Predicting the Geographic Distribution of a Species from Presence‐Only Data Subject to Detection Errors
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or...
Saved in:
Published in | Biometrics Vol. 68; no. 4; pp. 1303 - 1312 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Malden, USA
Blackwell Publishing Inc
01.12.2012
Wiley-Blackwell Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species. |
---|---|
AbstractList | Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species. Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species. Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species. Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species. [PUBLICATION ABSTRACT] Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species. |
Author | Dorazio, Robert M. |
Author_xml | – sequence: 1 givenname: Robert M. surname: Dorazio fullname: Dorazio, Robert M. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22937805$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9v0zAYxi00xLrBRwAsceGS4j9J7FyQYB1lYqUTZYKb5ThO5yyNi-2I9sZH4DPySXBo18MuzBfben_P88rv4xNw1NlOAwAxGuO43jRjnKU4QSlBY4IwGSPMWDHePAKjQ-EIjBBCeUJT_P0YnHjfxGuRIfIEHBNSUMZRNgLmyunKqGC6JQw3Gk61XTq5vjEKTowPzpR9MLaDtoYSLtZaGe1h7ewKRqHXndJ_fv2ed-0WTmSIRF82WgUYLJzoEE-D9tw56_xT8LiWrdfP9vspuP5w_vXsY3I5n16cvbtMVIazIpF1lRY5pUWusUS6rGVeZphIrqgipEQc1wUuqsjqSmYVVzKrK10zTvMy56yip-D1znft7I9e-yBWxivdtrLTtvcC54xnDKGU_x8ljGKCGSYRfXUPbWzvuviQSKWE5JFCkXqxp_pypSuxdmYl3VbczTsCb3eActZ7p2uhTJDDlIKTphUYiSFg0YghRzHkKIaAxb-AxSYa8HsGdz0eIN33_mlavX2wTry_mM-GYzR4vjNofLDuYJBijnKUDvVkV48fR28OdeluRc4oy8S3z1OxmM0oxl8-iavIv9zxtbRCLp3x4noRW2cI4ZRjRulfr23eyw |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2017_01_024 crossref_primary_10_1111_2041_210X_14482 crossref_primary_10_1111_2041_210X_14282 crossref_primary_10_1111_1365_2656_12092 crossref_primary_10_1071_WR16172 crossref_primary_10_1111_geb_12268 crossref_primary_10_1007_s10980_015_0333_y crossref_primary_10_1002_ece3_2295 crossref_primary_10_1016_j_spasta_2023_100756 crossref_primary_10_1186_s40068_023_00312_9 crossref_primary_10_1890_ES14_00380_1 crossref_primary_10_1002_tafs_10030 crossref_primary_10_1002_ecy_2710 crossref_primary_10_1371_journal_pone_0101196 crossref_primary_10_1111_2041_210X_12224 crossref_primary_10_1111_2041_210X_12144 crossref_primary_10_1371_journal_pone_0164178 crossref_primary_10_1111_2041_210X_12340 crossref_primary_10_1111_2041_210X_13110 crossref_primary_10_1002_ecy_4292 crossref_primary_10_1007_s00477_015_1064_y crossref_primary_10_1002_eap_2502 crossref_primary_10_1111_geb_12138 crossref_primary_10_1214_17_AOAS1078 crossref_primary_10_1111_geb_12216 crossref_primary_10_1007_s10531_014_0782_7 crossref_primary_10_1007_s10980_015_0327_9 crossref_primary_10_1002_ecy_1710 crossref_primary_10_1002_pds_4191 crossref_primary_10_1890_ES13_00066_1 crossref_primary_10_1002_env_2462 crossref_primary_10_1111_2041_210X_12793 crossref_primary_10_1371_journal_pone_0111436 crossref_primary_10_1111_2041_210X_12352 crossref_primary_10_1111_ddi_12096 crossref_primary_10_1111_2041_210X_12152 crossref_primary_10_1111_1365_2656_12071 crossref_primary_10_1890_12_1520_1 crossref_primary_10_1016_j_ecolmodel_2014_12_017 crossref_primary_10_1007_s10750_014_2090_3 crossref_primary_10_1007_s40823_016_0008_7 crossref_primary_10_1002_jwmg_21453 crossref_primary_10_1093_icesjms_fsu129 crossref_primary_10_1111_oik_05114 crossref_primary_10_1890_15_0472_1 crossref_primary_10_1371_journal_pone_0079168 crossref_primary_10_1111_2041_210X_12242 crossref_primary_10_1111_faf_12039 crossref_primary_10_1214_13_AOAS667 crossref_primary_10_1002_jwmg_21968 crossref_primary_10_1111_ddi_12631 crossref_primary_10_1002_ece3_887 crossref_primary_10_1038_s41598_019_46376_5 crossref_primary_10_1093_biosci_biab093 crossref_primary_10_1007_s10980_023_01771_2 crossref_primary_10_1111_2041_210X_12738 crossref_primary_10_1016_j_spasta_2020_100418 crossref_primary_10_1007_s40808_022_01417_3 crossref_primary_10_1093_icesjms_fsaa068 crossref_primary_10_1002_env_2446 crossref_primary_10_1007_s12080_018_0389_9 |
Cites_doi | 10.1016/j.ecolmodel.2005.03.026 10.1890/07-2153.1 10.1214/aos/1176347963 10.1111/j.1472-4642.2010.00725.x 10.1111/j.1472-4642.2007.00342.x 10.1016/0304-4076(94)01698-4 10.1111/j.0021-8901.2004.00905.x 10.1111/j.2006.0906-7590.04596.x 10.1111/j.1365-2699.2010.02345.x 10.1890/04-1120 10.2307/2347614 10.1214/10-AOAS331 10.1093/auk/124.3.986 10.1007/s13253-011-0054-x 10.2307/1912755 10.1146/annurev.ecolsys.110308.120159 10.1890/02-5078 10.1111/j.2041-210X.2011.00182.x 10.1111/j.1365-2664.2005.01112.x 10.1214/aos/1013203451 10.2193/2009-321 10.1890/0012-9658(2006)87[835:GSOMAF]2.0.CO;2 10.2307/4088504 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2 10.1093/biomet/93.2.385 10.1111/j.1541-0420.2008.01116.x 10.1016/S0006-3207(03)00190-3 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 10.1111/j.1600-0587.2010.06433.x 10.1111/j.1365-2664.2005.01098.x 10.1002/9781119115151 10.1890/09-1287.1 10.1111/j.2041-210X.2011.00141.x 10.1111/j.1467-9876.2011.00769.x 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2 |
ContentType | Journal Article |
Copyright | 2012 The International Biometric Society 2012, The International Biometric Society No claim to original US government works 2012, The International Biometric Society No claim to original US government works. |
Copyright_xml | – notice: 2012 The International Biometric Society – notice: 2012, The International Biometric Society No claim to original US government works – notice: 2012, The International Biometric Society No claim to original US government works. |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM JQ2 7X8 7S9 L.6 |
DOI | 10.1111/j.1541-0420.2012.01779.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Computer Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Computer Science Collection AGRICOLA CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 1312 |
ExternalDocumentID | 2848053501 22937805 10_1111_j_1541_0420_2012_01779_x BIOM1779 41806049 ark_67375_WNG_SMM311RK_P US201500148173 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Feature |
GeographicLocations | Montana Idaho |
GeographicLocations_xml | – name: Idaho – name: Montana |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGORE AGQPQ AGTJU AHGBF AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJBYB AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZM PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ABTAH ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGXDD AIDQK AIDYY AAYXX CITATION CGR CUY CVF ECM EIF NPM H13 JQ2 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c5159-afd4963396e1a0ebfa6b512a8c3c22b081f919d515eda5d8ca5fdef7836b687d3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X 1541-0420 |
IngestDate | Fri Jul 11 18:33:25 EDT 2025 Fri Jul 11 05:30:43 EDT 2025 Wed Aug 13 09:57:33 EDT 2025 Thu Apr 03 07:07:22 EDT 2025 Tue Jul 01 00:58:03 EDT 2025 Thu Apr 24 23:00:56 EDT 2025 Wed Jan 22 16:58:15 EST 2025 Thu Jul 03 21:22:34 EDT 2025 Wed Oct 30 09:50:37 EDT 2024 Wed May 07 08:19:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2012, The International Biometric Society No claim to original US government works. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5159-afd4963396e1a0ebfa6b512a8c3c22b081f919d515eda5d8ca5fdef7836b687d3 |
Notes | http://dx.doi.org/10.1111/j.1541-0420.2012.01779.x istex:5C901DA0A7BF5541F697602745649ACD68B2F82D ark:/67375/WNG-SMM311RK-P ArticleID:BIOM1779 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22937805 |
PQID | 1242261710 |
PQPubID | 35366 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1678570048 proquest_miscellaneous_1273121712 proquest_journals_1242261710 pubmed_primary_22937805 crossref_citationtrail_10_1111_j_1541_0420_2012_01779_x crossref_primary_10_1111_j_1541_0420_2012_01779_x wiley_primary_10_1111_j_1541_0420_2012_01779_x_BIOM1779 jstor_primary_41806049 istex_primary_ark_67375_WNG_SMM311RK_P fao_agris_US201500148173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2012 |
PublicationDateYYYYMMDD | 2012-12-01 |
PublicationDate_xml | – month: 12 year: 2012 text: December 2012 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2012 |
Publisher | Blackwell Publishing Inc Wiley-Blackwell Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley-Blackwell – name: Blackwell Publishing Ltd |
References | Elith, J. and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697. Royle, J. A. and Link, W. A. (2006). Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835-841. MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255. Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259. Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo absence data. Ecological Applications 19, 181-197. Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., and Possingham, H. P. (2003). Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13, 1790-1801. Hutto, R. L. and Young, J. S. (2002). Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains. Wildlife Society Bulletin 30, 738-750. Coslett, S. (1981). Maximum likelihood estimator for choice-based samples. Econometrica 49, 1289-1316. Rota, C. T., Fletcher, Jr., R. J., Evans, J. M., and Hutto, R. L. (2011). Does accounting for imperfect detection improve species distribution models? Ecography 34, 659-670. Simons, T. R., Alldredge, M. W., Pollock, K. H., and Wettroth, J. M. (2007). Experimental analysis of the auditory detection process on avian point counts. Auk 124, 986-999. MacKenzie, D. I. and Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology 42, 1105-1114. Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1-141. Gu, W. and Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation 116, 195-203. Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., and Samson, F. B. (2002). Predicting Species Occurrences: Issues of Accuracy and Scale . Washington : Island Press. Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Applied Statistics 60, 757-776. Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models solve the "pseudo absence problem" for presence-only data in ecology. Annals of Applied Statistics 4, 1383-1402. McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010b). Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections. Ecology 91, 2446-2454. Kéry, M., Royle, J. A., and Schmid, H. (2005). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications 15, 1450-1461. Cressie, N. A. C. (1993). Statistics for Spatial Data . New York : John Wiley & Sons. Pearce, J. L. and Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405-412. Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57. Guisan, A., Graham, C. H., Elith, J., Huettmann, and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13, 332-340. Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3, 177-187. Kéry, M., Gardner, B., and Monnerat, (2010). Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography 37, 1851-1862. Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods with GLIM. Applied Statistics 41, 31-38. Sauer, J. R., Peterjohn, B. G., and Link, W. A. (1994). Observer differences in the North American Breeding Bird Survey. Auk 111, 50-62. Cabeza, M., Araújo, M. B., Wilson, R. J., Thomas, C. D., Cowley, M. J. R., and Moilanen, A. (2004). Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41, 252-262. Keating, K. A. and Cherry, S. (2004). Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management 68, 774-789. MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006). Occupancy estimation and modeling . Amsterdam : Elsevier. Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models . London : Chapman and Hall. Lancaster, T. and Imbens, G. (1996). Case-control studies with contaminated controls. Journal of Econometrics 71, 145-160. Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data . New Jersey : John Wiley & Sons, Hoboken. McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010a). Experimental investigation of observation error in anuran call surveys. Journal of Wildlife Management 74, 1882-1893. Di Lorenzo, B., Farcomeni, A., and Golini, N. (2011). A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus baccata in two italian regions. Journal of Agricultural, Biological, and Environmental Statistics 16, 339-356. Lele, S. R. and Keim, J. L. (2006). Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021-3028. Lee, A. J., Scott, A. J., and Wild, C. J. (2006). Fitting binary regression models with case-augmented samples. Biometrika 93, 385-397. Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmerman, N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189-1232. Royle, J. A., Chandler, R. B., Yackulic, C., and Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution , doi: 10.1111/j.2041-210X.2011.00182.x. Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J. R. (2009). Presence-only data and the EM algorithm. Biometrics 65, 554-563. 2006; 93 2004; 41 1991; 19 1994; 111 2007; 124 2010a; 74 2009; 40 2010; 37 2009; 65 2002; 30 2012 2011 2010; 17 2011; 60 2004; 68 2003; 13 1996; 71 1981; 49 2005; 42 2010b; 91 2006 1993 2011; 34 2001; 29 2002 2011; 16 2007; 13 2004; 116 2012; 3 1990 2006; 87 2002; 83 2006; 43 2006; 190 2006; 29 2005; 15 2009; 19 2010; 4 1992; 41 e_1_2_9_30_1 e_1_2_9_31_1 Cressie N. (e_1_2_9_7_1) 2011 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 Hastie T. J. (e_1_2_9_17_1) 1990 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 Hutto R. L. (e_1_2_9_18_1) 2002; 30 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 MacKenzie D. I. (e_1_2_9_26_1) 2006 e_1_2_9_9_1 e_1_2_9_25_1 Scott J. M. (e_1_2_9_37_1) 2002 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – reference: Pearce, J. L. and Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405-412. – reference: Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57. – reference: Di Lorenzo, B., Farcomeni, A., and Golini, N. (2011). A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus baccata in two italian regions. Journal of Agricultural, Biological, and Environmental Statistics 16, 339-356. – reference: MacKenzie, D. I. and Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology 42, 1105-1114. – reference: Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3, 177-187. – reference: Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259. – reference: Lee, A. J., Scott, A. J., and Wild, C. J. (2006). Fitting binary regression models with case-augmented samples. Biometrika 93, 385-397. – reference: McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010b). Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections. Ecology 91, 2446-2454. – reference: Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J. R. (2009). Presence-only data and the EM algorithm. Biometrics 65, 554-563. – reference: Kéry, M., Royle, J. A., and Schmid, H. (2005). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications 15, 1450-1461. – reference: Guisan, A., Graham, C. H., Elith, J., Huettmann, and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13, 332-340. – reference: Lele, S. R. and Keim, J. L. (2006). Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021-3028. – reference: Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods with GLIM. Applied Statistics 41, 31-38. – reference: Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models . London : Chapman and Hall. – reference: Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189-1232. – reference: Sauer, J. R., Peterjohn, B. G., and Link, W. A. (1994). Observer differences in the North American Breeding Bird Survey. Auk 111, 50-62. – reference: Lancaster, T. and Imbens, G. (1996). Case-control studies with contaminated controls. Journal of Econometrics 71, 145-160. – reference: Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Applied Statistics 60, 757-776. – reference: Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo absence data. Ecological Applications 19, 181-197. – reference: Elith, J. and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697. – reference: Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., and Samson, F. B. (2002). Predicting Species Occurrences: Issues of Accuracy and Scale . Washington : Island Press. – reference: Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data . New Jersey : John Wiley & Sons, Hoboken. – reference: Rota, C. T., Fletcher, Jr., R. J., Evans, J. M., and Hutto, R. L. (2011). Does accounting for imperfect detection improve species distribution models? Ecography 34, 659-670. – reference: Keating, K. A. and Cherry, S. (2004). Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management 68, 774-789. – reference: Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models solve the "pseudo absence problem" for presence-only data in ecology. Annals of Applied Statistics 4, 1383-1402. – reference: Gu, W. and Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation 116, 195-203. – reference: Cabeza, M., Araújo, M. B., Wilson, R. J., Thomas, C. D., Cowley, M. J. R., and Moilanen, A. (2004). Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41, 252-262. – reference: Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1-141. – reference: Cressie, N. A. C. (1993). Statistics for Spatial Data . New York : John Wiley & Sons. – reference: Royle, J. A. and Link, W. A. (2006). Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835-841. – reference: Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., and Possingham, H. P. (2003). Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13, 1790-1801. – reference: Coslett, S. (1981). Maximum likelihood estimator for choice-based samples. Econometrica 49, 1289-1316. – reference: Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmerman, N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151. – reference: Kéry, M., Gardner, B., and Monnerat, (2010). Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography 37, 1851-1862. – reference: Simons, T. R., Alldredge, M. W., Pollock, K. H., and Wettroth, J. M. (2007). Experimental analysis of the auditory detection process on avian point counts. Auk 124, 986-999. – reference: McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010a). Experimental investigation of observation error in anuran call surveys. Journal of Wildlife Management 74, 1882-1893. – reference: MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255. – reference: MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006). Occupancy estimation and modeling . Amsterdam : Elsevier. – reference: Hutto, R. L. and Young, J. S. (2002). Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains. Wildlife Society Bulletin 30, 738-750. – reference: Royle, J. A., Chandler, R. B., Yackulic, C., and Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution , doi: 10.1111/j.2041-210X.2011.00182.x. – volume: 41 start-page: 31 year: 1992 end-page: 38 article-title: Approximating point process likelihoods with GLIM publication-title: Applied Statistics – year: 2011 – volume: 74 start-page: 1882 year: 2010a end-page: 1893 article-title: Experimental investigation of observation error in anuran call surveys publication-title: Journal of Wildlife Management – volume: 91 start-page: 2446 year: 2010b end-page: 2454 article-title: Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections publication-title: Ecology – volume: 4 start-page: 1383 year: 2010 end-page: 1402 article-title: Poisson point process models solve the “pseudo absence problem” for presence‐only data in ecology publication-title: Annals of Applied Statistics – volume: 87 start-page: 3021 year: 2006 end-page: 3028 article-title: Weighted distributions and estimation of resource selection probability functions publication-title: Ecology – volume: 13 start-page: 1790 year: 2003 end-page: 1801 article-title: Improving precision and reducing bias in biological surveys: estimating false‐negative error rates publication-title: Ecological Applications – volume: 93 start-page: 385 year: 2006 end-page: 397 article-title: Fitting binary regression models with case‐augmented samples publication-title: Biometrika – volume: 42 start-page: 1105 year: 2005 end-page: 1114 article-title: Designing occupancy studies: General advice and allocating survey effort publication-title: Journal of Applied Ecology – volume: 30 start-page: 738 year: 2002 end-page: 750 article-title: Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains publication-title: Wildlife Society Bulletin – volume: 15 start-page: 1450 year: 2005 end-page: 1461 article-title: Modeling avian abundance from replicated counts using binomial mixture models publication-title: Ecological Applications – volume: 71 start-page: 145 year: 1996 end-page: 160 article-title: Case‐control studies with contaminated controls publication-title: Journal of Econometrics – volume: 40 start-page: 677 year: 2009 end-page: 697 article-title: Species distribution models: Ecological explanation and prediction across space and time publication-title: Annual Review of Ecology, Evolution, and Systematics – volume: 29 start-page: 1189 year: 2001 end-page: 1232 article-title: Greedy function approximation: A gradient boosting machine publication-title: Annals of Statistics – volume: 60 start-page: 757 year: 2011 end-page: 776 article-title: Point pattern modelling for degraded presence‐only data over large regions publication-title: Applied Statistics – volume: 19 start-page: 1 year: 1991 end-page: 141 article-title: Multivariate adaptive regression splines (with discussion) publication-title: Annals of Statistics – year: 1990 – volume: 43 start-page: 405 year: 2006 end-page: 412 article-title: Modelling distribution and abundance with presence‐only data publication-title: Journal of Applied Ecology – volume: 190 start-page: 231 year: 2006 end-page: 259 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecological Modelling – volume: 111 start-page: 50 year: 1994 end-page: 62 article-title: Observer differences in the North American Breeding Bird Survey publication-title: Auk – volume: 87 start-page: 835 year: 2006 end-page: 841 article-title: Generalized site occupancy models allowing for false positive and false negative errors publication-title: Ecology – volume: 17 start-page: 43 year: 2010 end-page: 57 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Diversity and Distributions – volume: 37 start-page: 1851 year: 2010 end-page: 1862 article-title: Predicting species distributions from checklist data using site‐occupancy models publication-title: Journal of Biogeography – volume: 16 start-page: 339 year: 2011 end-page: 356 article-title: A Bayesian model for presence‐only semicontinuous data, with application to prediction of abundance of in two italian regions publication-title: Journal of Agricultural, Biological, and Environmental Statistics – volume: 68 start-page: 774 year: 2004 end-page: 789 article-title: Use and interpretation of logistic regression in habitat selection studies publication-title: Journal of Wildlife Management – volume: 13 start-page: 332 year: 2007 end-page: 340 article-title: Sensitivity of predictive species distribution models to change in grain size publication-title: Diversity and Distributions – year: 2002 – year: 2006 – volume: 49 start-page: 1289 year: 1981 end-page: 1316 article-title: Maximum likelihood estimator for choice‐based samples publication-title: Econometrica – volume: 65 start-page: 554 year: 2009 end-page: 563 article-title: Presence‐only data and the EM algorithm publication-title: Biometrics – volume: 124 start-page: 986 year: 2007 end-page: 999 article-title: Experimental analysis of the auditory detection process on avian point counts publication-title: Auk – volume: 3 start-page: 177 year: 2012 end-page: 187 article-title: Comparative interpretation of count, presence‐absence and point methods for species distribution models publication-title: Methods in Ecology and Evolution – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species’ distributions from occurrence data publication-title: Ecography – volume: 116 start-page: 195 year: 2004 end-page: 203 article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife‐habitat models publication-title: Biological Conservation – volume: 19 start-page: 181 year: 2009 end-page: 197 article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo absence data publication-title: Ecological Applications – volume: 34 start-page: 659 year: 2011 end-page: 670 article-title: Does accounting for imperfect detection improve species distribution models publication-title: Ecography – year: 1993 – volume: 41 start-page: 252 year: 2004 end-page: 262 article-title: Combining probabilities of occurrence with spatial reserve design publication-title: Journal of Applied Ecology – volume: 83 start-page: 2248 year: 2002 end-page: 2255 article-title: Estimating site occupancy rates when detection probabilities are less than one publication-title: Ecology – year: 2012 article-title: Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions publication-title: Methods in Ecology and Evolution – ident: e_1_2_9_31_1 doi: 10.1016/j.ecolmodel.2005.03.026 – ident: e_1_2_9_32_1 doi: 10.1890/07-2153.1 – ident: e_1_2_9_13_1 doi: 10.1214/aos/1176347963 – ident: e_1_2_9_12_1 doi: 10.1111/j.1472-4642.2010.00725.x – ident: e_1_2_9_16_1 doi: 10.1111/j.1472-4642.2007.00342.x – ident: e_1_2_9_22_1 doi: 10.1016/0304-4076(94)01698-4 – volume-title: Predicting Species Occurrences: Issues of Accuracy and Scale year: 2002 ident: e_1_2_9_37_1 – ident: e_1_2_9_4_1 doi: 10.1111/j.0021-8901.2004.00905.x – ident: e_1_2_9_10_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_9_21_1 doi: 10.1111/j.1365-2699.2010.02345.x – ident: e_1_2_9_20_1 doi: 10.1890/04-1120 – ident: e_1_2_9_3_1 doi: 10.2307/2347614 – volume-title: Occupancy estimation and modeling year: 2006 ident: e_1_2_9_26_1 – ident: e_1_2_9_41_1 doi: 10.1214/10-AOAS331 – volume: 30 start-page: 738 year: 2002 ident: e_1_2_9_18_1 article-title: Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains publication-title: Wildlife Society Bulletin – ident: e_1_2_9_38_1 doi: 10.1093/auk/124.3.986 – ident: e_1_2_9_9_1 doi: 10.1007/s13253-011-0054-x – ident: e_1_2_9_6_1 doi: 10.2307/1912755 – ident: e_1_2_9_11_1 doi: 10.1146/annurev.ecolsys.110308.120159 – ident: e_1_2_9_39_1 doi: 10.1890/02-5078 – ident: e_1_2_9_34_1 doi: 10.1111/j.2041-210X.2011.00182.x – ident: e_1_2_9_30_1 doi: 10.1111/j.1365-2664.2005.01112.x – ident: e_1_2_9_14_1 doi: 10.1214/aos/1013203451 – volume-title: Generalized Additive Models year: 1990 ident: e_1_2_9_17_1 – ident: e_1_2_9_28_1 doi: 10.2193/2009-321 – ident: e_1_2_9_35_1 doi: 10.1890/0012-9658(2006)87[835:GSOMAF]2.0.CO;2 – ident: e_1_2_9_36_1 doi: 10.2307/4088504 – ident: e_1_2_9_19_1 doi: 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2 – ident: e_1_2_9_23_1 doi: 10.1093/biomet/93.2.385 – ident: e_1_2_9_40_1 doi: 10.1111/j.1541-0420.2008.01116.x – ident: e_1_2_9_15_1 doi: 10.1016/S0006-3207(03)00190-3 – ident: e_1_2_9_25_1 doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2 – ident: e_1_2_9_33_1 doi: 10.1111/j.1600-0587.2010.06433.x – ident: e_1_2_9_27_1 doi: 10.1111/j.1365-2664.2005.01098.x – ident: e_1_2_9_8_1 doi: 10.1002/9781119115151 – ident: e_1_2_9_29_1 doi: 10.1890/09-1287.1 – ident: e_1_2_9_2_1 doi: 10.1111/j.2041-210X.2011.00141.x – ident: e_1_2_9_5_1 doi: 10.1111/j.1467-9876.2011.00769.x – volume-title: Statistics for Spatio‐Temporal Data year: 2011 ident: e_1_2_9_7_1 – ident: e_1_2_9_24_1 doi: 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2 |
SSID | ssj0009502 |
Score | 2.3151639 |
Snippet | Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where... Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at... Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1303 |
SubjectTerms | Algorithms Applied ecology Biodiversity biogeography BIOMETRIC PRACTICE Biometrics biometry birds Case-augmented design Case-control design Censuses data collection Data Interpretation, Statistical Demography - statistics & numerical data Ecological modeling Geographic regions geographical distribution Idaho Modeling Montana Parametric models Perceptual localization Pixels Population genetics prediction probability Regression analysis Sample Size Site-occupancy model Spatial models Spatial point process Species Species distribution model surveys Use-availability design |
Title | Predicting the Geographic Distribution of a Species from Presence‐Only Data Subject to Detection Errors |
URI | https://api.istex.fr/ark:/67375/WNG-SMM311RK-P/fulltext.pdf https://www.jstor.org/stable/41806049 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01779.x https://www.ncbi.nlm.nih.gov/pubmed/22937805 https://www.proquest.com/docview/1242261710 https://www.proquest.com/docview/1273121712 https://www.proquest.com/docview/1678570048 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KMwFhjISIi3VHW-_Qh0Y4C6VSsVfbNsx4apUzIlqbTxxE_gN_JLuNdJoxVNaEK8Vem1ldxcXx87x-cS8ipmSZwrFfqJZdaP8sT4SqWpn3AtFcDzSFk87zw5Sg7n0cdFvOj4T3gWptWH6DfccGS4fI0DXKp6c5DHESyFo2CEDK1gCLGV8iHiSaRuIT46Ca7o745a4XCkekVssUnqubajjZnqtpUl4Fd0_cWaungdKN3EuG6SOrhPluvHa7kpy-GqUUP9_Q_lx__z_A_IvQ7L0jdt8D0kt0wxIHfa6paXA3J30kvC1gOyjbC2VYV-RE6nFX4gQso1BRvalWL_dqrpGJV8uyJctLRU0tm5gQRUUzwJQ6fuuJQ2v378PC7OLulYNmCxUridRJuSjk3jyGUF3a-qsqofk_nB_ud3h35X9MHXCK18afMIkkLIE8PkyCgrEwWgRGY61EGgAMFYzngOtiaXcZ5pGdvcWDyMopIszcMdslWUhdkl1HDAwhymYMNMBJ1lPLCh1CbVKQQmzzySrl-w0J0iOhbmOBNXVkbgY4E-Fuhj4XwsLjzC-pbnrSrIDdrsQgwJ-RWSt5jPAtxqwu1cloYeee0Cq-9LVksk3KWx-HL0Xswmk5Cxk09i6pEdF3m9YcQyVD_iHtlbh6LoklAtALoFKLjPRh552f8N6QO_CcnClCu0SUMGy1IW_MUGAI0rgwAee9KGeX8DAcBFLIsBvnTBemN3iLcfjif48-k_t3xGtvF6Sy7aI1tNtTLPASI26oUb_L8BO0BSPQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FMYCwwwEuItVZ3_eQS60bGlq9ZV9M2yHRumVcmUttLGEx-Bz8gn4c5JoxVNaEK8RcrZSi7n88-Xu98R8jZkUZhL6buRYcYN8ki7UsaxG6VKSIDngTRY75wNo8Ek-DwNp007IKyFqfkh2oAbrgzrr3GBY0B6fZWHAZyFA6-HKVpeF4wrTrsAKO9gg297vjr2rjDw9mrqcEz2Cth0Pa3n2pnW9qrbRpSAYFH5F6vkxetg6TrKtdvU3kMyW71gnZ1y1l0uZFd9_4P78T9p4BF50MBZ-r62v8fkli465G7d4PKyQ-5nLSvsvEM2EdnWxNBPyOmown9EmHVNQYY23di_nSraRzLfpg8XLQ0VdHyuwQfNKRbD0JGtmFL614-fR8XskvbFAiSWEiNKdFHSvl7Y_LKC7lZVWc2fksne7snHgdv0fXAVoitXmDwAv-CnkWaip6URkQRcIhLlK8-TAGJMytIcZHUuwjxRIjS5NliPIqMkzv0tslGUhd4mVKcAh1PYhTXTAUyWpJ7xhdKxisE208Qh8eoLc9WQomNvjhm_cjgCHXPUMUcdc6tjfuEQ1o48r4lBbjBmG4yIi6_gv_lk7GG0CSO6LPYd8s5aVjuXqM4w5y4O-ZfhJz7OMp-x4wM-csiWNb1WMGAJEiClDtlZ2SJv_NCcA3rzkHOf9Rzypr0NHgR_C4lCl0uUiX0GJ1Pm_UUGMI3thAAae1bbefsAHiBG7IwBurTWemN18A_7RxlePv_nka_JvcFJdsgP94cHL8gmytS5RjtkY1Et9UtAjAv5ynqC31xHVlg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCDQe-CiMBQYYCfGWKs53HoGsbIx21UpF3yzbsWHqlFRpKm088RP4jfwS7k3SaEUTmhBvlXpttTfH18fOvecS8jpgYZBJ6dmhYcb2s1DbUkaRHSZKSKDnvjRY7zwchQdT_-MsmLX5T1gL0-hDdBduuDLqeI0LfJGZzUUe-HAU9l0HM7TcPmArSvrAJ2_5oRMjwtMT95IAr9Moh2Oul89mm1k9V860sVXdNKIAAou-P1_nLl7FSjdJbr1LDe6T-fr_Nckp8_6qkn31_Q_px__jgAfkXktm6dsGfQ_JDZ33yO2mveVFj9wddpqwyx7ZRl7byEI_IqfjEt8QYc41BRva9mL_dqpoilK-bRcuWhgq6GShIQItKZbC0HFdL6X0rx8_j_OzC5qKCixWEu-TaFXQVFd1dllO98uyKJePyXSw__n9gd12fbAVcitbmMyHqOAloWbC0dKIUAIrEbHylOtKoDAmYUkGtjoTQRYrEZhMG6xGkWEcZd4O2cqLXO8SqhMgwwnswZppHyaLE9d4QulIRYDMJLZItH7AXLWS6NiZ44xfOhqBjzn6mKOPee1jfm4R1o1cNLIg1xizCxji4itEbz6duHjXhPe5LPIs8qYGVjeXKOeYcRcF_MvoA58Mhx5jJ0d8bJGdGnmdoc9ilD9KLLK3hiJvo9CSA3dzUXGfORZ51X0N8QNfColcFyu0iTwG51Lm_sUGGE3dBwE89qSBefcDXOCL2BcDfFmD9dru4O8Oj4f48ek_j3xJ7ozTAf90ODp6RrbRpEk02iNbVbnSz4EuVvJFHQd-Axe5VRA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+geographic+distribution+of+a+species+from+presence-only+data+subject+to+detection+errors&rft.jtitle=Biometrics&rft.au=Dorazio%2C+Robert+M&rft.date=2012-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=68&rft.issue=4&rft.spage=1303&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01779.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |