Potential Role of Sugars in the Hyphosphere of Arbuscular Mycorrhizal Fungi to Enhance Organic Phosphorus Mobilization

Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobil...

Full description

Saved in:
Bibliographic Details
Published inJournal of fungi (Basel) Vol. 10; no. 3; p. 226
Main Authors Jin, Zexing, Wang, Guiwei, George, Timothy S., Zhang, Lin
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 20.03.2024
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg−1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg−1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency.
AbstractList Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg−1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg−1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency.
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg-1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg-1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency.Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg-1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg-1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency.
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg −1 soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg −1 soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency.
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg[sup.−1] soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg[sup.−1] soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in phoD gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant–fungi–bacteria interactions for improved P use efficiency.
Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing extensive extraradical hyphae (ERH) in the soil. In addition, AM fungi recruit and cooperate with soil bacteria to enhance soil organic P mobilization and improve fungal and plant fitness through hyphal exudates. However, the role of the dominant compounds in the hyphal exudates in enhancing organic P mobilization in the mycorrhizal pathway is still not well understood. In this study, we added sugars, i.e., glucose, fructose, and trehalose, which are detected in the hyphal exudates, to the hyphal compartments (HCs) that allowed the ERH of the AM fungus to grow or not. The results showed that in AM fungus-inoculated pots, adding three sugars at a concentration of 2 mmol C kg soil significantly increased the phosphatase activity and facilitated the mobilization of organic P in the HCs. The addition of fructose at a concentration of 2 mmol C kg soil was the most efficient in increasing the phosphatase activity and enhancing organic P mobilization. The released inorganic P was then absorbed by the ERH of the AM fungus. The enhanced mobilization of organic P was correlated with the increase in gene number and the changing bacterial community in the presence of fungal hyphae. The sugar addition enriched the relative abundance of some bacterial taxa, e.g., Betaproteobacteriales. Our study suggested that the addition of the sugars by mycorrhizae could be a pivotal strategy in managing P uptake in agricultural production, potentially directing future practices to optimize plant-fungi-bacteria interactions for improved P use efficiency.
Audience Academic
Author Jin, Zexing
Wang, Guiwei
George, Timothy S.
Zhang, Lin
AuthorAffiliation 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; tim.george@hutton.ac.uk
2 National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
1 State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, China Agricultural University, Beijing 100193, China; 15129310266@163.com (Z.J.); gwwang2019@163.com (G.W.)
AuthorAffiliation_xml – name: 2 National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, National Engineering and Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Taian 271018, China
– name: 1 State Key Laboratory of Nutrient Use and Management, Key Laboratory of Plant-Soil Interactions, College of Resources and Environmental Sciences, Ministry of Education, China Agricultural University, Beijing 100193, China; 15129310266@163.com (Z.J.); gwwang2019@163.com (G.W.)
– name: 3 The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; tim.george@hutton.ac.uk
Author_xml – sequence: 1
  givenname: Zexing
  surname: Jin
  fullname: Jin, Zexing
– sequence: 2
  givenname: Guiwei
  surname: Wang
  fullname: Wang, Guiwei
– sequence: 3
  givenname: Timothy S.
  surname: George
  fullname: George, Timothy S.
– sequence: 4
  givenname: Lin
  orcidid: 0000-0002-1663-5620
  surname: Zhang
  fullname: Zhang, Lin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38535234$$D View this record in MEDLINE/PubMed
BookMark eNptkt9rHCEQx6WkNGmap74XoS-Fcqm76q4-lSMkTSAhoT-gb-LO6q7Hnl51N3D962v3knIJxQdl5vP96jjzGh344A1CbwtySqkkn1bBFoRQUpbVC3RUUiIXFRE_D_bOh-gkpRUhpOCikpK-QodUcMpLyo7Q_V0YjR-dHvDXMBgcLP42dTom7Dwee4Mvt5s-pE1v4pxcxmZKMA064psthBh79ztrLybfOTwGfO577cHg29hp7wDfzeIQp4RvQuOGTI8u-DfopdVDMicP-zH6cXH-_exycX375epseb0AXvBxUbBWQsXL1rbAqsJQY4kFIRtpWy3B8JqCaBvJSy5qQoyQtaFcEq5JCay29Bhd7XzboFdqE91ax60K2qk5EGKndBwdDEZVTNecAZSmqRlUrZDU5piUmkphocxen3dem6lZmxbyt0U9PDF9mvGuV124VwWRNalrlh0-PDjE8GsyaVRrl8AMg_YmTEnR3EnGitybjL5_hq7CFH3-q5miBSe8ytTpjup0rsB5G_LFkFdr1g7ypFiX48taiJJJNgve7dfw7_GPA5GBYgdADClFYxW4cW5ZdnZDrkX9nTu1N3dZ8_GZ5tH2f_Qf8tDZbA
CitedBy_id crossref_primary_10_1016_j_soilbio_2024_109702
crossref_primary_10_3897_imafungus_16_144989
Cites_doi 10.1111/j.1574-6968.2005.00027.x
10.1007/s00374-022-01683-4
10.1016/j.soilbio.2010.02.003
10.1111/1462-2920.16333
10.1111/j.1469-8137.1991.tb00039.x
10.1038/ncomms10696
10.1038/nrmicro1932
10.1073/pnas.1313452110
10.1038/s41564-023-01458-z
10.1038/ncomms1046
10.1016/0038-0717(69)90012-1
10.1007/s11427-018-9364-7
10.1046/j.1469-8137.2001.00077.x
10.1038/s41893-019-0416-x
10.1111/nph.13838
10.1007/BF02465218
10.1111/nph.18642
10.1111/nph.13288
10.1038/nplants.2015.159
10.1023/A:1010367501363
10.1146/annurev-arplant-061722-090342
10.1111/nph.15687
10.1111/j.1747-0765.2007.00210.x
10.1128/AEM.68.4.1919-1924.2002
10.1016/S0038-0717(03)00179-2
10.1007/s11104-022-05621-z
10.1111/nph.17081
10.1016/j.tplants.2021.10.008
10.1186/s40168-018-0470-z
10.1038/s43705-023-00274-0
10.1093/jxb/erv561
10.1080/00103629109368432
10.1146/annurev-arplant-042110-103846
10.1038/nmicrobiol.2016.270
10.14806/ej.17.1.200
10.1016/j.soilbio.2020.107724
10.1038/s41396-019-0567-9
10.1038/s41564-018-0129-3
10.1128/AEM.01823-15
10.1007/s00572-011-0418-7
10.1007/s00374-008-0334-y
10.1038/nmeth.3869
10.1073/pnas.1120238109
10.1038/s41467-020-18326-7
10.1093/nar/gkf436
10.1111/j.1574-6941.2007.00337.x
10.1038/s41467-020-18795-w
10.1038/s41396-021-01112-8
10.1128/JCM.01228-07
10.1007/BF00328420
10.1007/s00572-020-01016-z
10.1093/nar/gks1219
10.1038/s41396-021-00920-2
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024 by the authors. 2024
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024 by the authors. 2024
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/jof10030226
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central (NC Live)
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (subscription)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2309-608X
ExternalDocumentID oai_doaj_org_article_64a754cc2eb74c6d893f64a99a398fc2
PMC10970774
A788249456
38535234
10_3390_jof10030226
Genre Journal Article
GeographicLocations Japan
China
GeographicLocations_xml – name: China
– name: Japan
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2022YFD1901304
– fundername: The Postdoctoral Fellowship Program of CPSF
  grantid: GZC20231501
– fundername: The Rural and Environment Science and Analytical Services Division of the Scottish Government
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
OZF
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
NPM
PMFND
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c515t-14d9c652dfdc461e3ef0fc89b9fda9ce573c8db95258700e897e35905a02c47f3
IEDL.DBID BENPR
ISSN 2309-608X
IngestDate Wed Aug 27 01:25:12 EDT 2025
Thu Aug 21 18:35:20 EDT 2025
Fri Jul 11 03:26:37 EDT 2025
Sun Jul 13 02:55:52 EDT 2025
Tue Jun 10 21:11:05 EDT 2025
Thu Jan 02 22:30:46 EST 2025
Tue Jul 01 03:31:13 EDT 2025
Thu Apr 24 22:58:27 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords fructose
organic P mobilization
hyphosphere bacteria
AM fungi
mycorrhizal pathway
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c515t-14d9c652dfdc461e3ef0fc89b9fda9ce573c8db95258700e897e35905a02c47f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-1663-5620
OpenAccessLink https://www.proquest.com/docview/3003315056?pq-origsite=%requestingapplication%
PMID 38535234
PQID 3003315056
PQPubID 2059559
ParticipantIDs doaj_primary_oai_doaj_org_article_64a754cc2eb74c6d893f64a99a398fc2
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10970774
proquest_miscellaneous_3003441535
proquest_journals_3003315056
gale_infotracacademiconefile_A788249456
pubmed_primary_38535234
crossref_citationtrail_10_3390_jof10030226
crossref_primary_10_3390_jof10030226
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240320
PublicationDateYYYYMMDD 2024-03-20
PublicationDate_xml – month: 3
  year: 2024
  text: 20240320
  day: 20
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Journal of fungi (Basel)
PublicationTitleAlternate J Fungi (Basel)
PublicationYear 2024
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Eilers (ref_30) 2010; 42
ref_50
Quast (ref_47) 2013; 41
Schoenau (ref_39) 1991; 22
Zhang (ref_52) 2022; 27
Smith (ref_2) 2011; 62
Zhang (ref_5) 2016; 210
Bharadwaj (ref_22) 2012; 22
Bonfante (ref_1) 2010; 1
Alewell (ref_11) 2020; 11
Morin (ref_15) 2019; 222
Luthfiana (ref_23) 2021; 31
Ruvindy (ref_56) 2023; 3
Zheng (ref_48) 2018; 61
Wang (ref_18) 2023; 238
Gralka (ref_32) 2023; 8
Shi (ref_7) 2023; 74
Li (ref_8) 1991; 136
Tisserant (ref_14) 2013; 110
Ragot (ref_35) 2015; 81
Dai (ref_55) 2020; 14
Baudoin (ref_28) 2003; 35
Miller (ref_6) 1995; 103
Duan (ref_19) 2023; 25
Blagodatskaya (ref_29) 2008; 45
Yao (ref_10) 2001; 230
Stubner (ref_41) 2002; 50
Jansa (ref_54) 2022; 16
Walder (ref_4) 2015; 1
Toljander (ref_21) 2007; 61
Martin (ref_44) 2011; 17
Faghihinia (ref_33) 2023; 59
Sattari (ref_12) 2016; 7
Miyauchi (ref_16) 2020; 11
Hildebrandt (ref_24) 2002; 68
Tabatabai (ref_40) 1969; 1
Looft (ref_49) 2012; 109
ref_31
Janda (ref_34) 2007; 45
Callahan (ref_45) 2016; 13
Hildebrandt (ref_25) 2006; 254
ref_38
ref_37
Jiang (ref_17) 2021; 230
Wang (ref_53) 2022; 481
Emmett (ref_20) 2021; 15
Tonini (ref_13) 2019; 2
Wang (ref_36) 2016; 67
ref_43
Martin (ref_3) 2015; 205
Sakurai (ref_42) 2008; 54
Zhalnina (ref_27) 2018; 3
Li (ref_9) 1991; 119
(ref_26) 2008; 6
Katoh (ref_46) 2002; 30
Graham (ref_51) 2001; 149
References_xml – volume: 254
  start-page: 258
  year: 2006
  ident: ref_25
  article-title: The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores
  publication-title: FEMS Microbiol. Lett.
  doi: 10.1111/j.1574-6968.2005.00027.x
– volume: 59
  start-page: 17
  year: 2023
  ident: ref_33
  article-title: Hyphosphere microbiome of arbuscular mycorrhizal fungi: A realm of unknowns
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-022-01683-4
– volume: 42
  start-page: 896
  year: 2010
  ident: ref_30
  article-title: Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2010.02.003
– volume: 25
  start-page: 867
  year: 2023
  ident: ref_19
  article-title: Hyphosphere interactions between Rhizophagus irregularis and Rahnella aquatilis promote carbon-phosphorus exchange at the peri-arbuscular space in Medicago truncatula
  publication-title: Environ. Microbiol.
  doi: 10.1111/1462-2920.16333
– volume: 119
  start-page: 397
  year: 1991
  ident: ref_9
  article-title: Phosphorus depletion and pH decrease at the root soil and hyphae soil interfaces of VA mycorrhizal white clover fertilized with ammonium
  publication-title: New Phytol.
  doi: 10.1111/j.1469-8137.1991.tb00039.x
– volume: 7
  start-page: 10696
  year: 2016
  ident: ref_12
  article-title: Negative global phosphorus budgets challenge sustainable intensification of grasslands
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10696
– volume: 6
  start-page: 613
  year: 2008
  ident: ref_26
  article-title: Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro1932
– volume: 110
  start-page: 20117
  year: 2013
  ident: ref_14
  article-title: Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313452110
– volume: 8
  start-page: 1799
  year: 2023
  ident: ref_32
  article-title: Genome content predicts the carbon catabolic preferences of heterotrophic bacteria
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-023-01458-z
– volume: 1
  start-page: 48
  year: 2010
  ident: ref_1
  article-title: Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1046
– volume: 1
  start-page: 301
  year: 1969
  ident: ref_40
  article-title: Use of p-nitrophenyl phosphate for assay of soil phosphatase activity
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(69)90012-1
– volume: 61
  start-page: 1451
  year: 2018
  ident: ref_48
  article-title: QMEC: A tool for high-throughput quantitative assessment of microbial functional potential in C, N, P, and S biogeochemical cycling
  publication-title: Sci. Chin. Life Sci.
  doi: 10.1007/s11427-018-9364-7
– volume: 149
  start-page: 357
  year: 2001
  ident: ref_51
  article-title: What do root pathogens see in mycorrhizas?
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2001.00077.x
– volume: 2
  start-page: 1051
  year: 2019
  ident: ref_13
  article-title: Environmental and health co-benefits for advanced phosphorus recovery
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-019-0416-x
– volume: 210
  start-page: 1022
  year: 2016
  ident: ref_5
  article-title: Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium
  publication-title: New Phytol.
  doi: 10.1111/nph.13838
– volume: 136
  start-page: 41
  year: 1991
  ident: ref_8
  article-title: Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil
  publication-title: Plant Soil
  doi: 10.1007/BF02465218
– volume: 238
  start-page: 859
  year: 2023
  ident: ref_18
  article-title: A core microbiome in the hyphosphere of arbuscular mycorrhizal fungi has functional significance in organic phosphorus mineralization
  publication-title: New Phytol.
  doi: 10.1111/nph.18642
– volume: 205
  start-page: 1406
  year: 2015
  ident: ref_3
  article-title: Mycorrhizal ecology and evolution: The past, the present, and the future
  publication-title: New Phytol.
  doi: 10.1111/nph.13288
– volume: 1
  start-page: 15159
  year: 2015
  ident: ref_4
  article-title: Regulation of resource exchange in the arbuscular mycorrhizal symbiosis
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2015.159
– volume: 230
  start-page: 279
  year: 2001
  ident: ref_10
  article-title: Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus
  publication-title: Plant Soil
  doi: 10.1023/A:1010367501363
– volume: 74
  start-page: 569
  year: 2023
  ident: ref_7
  article-title: Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-061722-090342
– volume: 222
  start-page: 1584
  year: 2019
  ident: ref_15
  article-title: Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina
  publication-title: New phytol.
  doi: 10.1111/nph.15687
– volume: 54
  start-page: 62
  year: 2008
  ident: ref_42
  article-title: Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1111/j.1747-0765.2007.00210.x
– volume: 68
  start-page: 1919
  year: 2002
  ident: ref_24
  article-title: Towards growth of arbuscular mycorrhizal fungi independent of a plant host
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.68.4.1919-1924.2002
– volume: 35
  start-page: 1183
  year: 2003
  ident: ref_28
  article-title: Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(03)00179-2
– volume: 481
  start-page: 1
  year: 2022
  ident: ref_53
  article-title: Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: Processes and ecological functions
  publication-title: Plant Soil
  doi: 10.1007/s11104-022-05621-z
– volume: 230
  start-page: 304
  year: 2021
  ident: ref_17
  article-title: Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae
  publication-title: New Phytol.
  doi: 10.1111/nph.17081
– volume: 27
  start-page: 402
  year: 2022
  ident: ref_52
  article-title: Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2021.10.008
– ident: ref_43
  doi: 10.1186/s40168-018-0470-z
– volume: 3
  start-page: 70
  year: 2023
  ident: ref_56
  article-title: Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms
  publication-title: ISME Commun.
  doi: 10.1038/s43705-023-00274-0
– ident: ref_38
– volume: 67
  start-page: 1689
  year: 2016
  ident: ref_36
  article-title: In situ stable isotope probing of phosphate-solubilizing bacteria in the hyphosphere
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erv561
– volume: 22
  start-page: 465
  year: 1991
  ident: ref_39
  article-title: Anion-exchange membrane, water, and sodium-bicarbonate extractions as soil tests for phosphorus
  publication-title: Soil Sci. Plant Anal.
  doi: 10.1080/00103629109368432
– volume: 62
  start-page: 227
  year: 2011
  ident: ref_2
  article-title: Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales
  publication-title: Annu. Rev. Plant Biol.
  doi: 10.1146/annurev-arplant-042110-103846
– ident: ref_50
  doi: 10.1038/nmicrobiol.2016.270
– volume: 17
  start-page: 10
  year: 2011
  ident: ref_44
  article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads
  publication-title: EMBnet. J.
  doi: 10.14806/ej.17.1.200
– ident: ref_31
  doi: 10.1016/j.soilbio.2020.107724
– volume: 14
  start-page: 757
  year: 2020
  ident: ref_55
  article-title: Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0567-9
– volume: 50
  start-page: 155
  year: 2002
  ident: ref_41
  article-title: Enumeration of 16S rDNA of desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection
  publication-title: J. Microbiol.
– volume: 3
  start-page: 470
  year: 2018
  ident: ref_27
  article-title: Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-018-0129-3
– ident: ref_37
– volume: 81
  start-page: 7281
  year: 2015
  ident: ref_35
  article-title: PhoD alkaline phosphatase gene diversity in soil
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.01823-15
– volume: 22
  start-page: 437
  year: 2012
  ident: ref_22
  article-title: Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-011-0418-7
– volume: 45
  start-page: 115
  year: 2008
  ident: ref_29
  article-title: Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure: Critical review
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-008-0334-y
– volume: 13
  start-page: 581
  year: 2016
  ident: ref_45
  article-title: DADA2: High-resolution sample inference from Illumina amplicon data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3869
– volume: 109
  start-page: 1691
  year: 2012
  ident: ref_49
  article-title: In-feed antibiotic effects on the swine intestinal microbiome
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1120238109
– volume: 11
  start-page: 4546
  year: 2020
  ident: ref_11
  article-title: Global phosphorus shortage will be aggravated by soil erosion
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18326-7
– volume: 30
  start-page: 3059
  year: 2002
  ident: ref_46
  article-title: MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkf436
– volume: 61
  start-page: 295
  year: 2007
  ident: ref_21
  article-title: Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/j.1574-6941.2007.00337.x
– volume: 11
  start-page: 5125
  year: 2020
  ident: ref_16
  article-title: Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18795-w
– volume: 16
  start-page: 676
  year: 2022
  ident: ref_54
  article-title: Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist
  publication-title: ISME J.
  doi: 10.1038/s41396-021-01112-8
– volume: 45
  start-page: 2761
  year: 2007
  ident: ref_34
  article-title: 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.01228-07
– volume: 103
  start-page: 17
  year: 1995
  ident: ref_6
  article-title: External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities
  publication-title: Oecologia
  doi: 10.1007/BF00328420
– volume: 31
  start-page: 403
  year: 2021
  ident: ref_23
  article-title: Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency
  publication-title: Mycorrhiza
  doi: 10.1007/s00572-020-01016-z
– volume: 41
  start-page: D590
  year: 2013
  ident: ref_47
  article-title: The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks1219
– volume: 15
  start-page: 2276
  year: 2021
  ident: ref_20
  article-title: Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi
  publication-title: ISME J.
  doi: 10.1038/s41396-021-00920-2
SSID ssj0001586993
Score 2.2785118
Snippet Arbuscular mycorrhizal (AM) fungi engage in symbiosis with more than 80% of terrestrial plants, enlarging root phosphorus (P) absorption volume by producing...
SourceID doaj
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 226
SubjectTerms Acids
AM fungi
Arbuscular mycorrhizas
Bacteria
Cooperation
Exudates
Fructose
Fungi
Hyphae
hyphosphere bacteria
Metabolism
mycorrhizal pathway
organic P mobilization
Organic soils
Phosphatase
Phosphatases
Phosphorus
Radiation
Seeds
Soil microorganisms
Symbiosis
Trehalose
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBej7GEvY-u-vLVFg8JgYGrrw7Ye09EQBhllW6Fvxj5LS0axSuIM0r--d5YbHDrYy16tE8i6O9_v8N3vGDvVQKgdXGwRbMcqxXSnEKDiLDdOYgCs6p6nYP4tm12pr9f6ejTqi2rCAj1wuLizTFW5VgDC1rmCrMH46vCZMZU0hYP-64sxb5RMhf7gIsPIGxryJOb1Z7-9S8miBdEojEJQz9T_-Hs8Ckj7xZKj6DN9wZ4PsJFPwnFfsie2PWRPzz1Cu-0r9ufSd1T1gxLf_Y3l3vEfm1-YsvJlyxHh8dn2duHXxCDQL07wKkMBKp9vMf1cLZZ3uHeKjr_knecX7YKMgYdGTeCX_Wa_2qz53FM1bejdfM2uphc_v8ziYaBCDAhbujhVjYFMi8Y1oLLUSusSB4WpjWsqA1bnEoqmNlpodOPEFia3UptEVwnqL3fyDTtofWvfMZ7moAthakQgoFQtKppZrmuDaCMDp0TEPj_ccQkD2zgNvbgpMesghZQjhUTsdCd8G0g2_i52TsraiRAzdv8A7aUc7KX8l71E7BOpuiT_xQNBNbQh4GsRE1Y5yTHnUAZxZcSOHqyhHBx7XUoafpcSbIzYx90yuiT9Z6la6zdBhtJUqSP2NhjP7syyID4dqSJW7JnV3kvtr7TLRU_7TbUCCaL19__jGj6wZwLhGVXTieSIHXSrjT1GeNXVJ70n3QPd7CNt
  priority: 102
  providerName: Directory of Open Access Journals
Title Potential Role of Sugars in the Hyphosphere of Arbuscular Mycorrhizal Fungi to Enhance Organic Phosphorus Mobilization
URI https://www.ncbi.nlm.nih.gov/pubmed/38535234
https://www.proquest.com/docview/3003315056
https://www.proquest.com/docview/3003441535
https://pubmed.ncbi.nlm.nih.gov/PMC10970774
https://doaj.org/article/64a754cc2eb74c6d893f64a99a398fc2
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdbsoe9jH3PWxc0KAwGprYl2dLTiLeEMEgJ3Qp9M7YsNSnFyhKnkP71u7OdNGFjr9YZzr6v30mnO0JOhUbUrq1vAGz7PIR0R0aa-3GiLIMAmBdNn4LpeTy55D-uxFW34bbuyip3PrFx1KXTuEd-xnDqWIjx-uvyt49To_B0tRuh8Zj0wQVL2SP9dHQ-u3jYZREyhgjcXsxjkN-f3TgbomZH2E7hIBQ1Hfv_9ssHgem4aPIgCo2fk2cdfKTDVt4vyCNTvSRPUgcQb_uK3M1cjdU_QHHhbg11lv7cXEPqShcVBaRHJ9vl3K2xk0CzOIRf2hai0ukW0tDVfHEP747BASxo7eiomqNS0PbCpqaz5mW32qzp1GFVbXuH8zW5HI9-fZv43WAFXwN8qf2Ql0rHIiptqXkcGmZsYLVUhbJlrrQRCdOyLJSIBJhzYKRKDBMqEHkAckwse0N6lavMO0LDRAsZqQKQiOa8iHKcXS4KBagj1pZHHvmy-8eZ7rqO4_CL2wyyDxRIdiAQj5zuiZdts41_k6UorD0JdshuHrjVddYZXBbzPBFc68gUwFpcAi6z8EypnClpNTD2GUWdoR0DQzrvriPAZ2FHrGyYQO7BFeBLj5zstCHrDHydPaijRz7tl8E08bwlr4zbtDSYrjLhkbet8ux5ZhL76jDuEXmkVkcfdbxSLeZN-2-sGQgAtb__P18fyNMIABjWy0XBCenVq435CACqLgakP0y_p-NBZy2DZiPiD8aJHlQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VFAkuiDeBAotUhIRk1d6H7T0glECilDZRVFqpN9de7zZBlTfkAQo_it_IjO2kiUDcevWOrVnP7Mw39jwI2ZcaUbu2ngGw7YkAwp2YaeGFkbIcHGCalX0K-oOwdya-nMvzHfJ7VQuDaZUrm1ga6txp_EZ-wHHqWID--uPku4dTo_Dv6mqERqUWR2b5E0K22YfDzyDft4x1O6efel49VcDT4LvnXiBypUPJcptrEQaGG-tbHatM2TxV2siI6zjPlGQSdNk3sYoMl8qXqQ-biCyH594iu4KHPmuQ3XZnMDy5_qoj4xA8flUIyLnyD745G-BJYti-YcP1lRMC_vYDG45wO0lzw-t175N7NVylrUq_HpAdUzwkt9sOIOXyEfkxdHPMNgKKE3dlqLP06-ISQmU6LiggS9pbTkZuhp0LysUWiLBKfKX9JYS909H4F9zbBYMzpnNHO8UIlZBWBaKaDsub3XQxo32HWbxVzehjcnYjr_wJaRSuMM8IDSItY6YyQD5aiIylOCtdZgpQTqitYE3yfvWOE113OcdhG1cJRDsokGRDIE2yvyaeVM09_k3WRmGtSbAjd3nBTS-T-oAnoUgjKbRmJgPWwhxwoIVrSqVcxVYDY-9Q1AnaDWBIp3X5A2wLO3AlrQhiHaEAzzbJ3kobktqgzJJr9W-SN-tlMAX4fyctjFtUNBgec9kkTyvlWfPMY-zjw0WTxFtqtbWp7ZViPCrbjWOOgg9RwvP_8_Wa3Omd9o-T48PB0QtylwH4w1w95u-Rxny6MC8BvM2zV_WJoeTipg_pH7Y9WS4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VFCFeEDeBAotUhIRkxd7D9j4glNBEKSVRVKjUN2Ovd5ugyhtygMJP49cxYztpIhBvffWurVnP9Y09ByGHUiNq19YzALY9EUC4EzMtvDBSloMDTLOyT8FgGPbPxMdzeb5Hfq9rYTCtcm0TS0OdO43fyFscp44F6K9btk6LGB313k-_ezhBCv-0rsdpVCJyYlY_IXybvzs-Al6_ZqzX_fKh79UTBjwNfnzhBSJXOpQst7kWYWC4sb7VscqUzVOljYy4jvNMSSZBrn0Tq8hwqXyZ-nCgyHJ47g2yH2FU1CD7ne5wdHr1hUfGIXj_qiiQc-W3vjkboFYxbOWw5QbLaQF_-4Qtp7ibsLnlAXt3yZ0autJ2JWv3yJ4p7pObHQfwcvWA_Bi5BWYewY5Td2mos_Tz8gLCZjopKKBM2l9Nx26OXQzKxTaws0qCpYMVhMCz8eQX3NsD4zOhC0e7xRgFklbFopqOypvdbDmnA4cZvVX96ENydi2v_BFpFK4wTwgNIi1jpjJAQVqIjKU4N11mChBPqK1gTfJ2_Y4TXXc8x8EblwlEPsiQZIshTXK42TytGn38e1sHmbXZgt25ywtudpHUyp6EIo2k0JqZDEgLc8CEFq4plXIVWw2EvUFWJ2hDgCCd1qUQcCzsxpW0I4h7hAJs2yQHa2lIauMyT65UoUlebZbBLOC_nrQwblntwVCZyyZ5XAnPhmYeY08fLpok3hGrnUPtrhSTcdl6HPMVfIgYnv6frpfkFihn8ul4ePKM3GaAAzFtj_kHpLGYLc1zwHGL7EWtMJR8vW4d_QOnQV1j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Potential+Role+of+Sugars+in+the+Hyphosphere+of+Arbuscular+Mycorrhizal+Fungi+to+Enhance+Organic+Phosphorus+Mobilization&rft.jtitle=Journal+of+fungi+%28Basel%29&rft.au=Jin%2C+Zexing&rft.au=Wang%2C+Guiwei&rft.au=George%2C+Timothy+S&rft.au=Zhang%2C+Lin&rft.date=2024-03-20&rft.pub=MDPI+AG&rft.eissn=2309-608X&rft.volume=10&rft.issue=3&rft.spage=226&rft_id=info:doi/10.3390%2Fjof10030226&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2309-608X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2309-608X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2309-608X&client=summon