Predicting the Geographic Distribution of a Species from Presence‐Only Data Subject to Detection Errors

Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 68; no. 4; pp. 1303 - 1312
Main Author Dorazio, Robert M.
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.12.2012
Wiley-Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species.
AbstractList Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species.
Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species.
Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point-process models and binary-regression models for case-augmented surveys provide consistent estimators of a species' geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point-process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence-only sample sizes. Analyses of presence-only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site-occupancy analyses of detections and nondetections of these species. [PUBLICATION ABSTRACT]
Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where the species is known to be present with measurements of the same covariates at other locations where species occurrence status (presence or absence) is unknown. In the absence of species detection errors, spatial point‐process models and binary‐regression models for case‐augmented surveys provide consistent estimators of a species’ geographic distribution without prior knowledge of species prevalence. In addition, these regression models can be modified to produce estimators of species abundance that are asymptotically equivalent to those of the spatial point‐process models. However, if species presence locations are subject to detection errors, neither class of models provides a consistent estimator of covariate effects unless the covariates of species abundance are distinct and independently distributed from the covariates of species detection probability. These analytical results are illustrated using simulation studies of data sets that contain a wide range of presence‐only sample sizes. Analyses of presence‐only data of three avian species observed in a survey of landbirds in western Montana and northern Idaho are compared with site‐occupancy analyses of detections and nondetections of these species.
Author Dorazio, Robert M.
Author_xml – sequence: 1
  givenname: Robert M.
  surname: Dorazio
  fullname: Dorazio, Robert M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22937805$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9v0zAYxi00xLrBRwAsceGS4j9J7FyQYB1lYqUTZYKb5ThO5yyNi-2I9sZH4DPySXBo18MuzBfben_P88rv4xNw1NlOAwAxGuO43jRjnKU4QSlBY4IwGSPMWDHePAKjQ-EIjBBCeUJT_P0YnHjfxGuRIfIEHBNSUMZRNgLmyunKqGC6JQw3Gk61XTq5vjEKTowPzpR9MLaDtoYSLtZaGe1h7ewKRqHXndJ_fv2ed-0WTmSIRF82WgUYLJzoEE-D9tw56_xT8LiWrdfP9vspuP5w_vXsY3I5n16cvbtMVIazIpF1lRY5pUWusUS6rGVeZphIrqgipEQc1wUuqsjqSmYVVzKrK10zTvMy56yip-D1znft7I9e-yBWxivdtrLTtvcC54xnDKGU_x8ljGKCGSYRfXUPbWzvuviQSKWE5JFCkXqxp_pypSuxdmYl3VbczTsCb3eActZ7p2uhTJDDlIKTphUYiSFg0YghRzHkKIaAxb-AxSYa8HsGdz0eIN33_mlavX2wTry_mM-GYzR4vjNofLDuYJBijnKUDvVkV48fR28OdeluRc4oy8S3z1OxmM0oxl8-iavIv9zxtbRCLp3x4noRW2cI4ZRjRulfr23eyw
CODEN BIOMA5
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2017_01_024
crossref_primary_10_1111_2041_210X_14482
crossref_primary_10_1111_2041_210X_14282
crossref_primary_10_1111_1365_2656_12092
crossref_primary_10_1071_WR16172
crossref_primary_10_1111_geb_12268
crossref_primary_10_1007_s10980_015_0333_y
crossref_primary_10_1002_ece3_2295
crossref_primary_10_1016_j_spasta_2023_100756
crossref_primary_10_1186_s40068_023_00312_9
crossref_primary_10_1890_ES14_00380_1
crossref_primary_10_1002_tafs_10030
crossref_primary_10_1002_ecy_2710
crossref_primary_10_1371_journal_pone_0101196
crossref_primary_10_1111_2041_210X_12224
crossref_primary_10_1111_2041_210X_12144
crossref_primary_10_1371_journal_pone_0164178
crossref_primary_10_1111_2041_210X_12340
crossref_primary_10_1111_2041_210X_13110
crossref_primary_10_1002_ecy_4292
crossref_primary_10_1007_s00477_015_1064_y
crossref_primary_10_1002_eap_2502
crossref_primary_10_1111_geb_12138
crossref_primary_10_1214_17_AOAS1078
crossref_primary_10_1111_geb_12216
crossref_primary_10_1007_s10531_014_0782_7
crossref_primary_10_1007_s10980_015_0327_9
crossref_primary_10_1002_ecy_1710
crossref_primary_10_1002_pds_4191
crossref_primary_10_1890_ES13_00066_1
crossref_primary_10_1002_env_2462
crossref_primary_10_1111_2041_210X_12793
crossref_primary_10_1371_journal_pone_0111436
crossref_primary_10_1111_2041_210X_12352
crossref_primary_10_1111_ddi_12096
crossref_primary_10_1111_2041_210X_12152
crossref_primary_10_1111_1365_2656_12071
crossref_primary_10_1890_12_1520_1
crossref_primary_10_1016_j_ecolmodel_2014_12_017
crossref_primary_10_1007_s10750_014_2090_3
crossref_primary_10_1007_s40823_016_0008_7
crossref_primary_10_1002_jwmg_21453
crossref_primary_10_1093_icesjms_fsu129
crossref_primary_10_1111_oik_05114
crossref_primary_10_1890_15_0472_1
crossref_primary_10_1371_journal_pone_0079168
crossref_primary_10_1111_2041_210X_12242
crossref_primary_10_1111_faf_12039
crossref_primary_10_1214_13_AOAS667
crossref_primary_10_1002_jwmg_21968
crossref_primary_10_1111_ddi_12631
crossref_primary_10_1002_ece3_887
crossref_primary_10_1038_s41598_019_46376_5
crossref_primary_10_1093_biosci_biab093
crossref_primary_10_1007_s10980_023_01771_2
crossref_primary_10_1111_2041_210X_12738
crossref_primary_10_1016_j_spasta_2020_100418
crossref_primary_10_1007_s40808_022_01417_3
crossref_primary_10_1093_icesjms_fsaa068
crossref_primary_10_1002_env_2446
crossref_primary_10_1007_s12080_018_0389_9
Cites_doi 10.1016/j.ecolmodel.2005.03.026
10.1890/07-2153.1
10.1214/aos/1176347963
10.1111/j.1472-4642.2010.00725.x
10.1111/j.1472-4642.2007.00342.x
10.1016/0304-4076(94)01698-4
10.1111/j.0021-8901.2004.00905.x
10.1111/j.2006.0906-7590.04596.x
10.1111/j.1365-2699.2010.02345.x
10.1890/04-1120
10.2307/2347614
10.1214/10-AOAS331
10.1093/auk/124.3.986
10.1007/s13253-011-0054-x
10.2307/1912755
10.1146/annurev.ecolsys.110308.120159
10.1890/02-5078
10.1111/j.2041-210X.2011.00182.x
10.1111/j.1365-2664.2005.01112.x
10.1214/aos/1013203451
10.2193/2009-321
10.1890/0012-9658(2006)87[835:GSOMAF]2.0.CO;2
10.2307/4088504
10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
10.1093/biomet/93.2.385
10.1111/j.1541-0420.2008.01116.x
10.1016/S0006-3207(03)00190-3
10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
10.1111/j.1600-0587.2010.06433.x
10.1111/j.1365-2664.2005.01098.x
10.1002/9781119115151
10.1890/09-1287.1
10.1111/j.2041-210X.2011.00141.x
10.1111/j.1467-9876.2011.00769.x
10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
ContentType Journal Article
Copyright 2012 The International Biometric Society
2012, The International Biometric Society No claim to original US government works
2012, The International Biometric Society No claim to original US government works.
Copyright_xml – notice: 2012 The International Biometric Society
– notice: 2012, The International Biometric Society No claim to original US government works
– notice: 2012, The International Biometric Society No claim to original US government works.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/j.1541-0420.2012.01779.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic



ProQuest Computer Science Collection
AGRICOLA
CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1312
ExternalDocumentID 2848053501
22937805
10_1111_j_1541_0420_2012_01779_x
BIOM1779
41806049
ark_67375_WNG_SMM311RK_P
US201500148173
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Montana
Idaho
GeographicLocations_xml – name: Idaho
– name: Montana
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGORE
AGQPQ
AGTJU
AHGBF
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJBYB
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ABTAH
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
H13
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c5159-afd4963396e1a0ebfa6b512a8c3c22b081f919d515eda5d8ca5fdef7836b687d3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Jul 11 18:33:25 EDT 2025
Fri Jul 11 05:30:43 EDT 2025
Wed Aug 13 09:57:33 EDT 2025
Thu Apr 03 07:07:22 EDT 2025
Tue Jul 01 00:58:03 EDT 2025
Thu Apr 24 23:00:56 EDT 2025
Wed Jan 22 16:58:15 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Wed Oct 30 09:50:37 EDT 2024
Wed May 07 08:19:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012, The International Biometric Society No claim to original US government works.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5159-afd4963396e1a0ebfa6b512a8c3c22b081f919d515eda5d8ca5fdef7836b687d3
Notes http://dx.doi.org/10.1111/j.1541-0420.2012.01779.x
istex:5C901DA0A7BF5541F697602745649ACD68B2F82D
ark:/67375/WNG-SMM311RK-P
ArticleID:BIOM1779
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22937805
PQID 1242261710
PQPubID 35366
PageCount 10
ParticipantIDs proquest_miscellaneous_1678570048
proquest_miscellaneous_1273121712
proquest_journals_1242261710
pubmed_primary_22937805
crossref_citationtrail_10_1111_j_1541_0420_2012_01779_x
crossref_primary_10_1111_j_1541_0420_2012_01779_x
wiley_primary_10_1111_j_1541_0420_2012_01779_x_BIOM1779
jstor_primary_41806049
istex_primary_ark_67375_WNG_SMM311RK_P
fao_agris_US201500148173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2012
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Elith, J. and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697.
Royle, J. A. and Link, W. A. (2006). Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835-841.
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255.
Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259.
Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo absence data. Ecological Applications 19, 181-197.
Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., and Possingham, H. P. (2003). Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13, 1790-1801.
Hutto, R. L. and Young, J. S. (2002). Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains. Wildlife Society Bulletin 30, 738-750.
Coslett, S. (1981). Maximum likelihood estimator for choice-based samples. Econometrica 49, 1289-1316.
Rota, C. T., Fletcher, Jr., R. J., Evans, J. M., and Hutto, R. L. (2011). Does accounting for imperfect detection improve species distribution models? Ecography 34, 659-670.
Simons, T. R., Alldredge, M. W., Pollock, K. H., and Wettroth, J. M. (2007). Experimental analysis of the auditory detection process on avian point counts. Auk 124, 986-999.
MacKenzie, D. I. and Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology 42, 1105-1114.
Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1-141.
Gu, W. and Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation 116, 195-203.
Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., and Samson, F. B. (2002). Predicting Species Occurrences: Issues of Accuracy and Scale . Washington : Island Press.
Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Applied Statistics 60, 757-776.
Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models solve the "pseudo absence problem" for presence-only data in ecology. Annals of Applied Statistics 4, 1383-1402.
McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010b). Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections. Ecology 91, 2446-2454.
Kéry, M., Royle, J. A., and Schmid, H. (2005). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications 15, 1450-1461.
Cressie, N. A. C. (1993). Statistics for Spatial Data . New York : John Wiley & Sons.
Pearce, J. L. and Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405-412.
Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.
Guisan, A., Graham, C. H., Elith, J., Huettmann,   and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13, 332-340.
Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3, 177-187.
Kéry, M., Gardner, B., and Monnerat, (2010). Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography 37, 1851-1862.
Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods with GLIM. Applied Statistics 41, 31-38.
Sauer, J. R., Peterjohn, B. G., and Link, W. A. (1994). Observer differences in the North American Breeding Bird Survey. Auk 111, 50-62.
Cabeza, M., Araújo, M. B., Wilson, R. J., Thomas, C. D., Cowley, M. J. R., and Moilanen, A. (2004). Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41, 252-262.
Keating, K. A. and Cherry, S. (2004). Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management 68, 774-789.
MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006). Occupancy estimation and modeling . Amsterdam : Elsevier.
Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models . London : Chapman and Hall.
Lancaster, T. and Imbens, G. (1996). Case-control studies with contaminated controls. Journal of Econometrics 71, 145-160.
Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data . New Jersey : John Wiley & Sons, Hoboken.
McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010a). Experimental investigation of observation error in anuran call surveys. Journal of Wildlife Management 74, 1882-1893.
Di Lorenzo, B., Farcomeni, A., and Golini, N. (2011). A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus baccata in two italian regions. Journal of Agricultural, Biological, and Environmental Statistics 16, 339-356.
Lele, S. R. and Keim, J. L. (2006). Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021-3028.
Lee, A. J., Scott, A. J., and Wild, C. J. (2006). Fitting binary regression models with case-augmented samples. Biometrika 93, 385-397.
Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmerman, N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151.
Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189-1232.
Royle, J. A., Chandler, R. B., Yackulic, C., and Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution , doi: 10.1111/j.2041-210X.2011.00182.x.
Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J. R. (2009). Presence-only data and the EM algorithm. Biometrics 65, 554-563.
2006; 93
2004; 41
1991; 19
1994; 111
2007; 124
2010a; 74
2009; 40
2010; 37
2009; 65
2002; 30
2012
2011
2010; 17
2011; 60
2004; 68
2003; 13
1996; 71
1981; 49
2005; 42
2010b; 91
2006
1993
2011; 34
2001; 29
2002
2011; 16
2007; 13
2004; 116
2012; 3
1990
2006; 87
2002; 83
2006; 43
2006; 190
2006; 29
2005; 15
2009; 19
2010; 4
1992; 41
e_1_2_9_30_1
e_1_2_9_31_1
Cressie N. (e_1_2_9_7_1) 2011
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Hastie T. J. (e_1_2_9_17_1) 1990
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
Hutto R. L. (e_1_2_9_18_1) 2002; 30
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
MacKenzie D. I. (e_1_2_9_26_1) 2006
e_1_2_9_9_1
e_1_2_9_25_1
Scott J. M. (e_1_2_9_37_1) 2002
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – reference: Pearce, J. L. and Boyce, M. S. (2006). Modelling distribution and abundance with presence-only data. Journal of Applied Ecology 43, 405-412.
– reference: Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., and Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17, 43-57.
– reference: Di Lorenzo, B., Farcomeni, A., and Golini, N. (2011). A Bayesian model for presence-only semicontinuous data, with application to prediction of abundance of Taxus baccata in two italian regions. Journal of Agricultural, Biological, and Environmental Statistics 16, 339-356.
– reference: MacKenzie, D. I. and Royle, J. A. (2005). Designing occupancy studies: General advice and allocating survey effort. Journal of Applied Ecology 42, 1105-1114.
– reference: Aarts, G., Fieberg, J., and Matthiopoulos, J. (2012). Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution 3, 177-187.
– reference: Phillips, S. J., Anderson, R. P., and Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231-259.
– reference: Lee, A. J., Scott, A. J., and Wild, C. J. (2006). Fitting binary regression models with case-augmented samples. Biometrika 93, 385-397.
– reference: McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010b). Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections. Ecology 91, 2446-2454.
– reference: Ward, G., Hastie, T., Barry, S., Elith, J., and Leathwick, J. R. (2009). Presence-only data and the EM algorithm. Biometrics 65, 554-563.
– reference: Kéry, M., Royle, J. A., and Schmid, H. (2005). Modeling avian abundance from replicated counts using binomial mixture models. Ecological Applications 15, 1450-1461.
– reference: Guisan, A., Graham, C. H., Elith, J., Huettmann,   and the NCEAS Species Distribution Modelling Group. (2007). Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions 13, 332-340.
– reference: Lele, S. R. and Keim, J. L. (2006). Weighted distributions and estimation of resource selection probability functions. Ecology 87, 3021-3028.
– reference: Berman, M. and Turner, T. R. (1992). Approximating point process likelihoods with GLIM. Applied Statistics 41, 31-38.
– reference: Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models . London : Chapman and Hall.
– reference: Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics 29, 1189-1232.
– reference: Sauer, J. R., Peterjohn, B. G., and Link, W. A. (1994). Observer differences in the North American Breeding Bird Survey. Auk 111, 50-62.
– reference: Lancaster, T. and Imbens, G. (1996). Case-control studies with contaminated controls. Journal of Econometrics 71, 145-160.
– reference: Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A. (2011). Point pattern modelling for degraded presence-only data over large regions. Applied Statistics 60, 757-776.
– reference: Phillips, S. J., Dudik, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., and Ferrier, S. (2009). Sample selection bias and presence-only distribution models: implications for background and pseudo absence data. Ecological Applications 19, 181-197.
– reference: Elith, J. and Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677-697.
– reference: Scott, J. M., Heglund, P. J., Morrison, M. L., Haufler, J. B., Raphael, M. G., Wall, W. A., and Samson, F. B. (2002). Predicting Species Occurrences: Issues of Accuracy and Scale . Washington : Island Press.
– reference: Cressie, N. and Wikle, C. K. (2011). Statistics for Spatio-Temporal Data . New Jersey : John Wiley & Sons, Hoboken.
– reference: Rota, C. T., Fletcher, Jr., R. J., Evans, J. M., and Hutto, R. L. (2011). Does accounting for imperfect detection improve species distribution models? Ecography 34, 659-670.
– reference: Keating, K. A. and Cherry, S. (2004). Use and interpretation of logistic regression in habitat selection studies. Journal of Wildlife Management 68, 774-789.
– reference: Warton, D. I. and Shepherd, L. C. (2010). Poisson point process models solve the "pseudo absence problem" for presence-only data in ecology. Annals of Applied Statistics 4, 1383-1402.
– reference: Gu, W. and Swihart, R. K. (2004). Absent or undetected? Effects of non-detection of species occurrence on wildlife-habitat models. Biological Conservation 116, 195-203.
– reference: Cabeza, M., Araújo, M. B., Wilson, R. J., Thomas, C. D., Cowley, M. J. R., and Moilanen, A. (2004). Combining probabilities of occurrence with spatial reserve design. Journal of Applied Ecology 41, 252-262.
– reference: Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals of Statistics 19, 1-141.
– reference: Cressie, N. A. C. (1993). Statistics for Spatial Data . New York : John Wiley & Sons.
– reference: Royle, J. A. and Link, W. A. (2006). Generalized site occupancy models allowing for false positive and false negative errors. Ecology 87, 835-841.
– reference: Tyre, A. J., Tenhumberg, B., Field, S. A., Niejalke, D., Parris, K., and Possingham, H. P. (2003). Improving precision and reducing bias in biological surveys: estimating false-negative error rates. Ecological Applications 13, 1790-1801.
– reference: Coslett, S. (1981). Maximum likelihood estimator for choice-based samples. Econometrica 49, 1289-1316.
– reference: Elith, J., Graham, C. H., Anderson, R. P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. M., Peterson, A. T., Phillips, S. J., Richardson, K., Scachetti-Pereira, R., Schapire, R. E., Soberon, J., Williams, S., Wisz, M. S., and Zimmerman, N. E. (2006). Novel methods improve prediction of species' distributions from occurrence data. Ecography 29, 129-151.
– reference: Kéry, M., Gardner, B., and Monnerat, (2010). Predicting species distributions from checklist data using site-occupancy models. Journal of Biogeography 37, 1851-1862.
– reference: Simons, T. R., Alldredge, M. W., Pollock, K. H., and Wettroth, J. M. (2007). Experimental analysis of the auditory detection process on avian point counts. Auk 124, 986-999.
– reference: McClintock, B. T., Bailey, L. L., Pollock, K. H., and Simon, T. R. (2010a). Experimental investigation of observation error in anuran call surveys. Journal of Wildlife Management 74, 1882-1893.
– reference: MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248-2255.
– reference: MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2006). Occupancy estimation and modeling . Amsterdam : Elsevier.
– reference: Hutto, R. L. and Young, J. S. (2002). Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains. Wildlife Society Bulletin 30, 738-750.
– reference: Royle, J. A., Chandler, R. B., Yackulic, C., and Nichols, J. D. (2012). Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution , doi: 10.1111/j.2041-210X.2011.00182.x.
– volume: 41
  start-page: 31
  year: 1992
  end-page: 38
  article-title: Approximating point process likelihoods with GLIM
  publication-title: Applied Statistics
– year: 2011
– volume: 74
  start-page: 1882
  year: 2010a
  end-page: 1893
  article-title: Experimental investigation of observation error in anuran call surveys
  publication-title: Journal of Wildlife Management
– volume: 91
  start-page: 2446
  year: 2010b
  end-page: 2454
  article-title: Unmodeled observation error induces bias when inferring patterns and dynamics of species occurrence via aural detections
  publication-title: Ecology
– volume: 4
  start-page: 1383
  year: 2010
  end-page: 1402
  article-title: Poisson point process models solve the “pseudo absence problem” for presence‐only data in ecology
  publication-title: Annals of Applied Statistics
– volume: 87
  start-page: 3021
  year: 2006
  end-page: 3028
  article-title: Weighted distributions and estimation of resource selection probability functions
  publication-title: Ecology
– volume: 13
  start-page: 1790
  year: 2003
  end-page: 1801
  article-title: Improving precision and reducing bias in biological surveys: estimating false‐negative error rates
  publication-title: Ecological Applications
– volume: 93
  start-page: 385
  year: 2006
  end-page: 397
  article-title: Fitting binary regression models with case‐augmented samples
  publication-title: Biometrika
– volume: 42
  start-page: 1105
  year: 2005
  end-page: 1114
  article-title: Designing occupancy studies: General advice and allocating survey effort
  publication-title: Journal of Applied Ecology
– volume: 30
  start-page: 738
  year: 2002
  end-page: 750
  article-title: Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains
  publication-title: Wildlife Society Bulletin
– volume: 15
  start-page: 1450
  year: 2005
  end-page: 1461
  article-title: Modeling avian abundance from replicated counts using binomial mixture models
  publication-title: Ecological Applications
– volume: 71
  start-page: 145
  year: 1996
  end-page: 160
  article-title: Case‐control studies with contaminated controls
  publication-title: Journal of Econometrics
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  article-title: Species distribution models: Ecological explanation and prediction across space and time
  publication-title: Annual Review of Ecology, Evolution, and Systematics
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Annals of Statistics
– volume: 60
  start-page: 757
  year: 2011
  end-page: 776
  article-title: Point pattern modelling for degraded presence‐only data over large regions
  publication-title: Applied Statistics
– volume: 19
  start-page: 1
  year: 1991
  end-page: 141
  article-title: Multivariate adaptive regression splines (with discussion)
  publication-title: Annals of Statistics
– year: 1990
– volume: 43
  start-page: 405
  year: 2006
  end-page: 412
  article-title: Modelling distribution and abundance with presence‐only data
  publication-title: Journal of Applied Ecology
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecological Modelling
– volume: 111
  start-page: 50
  year: 1994
  end-page: 62
  article-title: Observer differences in the North American Breeding Bird Survey
  publication-title: Auk
– volume: 87
  start-page: 835
  year: 2006
  end-page: 841
  article-title: Generalized site occupancy models allowing for false positive and false negative errors
  publication-title: Ecology
– volume: 17
  start-page: 43
  year: 2010
  end-page: 57
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Diversity and Distributions
– volume: 37
  start-page: 1851
  year: 2010
  end-page: 1862
  article-title: Predicting species distributions from checklist data using site‐occupancy models
  publication-title: Journal of Biogeography
– volume: 16
  start-page: 339
  year: 2011
  end-page: 356
  article-title: A Bayesian model for presence‐only semicontinuous data, with application to prediction of abundance of in two italian regions
  publication-title: Journal of Agricultural, Biological, and Environmental Statistics
– volume: 68
  start-page: 774
  year: 2004
  end-page: 789
  article-title: Use and interpretation of logistic regression in habitat selection studies
  publication-title: Journal of Wildlife Management
– volume: 13
  start-page: 332
  year: 2007
  end-page: 340
  article-title: Sensitivity of predictive species distribution models to change in grain size
  publication-title: Diversity and Distributions
– year: 2002
– year: 2006
– volume: 49
  start-page: 1289
  year: 1981
  end-page: 1316
  article-title: Maximum likelihood estimator for choice‐based samples
  publication-title: Econometrica
– volume: 65
  start-page: 554
  year: 2009
  end-page: 563
  article-title: Presence‐only data and the EM algorithm
  publication-title: Biometrics
– volume: 124
  start-page: 986
  year: 2007
  end-page: 999
  article-title: Experimental analysis of the auditory detection process on avian point counts
  publication-title: Auk
– volume: 3
  start-page: 177
  year: 2012
  end-page: 187
  article-title: Comparative interpretation of count, presence‐absence and point methods for species distribution models
  publication-title: Methods in Ecology and Evolution
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species’ distributions from occurrence data
  publication-title: Ecography
– volume: 116
  start-page: 195
  year: 2004
  end-page: 203
  article-title: Absent or undetected? Effects of non‐detection of species occurrence on wildlife‐habitat models
  publication-title: Biological Conservation
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  article-title: Sample selection bias and presence‐only distribution models: implications for background and pseudo absence data
  publication-title: Ecological Applications
– volume: 34
  start-page: 659
  year: 2011
  end-page: 670
  article-title: Does accounting for imperfect detection improve species distribution models
  publication-title: Ecography
– year: 1993
– volume: 41
  start-page: 252
  year: 2004
  end-page: 262
  article-title: Combining probabilities of occurrence with spatial reserve design
  publication-title: Journal of Applied Ecology
– volume: 83
  start-page: 2248
  year: 2002
  end-page: 2255
  article-title: Estimating site occupancy rates when detection probabilities are less than one
  publication-title: Ecology
– year: 2012
  article-title: Likelihood analysis of species occurrence probability from presence‐only data for modelling species distributions
  publication-title: Methods in Ecology and Evolution
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ecolmodel.2005.03.026
– ident: e_1_2_9_32_1
  doi: 10.1890/07-2153.1
– ident: e_1_2_9_13_1
  doi: 10.1214/aos/1176347963
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1472-4642.2010.00725.x
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1472-4642.2007.00342.x
– ident: e_1_2_9_22_1
  doi: 10.1016/0304-4076(94)01698-4
– volume-title: Predicting Species Occurrences: Issues of Accuracy and Scale
  year: 2002
  ident: e_1_2_9_37_1
– ident: e_1_2_9_4_1
  doi: 10.1111/j.0021-8901.2004.00905.x
– ident: e_1_2_9_10_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_9_21_1
  doi: 10.1111/j.1365-2699.2010.02345.x
– ident: e_1_2_9_20_1
  doi: 10.1890/04-1120
– ident: e_1_2_9_3_1
  doi: 10.2307/2347614
– volume-title: Occupancy estimation and modeling
  year: 2006
  ident: e_1_2_9_26_1
– ident: e_1_2_9_41_1
  doi: 10.1214/10-AOAS331
– volume: 30
  start-page: 738
  year: 2002
  ident: e_1_2_9_18_1
  article-title: Regional landbird monitoring: Perspectives, from the Northern Rocky Mountains
  publication-title: Wildlife Society Bulletin
– ident: e_1_2_9_38_1
  doi: 10.1093/auk/124.3.986
– ident: e_1_2_9_9_1
  doi: 10.1007/s13253-011-0054-x
– ident: e_1_2_9_6_1
  doi: 10.2307/1912755
– ident: e_1_2_9_11_1
  doi: 10.1146/annurev.ecolsys.110308.120159
– ident: e_1_2_9_39_1
  doi: 10.1890/02-5078
– ident: e_1_2_9_34_1
  doi: 10.1111/j.2041-210X.2011.00182.x
– ident: e_1_2_9_30_1
  doi: 10.1111/j.1365-2664.2005.01112.x
– ident: e_1_2_9_14_1
  doi: 10.1214/aos/1013203451
– volume-title: Generalized Additive Models
  year: 1990
  ident: e_1_2_9_17_1
– ident: e_1_2_9_28_1
  doi: 10.2193/2009-321
– ident: e_1_2_9_35_1
  doi: 10.1890/0012-9658(2006)87[835:GSOMAF]2.0.CO;2
– ident: e_1_2_9_36_1
  doi: 10.2307/4088504
– ident: e_1_2_9_19_1
  doi: 10.2193/0022-541X(2004)068[0774:UAIOLR]2.0.CO;2
– ident: e_1_2_9_23_1
  doi: 10.1093/biomet/93.2.385
– ident: e_1_2_9_40_1
  doi: 10.1111/j.1541-0420.2008.01116.x
– ident: e_1_2_9_15_1
  doi: 10.1016/S0006-3207(03)00190-3
– ident: e_1_2_9_25_1
  doi: 10.1890/0012-9658(2002)083[2248:ESORWD]2.0.CO;2
– ident: e_1_2_9_33_1
  doi: 10.1111/j.1600-0587.2010.06433.x
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1365-2664.2005.01098.x
– ident: e_1_2_9_8_1
  doi: 10.1002/9781119115151
– ident: e_1_2_9_29_1
  doi: 10.1890/09-1287.1
– ident: e_1_2_9_2_1
  doi: 10.1111/j.2041-210X.2011.00141.x
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1467-9876.2011.00769.x
– volume-title: Statistics for Spatio‐Temporal Data
  year: 2011
  ident: e_1_2_9_7_1
– ident: e_1_2_9_24_1
  doi: 10.1890/0012-9658(2006)87[3021:WDAEOR]2.0.CO;2
SSID ssj0009502
Score 2.3151639
Snippet Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at locations where...
Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at...
Summary Several models have been developed to predict the geographic distribution of a species by combining measurements of covariates of occurrence at...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1303
SubjectTerms Algorithms
Applied ecology
Biodiversity
biogeography
BIOMETRIC PRACTICE
Biometrics
biometry
birds
Case-augmented design
Case-control design
Censuses
data collection
Data Interpretation, Statistical
Demography - statistics & numerical data
Ecological modeling
Geographic regions
geographical distribution
Idaho
Modeling
Montana
Parametric models
Perceptual localization
Pixels
Population genetics
prediction
probability
Regression analysis
Sample Size
Site-occupancy model
Spatial models
Spatial point process
Species
Species distribution model
surveys
Use-availability design
Title Predicting the Geographic Distribution of a Species from Presence‐Only Data Subject to Detection Errors
URI https://api.istex.fr/ark:/67375/WNG-SMM311RK-P/fulltext.pdf
https://www.jstor.org/stable/41806049
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01779.x
https://www.ncbi.nlm.nih.gov/pubmed/22937805
https://www.proquest.com/docview/1242261710
https://www.proquest.com/docview/1273121712
https://www.proquest.com/docview/1678570048
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgEtJ44KMwFhjISIi3VHW-_Qh0Y4C6VSsVfbNsx4apUzIlqbTxxE_gN_JLuNdJoxVNaEK8Vem1ldxcXx87x-cS8ipmSZwrFfqJZdaP8sT4SqWpn3AtFcDzSFk87zw5Sg7n0cdFvOj4T3gWptWH6DfccGS4fI0DXKp6c5DHESyFo2CEDK1gCLGV8iHiSaRuIT46Ca7o745a4XCkekVssUnqubajjZnqtpUl4Fd0_cWaungdKN3EuG6SOrhPluvHa7kpy-GqUUP9_Q_lx__z_A_IvQ7L0jdt8D0kt0wxIHfa6paXA3J30kvC1gOyjbC2VYV-RE6nFX4gQso1BRvalWL_dqrpGJV8uyJctLRU0tm5gQRUUzwJQ6fuuJQ2v378PC7OLulYNmCxUridRJuSjk3jyGUF3a-qsqofk_nB_ud3h35X9MHXCK18afMIkkLIE8PkyCgrEwWgRGY61EGgAMFYzngOtiaXcZ5pGdvcWDyMopIszcMdslWUhdkl1HDAwhymYMNMBJ1lPLCh1CbVKQQmzzySrl-w0J0iOhbmOBNXVkbgY4E-Fuhj4XwsLjzC-pbnrSrIDdrsQgwJ-RWSt5jPAtxqwu1cloYeee0Cq-9LVksk3KWx-HL0Xswmk5Cxk09i6pEdF3m9YcQyVD_iHtlbh6LoklAtALoFKLjPRh552f8N6QO_CcnClCu0SUMGy1IW_MUGAI0rgwAee9KGeX8DAcBFLIsBvnTBemN3iLcfjif48-k_t3xGtvF6Sy7aI1tNtTLPASI26oUb_L8BO0BSPQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdgCDEe-FMYCwwwEuItVZ3_eQS60bGlq9ZV9M2yHRumVcmUttLGEx-Bz8gn4c5JoxVNaEK8RcrZSi7n88-Xu98R8jZkUZhL6buRYcYN8ki7UsaxG6VKSIDngTRY75wNo8Ek-DwNp007IKyFqfkh2oAbrgzrr3GBY0B6fZWHAZyFA6-HKVpeF4wrTrsAKO9gg297vjr2rjDw9mrqcEz2Cth0Pa3n2pnW9qrbRpSAYFH5F6vkxetg6TrKtdvU3kMyW71gnZ1y1l0uZFd9_4P78T9p4BF50MBZ-r62v8fkli465G7d4PKyQ-5nLSvsvEM2EdnWxNBPyOmown9EmHVNQYY23di_nSraRzLfpg8XLQ0VdHyuwQfNKRbD0JGtmFL614-fR8XskvbFAiSWEiNKdFHSvl7Y_LKC7lZVWc2fksne7snHgdv0fXAVoitXmDwAv-CnkWaip6URkQRcIhLlK8-TAGJMytIcZHUuwjxRIjS5NliPIqMkzv0tslGUhd4mVKcAh1PYhTXTAUyWpJ7xhdKxisE208Qh8eoLc9WQomNvjhm_cjgCHXPUMUcdc6tjfuEQ1o48r4lBbjBmG4yIi6_gv_lk7GG0CSO6LPYd8s5aVjuXqM4w5y4O-ZfhJz7OMp-x4wM-csiWNb1WMGAJEiClDtlZ2SJv_NCcA3rzkHOf9Rzypr0NHgR_C4lCl0uUiX0GJ1Pm_UUGMI3thAAae1bbefsAHiBG7IwBurTWemN18A_7RxlePv_nka_JvcFJdsgP94cHL8gmytS5RjtkY1Et9UtAjAv5ynqC31xHVlg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLVgCDQe-CiMBQYYCfGWKs53HoGsbIx21UpF3yzbsWHqlFRpKm088RP4jfwS7k3SaEUTmhBvlXpttTfH18fOvecS8jpgYZBJ6dmhYcb2s1DbUkaRHSZKSKDnvjRY7zwchQdT_-MsmLX5T1gL0-hDdBduuDLqeI0LfJGZzUUe-HAU9l0HM7TcPmArSvrAJ2_5oRMjwtMT95IAr9Moh2Oul89mm1k9V860sVXdNKIAAou-P1_nLl7FSjdJbr1LDe6T-fr_Nckp8_6qkn31_Q_px__jgAfkXktm6dsGfQ_JDZ33yO2mveVFj9wddpqwyx7ZRl7byEI_IqfjEt8QYc41BRva9mL_dqpoilK-bRcuWhgq6GShIQItKZbC0HFdL6X0rx8_j_OzC5qKCixWEu-TaFXQVFd1dllO98uyKJePyXSw__n9gd12fbAVcitbmMyHqOAloWbC0dKIUAIrEbHylOtKoDAmYUkGtjoTQRYrEZhMG6xGkWEcZd4O2cqLXO8SqhMgwwnswZppHyaLE9d4QulIRYDMJLZItH7AXLWS6NiZ44xfOhqBjzn6mKOPee1jfm4R1o1cNLIg1xizCxji4itEbz6duHjXhPe5LPIs8qYGVjeXKOeYcRcF_MvoA58Mhx5jJ0d8bJGdGnmdoc9ilD9KLLK3hiJvo9CSA3dzUXGfORZ51X0N8QNfColcFyu0iTwG51Lm_sUGGE3dBwE89qSBefcDXOCL2BcDfFmD9dru4O8Oj4f48ek_j3xJ7ozTAf90ODp6RrbRpEk02iNbVbnSz4EuVvJFHQd-Axe5VRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+the+geographic+distribution+of+a+species+from+presence-only+data+subject+to+detection+errors&rft.jtitle=Biometrics&rft.au=Dorazio%2C+Robert+M&rft.date=2012-12-01&rft.issn=1541-0420&rft.eissn=1541-0420&rft.volume=68&rft.issue=4&rft.spage=1303&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01779.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon