Potential Role of Sugars in the Hyphosphere of Arbuscular Mycorrhizal Fungi to Enhance Organic Phosphorus Mobilization
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobil...
Saved in:
Published in | Journal of fungi (Basel) Vol. 10; no. 3; p. 226 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
20.03.2024
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg−1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg−1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency. |
---|---|
AbstractList | Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg−1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg−1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency. Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg-1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg-1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency.Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg-1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg-1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency. Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg −1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg −1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency. Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg[sup.−1] soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg[sup.−1] soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency. Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency. |
Audience | Academic |
Author | Jin, Zexing Wang, Guiwei George, Timothy S. Zhang, Lin |
AuthorAffiliation | 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; tim.george@hutton.ac.uk 2 National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China 1 State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, China Agricultural University, Beijing 100193, China; 15129310266@163.com (Z.J.); gwwang2019@163.com (G.W.) |
AuthorAffiliation_xml | – name: 2 National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China – name: 1 State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, China Agricultural University, Beijing 100193, China; 15129310266@163.com (Z.J.); gwwang2019@163.com (G.W.) – name: 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; tim.george@hutton.ac.uk |
Author_xml | – sequence: 1 givenname: Zexing surname: Jin fullname: Jin, Zexing – sequence: 2 givenname: Guiwei surname: Wang fullname: Wang, Guiwei – sequence: 3 givenname: Timothy S. surname: George fullname: George, Timothy S. – sequence: 4 givenname: Lin orcidid: 0000-0002-1663-5620 surname: Zhang fullname: Zhang, Lin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38535234$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9rHCEQx6WkNGmap74XoS-Fcqm76q4-lSMkTSAhoT-gb-LO6q7Hnl51N3D962v3knIJxQdl5vP96jjzGh344A1CbwtySqkkn1bBFoRQUpbVC3RUUiIXFRE_D_bOh-gkpRUhpOCikpK-QodUcMpLyo7Q_V0YjR-dHvDXMBgcLP42dTom7Dwee4Mvt5s-pE1v4pxcxmZKMA064psthBh79ztrLybfOTwGfO577cHg29hp7wDfzeIQp4RvQuOGTI8u-DfopdVDMicP-zH6cXH-_exycX375epseb0AXvBxUbBWQsXL1rbAqsJQY4kFIRtpWy3B8JqCaBvJSy5qQoyQtaFcEq5JCay29Bhd7XzboFdqE91ax60K2qk5EGKndBwdDEZVTNecAZSmqRlUrZDU5piUmkphocxen3dem6lZmxbyt0U9PDF9mvGuV124VwWRNalrlh0-PDjE8GsyaVRrl8AMg_YmTEnR3EnGitybjL5_hq7CFH3-q5miBSe8ytTpjup0rsB5G_LFkFdr1g7ypFiX48taiJJJNgve7dfw7_GPA5GBYgdADClFYxW4cW5ZdnZDrkX9nTu1N3dZ8_GZ5tH2f_Qf8tDZbA |
CitedBy_id | crossref_primary_10_1016_j_soilbio_2024_109702 crossref_primary_10_3897_imafungus_16_144989 |
Cites_doi | 10.1111/j.1574-6968.2005.00027.x 10.1007/s00374-022-01683-4 10.1016/j.soilbio.2010.02.003 10.1111/1462-2920.16333 10.1111/j.1469-8137.1991.tb00039.x 10.1038/ncomms10696 10.1038/nrmicro1932 10.1073/pnas.1313452110 10.1038/s41564-023-01458-z 10.1038/ncomms1046 10.1016/0038-0717(69)90012-1 10.1007/s11427-018-9364-7 10.1046/j.1469-8137.2001.00077.x 10.1038/s41893-019-0416-x 10.1111/nph.13838 10.1007/BF02465218 10.1111/nph.18642 10.1111/nph.13288 10.1038/nplants.2015.159 10.1023/A:1010367501363 10.1146/annurev-arplant-061722-090342 10.1111/nph.15687 10.1111/j.1747-0765.2007.00210.x 10.1128/AEM.68.4.1919-1924.2002 10.1016/S0038-0717(03)00179-2 10.1007/s11104-022-05621-z 10.1111/nph.17081 10.1016/j.tplants.2021.10.008 10.1186/s40168-018-0470-z 10.1038/s43705-023-00274-0 10.1093/jxb/erv561 10.1080/00103629109368432 10.1146/annurev-arplant-042110-103846 10.1038/nmicrobiol.2016.270 10.14806/ej.17.1.200 10.1016/j.soilbio.2020.107724 10.1038/s41396-019-0567-9 10.1038/s41564-018-0129-3 10.1128/AEM.01823-15 10.1007/s00572-011-0418-7 10.1007/s00374-008-0334-y 10.1038/nmeth.3869 10.1073/pnas.1120238109 10.1038/s41467-020-18326-7 10.1093/nar/gkf436 10.1111/j.1574-6941.2007.00337.x 10.1038/s41467-020-18795-w 10.1038/s41396-021-01112-8 10.1128/JCM.01228-07 10.1007/BF00328420 10.1007/s00572-020-01016-z 10.1093/nar/gks1219 10.1038/s41396-021-00920-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024 by the authors. 2024 |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024 by the authors. 2024 |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.3390/jof10030226 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central (NC Live) Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (subscription) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2309-608X |
ExternalDocumentID | oai_doaj_org_article_64a754cc2eb74c6d893f64a99a398fc2 PMC10970774 A788249456 38535234 10_3390_jof10030226 |
Genre | Journal Article |
GeographicLocations | Japan China |
GeographicLocations_xml | – name: China – name: Japan |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2022YFD1901304 – fundername: The Postdoctoral Fellowship Program of CPSF grantid: GZC20231501 – fundername: The Rural and Environment Science and Analytical Services Division of the Scottish Government |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH AAYXX ABDBF ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M7P MODMG M~E OK1 OZF PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c515t-14d9c652dfdc461e3ef0fc89b9fda9ce573c8db95258700e897e35905a02c47f3 |
IEDL.DBID | BENPR |
ISSN | 2309-608X |
IngestDate | Wed Aug 27 01:25:12 EDT 2025 Thu Aug 21 18:35:20 EDT 2025 Fri Jul 11 03:26:37 EDT 2025 Sun Jul 13 02:55:52 EDT 2025 Tue Jun 10 21:11:05 EDT 2025 Thu Jan 02 22:30:46 EST 2025 Tue Jul 01 03:31:13 EDT 2025 Thu Apr 24 22:58:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | fructose organic P mobilization hyphosphere bacteria AM fungi mycorrhizal pathway |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c515t-14d9c652dfdc461e3ef0fc89b9fda9ce573c8db95258700e897e35905a02c47f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-1663-5620 |
OpenAccessLink | https://www.proquest.com/docview/3003315056?pq-origsite=%requestingapplication% |
PMID | 38535234 |
PQID | 3003315056 |
PQPubID | 2059559 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64a754cc2eb74c6d893f64a99a398fc2 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10970774 proquest_miscellaneous_3003441535 proquest_journals_3003315056 gale_infotracacademiconefile_A788249456 pubmed_primary_38535234 crossref_citationtrail_10_3390_jof10030226 crossref_primary_10_3390_jof10030226 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240320 |
PublicationDateYYYYMMDD | 2024-03-20 |
PublicationDate_xml | – month: 3 year: 2024 text: 20240320 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Journal of fungi (Basel) |
PublicationTitleAlternate | J Fungi (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Eilers (ref_30) 2010; 42 ref_50 Quast (ref_47) 2013; 41 Schoenau (ref_39) 1991; 22 Zhang (ref_52) 2022; 27 Smith (ref_2) 2011; 62 Zhang (ref_5) 2016; 210 Bharadwaj (ref_22) 2012; 22 Bonfante (ref_1) 2010; 1 Alewell (ref_11) 2020; 11 Morin (ref_15) 2019; 222 Luthfiana (ref_23) 2021; 31 Ruvindy (ref_56) 2023; 3 Zheng (ref_48) 2018; 61 Wang (ref_18) 2023; 238 Gralka (ref_32) 2023; 8 Shi (ref_7) 2023; 74 Li (ref_8) 1991; 136 Tisserant (ref_14) 2013; 110 Ragot (ref_35) 2015; 81 Dai (ref_55) 2020; 14 Baudoin (ref_28) 2003; 35 Miller (ref_6) 1995; 103 Duan (ref_19) 2023; 25 Blagodatskaya (ref_29) 2008; 45 Yao (ref_10) 2001; 230 Stubner (ref_41) 2002; 50 Jansa (ref_54) 2022; 16 Walder (ref_4) 2015; 1 Toljander (ref_21) 2007; 61 Martin (ref_44) 2011; 17 Faghihinia (ref_33) 2023; 59 Sattari (ref_12) 2016; 7 Miyauchi (ref_16) 2020; 11 Hildebrandt (ref_24) 2002; 68 Tabatabai (ref_40) 1969; 1 Looft (ref_49) 2012; 109 ref_31 Janda (ref_34) 2007; 45 Callahan (ref_45) 2016; 13 Hildebrandt (ref_25) 2006; 254 ref_38 ref_37 Jiang (ref_17) 2021; 230 Wang (ref_53) 2022; 481 Emmett (ref_20) 2021; 15 Tonini (ref_13) 2019; 2 Wang (ref_36) 2016; 67 ref_43 Martin (ref_3) 2015; 205 Sakurai (ref_42) 2008; 54 Zhalnina (ref_27) 2018; 3 Li (ref_9) 1991; 119 (ref_26) 2008; 6 Katoh (ref_46) 2002; 30 Graham (ref_51) 2001; 149 |
References_xml | – volume: 254 start-page: 258 year: 2006 ident: ref_25 article-title: The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores publication-title: FEMS Microbiol. Lett. doi: 10.1111/j.1574-6968.2005.00027.x – volume: 59 start-page: 17 year: 2023 ident: ref_33 article-title: Hyphosphere microbiome of arbuscular mycorrhizal fungi: A realm of unknowns publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-022-01683-4 – volume: 42 start-page: 896 year: 2010 ident: ref_30 article-title: Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2010.02.003 – volume: 25 start-page: 867 year: 2023 ident: ref_19 article-title: Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula publication-title: Environ. Microbiol. doi: 10.1111/1462-2920.16333 – volume: 119 start-page: 397 year: 1991 ident: ref_9 article-title: Phosphorus depletion and pH decrease at the root soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium publication-title: New Phytol. doi: 10.1111/j.1469-8137.1991.tb00039.x – volume: 7 start-page: 10696 year: 2016 ident: ref_12 article-title: Negative global phosphorus budgets challenge sustainable intensification of grasslands publication-title: Nat. Commun. doi: 10.1038/ncomms10696 – volume: 6 start-page: 613 year: 2008 ident: ref_26 article-title: Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro1932 – volume: 110 start-page: 20117 year: 2013 ident: ref_14 article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313452110 – volume: 8 start-page: 1799 year: 2023 ident: ref_32 article-title: Genome content predicts the carbon catabolic preferences of heterotrophic bacteria publication-title: Nat. Microbiol. doi: 10.1038/s41564-023-01458-z – volume: 1 start-page: 48 year: 2010 ident: ref_1 article-title: Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis publication-title: Nat. Commun. doi: 10.1038/ncomms1046 – volume: 1 start-page: 301 year: 1969 ident: ref_40 article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(69)90012-1 – volume: 61 start-page: 1451 year: 2018 ident: ref_48 article-title: QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling publication-title: Sci. Chin. Life Sci. doi: 10.1007/s11427-018-9364-7 – volume: 149 start-page: 357 year: 2001 ident: ref_51 article-title: What do root pathogens see in mycorrhizas? publication-title: New Phytol. doi: 10.1046/j.1469-8137.2001.00077.x – volume: 2 start-page: 1051 year: 2019 ident: ref_13 article-title: Environmental and health co-benefits for advanced phosphorus recovery publication-title: Nat. Sustain. doi: 10.1038/s41893-019-0416-x – volume: 210 start-page: 1022 year: 2016 ident: ref_5 article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium publication-title: New Phytol. doi: 10.1111/nph.13838 – volume: 136 start-page: 41 year: 1991 ident: ref_8 article-title: Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil publication-title: Plant Soil doi: 10.1007/BF02465218 – volume: 238 start-page: 859 year: 2023 ident: ref_18 article-title: A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization publication-title: New Phytol. doi: 10.1111/nph.18642 – volume: 205 start-page: 1406 year: 2015 ident: ref_3 article-title: Mycorrhizal ecology and evolution: The past, the present, and the future publication-title: New Phytol. doi: 10.1111/nph.13288 – volume: 1 start-page: 15159 year: 2015 ident: ref_4 article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis publication-title: Nat. Plants doi: 10.1038/nplants.2015.159 – volume: 230 start-page: 279 year: 2001 ident: ref_10 article-title: Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus publication-title: Plant Soil doi: 10.1023/A:1010367501363 – volume: 74 start-page: 569 year: 2023 ident: ref_7 article-title: Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-061722-090342 – volume: 222 start-page: 1584 year: 2019 ident: ref_15 article-title: Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina publication-title: New phytol. doi: 10.1111/nph.15687 – volume: 54 start-page: 62 year: 2008 ident: ref_42 article-title: Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter publication-title: Soil Sci. Plant Nutr. doi: 10.1111/j.1747-0765.2007.00210.x – volume: 68 start-page: 1919 year: 2002 ident: ref_24 article-title: Towards growth of arbuscular mycorrhizal fungi independent of a plant host publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.68.4.1919-1924.2002 – volume: 35 start-page: 1183 year: 2003 ident: ref_28 article-title: Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(03)00179-2 – volume: 481 start-page: 1 year: 2022 ident: ref_53 article-title: Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: Processes and ecological functions publication-title: Plant Soil doi: 10.1007/s11104-022-05621-z – volume: 230 start-page: 304 year: 2021 ident: ref_17 article-title: Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae publication-title: New Phytol. doi: 10.1111/nph.17081 – volume: 27 start-page: 402 year: 2022 ident: ref_52 article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2021.10.008 – ident: ref_43 doi: 10.1186/s40168-018-0470-z – volume: 3 start-page: 70 year: 2023 ident: ref_56 article-title: Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms publication-title: ISME Commun. doi: 10.1038/s43705-023-00274-0 – ident: ref_38 – volume: 67 start-page: 1689 year: 2016 ident: ref_36 article-title: In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv561 – volume: 22 start-page: 465 year: 1991 ident: ref_39 article-title: Anion-exchange membrane, water, and sodium-bicarbonate extractions as soil tests for phosphorus publication-title: Soil Sci. Plant Anal. doi: 10.1080/00103629109368432 – volume: 62 start-page: 227 year: 2011 ident: ref_2 article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042110-103846 – ident: ref_50 doi: 10.1038/nmicrobiol.2016.270 – volume: 17 start-page: 10 year: 2011 ident: ref_44 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet. J. doi: 10.14806/ej.17.1.200 – ident: ref_31 doi: 10.1016/j.soilbio.2020.107724 – volume: 14 start-page: 757 year: 2020 ident: ref_55 article-title: Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems publication-title: ISME J. doi: 10.1038/s41396-019-0567-9 – volume: 50 start-page: 155 year: 2002 ident: ref_41 article-title: Enumeration of 16S rDNA of desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection publication-title: J. Microbiol. – volume: 3 start-page: 470 year: 2018 ident: ref_27 article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0129-3 – ident: ref_37 – volume: 81 start-page: 7281 year: 2015 ident: ref_35 article-title: PhoD alkaline phosphatase gene diversity in soil publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.01823-15 – volume: 22 start-page: 437 year: 2012 ident: ref_22 article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions publication-title: Mycorrhiza doi: 10.1007/s00572-011-0418-7 – volume: 45 start-page: 115 year: 2008 ident: ref_29 article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review publication-title: Biol. Fertil. Soils doi: 10.1007/s00374-008-0334-y – volume: 13 start-page: 581 year: 2016 ident: ref_45 article-title: DADA2: High-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 109 start-page: 1691 year: 2012 ident: ref_49 article-title: In-feed antibiotic effects on the swine intestinal microbiome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1120238109 – volume: 11 start-page: 4546 year: 2020 ident: ref_11 article-title: Global phosphorus shortage will be aggravated by soil erosion publication-title: Nat. Commun. doi: 10.1038/s41467-020-18326-7 – volume: 30 start-page: 3059 year: 2002 ident: ref_46 article-title: MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkf436 – volume: 61 start-page: 295 year: 2007 ident: ref_21 article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure publication-title: FEMS Microbiol. Ecol. doi: 10.1111/j.1574-6941.2007.00337.x – volume: 11 start-page: 5125 year: 2020 ident: ref_16 article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits publication-title: Nat. Commun. doi: 10.1038/s41467-020-18795-w – volume: 16 start-page: 676 year: 2022 ident: ref_54 article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist publication-title: ISME J. doi: 10.1038/s41396-021-01112-8 – volume: 45 start-page: 2761 year: 2007 ident: ref_34 article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.01228-07 – volume: 103 start-page: 17 year: 1995 ident: ref_6 article-title: External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities publication-title: Oecologia doi: 10.1007/BF00328420 – volume: 31 start-page: 403 year: 2021 ident: ref_23 article-title: Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency publication-title: Mycorrhiza doi: 10.1007/s00572-020-01016-z – volume: 41 start-page: D590 year: 2013 ident: ref_47 article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1219 – volume: 15 start-page: 2276 year: 2021 ident: ref_20 article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi publication-title: ISME J. doi: 10.1038/s41396-021-00920-2 |
SSID | ssj0001586993 |
Score | 2.2785118 |
Snippet | Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 226 |
SubjectTerms | Acids AM fungi Arbuscular mycorrhizas Bacteria Cooperation Exudates Fructose Fungi Hyphae hyphosphere bacteria Metabolism mycorrhizal pathway organic P mobilization Organic soils Phosphatase Phosphatases Phosphorus Radiation Seeds Soil microorganisms Symbiosis Trehalose |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBej7GEvY-u-vLVFg8JgYGrrw7Ye09EQBhllW6Fvxj5LS0axSuIM0r--d5YbHDrYy16tE8i6O9_v8N3vGDvVQKgdXGwRbMcqxXSnEKDiLDdOYgCs6p6nYP4tm12pr9f6ejTqi2rCAj1wuLizTFW5VgDC1rmCrMH46vCZMZU0hYP-64sxb5RMhf7gIsPIGxryJOb1Z7-9S8miBdEojEJQz9T_-Hs8Ckj7xZKj6DN9wZ4PsJFPwnFfsie2PWRPzz1Cu-0r9ufSd1T1gxLf_Y3l3vEfm1-YsvJlyxHh8dn2duHXxCDQL07wKkMBKp9vMf1cLZZ3uHeKjr_knecX7YKMgYdGTeCX_Wa_2qz53FM1bejdfM2uphc_v8ziYaBCDAhbujhVjYFMi8Y1oLLUSusSB4WpjWsqA1bnEoqmNlpodOPEFia3UptEVwnqL3fyDTtofWvfMZ7moAthakQgoFQtKppZrmuDaCMDp0TEPj_ccQkD2zgNvbgpMesghZQjhUTsdCd8G0g2_i52TsraiRAzdv8A7aUc7KX8l71E7BOpuiT_xQNBNbQh4GsRE1Y5yTHnUAZxZcSOHqyhHBx7XUoafpcSbIzYx90yuiT9Z6la6zdBhtJUqSP2NhjP7syyID4dqSJW7JnV3kvtr7TLRU_7TbUCCaL19__jGj6wZwLhGVXTieSIHXSrjT1GeNXVJ70n3QPd7CNt priority: 102 providerName: Directory of Open Access Journals |
Title | Potential Role of Sugars in the Hyphosphere of Arbuscular Mycorrhizal Fungi to Enhance Organic Phosphorus Mobilization |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38535234 https://www.proquest.com/docview/3003315056 https://www.proquest.com/docview/3003441535 https://pubmed.ncbi.nlm.nih.gov/PMC10970774 https://doaj.org/article/64a754cc2eb74c6d893f64a99a398fc2 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbsoe9jH3PWxc0KAwGprYl2dLTiLeEMEgJ3Qp9M7YsNSnFyhKnkP71u7OdNGFjr9YZzr6v30mnO0JOhUbUrq1vAGz7PIR0R0aa-3GiLIMAmBdNn4LpeTy55D-uxFW34bbuyip3PrFx1KXTuEd-xnDqWIjx-uvyt49To_B0tRuh8Zj0wQVL2SP9dHQ-u3jYZREyhgjcXsxjkN-f3TgbomZH2E7hIBQ1Hfv_9ssHgem4aPIgCo2fk2cdfKTDVt4vyCNTvSRPUgcQb_uK3M1cjdU_QHHhbg11lv7cXEPqShcVBaRHJ9vl3K2xk0CzOIRf2hai0ukW0tDVfHEP747BASxo7eiomqNS0PbCpqaz5mW32qzp1GFVbXuH8zW5HI9-fZv43WAFXwN8qf2Ql0rHIiptqXkcGmZsYLVUhbJlrrQRCdOyLJSIBJhzYKRKDBMqEHkAckwse0N6lavMO0LDRAsZqQKQiOa8iHKcXS4KBagj1pZHHvmy-8eZ7rqO4_CL2wyyDxRIdiAQj5zuiZdts41_k6UorD0JdshuHrjVddYZXBbzPBFc68gUwFpcAi6z8EypnClpNTD2GUWdoR0DQzrvriPAZ2FHrGyYQO7BFeBLj5zstCHrDHydPaijRz7tl8E08bwlr4zbtDSYrjLhkbet8ux5ZhL76jDuEXmkVkcfdbxSLeZN-2-sGQgAtb__P18fyNMIABjWy0XBCenVq435CACqLgakP0y_p-NBZy2DZiPiD8aJHlQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFAkuiDeBAotUhIRk1d6H7T0glECilDZRVFqpN9de7zZBlTfkAQo_it_IjO2kiUDcevWOrVnP7Mw39jwI2ZcaUbu2ngGw7YkAwp2YaeGFkbIcHGCalX0K-oOwdya-nMvzHfJ7VQuDaZUrm1ga6txp_EZ-wHHqWID--uPku4dTo_Dv6mqERqUWR2b5E0K22YfDzyDft4x1O6efel49VcDT4LvnXiBypUPJcptrEQaGG-tbHatM2TxV2siI6zjPlGQSdNk3sYoMl8qXqQ-biCyH594iu4KHPmuQ3XZnMDy5_qoj4xA8flUIyLnyD745G-BJYti-YcP1lRMC_vYDG45wO0lzw-t175N7NVylrUq_HpAdUzwkt9sOIOXyEfkxdHPMNgKKE3dlqLP06-ISQmU6LiggS9pbTkZuhp0LysUWiLBKfKX9JYS909H4F9zbBYMzpnNHO8UIlZBWBaKaDsub3XQxo32HWbxVzehjcnYjr_wJaRSuMM8IDSItY6YyQD5aiIylOCtdZgpQTqitYE3yfvWOE113OcdhG1cJRDsokGRDIE2yvyaeVM09_k3WRmGtSbAjd3nBTS-T-oAnoUgjKbRmJgPWwhxwoIVrSqVcxVYDY-9Q1AnaDWBIp3X5A2wLO3AlrQhiHaEAzzbJ3kobktqgzJJr9W-SN-tlMAX4fyctjFtUNBgec9kkTyvlWfPMY-zjw0WTxFtqtbWp7ZViPCrbjWOOgg9RwvP_8_Wa3Omd9o-T48PB0QtylwH4w1w95u-Rxny6MC8BvM2zV_WJoeTipg_pH7Y9WS4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VFCFeEDeBAotUhIRkxd7D9j4glNBEKSVRVKjUN2Ovd5ugyhtygMJP49cxYztpIhBvffWurVnP9Y09ByGHUiNq19YzALY9EUC4EzMtvDBSloMDTLOyT8FgGPbPxMdzeb5Hfq9rYTCtcm0TS0OdO43fyFscp44F6K9btk6LGB313k-_ezhBCv-0rsdpVCJyYlY_IXybvzs-Al6_ZqzX_fKh79UTBjwNfnzhBSJXOpQst7kWYWC4sb7VscqUzVOljYy4jvNMSSZBrn0Tq8hwqXyZ-nCgyHJ47g2yH2FU1CD7ne5wdHr1hUfGIXj_qiiQc-W3vjkboFYxbOWw5QbLaQF_-4Qtp7ibsLnlAXt3yZ0autJ2JWv3yJ4p7pObHQfwcvWA_Bi5BWYewY5Td2mos_Tz8gLCZjopKKBM2l9Nx26OXQzKxTaws0qCpYMVhMCz8eQX3NsD4zOhC0e7xRgFklbFopqOypvdbDmnA4cZvVX96ENydi2v_BFpFK4wTwgNIi1jpjJAQVqIjKU4N11mChBPqK1gTfJ2_Y4TXXc8x8EblwlEPsiQZIshTXK42TytGn38e1sHmbXZgt25ywtudpHUyp6EIo2k0JqZDEgLc8CEFq4plXIVWw2EvUFWJ2hDgCCd1qUQcCzsxpW0I4h7hAJs2yQHa2lIauMyT65UoUlebZbBLOC_nrQwblntwVCZyyZ5XAnPhmYeY08fLpok3hGrnUPtrhSTcdl6HPMVfIgYnv6frpfkFihn8ul4ePKM3GaAAzFtj_kHpLGYLc1zwHGL7EWtMJR8vW4d_QOnQV1j |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Role+of+Sugars+in+the+Hyphosphere+of+Arbuscular+Mycorrhizal+Fungi+to+Enhance+Organic+Phosphorus+Mobilization&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Jin%2C+Zexing&rft.au=Wang%2C+Guiwei&rft.au=George%2C+Timothy+S&rft.au=Zhang%2C+Lin&rft.date=2024-03-20&rft.pub=MDPI+AG&rft.eissn=2309-608X&rft.volume=10&rft.issue=3&rft.spage=226&rft_id=info:doi/10.3390%2Fjof10030226&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon |