MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells
OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. APPROACH AND RESULTS—We sh...
Saved in:
Published in | Arteriosclerosis, thrombosis, and vascular biology Vol. 39; no. 7; pp. 1458 - 1474 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Heart Association, Inc
01.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury.
APPROACH AND RESULTS—We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3′ untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury.
CONCLUSIONS—These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS–mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. |
---|---|
AbstractList | Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article. Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article. OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. APPROACH AND RESULTS—We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3′ untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. CONCLUSIONS—These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS–mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. |
Author | Avci, Seyma Nazli Orgill, Dennis P. Icli, Basak Haemmig, Stefan Yang, Xianbin Li, Hao Feinberg, Mark W. Risnes, Ivar Cheng, Henry S. Hollan, Ivana Wu, Winona Giatsidis, Giorgio Croce, Kevin Guimaraes, Raphael Boesch Manica, Andre Lee, Nathan Rynning, Stein Erik Liu, Xin Marchini, Julio F. Ozdemir, Denizhan |
AuthorAffiliation | 5 Heart Institute, University of São Paulo Medical School, São Paulo, Brazil 8 Research Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway 9 AM Biotechnologies, LLC. Houston, TX 77034 4 Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil 3 Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 7 Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway 1 Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 2 Department of Medical Biology, Hacettepe University, Ankara, Turkey 6 Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway |
AuthorAffiliation_xml | – name: 8 Research Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway – name: 6 Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway – name: 9 AM Biotechnologies, LLC. Houston, TX 77034 – name: 7 Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway – name: 5 Heart Institute, University of São Paulo Medical School, São Paulo, Brazil – name: 1 Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – name: 3 Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 – name: 2 Department of Medical Biology, Hacettepe University, Ankara, Turkey – name: 4 Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil |
Author_xml | – sequence: 1 givenname: Basak surname: Icli fullname: Icli, Basak – sequence: 2 givenname: Winona surname: Wu fullname: Wu, Winona – sequence: 3 givenname: Denizhan surname: Ozdemir fullname: Ozdemir, Denizhan – sequence: 4 givenname: Hao surname: Li fullname: Li, Hao – sequence: 5 givenname: Henry surname: Cheng middlename: S. fullname: Cheng, Henry S. – sequence: 6 givenname: Stefan surname: Haemmig fullname: Haemmig, Stefan – sequence: 7 givenname: Xin surname: Liu fullname: Liu, Xin – sequence: 8 givenname: Giorgio surname: Giatsidis fullname: Giatsidis, Giorgio – sequence: 9 givenname: Seyma surname: Avci middlename: Nazli fullname: Avci, Seyma Nazli – sequence: 10 givenname: Nathan surname: Lee fullname: Lee, Nathan – sequence: 11 givenname: Raphael surname: Guimaraes middlename: Boesch fullname: Guimaraes, Raphael Boesch – sequence: 12 givenname: Andre surname: Manica fullname: Manica, Andre – sequence: 13 givenname: Julio surname: Marchini middlename: F. fullname: Marchini, Julio F. – sequence: 14 givenname: Stein surname: Rynning middlename: Erik fullname: Rynning, Stein Erik – sequence: 15 givenname: Ivar surname: Risnes fullname: Risnes, Ivar – sequence: 16 givenname: Ivana surname: Hollan fullname: Hollan, Ivana – sequence: 17 givenname: Kevin surname: Croce fullname: Croce, Kevin – sequence: 18 givenname: Xianbin surname: Yang fullname: Yang, Xianbin – sequence: 19 givenname: Dennis surname: Orgill middlename: P. fullname: Orgill, Dennis P. – sequence: 20 givenname: Mark surname: Feinberg middlename: W. fullname: Feinberg, Mark W. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31092013$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9u1DAQxiNURP_AC3BAPpZDuraTOMkFKV0Vilp2UXfhajnOJGvw2ovtUPZ1eFK82i0qHHqyR_P7vk-jmdPkyFgDSfKa4AtCGJk0y6-XzXUTi_oiI7Sk7FlyQgqapznL2FH847JOC5bT4-TU-28Y45xS_CI5zgiuKSbZSfL7k5LO3s2alJEiLTboDoZRiwAeNWZQdgADXnkkTIeWyvsRIrERyqF2i5bCDRCUGVBzs5zAbL5A55-dDaAMulFGeECXkyvT2bACrYRGMxWckmj-S3WAFlsTVpF5ixZqMELvfKLwMT8Frf3L5HkvtIdXh_cs-fL-ajm9Tm_nHz5Om9tUFqRgqeypFFlbFV1VgizjiJLkIhMYQ1bmfSsKEF1fka4irRQtBgysrErcQt92hOXZWfJu77sZ2zV0EkxwQvONU2vhttwKxf_tGLXig_3JWVHnVU2jwfnBwNkfI_jA18rLOIIwYEfPKc0oppTkVUTfPM76G_KwmAhUeyBux3sHPZcqiKDsLlppTjDf3QA_3EAsar6_gSil_0kf3J8Usb3o3uoAzn_X4z04vgKhw-op4R-30MfS |
CitedBy_id | crossref_primary_10_1161_ATVBAHA_120_315857 crossref_primary_10_1002_adma_202108476 crossref_primary_10_1002_kjm2_12605 crossref_primary_10_3390_biomedicines10050992 crossref_primary_10_3389_fimmu_2024_1467531 crossref_primary_10_3390_cells9071566 crossref_primary_10_1007_s11596_023_2818_2 crossref_primary_10_1111_jcmm_17811 crossref_primary_10_3389_fcvm_2021_814402 crossref_primary_10_1007_s12031_021_01916_5 crossref_primary_10_1016_j_omtn_2022_08_020 crossref_primary_10_3390_ani14162331 crossref_primary_10_1155_2022_1659338 crossref_primary_10_1161_ATVBAHA_120_314330 crossref_primary_10_1016_j_yexcr_2020_112464 crossref_primary_10_1042_CS20220011 crossref_primary_10_3389_fcell_2022_898657 crossref_primary_10_3389_fphys_2020_579892 crossref_primary_10_1016_j_phrs_2020_105390 crossref_primary_10_31083_j_fbl2811282 crossref_primary_10_1016_j_pbiomolbio_2024_07_006 crossref_primary_10_1016_j_biomaterials_2023_122188 crossref_primary_10_1177_1358863X20947467 crossref_primary_10_12688_f1000research_147482_1 crossref_primary_10_12688_f1000research_147482_2 crossref_primary_10_4103_1673_5374_314320 crossref_primary_10_1172_jci_insight_150761 crossref_primary_10_1016_j_tice_2023_102232 crossref_primary_10_1007_s10561_021_09956_2 crossref_primary_10_3390_biomedicines11061655 crossref_primary_10_1186_s12920_021_01108_5 crossref_primary_10_1007_s10557_022_07337_9 crossref_primary_10_1016_j_bbrc_2020_10_032 crossref_primary_10_1002_jcla_24463 crossref_primary_10_3389_fmed_2023_1140979 crossref_primary_10_1016_j_ejphar_2020_173660 crossref_primary_10_1016_j_ultras_2021_106561 crossref_primary_10_1016_j_omtn_2021_03_015 crossref_primary_10_1152_ajpcell_00542_2019 crossref_primary_10_1016_j_bbrc_2020_07_066 crossref_primary_10_3389_fphar_2022_840521 crossref_primary_10_1161_JAHA_121_023085 crossref_primary_10_1089_cell_2024_0059 crossref_primary_10_1111_febs_16160 crossref_primary_10_4155_tde_2022_0003 crossref_primary_10_1007_s12038_022_00295_2 crossref_primary_10_3390_cimb46070423 crossref_primary_10_1111_jcmm_15374 crossref_primary_10_1146_annurev_bioeng_010220_113008 crossref_primary_10_1172_jci_insight_163041 crossref_primary_10_1172_jci_insight_163360 crossref_primary_10_1002_ptr_8121 crossref_primary_10_3390_cells11152439 crossref_primary_10_1096_fj_202302124RR crossref_primary_10_3389_fcvm_2023_1148040 crossref_primary_10_1097_MD_0000000000035597 crossref_primary_10_3389_fgene_2021_650874 crossref_primary_10_1002_2211_5463_13067 crossref_primary_10_3389_fendo_2024_1465975 crossref_primary_10_1007_s10142_025_01535_y crossref_primary_10_3390_cancers12010071 crossref_primary_10_1002_mnfr_202000221 crossref_primary_10_1101_cshperspect_a041230 crossref_primary_10_3390_ijms23158621 crossref_primary_10_1111_cbdd_14434 crossref_primary_10_1002_adhm_202303941 crossref_primary_10_3390_cells11172651 crossref_primary_10_3390_ijms22042045 crossref_primary_10_1155_2022_1433221 crossref_primary_10_1016_j_gene_2024_148141 crossref_primary_10_1111_omi_12415 crossref_primary_10_1016_j_rdc_2022_07_005 crossref_primary_10_1089_wound_2020_1167 crossref_primary_10_1161_ATVBAHA_119_312860 crossref_primary_10_3389_fcvm_2022_881526 crossref_primary_10_1007_s10456_022_09856_3 |
Cites_doi | 10.1152/physrev.00006.2010 10.1161/CIRCRESAHA.116.303577 10.1159/000477597 10.1016/j.jacbts.2017.07.012 10.1161/01.CIR.97.12.1108 10.1093/cvr/cvs143 10.1016/S0140-6736(02)09328-5 10.1074/jbc.M113.506899 10.2337/dc11-s239 10.1097/01.sap.0000202831.43294.02 10.1158/0008-5472.CAN-05-1783 10.1161/CIRCRESAHA.113.301780 10.1016/j.jacc.2008.02.045 10.1172/JCI70212 10.1002/clc.4960270509 10.1093/cvr/cvx098 10.1016/j.cell.2005.01.014 10.1172/JCI61495 10.1093/cvr/cvw039 10.1096/fj.201500163R 10.1161/CIRCRESAHA.113.302089 10.3390/ijms18071419 10.1182/blood-2011-06-363457 10.1096/fj.201802063RR 10.1172/JCI24726 10.1371/journal.pone.0064434 10.1161/CIRCULATIONAHA.110.952325 10.1016/S0140-6736(05)67700-8 10.1097/SLA.0b013e31820563a8 10.1152/ajprenal.00333.2004 10.1161/CIRCRESAHA.107.160630 10.3390/ijms160511294 10.1056/NEJM199512283332608 10.1016/j.arr.2009.04.003 10.1101/gad.290619.116 10.1016/S0140-6736(99)12323-7 10.1016/j.yjmcc.2016.01.007 10.1177/1358863X12438270 10.1093/bja/aeq064 10.2337/dc06-1551 10.1053/j.gastro.2005.03.051 10.1002/ijc.22185 10.1677/JME-10-0043 10.1161/01.CIR.0000093398.16124.29 10.1016/S0735-1097(99)00632-4 10.1111/j.1524-475X.2010.00595.x 10.15252/emmm.201404156 10.1038/21224 10.1161/ATVBAHA.118.310748 10.1016/j.tcm.2018.08.002 10.1016/S0140-6736(99)07072-5 10.1016/j.cell.2011.08.039 10.1172/jci.insight.90651 10.1161/CIRCULATIONAHA.110.009407 10.1161/01.CIR.0000012529.00367.0F 10.1089/hum.2006.17.683 10.1161/CIRCRESAHA.115.303565 10.2174/157016112798829751 10.1111/j.1464-5491.2006.01773.x 10.1161/ATVBAHA.112.248583 10.1097/HCO.0b013e328236741b 10.2174/138945010791591313 10.1101/cshperspect.a006643 10.1016/S0076-6879(08)03013-9 10.1016/S0140-6736(11)60394-2 10.1038/nrc2442 10.1182/blood-2011-06-363713 10.1038/414813a 10.1016/j.jss.2014.02.027 10.1016/j.devcel.2008.07.002 10.1073/pnas.1408472111 10.1016/j.bbamcr.2007.05.014 10.1016/j.ccr.2010.07.001 10.1038/onc.2014.101 10.1016/S0022-2828(02)00310-3 10.1016/j.ahj.2007.01.038 10.1016/j.scr.2017.03.001 10.1097/PRS.0b013e318230c521 10.1007/s12079-016-0352-8 10.1210/er.2016-1122.2017.1.test 10.4103/2277-9175.186987 10.1074/jbc.M300554200 10.1161/CIRCULATIONAHA.107.727347 |
ContentType | Journal Article |
Copyright | 2019 American Heart Association, Inc. |
Copyright_xml | – notice: 2019 American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/ATVBAHA.119.312726 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4636 |
EndPage | 1474 |
ExternalDocumentID | PMC6594892 31092013 10_1161_ATVBAHA_119_312726 10.1161/ATVBAHA.119.312726 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL134849 – fundername: NIGMS NIH HHS grantid: R01 GM115605 – fundername: NHLBI NIH HHS grantid: R01 HL117994 – fundername: NHLBI NIH HHS grantid: R01 HL115141 – fundername: NIDDK NIH HHS grantid: P30 DK034854 – fundername: NHLBI NIH HHS grantid: R01 HL148207 |
GroupedDBID | --- .3C .55 .GJ .Z2 01R 0R~ 1J1 23N 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO ABASU ABBUW ABDIG ABJNI ABPXF ABQRW ABVCZ ABXVJ ABZAD ABZZY ACCJW ACDDN ACEWG ACGFS ACGOD ACILI ACLDA ACPRK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEETU AENEX AFBFQ AFDTB AFFNX AFUWQ AGINI AHJKT AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJNYG AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC AYCSE BAWUL BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FRP FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ J5H JF9 JG8 JK3 JK8 K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B N~M O9- OAG OAH OB2 OCUKA ODA OL1 OLG OLH OLU OLV OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ PZZ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WOQ WOW X3V X3W X7M XXN XYM YFH ZGI ZZMQN AAYXX ADGHP CITATION ACIJW AWKKM CGR CUY CVF ECM EIF NPM OK1 OLW RHF 7X8 5PM ADSXY |
ID | FETCH-LOGICAL-c5156-cf2ca3b85d87ec7310c14a3a00e374fba5eadf81d81bcab0e0e67870befbd1643 |
ISSN | 1079-5642 1524-4636 |
IngestDate | Thu Aug 21 13:47:30 EDT 2025 Fri Jul 11 04:36:04 EDT 2025 Wed Feb 19 02:28:27 EST 2025 Tue Jul 01 00:38:31 EDT 2025 Thu Apr 24 22:58:08 EDT 2025 Fri May 16 03:42:09 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | microRNAs endothelial cells AKT/eNOS signaling angiogenesis tissue repair |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c5156-cf2ca3b85d87ec7310c14a3a00e374fba5eadf81d81bcab0e0e67870befbd1643 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/6594892 |
PMID | 31092013 |
PQID | 2232022148 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594892 proquest_miscellaneous_2232022148 pubmed_primary_31092013 crossref_citationtrail_10_1161_ATVBAHA_119_312726 crossref_primary_10_1161_ATVBAHA_119_312726 wolterskluwer_health_10_1161_ATVBAHA_119_312726 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-July |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-July |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Arteriosclerosis, thrombosis, and vascular biology |
PublicationTitleAlternate | Arterioscler Thromb Vasc Biol |
PublicationYear | 2019 |
Publisher | American Heart Association, Inc |
Publisher_xml | – name: American Heart Association, Inc |
References | e_1_3_5_27_2 e_1_3_5_25_2 e_1_3_5_23_2 e_1_3_5_21_2 e_1_3_5_44_2 e_1_3_5_65_2 e_1_3_5_46_2 e_1_3_5_67_2 e_1_3_5_88_2 e_1_3_5_48_2 e_1_3_5_69_2 e_1_3_5_29_2 e_1_3_5_82_2 e_1_3_5_80_2 e_1_3_5_40_2 e_1_3_5_61_2 e_1_3_5_86_2 Annex BH (e_1_3_5_22_2) 2016; 127 e_1_3_5_42_2 e_1_3_5_63_2 e_1_3_5_84_2 e_1_3_5_7_2 e_1_3_5_9_2 e_1_3_5_3_2 e_1_3_5_5_2 e_1_3_5_39_2 e_1_3_5_16_2 e_1_3_5_37_2 e_1_3_5_14_2 e_1_3_5_12_2 e_1_3_5_35_2 e_1_3_5_10_2 e_1_3_5_33_2 Zhang Y (e_1_3_5_49_2) 2014; 7 e_1_3_5_54_2 e_1_3_5_77_2 e_1_3_5_56_2 e_1_3_5_79_2 e_1_3_5_58_2 e_1_3_5_18_2 e_1_3_5_71_2 e_1_3_5_50_2 e_1_3_5_73_2 e_1_3_5_52_2 e_1_3_5_75_2 Haque R (e_1_3_5_87_2) 2015; 21 e_1_3_5_28_2 e_1_3_5_26_2 e_1_3_5_24_2 e_1_3_5_43_2 e_1_3_5_66_2 e_1_3_5_89_2 e_1_3_5_45_2 e_1_3_5_68_2 e_1_3_5_47_2 e_1_3_5_81_2 e_1_3_5_2_2 e_1_3_5_60_2 e_1_3_5_62_2 e_1_3_5_85_2 e_1_3_5_41_2 e_1_3_5_64_2 e_1_3_5_83_2 e_1_3_5_8_2 e_1_3_5_20_2 Lu ZY (e_1_3_5_31_2) 2016; 8 e_1_3_5_4_2 e_1_3_5_6_2 e_1_3_5_17_2 e_1_3_5_38_2 e_1_3_5_15_2 e_1_3_5_36_2 e_1_3_5_13_2 e_1_3_5_34_2 e_1_3_5_11_2 e_1_3_5_32_2 e_1_3_5_55_2 e_1_3_5_76_2 e_1_3_5_57_2 e_1_3_5_78_2 e_1_3_5_59_2 e_1_3_5_19_2 e_1_3_5_70_2 e_1_3_5_51_2 e_1_3_5_72_2 e_1_3_5_53_2 e_1_3_5_74_2 e_1_3_5_30_2 |
References_xml | – ident: e_1_3_5_33_2 doi: 10.1152/physrev.00006.2010 – ident: e_1_3_5_5_2 doi: 10.1161/CIRCRESAHA.116.303577 – ident: e_1_3_5_86_2 doi: 10.1159/000477597 – ident: e_1_3_5_18_2 doi: 10.1016/j.jacbts.2017.07.012 – ident: e_1_3_5_8_2 doi: 10.1161/01.CIR.97.12.1108 – ident: e_1_3_5_78_2 doi: 10.1093/cvr/cvs143 – ident: e_1_3_5_66_2 doi: 10.1016/S0140-6736(02)09328-5 – ident: e_1_3_5_76_2 doi: 10.1074/jbc.M113.506899 – ident: e_1_3_5_62_2 doi: 10.2337/dc11-s239 – ident: e_1_3_5_57_2 doi: 10.1097/01.sap.0000202831.43294.02 – ident: e_1_3_5_85_2 doi: 10.1158/0008-5472.CAN-05-1783 – ident: e_1_3_5_20_2 doi: 10.1161/CIRCRESAHA.113.301780 – ident: e_1_3_5_25_2 doi: 10.1016/j.jacc.2008.02.045 – ident: e_1_3_5_70_2 doi: 10.1172/JCI70212 – ident: e_1_3_5_24_2 doi: 10.1002/clc.4960270509 – volume: 7 start-page: 8112 year: 2014 ident: e_1_3_5_49_2 article-title: PI3K/AKT signaling pathway plays a role in enhancement of eNOS activity by recombinant human angiotensin converting enzyme 2 in human umbilical vein endothelial cells. publication-title: Int J Clin Exp Pathol – ident: e_1_3_5_37_2 doi: 10.1093/cvr/cvx098 – ident: e_1_3_5_83_2 doi: 10.1016/j.cell.2005.01.014 – ident: e_1_3_5_46_2 doi: 10.1172/JCI61495 – ident: e_1_3_5_36_2 doi: 10.1093/cvr/cvw039 – ident: e_1_3_5_89_2 doi: 10.1096/fj.201500163R – ident: e_1_3_5_88_2 doi: 10.1161/CIRCRESAHA.113.302089 – ident: e_1_3_5_35_2 doi: 10.3390/ijms18071419 – ident: e_1_3_5_44_2 doi: 10.1182/blood-2011-06-363457 – ident: e_1_3_5_53_2 doi: 10.1096/fj.201802063RR – ident: e_1_3_5_75_2 doi: 10.1172/JCI24726 – ident: e_1_3_5_21_2 doi: 10.1371/journal.pone.0064434 – ident: e_1_3_5_40_2 doi: 10.1161/CIRCULATIONAHA.110.952325 – ident: e_1_3_5_3_2 doi: 10.1016/S0140-6736(05)67700-8 – ident: e_1_3_5_56_2 doi: 10.1097/SLA.0b013e31820563a8 – ident: e_1_3_5_61_2 doi: 10.1152/ajprenal.00333.2004 – ident: e_1_3_5_27_2 doi: 10.1161/CIRCRESAHA.107.160630 – ident: e_1_3_5_4_2 doi: 10.3390/ijms160511294 – ident: e_1_3_5_7_2 doi: 10.1056/NEJM199512283332608 – ident: e_1_3_5_60_2 doi: 10.1016/j.arr.2009.04.003 – ident: e_1_3_5_54_2 doi: 10.1101/gad.290619.116 – ident: e_1_3_5_34_2 doi: 10.1016/S0140-6736(99)12323-7 – ident: e_1_3_5_19_2 doi: 10.1016/j.yjmcc.2016.01.007 – ident: e_1_3_5_16_2 doi: 10.1177/1358863X12438270 – ident: e_1_3_5_50_2 doi: 10.1093/bja/aeq064 – ident: e_1_3_5_67_2 doi: 10.2337/dc06-1551 – ident: e_1_3_5_80_2 doi: 10.1053/j.gastro.2005.03.051 – volume: 127 start-page: 224 year: 2016 ident: e_1_3_5_22_2 article-title: Towards the development of novel therapeutics for peripheral artery disease. publication-title: Trans Am Clin Climatol Assoc – volume: 8 start-page: 3666 year: 2016 ident: e_1_3_5_31_2 article-title: Therapeutic ultrasound reverses peripheral ischemia in type 2 diabetic mice through PI3K-Akt-eNOS pathway. publication-title: Am J Transl Res – ident: e_1_3_5_64_2 doi: 10.1016/S0140-6736(99)12323-7 – ident: e_1_3_5_81_2 doi: 10.1002/ijc.22185 – ident: e_1_3_5_55_2 doi: 10.1677/JME-10-0043 – ident: e_1_3_5_12_2 doi: 10.1161/01.CIR.0000093398.16124.29 – ident: e_1_3_5_23_2 doi: 10.1016/S0735-1097(99)00632-4 – ident: e_1_3_5_59_2 doi: 10.1111/j.1524-475X.2010.00595.x – ident: e_1_3_5_63_2 doi: 10.15252/emmm.201404156 – ident: e_1_3_5_73_2 doi: 10.1038/21224 – ident: e_1_3_5_30_2 doi: 10.1161/ATVBAHA.118.310748 – ident: e_1_3_5_39_2 doi: 10.1016/j.tcm.2018.08.002 – ident: e_1_3_5_65_2 doi: 10.1016/S0140-6736(99)07072-5 – ident: e_1_3_5_6_2 doi: 10.1016/j.cell.2011.08.039 – ident: e_1_3_5_48_2 doi: 10.1172/jci.insight.90651 – ident: e_1_3_5_14_2 doi: 10.1161/CIRCULATIONAHA.110.009407 – ident: e_1_3_5_29_2 doi: 10.1161/01.CIR.0000012529.00367.0F – ident: e_1_3_5_10_2 doi: 10.1089/hum.2006.17.683 – ident: e_1_3_5_17_2 doi: 10.1161/CIRCRESAHA.115.303565 – ident: e_1_3_5_71_2 doi: 10.2174/157016112798829751 – ident: e_1_3_5_2_2 doi: 10.1111/j.1464-5491.2006.01773.x – ident: e_1_3_5_41_2 doi: 10.1161/ATVBAHA.112.248583 – ident: e_1_3_5_15_2 doi: 10.1097/HCO.0b013e328236741b – ident: e_1_3_5_32_2 doi: 10.2174/138945010791591313 – ident: e_1_3_5_72_2 doi: 10.1101/cshperspect.a006643 – ident: e_1_3_5_43_2 doi: 10.1016/S0076-6879(08)03013-9 – ident: e_1_3_5_9_2 doi: 10.1016/S0140-6736(11)60394-2 – volume: 21 start-page: 224 year: 2015 ident: e_1_3_5_87_2 article-title: MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells. publication-title: Mol Vis – ident: e_1_3_5_69_2 doi: 10.1038/nrc2442 – ident: e_1_3_5_45_2 doi: 10.1182/blood-2011-06-363713 – ident: e_1_3_5_77_2 doi: 10.1038/414813a – ident: e_1_3_5_52_2 doi: 10.1016/j.jss.2014.02.027 – ident: e_1_3_5_42_2 doi: 10.1016/j.devcel.2008.07.002 – ident: e_1_3_5_74_2 doi: 10.1073/pnas.1408472111 – ident: e_1_3_5_51_2 doi: 10.1016/j.bbamcr.2007.05.014 – ident: e_1_3_5_68_2 doi: 10.1016/j.ccr.2010.07.001 – ident: e_1_3_5_79_2 doi: 10.1038/onc.2014.101 – ident: e_1_3_5_28_2 doi: 10.1016/S0022-2828(02)00310-3 – ident: e_1_3_5_13_2 doi: 10.1016/j.ahj.2007.01.038 – ident: e_1_3_5_47_2 doi: 10.1016/j.scr.2017.03.001 – ident: e_1_3_5_58_2 doi: 10.1097/PRS.0b013e318230c521 – ident: e_1_3_5_26_2 doi: 10.1007/s12079-016-0352-8 – ident: e_1_3_5_38_2 doi: 10.1210/er.2016-1122.2017.1.test – ident: e_1_3_5_84_2 doi: 10.4103/2277-9175.186987 – ident: e_1_3_5_82_2 doi: 10.1074/jbc.M300554200 – ident: e_1_3_5_11_2 doi: 10.1161/CIRCULATIONAHA.107.727347 |
SSID | ssj0004220 |
Score | 2.5655732 |
Snippet | OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic... Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and... |
SourceID | pubmedcentral proquest pubmed crossref wolterskluwer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1458 |
SubjectTerms | Animals Endothelial Cells - physiology Humans Male Mice Mice, Inbred C57BL MicroRNAs - physiology Neovascularization, Physiologic Nitric Oxide Synthase Type III - antagonists & inhibitors Nitric Oxide Synthase Type III - physiology Phosphorylation Proto-Oncogene Proteins c-akt - antagonists & inhibitors Proto-Oncogene Proteins c-akt - physiology Signal Transduction - physiology Tumor Suppressor Proteins - physiology Vascular Endothelial Growth Factor A - antagonists & inhibitors Vascular Endothelial Growth Factor A - physiology |
Title | MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31092013 https://www.proquest.com/docview/2232022148 https://pubmed.ncbi.nlm.nih.gov/PMC6594892 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahg1IYY_dlNzTYW3AS3-1Ht2yElaS7pFvfjCTLrVlih1wYy6_aT9w5kuw6yyhbX0xkO5bs8_lc5HM-EfI2FEHIhCct_KRmeQGHdy6LYgssreuJSIpQ0RePJ8Ho3Ptw4V90Or9aWUubNe-L7V_rSm4jVdgHcsUq2f-QbHNR2AG_Qb6wBQnD9p9kPMZsus-TBCIz3_IXvaVeWF4i7_JlUV2iHis0CfNaPWD8RMCKpfI5VQq4mhQ5neJ9Tc6-9DCbg81MmYssMyzPmuGcOs7vr9qObIKpoEW1ghGBndVEBbjkwpzXLey1yXM1XE8NEIWuyj5mK9aUCn3bqIS_oqzKxlacbTF7f6k1Y1lsr1opRHq9bVa1Jy5UrVQ9caF17TCMASKaXKsvjf51PAs5zNoKWrMdGSCGLW1re5r23Vhu29ML_uxbhQCtQjL9epyMEmjGfdd2Ql2p34LJYq5wglypMF732kI2eYsfxycB8tvEYPTvOBCY4JoZp59a_PSOo_kvzK3VZVqBPdjv_ogc1n3tekV7oc5-xu7dHxVmU6y-q2KKlks0vU_umViGJhqYD0hHlg_J4dhkazwi8z_wSRt80jY-oZFRjU-q8Un5T9rgkwI-B4hO2qCTFiVtoZMqdD4m5-_fTU9GllnewxLgRAeWyB3BXB75WRSCToBHIWyPuWw4lG7o5Zz5oOVyiKcgshKMD-VQBmheuMx5BlG--4QcACLlM0L9MOPMi6UfZQwsv80iLngMwYcTO3luR11i1483FYb7HpdgmaUqBg7s1EgHGnGqpdMlveY_C838cuPZb2qppaCg8b5ZKavNKgX_2wFH2fZgFE-1FJvr1eLvknBHvs0JSP6-e6QsrhQJvMFhlwx2kJDq8ukbRvr81n29IEfX7_FLcrBebuQrcMnX_LV6C34DpMDgGg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-615-5p+regulates+angiogenesis+and+tissue+repair+by+targeting+AKT%2FeNOS+signaling+in+endothelial+cells&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Icli%2C+Basak&rft.au=Wu%2C+Winona&rft.au=Ozdemir%2C+Denizhan&rft.au=Li%2C+Hao&rft.date=2019-07-01&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=39&rft.issue=7&rft.spage=1458&rft.epage=1474&rft_id=info:doi/10.1161%2FATVBAHA.119.312726&rft_id=info%3Apmid%2F31092013&rft.externalDocID=PMC6594892 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon |