Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2
A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun et al. reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmi...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 371; no. 6526 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
15.01.2021
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abe2424 |
Cover
Loading…
Abstract | A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun
et al.
reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmission control measures aimed at isolating individuals relative to population-level distancing measures. The authors found that most of the secondary transmissions could be traced back to a minority of infected individuals, and well over half of transmission occurred in the presymptomatic phase. Furthermore, the duration of exposure to an infected person combined with closeness and number of household contacts constituted the greatest risks for transmission, particularly when lockdown conditions prevailed. These findings could help in the design of infection control policies that have the potential to minimize both virus transmission and economic strain.
Science
, this issue p.
eabe2424
Modeling results indicate that SARS-CoV-2 control requires case isolation, contact quarantine, and population-level interventions.
A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. |
---|---|
AbstractList | A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus.A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun et al. reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmission control measures aimed at isolating individuals relative to population-level distancing measures. The authors found that most of the secondary transmissions could be traced back to a minority of infected individuals, and well over half of transmission occurred in the presymptomatic phase. Furthermore, the duration of exposure to an infected person combined with closeness and number of household contacts constituted the greatest risks for transmission, particularly when lockdown conditions prevailed. These findings could help in the design of infection control policies that have the potential to minimize both virus transmission and economic strain. Science , this issue p. eabe2424 Modeling results indicate that SARS-CoV-2 control requires case isolation, contact quarantine, and population-level interventions. A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun et al. reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmission control measures aimed at isolating individuals relative to population-level distancing measures. The authors found that most of the secondary transmissions could be traced back to a minority of infected individuals, and well over half of transmission occurred in the presymptomatic phase. Furthermore, the duration of exposure to an infected person combined with closeness and number of household contacts constituted the greatest risks for transmission, particularly when lockdown conditions prevailed. These findings could help in the design of infection control policies that have the potential to minimize both virus transmission and economic strain. Science , this issue p. eabe2424 Modeling results indicate that SARS-CoV-2 control requires case isolation, contact quarantine, and population-level interventions. A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. Time and intimacy drive transmissionA minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun et al. reconstructed transmission in Hunan, China, up to April 2020. Such detailed data can be used to separate out the relative contribution of transmission control measures aimed at isolating individuals relative to population-level distancing measures. The authors found that most of the secondary transmissions could be traced back to a minority of infected individuals, and well over half of transmission occurred in the presymptomatic phase. Furthermore, the duration of exposure to an infected person combined with closeness and number of household contacts constituted the greatest risks for transmission, particularly when lockdown conditions prevailed. These findings could help in the design of infection control policies that have the potential to minimize both virus transmission and economic strain.Science, this issue p. eabe2424INTRODUCTIONThe role of transmission heterogeneities in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dynamics remains unclear, particularly those heterogeneities driven by demography, behavior, and interventions. To understand individual heterogeneities and their effect on disease control, we analyze detailed contact-tracing data from Hunan, a province in China adjacent to Hubei and one of the first regions to experience a SARS-CoV-2 outbreak in January to March 2020. The Hunan outbreak was swiftly brought under control by March 2020 through a combination of nonpharmaceutical interventions including population-level mobility restriction (i.e., lockdown), traveler screening, case isolation, contact tracing, and quarantine. In parallel, highly detailed epidemiological information on SARS-CoV-2–infected individuals and their close contacts was collected by the Hunan Provincial Center for Disease Control and Prevention.RATIONALEContact-tracing data provide information to reconstruct transmission chains and understand outbreak dynamics. These data can in turn generate valuable intelligence on key epidemiological parameters and risk factors for transmission, which paves the way for more-targeted and cost-effective interventions.RESULTSOn the basis of epidemiological information and exposure diaries on 1178 SARS-CoV-2–infected individuals and their 15,648 close contacts, we developed a series of statistical and computational models to stochastically reconstruct transmission chains, identify risk factors for transmission, and infer the infectiousness profile over the course of a typical infection. We observe overdispersion in the distribution of secondary infections, with 80% of secondary cases traced back to 15% of infections, which indicates substantial transmission heterogeneities. We find that SARS-CoV-2 transmission risk scales positively with the duration of exposure and the closeness of social interactions, with the highest per-contact risk estimated in the household. Lockdown interventions increase transmission risk in families and households, whereas the timely isolation of infected individuals reduces risk across all types of contacts. There is a gradient of increasing susceptibility with age but no significant difference in infectivity by age or clinical severity. Early isolation of SARS-CoV-2–infected individuals drastically alters transmission kinetics, leading to shorter generation and serial intervals and a higher fraction of presymptomatic transmission. After adjusting for the censoring effects of isolation, we find that the infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom onset, with 53% of transmission occurring in the presymptomatic phase in an uncontrolled setting. We then use these results to evaluate the effectiveness of individual-based strategies (case isolation and contact quarantine) both alone and in combination with population-level contact reductions. We find that a plausible parameter space for SARS-CoV-2 control is restricted to scenarios where interventions are synergistically combined, owing to the particular transmission kinetics of this virus.CONCLUSIONThere is considerable heterogeneity in SARS-CoV-2 transmission owing to individual differences in biology and contacts that is modulated by the effects of interventions. We estimate that about half of secondary transmission events occur in the presymptomatic phase of a primary case in uncontrolled outbreaks. Achieving epidemic control requires that isolation and contact-tracing interventions are layered with population-level approaches, such as mask wearing, increased teleworking, and restrictions on large gatherings. Our study also demonstrates the value of conducting high-quality contact-tracing investigations to advance our understanding of the transmission dynamics of an emerging pathogen.A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and interventions. On the basis of detailed patient and contact-tracing data in Hunan, China, we find that 80% of secondary infections traced back to 15% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primary infections, which indicates substantial transmission heterogeneities. Transmission risk scales positively with the duration of exposure and the closeness of social interactions and is modulated by demographic and clinical factors. The lockdown period increases transmission risk in the family and households, whereas isolation and quarantine reduce risks across all types of contacts. The reconstructed infectiousness profile of a typical SARS-CoV-2 patient peaks just before symptom presentation. Modeling indicates that SARS-CoV-2 control requires the synergistic efforts of case isolation, contact quarantine, and population-level interventions because of the specific transmission kinetics of this virus. |
Author | Viboud, Cécile Luo, Kaiwei Wang, Wei Gao, Lidong Chen, Xinghui Sun, Qianlai Zhan, Zhifei Wang, Yan Liu, Ziyan Ajelli, Marco Yu, Hongjie Sun, Kaiyuan Litvinova, Maria Zhao, Shanlu Ren, Lingshuang Vespignani, Alessandro Huang, Yiwei |
Author_xml | – sequence: 1 givenname: Kaiyuan orcidid: 0000-0002-1753-9884 surname: Sun fullname: Sun, Kaiyuan organization: Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA – sequence: 2 givenname: Wei orcidid: 0000-0003-4056-3732 surname: Wang fullname: Wang, Wei organization: School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China – sequence: 3 givenname: Lidong orcidid: 0000-0003-0387-4451 surname: Gao fullname: Gao, Lidong organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 4 givenname: Yan orcidid: 0000-0002-5620-2328 surname: Wang fullname: Wang, Yan organization: School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China – sequence: 5 givenname: Kaiwei surname: Luo fullname: Luo, Kaiwei organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 6 givenname: Lingshuang surname: Ren fullname: Ren, Lingshuang organization: School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China – sequence: 7 givenname: Zhifei surname: Zhan fullname: Zhan, Zhifei organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 8 givenname: Xinghui surname: Chen fullname: Chen, Xinghui organization: School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China – sequence: 9 givenname: Shanlu surname: Zhao fullname: Zhao, Shanlu organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 10 givenname: Yiwei surname: Huang fullname: Huang, Yiwei organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 11 givenname: Qianlai surname: Sun fullname: Sun, Qianlai organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 12 givenname: Ziyan surname: Liu fullname: Liu, Ziyan organization: Hunan Provincial Center for Disease Control and Prevention, Changsha, China – sequence: 13 givenname: Maria orcidid: 0000-0001-6393-1943 surname: Litvinova fullname: Litvinova, Maria organization: Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA., ISI Foundation, Turin, Italy – sequence: 14 givenname: Alessandro orcidid: 0000-0003-3419-4205 surname: Vespignani fullname: Vespignani, Alessandro organization: ISI Foundation, Turin, Italy., Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA – sequence: 15 givenname: Marco orcidid: 0000-0003-1753-4749 surname: Ajelli fullname: Ajelli, Marco organization: Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA., Laboratory for the Modeling of Biological and Socio-technical Systems, Northeastern University, Boston, MA, USA – sequence: 16 givenname: Cécile orcidid: 0000-0003-3243-4711 surname: Viboud fullname: Viboud, Cécile organization: Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA – sequence: 17 givenname: Hongjie orcidid: 0000-0002-6335-5648 surname: Yu fullname: Yu, Hongjie organization: School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33234698$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UU1LJDEUDKLo-HH2tjR48bCt-U7nIsjgroIg-HUN6cxrjduTaJIR_PcbcRQVPOWRV1VUvdpEqyEGQGiX4ANCqDzMzkNwcGB7oJzyFTQhWItWU8xW0QRjJtsOK7GBNnN-wLjuNFtHG4xRxqXuJujsOtmQ5z5nH0NzDwVSvIMAvnjIv5t_PkDxrk42zBoXQ0lxHG3vR19emjg0V8eXV-003rZ0G60Ndsyws3y30M2fk-vpaXt-8fdsenzeOkFEaYkm1mo6WNZzPlOYMieEkJoropSiQ09oxySjQ2dBYs0FqK7-WAezXkln2RY6etN9XPRzmDmonuxoHpOf2_RiovXm6yb4e3MXn43qhOKEVYH9pUCKTwvIxdT4DmqsAHGRDeWSE40VlhW69w36EBcp1HgVpTqsWXVYUb8-O_qw8n7lChBvAJdizgkG43yxxb-e0_rREGxe2zTLNs2yzco7_MZ7l_6J8R_pVaRa |
CitedBy_id | crossref_primary_10_7554_eLife_82611 crossref_primary_10_3389_fimmu_2021_731100 crossref_primary_10_1016_j_chaos_2022_112520 crossref_primary_10_1136_bmjopen_2020_045941 crossref_primary_10_1007_s10654_021_00746_4 crossref_primary_10_1093_infdis_jiab424 crossref_primary_10_1126_science_abg8663 crossref_primary_10_1136_bmjopen_2021_052752 crossref_primary_10_3390_biology10060499 crossref_primary_10_1007_s00431_022_04681_8 crossref_primary_10_1073_pnas_2106548118 crossref_primary_10_1093_cid_ciac202 crossref_primary_10_1109_TNSE_2022_3217419 crossref_primary_10_1016_j_ijid_2022_02_030 crossref_primary_10_1186_s12879_023_08735_6 crossref_primary_10_1111_rssa_12860 crossref_primary_10_1088_1367_2630_ac0c99 crossref_primary_10_4414_SMW_2022_w30178 crossref_primary_10_1098_rsif_2021_0036 crossref_primary_10_12688_wellcomeopenres_16855_1 crossref_primary_10_12688_wellcomeopenres_16855_2 crossref_primary_10_1371_journal_pcbi_1009780 crossref_primary_10_3390_ijgi13080283 crossref_primary_10_12688_wellcomeopenres_16855_3 crossref_primary_10_1108_IJHMA_04_2024_0050 crossref_primary_10_1111_rssa_12867 crossref_primary_10_1186_s12889_024_17920_4 crossref_primary_10_7554_eLife_70767 crossref_primary_10_1038_s41562_021_01155_z crossref_primary_10_1016_S1473_3099_21_00134_1 crossref_primary_10_1038_s41598_021_93578_x crossref_primary_10_1016_j_idm_2022_08_005 crossref_primary_10_1073_pnas_2302245120 crossref_primary_10_1038_s41467_023_38809_7 crossref_primary_10_1098_rsif_2024_0325 crossref_primary_10_1038_s41467_021_25156_8 crossref_primary_10_3390_su15010294 crossref_primary_10_1186_s12889_024_18890_3 crossref_primary_10_1038_s41598_021_93810_8 crossref_primary_10_1111_risa_17703 crossref_primary_10_1126_sciadv_abm3608 crossref_primary_10_1186_s12889_022_14177_7 crossref_primary_10_1371_journal_pgph_0000404 crossref_primary_10_1093_bib_bbac230 crossref_primary_10_1016_j_tust_2022_104749 crossref_primary_10_1016_j_physa_2021_126754 crossref_primary_10_1016_j_epidem_2023_100670 crossref_primary_10_1073_pnas_2015972118 crossref_primary_10_1016_j_ijid_2021_07_012 crossref_primary_10_1177_19485506211053461 crossref_primary_10_7554_eLife_87094 crossref_primary_10_12688_f1000research_121502_1 crossref_primary_10_12688_f1000research_121502_2 crossref_primary_10_1016_j_epidem_2023_100727 crossref_primary_10_1016_j_epidem_2023_100725 crossref_primary_10_1016_j_jinf_2021_04_019 crossref_primary_10_1016_j_idm_2025_03_005 crossref_primary_10_1038_s41579_022_00822_w crossref_primary_10_1177_00333549221110300 crossref_primary_10_1093_pnasnexus_pgae377 crossref_primary_10_3389_fped_2023_1239372 crossref_primary_10_3390_ijerph18105085 crossref_primary_10_1111_irv_13049 crossref_primary_10_1073_pnas_2108044118 crossref_primary_10_1007_s00103_021_03389_8 crossref_primary_10_3934_mbe_2022614 crossref_primary_10_1098_rsif_2022_0128 crossref_primary_10_1093_cid_ciab797 crossref_primary_10_1186_s12889_023_15915_1 crossref_primary_10_1371_journal_pone_0296810 crossref_primary_10_1093_nar_gkac513 crossref_primary_10_36233_0507_4088_146 crossref_primary_10_1140_epjb_s10051_023_00513_2 crossref_primary_10_1109_TKDE_2024_3406641 crossref_primary_10_7554_eLife_79134 crossref_primary_10_1111_1751_7915_14018 crossref_primary_10_1108_MEQ_04_2023_0110 crossref_primary_10_1007_s11538_022_01104_5 crossref_primary_10_1186_s12889_024_17772_y crossref_primary_10_17269_s41997_022_00691_z crossref_primary_10_1016_j_jaci_2022_05_014 crossref_primary_10_1016_j_jinf_2021_04_022 crossref_primary_10_1038_s41598_023_47829_8 crossref_primary_10_1093_cid_ciab421 crossref_primary_10_1371_journal_pone_0264433 crossref_primary_10_1111_ans_17814 crossref_primary_10_1016_j_trac_2022_116814 crossref_primary_10_7554_eLife_65453 crossref_primary_10_7554_eLife_70458 crossref_primary_10_1007_s43069_024_00362_4 crossref_primary_10_7554_eLife_75593 crossref_primary_10_2807_1560_7917_ES_2022_27_10_2100815 crossref_primary_10_7189_jogh_13_06018 crossref_primary_10_1126_science_abg2297 crossref_primary_10_1177_11786329231173816 crossref_primary_10_1126_science_abi5273 crossref_primary_10_3389_fphy_2022_882904 crossref_primary_10_1016_j_ajic_2022_06_007 crossref_primary_10_1103_PhysRevResearch_3_033283 crossref_primary_10_1177_1420326X211029689 crossref_primary_10_1007_s10654_022_00870_9 crossref_primary_10_1007_s11524_022_00639_1 crossref_primary_10_1111_tbed_14655 crossref_primary_10_1001_jamapediatrics_2021_2770 crossref_primary_10_1007_s12190_025_02417_z crossref_primary_10_1186_s40249_022_00957_1 crossref_primary_10_1016_S1473_3099_21_00406_0 crossref_primary_10_1111_sapm_12646 crossref_primary_10_1126_science_abd9149 crossref_primary_10_1016_j_chaos_2023_113293 crossref_primary_10_1097_JOM_0000000000003028 crossref_primary_10_1002_jmv_28103 crossref_primary_10_3390_vaccines10030343 crossref_primary_10_1111_rssa_12919 crossref_primary_10_1016_j_epidem_2021_100482 crossref_primary_10_2807_1560_7917_ES_2021_26_7_2100065 crossref_primary_10_1038_s41598_021_01276_5 crossref_primary_10_1186_s12879_022_07646_2 crossref_primary_10_1038_s41467_022_34130_x crossref_primary_10_1016_S0140_6736_21_00869_2 crossref_primary_10_1371_journal_pcbi_1009146 crossref_primary_10_3389_fpubh_2023_995602 crossref_primary_10_1016_j_jmii_2021_12_004 crossref_primary_10_1016_S1473_3099_22_00001_9 crossref_primary_10_1098_rsif_2022_0045 crossref_primary_10_1136_bmjopen_2023_072650 crossref_primary_10_7554_eLife_69340 crossref_primary_10_1371_journal_pcbi_1010008 crossref_primary_10_1016_j_idm_2023_08_006 crossref_primary_10_3390_tropicalmed8010039 crossref_primary_10_1038_s41591_021_01571_8 crossref_primary_10_1098_rsif_2023_0247 crossref_primary_10_7554_eLife_65534 crossref_primary_10_1103_PhysRevX_14_031041 crossref_primary_10_3389_fmed_2023_1293747 crossref_primary_10_1016_S2666_5247_23_00296_3 crossref_primary_10_1017_S1358246122000248 crossref_primary_10_1017_S0950268823001292 crossref_primary_10_1038_s41598_023_42567_3 crossref_primary_10_1016_j_epidem_2023_100701 crossref_primary_10_1103_PhysRevE_103_042306 crossref_primary_10_1093_pnasnexus_pgae483 crossref_primary_10_1007_s12033_022_00570_5 crossref_primary_10_3201_eid2709_202035 crossref_primary_10_1016_j_csbj_2021_08_045 crossref_primary_10_1080_17477778_2022_2100724 crossref_primary_10_1093_cid_ciac261 crossref_primary_10_1016_j_ypmed_2022_107287 crossref_primary_10_1371_journal_pcbi_1009965 crossref_primary_10_12688_wellcomeopenres_17067_1 crossref_primary_10_1016_j_idm_2022_10_003 crossref_primary_10_1038_s42254_024_00733_0 crossref_primary_10_1016_j_bsheal_2021_09_002 crossref_primary_10_1109_TASE_2021_3106782 crossref_primary_10_1111_rssc_12544 crossref_primary_10_1016_j_epidem_2021_100472 crossref_primary_10_1002_jmv_29342 crossref_primary_10_1186_s12889_023_15596_w crossref_primary_10_3389_fmed_2022_1079842 crossref_primary_10_1098_rspb_2024_1854 crossref_primary_10_1016_j_epidem_2021_100449 crossref_primary_10_1016_j_physrep_2025_01_006 crossref_primary_10_1001_jamainternmed_2021_4686 crossref_primary_10_7554_eLife_81849 crossref_primary_10_7554_eLife_68341 crossref_primary_10_1111_risa_15103 crossref_primary_10_1136_bmjph_2023_000154 crossref_primary_10_1186_s12967_024_05872_7 crossref_primary_10_1093_cid_ciac125 crossref_primary_10_1038_s41467_021_27939_5 crossref_primary_10_1016_j_buildenv_2021_107788 crossref_primary_10_1093_cid_ciab396 crossref_primary_10_1186_s12916_022_02243_1 crossref_primary_10_7554_eLife_87094_3 crossref_primary_10_1093_cid_ciab271 crossref_primary_10_1093_pnasnexus_pgac001 crossref_primary_10_1042_ETLS20200348 crossref_primary_10_1371_journal_pcbi_1011533 crossref_primary_10_1136_bmjopen_2021_054200 crossref_primary_10_1016_j_imj_2023_08_005 crossref_primary_10_1098_rsif_2024_0038 crossref_primary_10_1073_pnas_2112182119 crossref_primary_10_1186_s40249_021_00847_y crossref_primary_10_1038_d41586_020_03437_4 crossref_primary_10_3390_ijerph18105133 crossref_primary_10_1016_j_eclinm_2021_100929 crossref_primary_10_1016_j_jinf_2021_06_018 crossref_primary_10_1038_s43856_023_00325_6 crossref_primary_10_1126_science_abg0842 crossref_primary_10_1001_jamanetworkopen_2023_0589 crossref_primary_10_1007_s00431_021_04284_9 crossref_primary_10_2965_jwet_21_024 crossref_primary_10_31083_j_fbl2703102 crossref_primary_10_1038_s41598_022_06008_x crossref_primary_10_1038_s41598_022_19931_w crossref_primary_10_1126_sciimmunol_abj2901 crossref_primary_10_1186_s13578_021_00730_1 crossref_primary_10_1038_s41467_021_23935_x crossref_primary_10_7326_L21_0166 crossref_primary_10_1038_s41551_020_00670_0 crossref_primary_10_1016_j_epidem_2024_100784 crossref_primary_10_3390_ijerph18105221 crossref_primary_10_7326_L21_0164 crossref_primary_10_1038_s41564_022_01105_z crossref_primary_10_1073_pnas_2409362122 crossref_primary_10_1038_s41598_022_20898_x crossref_primary_10_1093_cid_ciab016 crossref_primary_10_1002_jgf2_439 crossref_primary_10_1038_s41467_021_24622_7 crossref_primary_10_1073_pnas_2109098118 crossref_primary_10_1126_science_abd9338 crossref_primary_10_1186_s12889_024_18012_z crossref_primary_10_1242_jeb_225847 crossref_primary_10_1371_journal_pone_0290652 crossref_primary_10_3390_jcm11092607 crossref_primary_10_1093_pnasnexus_pgae204 crossref_primary_10_1016_j_tig_2021_09_003 crossref_primary_10_4236_ojmsi_2021_92006 crossref_primary_10_1093_ve_veac017 crossref_primary_10_1016_j_envres_2023_116090 crossref_primary_10_1038_s41467_021_27532_w crossref_primary_10_1371_journal_ppat_1012090 crossref_primary_10_1186_s12916_023_03070_8 crossref_primary_10_1098_rspb_2022_0232 crossref_primary_10_1111_irv_13097 crossref_primary_10_46234_ccdcw2021_195 |
Cites_doi | 10.1038/s41586-020-2488-1 10.1001/jamapediatrics.2020.4573 10.1098/rspb.2006.3754 10.15585/mmwr.mm6913e1 10.1038/s41591-020-0822-7 10.1016/j.epidem.2021.100528 10.1093/infdis/jiaa691 10.1371/journal.pmed.1002170 10.18637/jss.v045.i03 10.1073/pnas.1811115115 10.1073/pnas.0307506101 10.1126/science.abc9004 10.1103/RevModPhys.87.925 10.1038/s41592-019-0686-2 10.1126/science.abb8001 10.1038/s41591-020-0965-6 10.1016/S0140-6736(20)31304-0 10.1016/S0140-6736(20)30746-7 10.1007/978-0-387-21706-2 10.1016/S2589-7500(20)30026-1 10.1038/s41586-020-2405-7 10.1101/2020.07.23.20160317 10.1016/S1473-3099(20)30144-4 10.15585/mmwr.mm6914e1 10.1016/j.annepidem.2020.06.004 10.1126/science.aba9757 10.1038/s41562-020-0931-9 10.3201/eid2606.200357 10.1001/jama.2020.6130 10.1038/s41586-020-2196-x 10.1371/journal.pmed.0050074 10.1016/S1473-3099(20)30196-1 10.1093/cid/ciaa711 10.18637/jss.v067.i01 10.1038/s41591-020-0869-5 10.12688/wellcomeopenres.15788.1 10.1016/S1473-3099(20)30243-7 10.1126/science.abb6105 10.1371/journal.pcbi.1002042 10.1073/pnas.1821298116 10.1016/S2468-2667(20)30089-X 10.2807/1560-7917.ES.2020.25.17.2000257 10.1101/2020.08.09.20171132 10.1016/S2214-109X(20)30074-7 10.1056/NEJMoa1805376 10.1001/jama.2020.5394 10.12688/wellcomeopenres.15843.2 10.3201/eid2611.201099 10.1056/NEJMoa2002032 10.1016/S1473-3099(20)30287-5 10.1101/2020.06.08.20125310 10.2807/1560-7917.ES.2020.25.32.2001483 10.1126/science.abb6936 10.1016/S2468-2667(20)30090-6 10.1016/S1473-3099(20)30230-9 10.1056/NEJMoa2001316 |
ContentType | Journal Article |
Copyright | Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2021 American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works – notice: Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works 2021 American Association for the Advancement of Science |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abe2424 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Public Health Medicine |
EISSN | 1095-9203 |
ExternalDocumentID | PMC7857413 33234698 10_1126_science_abe2424 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GrantInformation_xml | – fundername: ; grantid: 2017ZX10103009–005 – fundername: ; grantid: 81525023 – fundername: ; grantid: 2018ZX10713001–007 – fundername: ; grantid: 2018ZX10201001–010 – fundername: ; grantid: 2020SK3012 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF GX1 NPM OK1 UIG YCJ 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c515t-191aa92fa3b44d7023c555694717772fb1283632f8ae60945e78283acedb76ca3 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:34:12 EDT 2025 Thu Sep 04 17:32:26 EDT 2025 Fri Jul 25 11:00:23 EDT 2025 Thu Apr 03 07:04:40 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Tue Jul 01 01:35:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6526 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c515t-191aa92fa3b44d7023c555694717772fb1283632f8ae60945e78283acedb76ca3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0003-0387-4451 0000-0002-5620-2328 0000-0002-6335-5648 0000-0002-1753-9884 0000-0003-1753-4749 0000-0003-4056-3732 0000-0001-6393-1943 0000-0003-3419-4205 0000-0003-3243-4711 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7857413 |
PMID | 33234698 |
PQID | 2478093094 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7857413 proquest_miscellaneous_2464190706 proquest_journals_2478093094 pubmed_primary_33234698 crossref_citationtrail_10_1126_science_abe2424 crossref_primary_10_1126_science_abe2424 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2021 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_62_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_60_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_58_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_56_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_61_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_59_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_57_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 32817975 - medRxiv. 2020 Aug 13 |
References_xml | – ident: e_1_3_2_12_2 doi: 10.1038/s41586-020-2488-1 – ident: e_1_3_2_57_2 – ident: e_1_3_2_28_2 doi: 10.1001/jamapediatrics.2020.4573 – ident: e_1_3_2_51_2 – ident: e_1_3_2_35_2 doi: 10.1098/rspb.2006.3754 – ident: e_1_3_2_9_2 doi: 10.15585/mmwr.mm6913e1 – ident: e_1_3_2_3_2 doi: 10.1038/s41591-020-0822-7 – ident: e_1_3_2_23_2 doi: 10.1016/j.epidem.2021.100528 – ident: e_1_3_2_27_2 doi: 10.1093/infdis/jiaa691 – ident: e_1_3_2_56_2 doi: 10.1371/journal.pmed.1002170 – ident: e_1_3_2_60_2 doi: 10.18637/jss.v045.i03 – ident: e_1_3_2_43_2 doi: 10.1073/pnas.1811115115 – ident: e_1_3_2_52_2 doi: 10.1073/pnas.0307506101 – ident: e_1_3_2_33_2 doi: 10.1126/science.abc9004 – ident: e_1_3_2_44_2 doi: 10.1103/RevModPhys.87.925 – ident: e_1_3_2_59_2 doi: 10.1038/s41592-019-0686-2 – ident: e_1_3_2_25_2 doi: 10.1126/science.abb8001 – ident: e_1_3_2_49_2 doi: 10.1038/s41591-020-0965-6 – ident: e_1_3_2_26_2 – ident: e_1_3_2_37_2 doi: 10.1016/S0140-6736(20)31304-0 – ident: e_1_3_2_20_2 doi: 10.1016/S0140-6736(20)30746-7 – ident: e_1_3_2_62_2 doi: 10.1007/978-0-387-21706-2 – ident: e_1_3_2_6_2 doi: 10.1016/S2589-7500(20)30026-1 – ident: e_1_3_2_47_2 doi: 10.1038/s41586-020-2405-7 – ident: e_1_3_2_13_2 doi: 10.1101/2020.07.23.20160317 – ident: e_1_3_2_24_2 doi: 10.1016/S1473-3099(20)30144-4 – ident: e_1_3_2_10_2 doi: 10.15585/mmwr.mm6914e1 – ident: e_1_3_2_36_2 doi: 10.1016/j.annepidem.2020.06.004 – ident: e_1_3_2_21_2 doi: 10.1126/science.aba9757 – ident: e_1_3_2_18_2 doi: 10.1038/s41562-020-0931-9 – ident: e_1_3_2_11_2 doi: 10.3201/eid2606.200357 – ident: e_1_3_2_15_2 doi: 10.1001/jama.2020.6130 – ident: e_1_3_2_38_2 doi: 10.1038/s41586-020-2196-x – ident: e_1_3_2_29_2 doi: 10.1371/journal.pmed.0050074 – ident: e_1_3_2_39_2 doi: 10.1016/S1473-3099(20)30196-1 – ident: e_1_3_2_50_2 doi: 10.1093/cid/ciaa711 – ident: e_1_3_2_58_2 – ident: e_1_3_2_61_2 doi: 10.18637/jss.v067.i01 – ident: e_1_3_2_7_2 doi: 10.1038/s41591-020-0869-5 – ident: e_1_3_2_42_2 doi: 10.12688/wellcomeopenres.15788.1 – ident: e_1_3_2_5_2 doi: 10.1016/S1473-3099(20)30243-7 – ident: e_1_3_2_22_2 doi: 10.1126/science.abb6105 – ident: e_1_3_2_45_2 doi: 10.1371/journal.pcbi.1002042 – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1821298116 – ident: e_1_3_2_34_2 doi: 10.1016/S2468-2667(20)30089-X – ident: e_1_3_2_32_2 doi: 10.2807/1560-7917.ES.2020.25.17.2000257 – ident: e_1_3_2_53_2 – ident: e_1_3_2_54_2 doi: 10.1101/2020.08.09.20171132 – ident: e_1_3_2_48_2 doi: 10.1016/S2214-109X(20)30074-7 – ident: e_1_3_2_55_2 doi: 10.1056/NEJMoa1805376 – ident: e_1_3_2_4_2 doi: 10.1001/jama.2020.5394 – ident: e_1_3_2_46_2 doi: 10.12688/wellcomeopenres.15843.2 – ident: e_1_3_2_17_2 doi: 10.3201/eid2611.201099 – ident: e_1_3_2_2_2 doi: 10.1056/NEJMoa2002032 – ident: e_1_3_2_14_2 doi: 10.1016/S1473-3099(20)30287-5 – ident: e_1_3_2_40_2 doi: 10.1101/2020.06.08.20125310 – ident: e_1_3_2_41_2 doi: 10.2807/1560-7917.ES.2020.25.32.2001483 – ident: e_1_3_2_8_2 doi: 10.1126/science.abb6936 – ident: e_1_3_2_16_2 doi: 10.1016/S2468-2667(20)30090-6 – ident: e_1_3_2_19_2 doi: 10.1016/S1473-3099(20)30230-9 – ident: e_1_3_2_31_2 doi: 10.1056/NEJMoa2001316 – reference: 32817975 - medRxiv. 2020 Aug 13;: |
SSID | ssj0009593 |
Score | 2.698282 |
Snippet | A minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections. How does this happen? Sun
et al.... A long-standing question in infectious disease dynamics concerns the role of transmission heterogeneities, which are driven by demography, behavior, and... Time and intimacy drive transmissionA minority of people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmit most infections.... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
SubjectTerms | Adolescent Adult Aged Asymptomatic Infections Chain of Infection - prevention & control Chains Child Child, Preschool China - epidemiology Communicable Diseases Computer applications Contact Tracing Controllability Coronaviridae Coronaviruses COVID-19 COVID-19 - prevention & control COVID-19 - transmission Demography Diaries Disease control Disease transmission Dynamics Epidemics Epidemiology Exposure Family Characteristics Female Heterogeneity Households Humans Individual Differences Infant Infant, Newborn Infections Infectious diseases Infectivity Intelligence Kinetics Male Mathematical models Medicine Middle Aged Online Outbreaks Parameters Population Public health Quarantine Respiratory diseases Risk analysis Risk factors SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Social behavior Social factors Social Interaction Social interactions Stability Statistical analysis Teleworking Viral diseases Virus Shedding Viruses Young Adult |
Title | Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33234698 https://www.proquest.com/docview/2478093094 https://www.proquest.com/docview/2464190706 https://pubmed.ncbi.nlm.nih.gov/PMC7857413 |
Volume | 371 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFH8qnZC4IDa-CgMFicOQliq1nTg9doNpIMGBbmycIse1RcWUTFt6GAf-dp7jlzTtqDS4RFViO6l_z_bPz-8D4K22wqY6UmGa43ATkUpDlQsZWqliXGENs9op9D9_SY5Pxafz-LzX-931Lqnyof71V7-S_0EV7yGuzkv2H5BtG8Ub-BvxxSsijNe7YewWGgTKabyQ8mEXlVjW1EFSXd_9RApZkSWQ91-r7dIvfGzu-mx9Ovk6DQ_Lb-QdSDS1GfFIP9sjnQ6QrW3ixFsQNAYFVK2jXZguCm-zMb9ZLOXwjJTUZ2be2v-o0qsIZiWtpZ1y36kqaSeYU02E3j-zmXEp4LFfb_wkG7n8kCzi3VmY-0wsJG5J7P3ob0_wnZSUZqhy49xblmtZc36_tsS1hof1loclGTWQUQP3YIvhNiPqw9bk4P3B0cawzRQcquN21XzDKq-5tVlZt7ntkJiTR_CQdh_BxIvSNvRMsQP3fT7Smx3YJgCvgz0KR_7uMXzsSlmwJmX7QSNj-wFKWLAmYUFpg6WEPYHTow8nh8chJeAINdLcKsS9vFJjZhXPhZhJpHc6juNkjIRGYnfZHMkNTzizqTJJNBaxQb6ZcqXNLJeJVvwp9IuyMM8hYNa4rffI6lmKTeHMIITSNjJmJEfK5gMYNt2XaYpO75KkXGQbIBvAXlvh0gdm2Vx0t8Ejo9F7nTEh02jM8asH8KZ9jJ3pDsxUYcqFK5MIJMwySgbwzMPXvotzxl321QHIFWDbAi5u--qTYv6jjt8u0xh5PH9x93_wEh4sB9cu9KurhXmFZLjKX5PE_gG2KLkH |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transmission+heterogeneities%2C+kinetics%2C+and+controllability+of+SARS-CoV-2&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sun%2C+Kaiyuan&rft.au=Wang%2C+Wei&rft.au=Gao%2C+Lidong&rft.au=Wang%2C+Yan&rft.date=2021-01-15&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=371&rft.issue=6526&rft_id=info:doi/10.1126%2Fscience.abe2424&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abe2424 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |