Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness

The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been system...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 68; no. 4; pp. 1046 - 1054
Main Authors Shen, Chung‐Wei, Chen, Yi‐Hau
Format Journal Article
LanguageEnglish
Published Malden, USA Blackwell Publishing Inc 01.12.2012
Wiley-Blackwell
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
1541-0420
DOI10.1111/j.1541-0420.2012.01758.x

Cover

Abstract The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
AbstractList The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data. [PUBLICATION ABSTRACT]
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE approach, can further accommodate data that are missing at random (MAR). Model selection methodologies for GEE, however, have not been systematically developed to allow for missing data. We propose the missing longitudinal information criterion (MLIC) for selection of the mean model, and the MLIC for correlation (MLICC) for selection of the correlation structure in GEE when the outcome data are subject to dropout/monotone missingness and are MAR. Our simulation results reveal that the MLIC and MLICC are effective for variable selection in the mean model and selecting the correlation structure, respectively. We also demonstrate the remarkable drawbacks of naively treating incomplete data as if they were complete and applying the existing GEE model selection method. The utility of proposed method is further illustrated by two real applications involving missing longitudinal outcome data.
Author Shen, Chung‐Wei
Chen, Yi‐Hau
Author_xml – sequence: 1
  fullname: Shen, Chung‐Wei
– sequence: 2
  fullname: Chen, Yi‐Hau
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22463099$$D View this record in MEDLINE/PubMed
BookMark eNqVkU1v1DAQhi1URLeFnwBE4sIly_gzzgWpLdulUrc99ANuljeZVFmy8dZOxJZfj9OUPfQC-GKP32fesWcOyF7rWiQkoTClcX1aTakUNAXBYMqAsinQTOrp9gWZ7IQ9MgEAlXJBv--TgxBWMcwlsFdknzGhOOT5hNwuXIlNcoUNFl3t2qRyPplji9429S8sk1no6rXt6vYumd33dmBCclQUbr125Xj_xbuN67tkUYcQ4xZDeE1eVrYJ-OZpPyQ3p7Prk6_p-eX87OToPC0klTqliLZUWV4pWeRUMU2XtpJY5goEZlzzpcoZaK4lUKwsE4VWFV9iCaKQFi0_JB9H34139z2GzqzrUGDT2BZdHwxVmZYZVYr9HWUZp0P3ZEQ_PENXrvdt_EikBGMqPlVE6t0T1S_XWJqNj43yD-ZPcyOgR6DwLgSP1Q6hYIY5mpUZCpphXGaYo3mco9nG1M_PUou6e2x-523d_IfBz7rBh38ubI7PLhfDMRq8HQ1WoXN-ZyCoBgWMRz0d9Tp0uN3p1v8wKuOZNN8u5ubidn4tM7gwp5F_P_KVdcbe-TqYm6tYWgJQoQEE_w0WVdc0
CODEN BIOMA5
CitedBy_id crossref_primary_10_1002_env_2847
crossref_primary_10_1161_STROKEAHA_123_043605
crossref_primary_10_1002_bimj_201400045
crossref_primary_10_1016_j_jpsychires_2015_07_027
crossref_primary_10_1111_biom_12869
crossref_primary_10_1002_sim_7801
crossref_primary_10_1016_j_spasta_2020_100476
crossref_primary_10_1214_15_AOAS899
crossref_primary_10_1080_03610918_2018_1468457
crossref_primary_10_1093_biostatistics_kxv024
crossref_primary_10_1016_j_drugalcdep_2019_06_018
crossref_primary_10_3390_ijerph18136940
crossref_primary_10_1093_bib_bbad309
crossref_primary_10_1002_pst_2261
crossref_primary_10_1097_JCP_0000000000000633
crossref_primary_10_2478_fcds_2021_0019
crossref_primary_10_1155_2014_303728
crossref_primary_10_1186_s12936_019_2885_9
crossref_primary_10_1080_24754269_2018_1522481
crossref_primary_10_1111_sjos_12160
crossref_primary_10_1007_s00362_019_01115_w
crossref_primary_10_1080_28338073_2024_2363550
crossref_primary_10_1111_biom_13060
crossref_primary_10_1002_wics_1402
crossref_primary_10_1186_s12859_018_2023_7
crossref_primary_10_1111_1475_6773_13230
crossref_primary_10_1097_MD_0000000000003488
crossref_primary_10_29220_CSAM_2023_30_4_355
crossref_primary_10_1016_j_apmr_2018_01_022
crossref_primary_10_1002_bimj_201200236
crossref_primary_10_9758_cpn_2020_18_1_136
crossref_primary_10_1002_sim_9411
crossref_primary_10_1080_02664763_2016_1238049
crossref_primary_10_1080_03610918_2022_2098332
crossref_primary_10_1016_j_drugalcdep_2018_06_024
crossref_primary_10_1111_acps_12324
crossref_primary_10_1111_biom_13330
crossref_primary_10_1002_bimj_201600195
crossref_primary_10_1007_s10182_014_0239_z
crossref_primary_10_1093_ijnp_pyac069
crossref_primary_10_1111_pcn_12508
crossref_primary_10_1371_journal_pone_0066847
Cites_doi 10.1111/j.1541-0420.2005.00331.x
10.1198/016214504000000692
10.1093/biomet/73.1.13
10.1198/016214508000000184
10.1111/j.1467-9876.2005.00531.x
10.1080/01621459.1995.10476493
10.1037/0022-006X.62.2.285
10.1007/978-1-4899-3242-6
10.1002/sim.1241
10.1093/biomet/63.3.581
10.1002/sim.3489
10.2307/1267380
10.1111/1467-9469.00091
10.1111/j.0006-341X.2001.00120.x
10.1080/01621459.1998.10474094
ContentType Journal Article
Copyright 2012 The International Biometric Society
2012, The International Biometric Society
2012, The International Biometric Society.
Copyright_xml – notice: 2012 The International Biometric Society
– notice: 2012, The International Biometric Society
– notice: 2012, The International Biometric Society.
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
JQ2
7X8
7S9
L.6
DOI 10.1111/j.1541-0420.2012.01758.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Computer Science Collection
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

ProQuest Computer Science Collection
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 1054
ExternalDocumentID 2848053401
22463099
10_1111_j_1541_0420_2012_01758_x
BIOM1758
41806023
ark_67375_WNG_NVGT570N_F
US201500148004
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AAYXX
AHGBF
AJBYB
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
H13
JQ2
7X8
7S9
L.6
ID FETCH-LOGICAL-c5158-1eead679f65c916281baf5ed9604e7383b6920838501efa24c86f3bed04c5aea3
IEDL.DBID DR2
ISSN 0006-341X
1541-0420
IngestDate Fri Sep 05 17:19:29 EDT 2025
Mon Sep 08 13:37:47 EDT 2025
Wed Aug 13 08:14:02 EDT 2025
Thu Apr 03 06:55:10 EDT 2025
Thu Apr 24 22:53:53 EDT 2025
Tue Jul 01 00:58:02 EDT 2025
Wed Jan 22 16:58:15 EST 2025
Thu Jul 03 21:22:34 EDT 2025
Wed Oct 30 10:05:42 EDT 2024
Thu Apr 03 09:44:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2012, The International Biometric Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5158-1eead679f65c916281baf5ed9604e7383b6920838501efa24c86f3bed04c5aea3
Notes http://dx.doi.org/10.1111/j.1541-0420.2012.01758.x
ArticleID:BIOM1758
ark:/67375/WNG-NVGT570N-F
istex:05B337E28E91C92D7368EFC08F2C0E935DF517EC
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22463099
PQID 1242261624
PQPubID 35366
PageCount 9
ParticipantIDs proquest_miscellaneous_1678571662
proquest_miscellaneous_1273115415
proquest_journals_1242261624
pubmed_primary_22463099
crossref_primary_10_1111_j_1541_0420_2012_01758_x
crossref_citationtrail_10_1111_j_1541_0420_2012_01758_x
wiley_primary_10_1111_j_1541_0420_2012_01758_x_BIOM1758
jstor_primary_41806023
istex_primary_ark_67375_WNG_NVGT570N_F
fao_agris_US201500148004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2012
PublicationDateYYYYMMDD 2012-12-01
PublicationDate_xml – month: 12
  year: 2012
  text: December 2012
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2012
Publisher Blackwell Publishing Inc
Wiley-Blackwell
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley-Blackwell
– name: Blackwell Publishing Ltd
References Gibbons, R. D. and Hedeker, D. (1994). Application of random effects probit regression model. Journal of Consulting and Clinical Psychology 62, 285-296.
McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models , 2nd edition. London: Chapman and Hall.
Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
Ye, J. M. (1998). On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association 93, 120-131.
Cantoni, E., Mills Flemming, J., and Ronchetti, E. (2005). Variable selection for marginal longitudinal generalized linear models. Biometrics 61, 507-514.
Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis with generalized linear models. Biometrika 73, 13-22.
Wang, L., Zhou, J., and Qu, A. (2011). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics 67, DOI: 10.1111/j.1541-0420.2011.01678.x.
Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association 99, 619-632.
Hin, L.-Y. and Wang, Y.-G. (2009). Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 28, 642-658.
Johnson, B., Lin, D. Y., and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680.
Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics 57, 120-125.
Preisser, J. S., Lohman, K. K., and Rathouz, P. J. (2002). Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine 21, 3035-3054.
Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-675.
Pan, W. (2002). Goodness-of-fit tests for GEE with correlated binary data. Scandinavian Journal of Statistics 29, 101-110.
Verbeke, G., Fieuws, S., Lesaffre, E., Kato, B. S., Foreman, M. D., Broos, P. L. O., and Millisen, K. (2006). A comparison of procedures to correct for baseline differences in the analysis of continuous longitudinal data: A case study. Applied Statistics 55, 93-102.
2004; 99
1976; 63
2002; 29
1986; 73
1995; 90
1961; VI
2006; 55
1973; 15
2002; 21
2011; 67
2008; 103
2005; 61
1998; 93
2001; 57
1994; 62
1989
2009; 28
Bahadur R. R. (e_1_2_9_2_1) 1961
Wang L. (e_1_2_9_17_1) 2011; 67
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_16_1
e_1_2_9_18_1
References_xml – reference: Efron, B. (2004). The estimation of prediction error: Covariance penalties and cross-validation. Journal of the American Statistical Association 99, 619-632.
– reference: Verbeke, G., Fieuws, S., Lesaffre, E., Kato, B. S., Foreman, M. D., Broos, P. L. O., and Millisen, K. (2006). A comparison of procedures to correct for baseline differences in the analysis of continuous longitudinal data: A case study. Applied Statistics 55, 93-102.
– reference: Wang, L., Zhou, J., and Qu, A. (2011). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics 67, DOI: 10.1111/j.1541-0420.2011.01678.x.
– reference: Hin, L.-Y. and Wang, Y.-G. (2009). Working-correlation-structure identification in generalized estimating equations. Statistics in Medicine 28, 642-658.
– reference: Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1995). Analysis of semiparametric regression models for repeated outcomes in the presence of missing data. Journal of the American Statistical Association 90, 106-121.
– reference: Johnson, B., Lin, D. Y., and Zeng, D. (2008). Penalized estimating functions and variable selection in semiparametric regression models. Journal of the American Statistical Association 103, 672-680.
– reference: Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-675.
– reference: McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models , 2nd edition. London: Chapman and Hall.
– reference: Preisser, J. S., Lohman, K. K., and Rathouz, P. J. (2002). Performance of weighted estimating equations for longitudinal binary data with drop-outs missing at random. Statistics in Medicine 21, 3035-3054.
– reference: Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
– reference: Pan, W. (2002). Goodness-of-fit tests for GEE with correlated binary data. Scandinavian Journal of Statistics 29, 101-110.
– reference: Ye, J. M. (1998). On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association 93, 120-131.
– reference: Gibbons, R. D. and Hedeker, D. (1994). Application of random effects probit regression model. Journal of Consulting and Clinical Psychology 62, 285-296.
– reference: Cantoni, E., Mills Flemming, J., and Ronchetti, E. (2005). Variable selection for marginal longitudinal generalized linear models. Biometrics 61, 507-514.
– reference: Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis with generalized linear models. Biometrika 73, 13-22.
– reference: Pan, W. (2001). Akaike's information criterion in generalized estimating equations. Biometrics 57, 120-125.
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis with generalized linear models
  publication-title: Biometrika
– volume: 57
  start-page: 120
  year: 2001
  end-page: 125
  article-title: Akaike’s information criterion in generalized estimating equations
  publication-title: Biometrics
– volume: 55
  start-page: 93
  year: 2006
  end-page: 102
  article-title: A comparison of procedures to correct for baseline differences in the analysis of continuous longitudinal data: A case study
  publication-title: Applied Statistics
– year: 1989
  publication-title: Generalized Linear Models
– volume: 93
  start-page: 120
  year: 1998
  end-page: 131
  article-title: On measuring and correcting the effects of data mining and model selection
  publication-title: Journal of the American Statistical Association
– volume: 67
  year: 2011
  article-title: Penalized generalized estimating equations for high‐dimensional longitudinal data analysis
  publication-title: Biometrics
– volume: 103
  start-page: 672
  year: 2008
  end-page: 680
  article-title: Penalized estimating functions and variable selection in semiparametric regression models
  publication-title: Journal of the American Statistical Association
– volume: 63
  start-page: 581
  year: 1976
  end-page: 592
  article-title: Inference and missing data
  publication-title: Biometrika
– volume: 29
  start-page: 101
  year: 2002
  end-page: 110
  article-title: Goodness‐of‐fit tests for GEE with correlated binary data
  publication-title: Scandinavian Journal of Statistics
– volume: VI
  start-page: 158
  year: 1961
  end-page: 168
– volume: 99
  start-page: 619
  year: 2004
  end-page: 632
  article-title: The estimation of prediction error: Covariance penalties and cross‐validation
  publication-title: Journal of the American Statistical Association
– volume: 62
  start-page: 285
  year: 1994
  end-page: 296
  article-title: Application of random effects probit regression model
  publication-title: Journal of Consulting and Clinical Psychology
– volume: 90
  start-page: 106
  year: 1995
  end-page: 121
  article-title: Analysis of semiparametric regression models for repeated outcomes in the presence of missing data
  publication-title: Journal of the American Statistical Association
– volume: 61
  start-page: 507
  year: 2005
  end-page: 514
  article-title: Variable selection for marginal longitudinal generalized linear models
  publication-title: Biometrics
– volume: 15
  start-page: 661
  year: 1973
  end-page: 675
  article-title: Some comments on Cp
  publication-title: Technometrics
– volume: 21
  start-page: 3035
  year: 2002
  end-page: 3054
  article-title: Performance of weighted estimating equations for longitudinal binary data with drop‐outs missing at random
  publication-title: Statistics in Medicine
– volume: 28
  start-page: 642
  year: 2009
  end-page: 658
  article-title: Working‐correlation‐structure identification in generalized estimating equations
  publication-title: Statistics in Medicine
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1541-0420.2005.00331.x
– volume: 67
  year: 2011
  ident: e_1_2_9_17_1
  article-title: Penalized generalized estimating equations for high‐dimensional longitudinal data analysis
  publication-title: Biometrics
– ident: e_1_2_9_4_1
  doi: 10.1198/016214504000000692
– ident: e_1_2_9_8_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_9_7_1
  doi: 10.1198/016214508000000184
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1467-9876.2005.00531.x
– ident: e_1_2_9_14_1
  doi: 10.1080/01621459.1995.10476493
– ident: e_1_2_9_5_1
  doi: 10.1037/0022-006X.62.2.285
– ident: e_1_2_9_10_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_2_9_13_1
  doi: 10.1002/sim.1241
– ident: e_1_2_9_15_1
  doi: 10.1093/biomet/63.3.581
– start-page: 158
  volume-title: Studies in Item Analysis and Prediction
  year: 1961
  ident: e_1_2_9_2_1
– ident: e_1_2_9_6_1
  doi: 10.1002/sim.3489
– ident: e_1_2_9_9_1
  doi: 10.2307/1267380
– ident: e_1_2_9_12_1
  doi: 10.1111/1467-9469.00091
– ident: e_1_2_9_11_1
  doi: 10.1111/j.0006-341X.2001.00120.x
– ident: e_1_2_9_18_1
  doi: 10.1080/01621459.1998.10474094
SSID ssj0009502
Score 2.2391145
Snippet The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the weighted GEE...
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the...
Summary The generalized estimating equation (GEE) has been a popular tool for marginal regression analysis with longitudinal data, and its extension, the...
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1046
SubjectTerms Algorithms
Analytical estimating
BIOMETRIC METHODOLOGY
Biometrics
biometry
Biometry - methods
Clinical outcomes
Correlations
Data Interpretation, Statistical
Drug design
Epidemiologic Methods
equations
Estimating techniques
Longitudinal data
Longitudinal Studies
Missing data
Modeling
Models, Statistical
Parametric models
Regression Analysis
Repeated measures
Sample Size
School dropouts
Title Model Selection for Generalized Estimating Equations Accommodating Dropout Missingness
URI https://api.istex.fr/ark:/67375/WNG-NVGT570N-F/fulltext.pdf
https://www.jstor.org/stable/41806023
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1541-0420.2012.01758.x
https://www.ncbi.nlm.nih.gov/pubmed/22463099
https://www.proquest.com/docview/1242261624
https://www.proquest.com/docview/1273115415
https://www.proquest.com/docview/1678571662
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED7BENJ4GFAYC4wpSIi3VHESO8njStsNpBaJraNvlh0709QphbWVtv167uI0WtGEJsRbk9pJc_3u8p1z-Q7go4gLrlMVBYYXeZAYrgOVKxMobowoLStUTm8jj8bieJJ8nfJpU_9E78I4fYh2wY08o47X5OBKLzadnCeYCidRSBVaURexxbMu8UkWC5LR73-P7ujvhk44nEq9EjbdLOq590Abd6rHpZojfyXTX69LF-8jpZsct75JDZ_DbH15rjZl1l0tdbe4_UP58f9c_wvYabisf-jA9xIe2aoDT113y5sOPBu1krCLDmwTrXWq0K_gjFqwXfondRMeRIaP1NlvFLAvbq3xBziQZlbn_uCXUyNf-NTZAt3GuP196u-wWvojhA5uU8h-DZPh4PTzcdB0eAgK5FGYvloEskjzUiBSmIiQQ6uSW0OKMTbF5FmLPEKSmPGQ2VJFSZGJMtbWhEnBlVXxLmxV88ruga9DZGJW57Wgu84SbWwZM1FqxoxOSutBuv43ZdHIn1MXjkt5Jw1Cg0oyqCSDytqg8toD1s786SRAHjBnDwEj1TlGajk5iWhdidZuMSR58KlGUXssdTWj6rqUyx_jIzk-OzrlaTiWQw92a5i1AxOWhQI5lgf7a9zJJuIsJPI0ZNJoQzzBh_ZrjBX0AEhVdr6iMSmJKyFn-8sYZC8ck2gRefDGYbr9ASQ-GGNKgbaskflgc8jel28j-vj2n2e-g23a7yqJ9mFrebWy75EPLvUBPDns9XvDg9rjfwM3t00U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEaIceARKDQWMhLg58mN3bR-BJk2hCRJNSm6rXe-6Qo0caBKp9Ncz43WsBlWoQtzymLWTyTfjbzbjbwDeiqTgOlVxYHiRB8xwHahcmUBxY0Rpo0LldDfycCQGE_ZpyqfNOCC6F8bpQ7QbbhQZdb6mAKcN6c0o5wxrYRaH1KIVdxFcPOsiobzDkHdQJbb_Nb6iwBs66XBq9mLRdLOt59ojbVyrbpdqjgyWnH-xbl68jpZustz6MtV_CLP1F3TdKWfd1VJ3i8s_tB__kwcewYOGzvrvHf4ewy1bdeCuG3D5qwP3h60q7KID28RsnTD0EzihKWwz_7iew4Pg8JE9-40I9vdLa_weGtLK6tTv_XSC5Aufhltg5Bj3-j6NeFgt_SGiB59T1n4Kk35v_HEQNEMeggKpFFawFrEs0rwUCJZIxEijVcmtIdEYm2L9rEUeI0_MeBjZUsWsyESZaGtCVnBlVbIDW9W8srvg6xDJmNV5remuM6aNLZNIlDqKjGal9SBd_5yyaBTQaRDHTF6phNChkhwqyaGydqi88CBqV_5wKiA3WLOLiJHqFJO1nBzHtLVE27eYlTx4V8OoPZY6P6MGu5TLb6MDOTo5GPM0HMm-Bzs1zlpDFmWhQJrlwd4aeLJJOguJVA3JNPoQT_CmfRvTBf0HpCo7X5FNSvpKSNv-YoMEhmMdLWIPnjlQtx-A9AcTrCrQlzU0b-wO-eHwy5AePv_nla_h3mA8PJJHh6PPL2CbbFxj0R5sLc9X9iXSw6V-VYf9b6DTT8E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEB5BEag98Ai0NRQwEuLmyI_dtX0EmrQFEhBt2txWu951hVI5pUmk0l_PjNexGlShCnHLY9ZJxt-Mv9mMvwF4K5KC61TFgeFFHjDDdaByZQLFjRGljQqV093Ig6HYH7FPYz5u-p_oXhinD9FuuFFk1PmaAvzclKtBzhmWwiwOqUMr7iK2eNZFPnmPCSQWRJC-x9cEeEOnHE69Xiwar3b13HiklUvV3VJNkcCS7y-XvYs3sdJVkltfpfqPYLL8fa45ZdJdzHW3uPpD-vH_OOAxPGzIrP_eoe8J3LFVB-678Za_OrAxaDVhZx1YJ17rZKGfwjHNYDvzD-spPAgNH7mz30hg_7iyxu-hIa2sTv3eTydHPvNptAXGjXGv79KAh8XcHyB28Dnl7Gcw6veOPu4HzYiHoEAihfWrRSSLNC8FQiUSMZJoVXJrSDLGplg9a5HHeDIzHka2VDErMlEm2pqQFVxZlWzCWjWt7Db4OkQqZnVeK7rrjGljyyQSpY4io1lpPUiXZ1MWjf45jeE4k9fqIHSoJIdKcqisHSovPYjaledOA-QWa7YRMFKdYqqWo8OYNpZo8xZzkgfvahS1x1IXE2qvS7k8Ge7J4fHeEU_Doex7sFnDrDVkURYKJFke7CxxJ5uUM5NI1JBKow_xA960b2OyoH-AVGWnC7JJSV0JSdtfbJC-cKyiRezBlsN0-wVIfTDBmgJ9WSPz1u6QHw6-Dujh839e-RoefNvtyy8Hw88vYJ1MXFfRDqzNLxb2JXLDuX5VB_1vT3JOcA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model+Selection+for+Generalized+Estimating+Equations+Accommodating+Dropout+Missingness&rft.jtitle=Biometrics&rft.au=Shen%2C+Chung%E2%80%90Wei&rft.au=Chen%2C+Yi%E2%80%90Hau&rft.date=2012-12-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=68&rft.issue=4&rft.spage=1046&rft.epage=1054&rft_id=info:doi/10.1111%2Fj.1541-0420.2012.01758.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1541_0420_2012_01758_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon