_2
crossref_primary_10_1038_s41586_021_03258_z
crossref_primary_10_3390_ijms252212319
crossref_primary_10_1080_07391102_2022_2143426
crossref_primary_10_1016_j_meegid_2024_105626
crossref_primary_10_1002_adma_202101707
crossref_primary_10_1021_acschembio_2c00411
crossref_primary_10_3389_fbioe_2020_618615
crossref_primary_10_3389_fddsv_2022_899477
crossref_primary_10_1016_j_jmb_2021_167154
crossref_primary_10_1039_D0RA09555A
crossref_primary_10_1021_acs_bioconjchem_0c00664
crossref_primary_10_1002_prot_26203
crossref_primary_10_1021_acs_jpcb_3c01467
crossref_primary_10_1016_j_coisb_2021_100374
crossref_primary_10_3390_v15040820
crossref_primary_10_1016_j_biotechadv_2022_107986
crossref_primary_10_1016_j_isci_2022_104798
crossref_primary_10_1016_j_tibs_2022_04_004
crossref_primary_10_1016_j_bpj_2021_06_016
crossref_primary_10_1016_j_bpj_2021_06_017
crossref_primary_10_1186_s12859_024_05637_5
crossref_primary_10_1021_acsomega_2c01707
crossref_primary_10_1016_j_str_2021_12_011
crossref_primary_10_1016_j_fmre_2021_02_001
crossref_primary_10_1126_sciadv_abf1738
crossref_primary_10_1016_j_coviro_2021_08_010
crossref_primary_10_3390_ijms24043827
crossref_primary_10_1016_j_ijbiomac_2025_142293
crossref_primary_10_1073_pnas_2122676119
crossref_primary_10_1371_journal_pone_0265020
crossref_primary_10_1016_j_chom_2022_07_016
crossref_primary_10_1016_j_heliyon_2023_e12890
crossref_primary_10_1089_genbio_2023_0025
crossref_primary_10_1016_j_crstbi_2022_02_001
crossref_primary_10_1021_jacs_1c11554
crossref_primary_10_46234_ccdcw2021_235
crossref_primary_10_1186_s12929_022_00847_6
crossref_primary_10_1021_acs_analchem_2c05818
crossref_primary_10_1016_j_sbi_2022_102370
crossref_primary_10_1038_s41587_024_02127_0
crossref_primary_10_1016_j_antiviral_2022_105514
crossref_primary_10_1016_j_str_2021_04_005
crossref_primary_10_1021_acs_analchem_2c01221
crossref_primary_10_3390_vaccines9101083
crossref_primary_10_1007_s00894_023_05586_5
crossref_primary_10_1021_acs_chemrev_1c00757
crossref_primary_10_3389_feduc_2022_908936
crossref_primary_10_1016_j_cell_2023_01_039
crossref_primary_10_1126_sciadv_abp9540
crossref_primary_10_1039_D4NR05040A
crossref_primary_10_1126_science_abf4896
crossref_primary_10_1016_j_bbrc_2024_150082
crossref_primary_10_1016_j_nbt_2021_01_010
crossref_primary_10_1097_JCMA_0000000000001043
crossref_primary_10_1016_j_cell_2021_08_001
crossref_primary_10_1021_acsnano_2c09015
crossref_primary_10_1073_pnas_2206240119
crossref_primary_10_1007_s00894_024_06006_y
crossref_primary_10_3390_ijms23116083
crossref_primary_10_3389_fimmu_2023_1113175
crossref_primary_10_1039_D4EW00052H
crossref_primary_10_3389_fimmu_2024_1365803
crossref_primary_10_1021_acsami_3c02447
crossref_primary_10_1002_pep2_24217
crossref_primary_10_1002_prot_26511
crossref_primary_10_1038_s41589_022_01076_6
crossref_primary_10_1038_d41586_020_02586_w
crossref_primary_10_1016_j_biopha_2024_116423
crossref_primary_10_1126_scitranslmed_abn1252
crossref_primary_10_3389_fmolb_2023_1110567
crossref_primary_10_1021_acsinfecdis_1c00096
crossref_primary_10_1080_14756366_2023_2244693
crossref_primary_10_1016_j_medidd_2024_100198
crossref_primary_10_1038_s41467_021_27103_z
crossref_primary_10_1016_j_scr_2021_102219
crossref_primary_10_1073_pnas_2114397119
crossref_primary_10_1016_j_csbj_2020_11_002
crossref_primary_10_1007_s12539_024_00662_7
crossref_primary_10_1038_s41594_023_01029_0
crossref_primary_10_3389_fcimb_2022_869832
crossref_primary_10_1021_acs_jmedchem_1c00655
crossref_primary_10_1093_bioinformatics_btab598
crossref_primary_10_1093_nargab_lqac058
crossref_primary_10_1080_07391102_2021_1889665
crossref_primary_10_1016_j_bpj_2021_05_022
crossref_primary_10_1021_acs_jpclett_1c00663
crossref_primary_10_1038_s41598_021_01603_w
crossref_primary_10_1038_s41564_022_01288_5
crossref_primary_10_1089_nat_2023_0012
crossref_primary_10_1038_s42003_023_04789_z
crossref_primary_10_3390_ijms25094642
crossref_primary_10_3390_pathogens11101201
crossref_primary_10_3390_v16020177
crossref_primary_10_3390_ijms24108765
crossref_primary_10_1093_protein_gzab007
crossref_primary_10_1093_protein_gzab008
crossref_primary_10_1021_acs_jpcb_1c02048
crossref_primary_10_1016_j_fmre_2021_01_013
crossref_primary_10_3389_fimmu_2022_834942
crossref_primary_10_1186_s12934_023_02229_5
crossref_primary_10_1016_j_chempr_2022_07_012
crossref_primary_10_3390_biom14091073
crossref_primary_10_1016_j_cellin_2023_100144
crossref_primary_10_1038_s43588_022_00273_6
crossref_primary_10_2174_1872208317666230523105759
crossref_primary_10_1016_j_jcis_2024_06_175
crossref_primary_10_1124_molpharm_120_000202
crossref_primary_10_1038_s41586_023_05993_x
crossref_primary_10_1021_acs_biochem_2c00629
crossref_primary_10_1038_s43586_025_00383_1
crossref_primary_10_1093_nar_gkae893
crossref_primary_10_3390_ijms222111627
crossref_primary_10_3390_ijms241512146
crossref_primary_10_3390_molecules28176413
crossref_primary_10_1172_jci_insight_154882
crossref_primary_10_3724_abbs_2023075
crossref_primary_10_18632_oncotarget_28469
crossref_primary_10_1038_s41563_021_01020_4
crossref_primary_10_1016_j_talanta_2023_124937
crossref_primary_10_1093_infdis_jiad135
crossref_primary_10_1016_j_compbiomed_2022_105457
crossref_primary_10_3390_molecules28155848
crossref_primary_10_1016_j_hlife_2023_06_001
crossref_primary_10_1109_TNSE_2024_3513456
crossref_primary_10_1021_acscatal_2c05190
crossref_primary_10_1021_acs_jmedchem_3c01543
crossref_primary_10_1248_cpb_c24_00448
crossref_primary_10_1021_acscentsci_0c01708
crossref_primary_10_1016_j_celrep_2022_111030
crossref_primary_10_34133_bdr_0037
crossref_primary_10_1016_j_hlife_2024_07_003
crossref_primary_10_1080_07391102_2020_1869096
crossref_primary_10_1016_j_apsb_2021_08_027
crossref_primary_10_1038_s41467_024_50956_z
crossref_primary_10_3389_fphar_2022_987816
crossref_primary_10_1016_j_hlife_2024_07_007
crossref_primary_10_1002_2211_5463_13908
crossref_primary_10_1080_14760584_2023_2227699
crossref_primary_10_1146_annurev_cellbio_112122_025214
crossref_primary_10_3389_fmolb_2021_636660
crossref_primary_10_1126_scitranslmed_adh7668
crossref_primary_10_1002_wcms_1646
crossref_primary_10_1016_j_csbj_2021_09_032
crossref_primary_10_1038_s41594_021_00596_4
crossref_primary_10_1038_s41598_021_00684_x
crossref_primary_10_1126_scisignal_abm4484
crossref_primary_10_1246_bcsj_20210030
crossref_primary_10_1002_ange_202115695
crossref_primary_10_3892_ije_2021_8
crossref_primary_10_1016_j_trechm_2022_02_004
crossref_primary_10_1016_j_chom_2021_06_008
crossref_primary_10_1016_j_str_2025_01_002
crossref_primary_10_1016_j_molcel_2021_11_024
crossref_primary_10_1038_s41392_024_01934_w
crossref_primary_10_3389_fmicb_2022_1093646
crossref_primary_10_1039_D0NR09052B
crossref_primary_10_1039_D3CP03392A
crossref_primary_10_1080_07391102_2022_2103587
crossref_primary_10_1073_pnas_2208275120
crossref_primary_10_1021_acs_jcim_1c01283
crossref_primary_10_3389_fmicb_2022_980903
crossref_primary_10_1021_acssynbio_1c00576
crossref_primary_10_3389_fddsv_2023_1222655
crossref_primary_10_3390_medsci9020030
crossref_primary_10_3390_ijms25105535
crossref_primary_10_1021_acs_chemrev_4c00066
crossref_primary_10_1038_s41467_024_52582_1
crossref_primary_10_3390_biom12071007
crossref_primary_10_1126_sciadv_abn4188
crossref_primary_10_1002_psc_3409
crossref_primary_10_1002_admt_202300590
crossref_primary_10_1007_s12551_025_01276_z
crossref_primary_10_29296_25877305_2023_01_14
crossref_primary_10_1128_mBio_03681_20
crossref_primary_10_1021_acssensors_2c02386
crossref_primary_10_1016_j_csbj_2021_04_059
crossref_primary_10_1038_s41467_024_50919_4
crossref_primary_10_1021_acs_jcim_2c00500
crossref_primary_10_1016_j_abb_2021_108771
crossref_primary_10_1016_j_crmeth_2022_100252
crossref_primary_10_1021_acs_jpcb_2c05119
crossref_primary_10_1038_s41467_021_24874_3
crossref_primary_10_1002_prot_26801
crossref_primary_10_1021_acs_biomac_4c00372
crossref_primary_10_1021_acssensors_4c00282
crossref_primary_10_3390_ijms25010166
crossref_primary_10_1016_j_sbi_2021_07_011
crossref_primary_10_1016_j_bpj_2024_01_029
crossref_primary_10_3390_v16010036
crossref_primary_10_1016_j_biopha_2024_116709
crossref_primary_10_1016_j_medidd_2021_100081
crossref_primary_10_1021_acs_langmuir_2c01699
crossref_primary_10_1007_s10989_022_10397_y
crossref_primary_10_1038_s41598_021_94873_3
crossref_primary_10_1007_s10822_023_00518_0
crossref_primary_10_1038_s41392_021_00653_w
crossref_primary_10_1016_j_csbj_2022_04_030
crossref_primary_10_1021_acs_molpharmaceut_3c00039
crossref_primary_10_1063_4_0000179
crossref_primary_10_1021_acs_jpclett_0c03615
crossref_primary_10_1016_j_cej_2022_137048
crossref_primary_10_3390_ijms242417473
crossref_primary_10_3390_pathogens10121599
crossref_primary_10_1016_j_bpc_2021_106661
crossref_primary_10_34133_2022_9842315
crossref_primary_10_1021_acsinfecdis_1c00433
crossref_primary_10_1042_BCJ20200514
crossref_primary_10_3390_v16060878
crossref_primary_10_3390_v14010069
crossref_primary_10_1080_19420862_2021_1893426
crossref_primary_10_1021_acsabm_4c00222
crossref_primary_10_3390_v16050712
crossref_primary_10_1002_pep2_24245
crossref_primary_10_3389_fddsv_2022_1085701
crossref_primary_10_1016_j_addr_2020_11_007
crossref_primary_10_1039_D3LC01100C
crossref_primary_10_1016_j_antiviral_2021_105147
crossref_primary_10_1039_D1CC06301D
crossref_primary_10_1038_s41586_024_08435_4
crossref_primary_10_1016_j_antiviral_2023_105541
crossref_primary_10_1039_D1NJ02955J
crossref_primary_10_3389_fphar_2023_1156855
crossref_primary_10_1002_chem_202302969
crossref_primary_10_1007_s00894_021_04779_0
crossref_primary_10_1038_s41598_021_01225_2
crossref_primary_10_1038_s41598_021_01019_6
crossref_primary_10_3390_ijms23020838
crossref_primary_10_1093_nar_gkae384
crossref_primary_10_1016_j_apsb_2021_06_016
crossref_primary_10_1038_s41421_022_00455_6
crossref_primary_10_1021_acscentsci_0c01309
crossref_primary_10_1038_s41467_024_45193_3
crossref_primary_10_1016_j_chemphys_2023_111995
crossref_primary_10_1021_acs_jcim_0c01320
crossref_primary_10_3390_v15041001
crossref_primary_10_1016_j_celrep_2022_110905
crossref_primary_10_1021_acsami_2c18305
crossref_primary_10_1021_acs_jpcb_4c00241
crossref_primary_10_1016_j_mcpro_2024_100901
crossref_primary_10_3390_ijms241310837
crossref_primary_10_1016_j_sbi_2021_01_007
crossref_primary_10_1128_spectrum_02364_21
crossref_primary_10_3389_fimmu_2023_1226880
crossref_primary_10_1186_s12985_021_01624_x
crossref_primary_10_1016_j_ijbiomac_2024_131324
crossref_primary_10_3390_v13071320
crossref_primary_10_3389_fmolb_2025_1512788
crossref_primary_10_1146_annurev_chembioeng_100722_122348
crossref_primary_10_3389_fmolb_2021_671923
crossref_primary_10_1016_j_ijbiomac_2023_128666
crossref_primary_10_1038_s41467_023_43718_w
crossref_primary_10_3390_molecules29133022
crossref_primary_10_3389_fimmu_2021_730099
crossref_primary_10_1038_s41589_022_00967_y
crossref_primary_10_1073_pnas_2413465122
crossref_primary_10_1016_j_eng_2021_04_003
crossref_primary_10_1371_journal_pone_0246181
crossref_primary_10_1021_acscentsci_2c01513
crossref_primary_10_1021_acschembio_3c00568
crossref_primary_10_1016_j_jbc_2021_100558
crossref_primary_10_1073_pnas_2112942118
crossref_primary_10_1038_s41557_023_01210_4
crossref_primary_10_1021_acscentsci_4c01385
crossref_primary_10_1016_j_bios_2023_115169
crossref_primary_10_1038_s41564_021_00954_4
crossref_primary_10_1016_j_jmb_2021_167177
crossref_primary_10_1002_pro_4401
crossref_primary_10_1016_j_virol_2024_110149
crossref_primary_10_1186_s11658_022_00341_9
crossref_primary_10_1002_jmv_27820
crossref_primary_10_1021_jacs_1c07965
crossref_primary_10_1186_s12859_021_04380_5
crossref_primary_10_1021_acs_jpcb_1c00869
crossref_primary_10_1002_pro_4991
crossref_primary_10_1016_j_tibtech_2024_10_008
crossref_primary_10_4103_tcmj_tcmj_318_21
crossref_primary_10_1038_s41598_021_97330_3
crossref_primary_10_1080_17460441_2022_2050693
crossref_primary_10_1016_j_chempr_2024_10_013
crossref_primary_10_1016_j_ijbiomac_2024_133834
crossref_primary_10_1016_j_compbiolchem_2024_108271
crossref_primary_10_1016_j_eti_2023_103162
crossref_primary_10_1007_s11427_022_2214_2
crossref_primary_10_1021_acs_biochem_1c00356
crossref_primary_10_1021_acs_jafc_4c01942
crossref_primary_10_3390_biology12020166
crossref_primary_10_34133_2022_9783197
crossref_primary_10_1039_D0ME00161A
crossref_primary_10_1186_s12951_024_02329_3
crossref_primary_10_3389_fnut_2024_1346510
crossref_primary_10_1016_j_jacbts_2020_10_003
crossref_primary_10_1038_s41551_024_01258_8
crossref_primary_10_1080_19420862_2023_2212415
crossref_primary_10_1002_prot_26086
crossref_primary_10_3390_ijms23116309
crossref_primary_10_1093_bib_bbae135
crossref_primary_10_1371_journal_pone_0260283
crossref_primary_10_1038_s43246_022_00278_8
crossref_primary_10_1080_07391102_2024_2310789
crossref_primary_10_1128_jvi_00684_23
crossref_primary_10_1016_j_ejps_2023_106609
crossref_primary_10_1080_17425247_2021_1922387
crossref_primary_10_1016_j_coviro_2021_02_006
crossref_primary_10_1002_adhm_202402744
crossref_primary_10_1016_S2666_5247_23_00011_3
crossref_primary_10_3390_ijms22126462
crossref_primary_10_1016_j_xcrm_2021_100230
crossref_primary_10_1021_acs_jctc_4c00744
crossref_primary_10_1111_imr_13084
crossref_primary_10_1016_j_chroma_2024_464851
crossref_primary_10_1021_acscatal_2c04311
crossref_primary_10_1016_j_celrep_2021_109452
crossref_primary_10_1038_s42003_021_01736_8
crossref_primary_10_3389_fmedt_2022_1009451
crossref_primary_10_1038_s41580_024_00718_y
crossref_primary_10_1073_pnas_2414583121
crossref_primary_10_3390_ijms23105601
crossref_primary_10_1002_adtp_202100104
crossref_primary_10_26508_lsa_202101322
crossref_primary_10_1038_s41586_022_04654_9
crossref_primary_10_3390_v14061255
crossref_primary_10_1002_prot_26140
crossref_primary_10_1021_acs_jproteome_0c00637
crossref_primary_10_3390_jof7070553
crossref_primary_10_1016_j_ymthe_2024_04_003
crossref_primary_10_3390_ijms24054401
crossref_primary_10_1002_cbic_202300093
crossref_primary_10_1016_j_compbiomed_2025_109821
crossref_primary_10_3390_v15061335
crossref_primary_10_1016_j_tig_2024_09_002
crossref_primary_10_1016_j_compbiomed_2023_107258
crossref_primary_10_1093_bib_bbad459
crossref_primary_10_1002_prot_26279
crossref_primary_10_3389_fmicb_2022_1022006
crossref_primary_10_1016_j_bej_2024_109261
crossref_primary_10_1002_anie_202115695
crossref_primary_10_1016_j_compbiolchem_2023_107819
crossref_primary_10_1007_s00604_023_06113_2
crossref_primary_10_1039_D2NR00306F
crossref_primary_10_1080_26895293_2021_1977186
crossref_primary_10_3389_fmolb_2022_933400
crossref_primary_10_1093_bib_bbad133
crossref_primary_10_1039_D3CP01167D
crossref_primary_10_1073_pnas_2116097119
crossref_primary_10_1016_j_csbj_2023_07_022
crossref_primary_10_1002_anie_202210883
crossref_primary_10_1073_pnas_2303292120
crossref_primary_10_14348_molcells_2021_0026
crossref_primary_10_1021_acs_jpclett_0c03119
crossref_primary_10_1186_s12951_024_02627_w
crossref_primary_10_1016_j_csbj_2021_11_040
crossref_primary_10_3390_v13061020
crossref_primary_10_1080_07391102_2022_2036640
crossref_primary_10_1038_s43246_022_00256_0
crossref_primary_10_2139_ssrn_4187487
crossref_primary_10_3390_v16050697
crossref_primary_10_1021_acssensors_1c01482
crossref_primary_10_1093_nar_gkab926
crossref_primary_10_1016_j_cej_2022_136143
crossref_primary_10_1016_j_heliyon_2025_e43084
crossref_primary_10_1038_s41594_020_00549_3
Cites_doi 10.1038/s41586-020-2381-y
10.1038/nature11600
10.1101/2019.12.15.877092
10.7554/eLife.17219
10.4049/jimmunol.2000583
10.1038/s41586-018-0830-7
10.7554/eLife.18722
10.1038/s41586-018-0509-0
10.1016/j.ultramic.2013.06.004
10.1038/nmeth.3541
10.1101/2020.05.30.125484
10.1126/science.abb2762
10.1016/j.jsb.2005.03.010
10.1016/j.cell.2020.03.045
10.1002/pro.3330
10.1038/nmeth.4169
10.1107/S2059798319011471
10.1126/science.abb7269
10.1101/2020.02.19.956581
10.1126/science.abc2241
10.1038/s41586-020-2179-y
10.1002/pro.3791
10.1107/S205225251801463X
10.1371/journal.pone.0024109
10.1016/j.cell.2020.05.042
10.1002/pro.3235
10.1073/pnas.1821317116
10.1038/nsmb.3115
10.1038/s41592-019-0580-y
10.7554/eLife.42166
10.1016/j.str.2018.09.006
10.1093/nar/30.10.e43
10.1111/imr.12367
10.1038/nature23912
10.1038/s41586-020-2180-5
10.1002/jcc.20084
10.1126/science.abb8923
10.2210/pdb6ws6/pdb
10.1038/nmeth.3286
ContentType Journal Article
Copyright Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
– notice: Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2020 American Association for the Advancement of Science
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abd9909
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 431
ExternalDocumentID PMC7857403
32907861
10_1126_science_abd9909
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM120553
– fundername: NIAID NIH HHS
  grantid: R01 AI140245
– fundername: NIAID NIH HHS
  grantid: HHSN272201700059C
– fundername: NIH HHS
  grantid: S10 OD023476
– fundername: ;
– fundername: ;
  grantid: HHSN272201700059C
– fundername: ;
  grantid: R01GM120553
– fundername: ;
  grantid: FA8750-17-C-0219
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c515t-1fa6db51435e673217a22093bb44636c75dc26393ce943a80caebac8619c48713
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:34:12 EDT 2025
Fri Jul 11 11:13:03 EDT 2025
Fri Jul 25 10:52:50 EDT 2025
Mon Jul 21 05:50:57 EDT 2025
Tue Jul 01 01:35:17 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6515
Language English
License https://creativecommons.org/licenses/by/4.0
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c515t-1fa6db51435e673217a22093bb44636c75dc26393ce943a80caebac8619c48713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9636-8330
0000-0002-8791-3165
0000-0002-6910-6255
0000-0001-7382-747X
0000-0001-7896-6217
0000-0003-4002-3648
0000-0003-4264-5125
0000-0001-5935-4549
0000-0001-7331-5511
0000-0002-9837-9068
0000-0002-6019-8675
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7857403
PMID 32907861
PQID 2453795870
PQPubID 1256
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857403
proquest_miscellaneous_2441609520
proquest_journals_2453795870
pubmed_primary_32907861
crossref_primary_10_1126_science_abd9909
crossref_citationtrail_10_1126_science_abd9909
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-23
PublicationDateYYYYMMDD 2020-10-23
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-23
  day: 23
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2020
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
32793905 - bioRxiv. 2020 Aug 03:2020.08.03.234914. doi: 10.1101/2020.08.03.234914
References_xml – ident: e_1_3_2_3_2
  doi: 10.1038/s41586-020-2381-y
– ident: e_1_3_2_20_2
  doi: 10.1038/nature11600
– ident: e_1_3_2_28_2
  doi: 10.1101/2019.12.15.877092
– ident: e_1_3_2_35_2
  doi: 10.7554/eLife.17219
– ident: e_1_3_2_14_2
  doi: 10.4049/jimmunol.2000583
– ident: e_1_3_2_15_2
  doi: 10.1038/s41586-018-0830-7
– ident: e_1_3_2_26_2
  doi: 10.7554/eLife.18722
– ident: e_1_3_2_13_2
  doi: 10.1038/s41586-018-0509-0
– ident: e_1_3_2_30_2
  doi: 10.1016/j.ultramic.2013.06.004
– ident: e_1_3_2_39_2
  doi: 10.1038/nmeth.3541
– ident: e_1_3_2_22_2
  doi: 10.1101/2020.05.30.125484
– ident: e_1_3_2_18_2
  doi: 10.1126/science.abb2762
– ident: e_1_3_2_23_2
  doi: 10.1016/j.jsb.2005.03.010
– ident: e_1_3_2_17_2
  doi: 10.1016/j.cell.2020.03.045
– ident: e_1_3_2_36_2
  doi: 10.1002/pro.3330
– ident: e_1_3_2_25_2
  doi: 10.1038/nmeth.4169
– ident: e_1_3_2_37_2
  doi: 10.1107/S2059798319011471
– ident: e_1_3_2_6_2
  doi: 10.1126/science.abb7269
– ident: e_1_3_2_11_2
  doi: 10.1101/2020.02.19.956581
– ident: e_1_3_2_7_2
  doi: 10.1126/science.abc2241
– ident: e_1_3_2_16_2
  doi: 10.1038/s41586-020-2179-y
– ident: e_1_3_2_32_2
  doi: 10.1002/pro.3791
– ident: e_1_3_2_29_2
  doi: 10.1107/S205225251801463X
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.pone.0024109
– ident: e_1_3_2_2_2
  doi: 10.1016/j.cell.2020.05.042
– ident: e_1_3_2_40_2
  doi: 10.1002/pro.3235
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.1821317116
– ident: e_1_3_2_38_2
  doi: 10.1038/nsmb.3115
– ident: e_1_3_2_24_2
  doi: 10.1038/s41592-019-0580-y
– ident: e_1_3_2_27_2
  doi: 10.7554/eLife.42166
– ident: e_1_3_2_33_2
  doi: 10.1016/j.str.2018.09.006
– ident: e_1_3_2_21_2
  doi: 10.1093/nar/30.10.e43
– ident: e_1_3_2_9_2
  doi: 10.1111/imr.12367
– ident: e_1_3_2_12_2
  doi: 10.1038/nature23912
– ident: e_1_3_2_5_2
  doi: 10.1038/s41586-020-2180-5
– ident: e_1_3_2_31_2
  doi: 10.1002/jcc.20084
– ident: e_1_3_2_10_2
  doi: 10.1126/science.abb8923
– ident: e_1_3_2_4_2
  doi: 10.2210/pdb6ws6/pdb
– ident: e_1_3_2_34_2
  doi: 10.1038/nmeth.3286
– reference: 32793905 - bioRxiv. 2020 Aug 03:2020.08.03.234914. doi: 10.1101/2020.08.03.234914
SSID ssj0009593
Score 2.7134278
Snippet Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated when these spikes bind to the...
Targeting the interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the human angiotensin-converting enzyme 2...
Miniproteins against SARS-CoV-2Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is decorated with spikes, and viral entry into cells is initiated...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 426
SubjectTerms ACE2
Affinity
Amino Acid Sequence
Amino acids
Anatomy
Angiotensin
Angiotensin-Converting Enzyme 2
Animals
Antiviral Agents - chemistry
Betacoronavirus - drug effects
Binding
Binding Sites
Biochem
Cell size
Chlorocebus aethiops
Computer applications
Coronaviridae
Coronavirus Infections
Coronaviruses
COVID-19
Cryoelectron Microscopy
Design
Drug Design
Electron microscopy
Enzymes
Immunotherapy
Inhibitors
Mammalian cells
Mammals
Mathematical models
Microscopy
Molec Biol
Molecular Docking Simulation
Monoclonal antibodies
Pandemics
Peptidyl-dipeptidase A
Peptidyl-Dipeptidase A - chemistry
Pneumonia, Viral
Protein Binding - drug effects
Proteins
Receptors
Respiratory diseases
Respiratory system
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - antagonists & inhibitors
Spike Glycoprotein, Coronavirus - chemistry
Spike protein
Stability
Trimers
Vero Cells
Viral diseases
Title De novo design of picomolar SARS-CoV-2 miniprotein inhibitors
URI https://www.ncbi.nlm.nih.gov/pubmed/32907861
https://www.proquest.com/docview/2453795870
https://www.proquest.com/docview/2441609520
https://pubmed.ncbi.nlm.nih.gov/PMC7857403
Volume 370
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagExIvExu3wkBG4mGoSpU4iZM8dt2qCZUhsRb1LbIdh0awBNFsAn49x5dcug1p8BJFjlNX_j4fn-OcC0JvCde7gOcIL6IqqXbmcCq5EySquEgOt0wFOH84o6fL4P0qXHVuRTq6pOZj8fvWuJL_QRXaAFcVJfsPyLY_Cg1wD_jCFRCG650wPpajsrqqRpl2w9DOywDshbJWR-eTT-fOtPrskJFKH6LzMRTKrXFd8EKV2Omrpc0KB3Wz_YTTA671RZwYj4HGgcC-1jtNmDJ99Dqvyi8_m03RZN-Xm3VZfDUiqezcg6orXdrE0KxH1SkzFR-1Fy88knXdP6AAaxQku4khtjLVVeUgiWua5C1tVhD7poSIZZyq0d6TrIEJrL8p8Xs1KuWY8Qy216Tb3JoP-mcf09lyPk8XJ6vFfbRDwKggA7QzOTo-ml1P0tz-OZsKqhdk1QywrcXcME2ue9j2VJbFI7RrbQ08McTZQ_dkuY8emOqjv_bRnoVvgw9t8vF3jxFwCitOYcMpXOW45RTuOIV7nMIdp56g5exkMT11bIkNR8D01o6XM5pxrTRLGvlgnzJC3MTnPFCZ5EQUZoKAEusLmQQ-i13BYPWKGMxuAaau5z9Fg7Iq5XOEQ5mRKGcsoELZ_B6LvDymQsQ8py5zwyEaN1OWCpt_XpVB-ZZqO5TQ1M5xaud4iA7bF76b1Ct_73rQYJDa9blJSRD6URLChjREb9rHID3VJzFWyupS9QGDBOAm0OeZgawdyycJ6M_UG6JoC8y2g8rMvv2kLNY6Q3sUh1Hg-i_uMO5L9LBbNAdoUP-4lK9Az635a0vPP1ukq8w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=De+novo+design+of+picomolar+SARS-CoV-2+miniprotein+inhibitors&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cao%2C+Longxing&rft.au=Goreshnik%2C+Inna&rft.au=Coventry%2C+Brian&rft.au=Case%2C+James+Brett&rft.date=2020-10-23&rft.issn=1095-9203&rft.eissn=1095-9203&rft.volume=370&rft.issue=6515&rft.spage=426&rft_id=info:doi/10.1126%2Fscience.abd9909&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon