MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells

OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. APPROACH AND RESULTS—We sh...

Full description

Saved in:
Bibliographic Details
Published inArteriosclerosis, thrombosis, and vascular biology Vol. 39; no. 7; pp. 1458 - 1474
Main Authors Icli, Basak, Wu, Winona, Ozdemir, Denizhan, Li, Hao, Cheng, Henry S., Haemmig, Stefan, Liu, Xin, Giatsidis, Giorgio, Avci, Seyma Nazli, Lee, Nathan, Guimaraes, Raphael Boesch, Manica, Andre, Marchini, Julio F., Rynning, Stein Erik, Risnes, Ivar, Hollan, Ivana, Croce, Kevin, Yang, Xianbin, Orgill, Dennis P., Feinberg, Mark W.
Format Journal Article
LanguageEnglish
Published United States American Heart Association, Inc 01.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. APPROACH AND RESULTS—We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3′ untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. CONCLUSIONS—These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS–mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury.
AbstractList Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.
Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. Approach and Results- We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3' untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. Conclusions- These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS-mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury. Visual Overview- An online visual overview is available for this article.
OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic factors. We aimed to identify and characterize microRNAs that regulate angiogenesis in response to tissue injury. APPROACH AND RESULTS—We show that in response to tissue injury, microRNA-615-5p (miR-615-5p) is rapidly induced and serves as an antiangiogenic microRNA by targeting endothelial cell VEGF (vascular endothelial growth factor)-AKT (protein kinase B)/eNOS (endothelial nitric oxide synthase) signaling in vitro and in vivo. MiR-615-5p expression is increased in wounds of diabetic db/db mice, in plasma of human subjects with acute coronary syndromes, and in plasma and skin of human subjects with diabetes mellitus. Ectopic expression of miR-615-5p markedly inhibited endothelial cell proliferation, migration, network tube formation in Matrigel, and the release of nitric oxide, whereas miR-615-5p neutralization had the opposite effects. Mechanistic studies using transcriptomic profiling, bioinformatics, 3′ untranslated region reporter and microribonucleoprotein immunoprecipitation assays, and small interfering RNA dependency studies demonstrate that miR-615-5p inhibits the VEGF-AKT/eNOS signaling pathway in endothelial cells by targeting IGF2 (insulin-like growth factor 2) and RASSF2 (Ras-associating domain family member 2). Local delivery of miR-615-5p inhibitors, markedly increased angiogenesis, granulation tissue thickness, and wound closure rates in db/db mice, whereas miR-615-5p mimics impaired these effects. Systemic miR-615-5p neutralization improved skeletal muscle perfusion and angiogenesis after hindlimb ischemia in db/db mice. Finally, modulation of miR-615-5p expression dynamically regulated VEGF-induced AKT signaling and angiogenesis in human skin organoids as a model of tissue injury. CONCLUSIONS—These findings establish miR-615-5p as an inhibitor of VEGF-AKT/eNOS–mediated endothelial cell angiogenic responses and that manipulating miR-615-5p expression could provide a new target for angiogenic therapy in response to tissue injury.
Author Avci, Seyma Nazli
Orgill, Dennis P.
Icli, Basak
Haemmig, Stefan
Yang, Xianbin
Li, Hao
Feinberg, Mark W.
Risnes, Ivar
Cheng, Henry S.
Hollan, Ivana
Wu, Winona
Giatsidis, Giorgio
Croce, Kevin
Guimaraes, Raphael Boesch
Manica, Andre
Lee, Nathan
Rynning, Stein Erik
Liu, Xin
Marchini, Julio F.
Ozdemir, Denizhan
AuthorAffiliation 5 Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
8 Research Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
9 AM Biotechnologies, LLC. Houston, TX 77034
4 Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil
3 Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
7 Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
1 Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
2 Department of Medical Biology, Hacettepe University, Ankara, Turkey
6 Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
AuthorAffiliation_xml – name: 8 Research Department, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
– name: 6 Department of Cardiac Surgery, LHL Hospital Gardermoen, Jessheim, Norway
– name: 9 AM Biotechnologies, LLC. Houston, TX 77034
– name: 7 Rheumatology, Lillehamer Hospital for Rheumatic Diseases, Lillehamer, Norway
– name: 5 Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
– name: 1 Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– name: 3 Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
– name: 2 Department of Medical Biology, Hacettepe University, Ankara, Turkey
– name: 4 Instituto de Cardiologia do Rio Grande do Sul, Fundação Universitária de Cardiologia (ICFUC), Porto Alegre, RS, Brazil
Author_xml – sequence: 1
  givenname: Basak
  surname: Icli
  fullname: Icli, Basak
– sequence: 2
  givenname: Winona
  surname: Wu
  fullname: Wu, Winona
– sequence: 3
  givenname: Denizhan
  surname: Ozdemir
  fullname: Ozdemir, Denizhan
– sequence: 4
  givenname: Hao
  surname: Li
  fullname: Li, Hao
– sequence: 5
  givenname: Henry
  surname: Cheng
  middlename: S.
  fullname: Cheng, Henry S.
– sequence: 6
  givenname: Stefan
  surname: Haemmig
  fullname: Haemmig, Stefan
– sequence: 7
  givenname: Xin
  surname: Liu
  fullname: Liu, Xin
– sequence: 8
  givenname: Giorgio
  surname: Giatsidis
  fullname: Giatsidis, Giorgio
– sequence: 9
  givenname: Seyma
  surname: Avci
  middlename: Nazli
  fullname: Avci, Seyma Nazli
– sequence: 10
  givenname: Nathan
  surname: Lee
  fullname: Lee, Nathan
– sequence: 11
  givenname: Raphael
  surname: Guimaraes
  middlename: Boesch
  fullname: Guimaraes, Raphael Boesch
– sequence: 12
  givenname: Andre
  surname: Manica
  fullname: Manica, Andre
– sequence: 13
  givenname: Julio
  surname: Marchini
  middlename: F.
  fullname: Marchini, Julio F.
– sequence: 14
  givenname: Stein
  surname: Rynning
  middlename: Erik
  fullname: Rynning, Stein Erik
– sequence: 15
  givenname: Ivar
  surname: Risnes
  fullname: Risnes, Ivar
– sequence: 16
  givenname: Ivana
  surname: Hollan
  fullname: Hollan, Ivana
– sequence: 17
  givenname: Kevin
  surname: Croce
  fullname: Croce, Kevin
– sequence: 18
  givenname: Xianbin
  surname: Yang
  fullname: Yang, Xianbin
– sequence: 19
  givenname: Dennis
  surname: Orgill
  middlename: P.
  fullname: Orgill, Dennis P.
– sequence: 20
  givenname: Mark
  surname: Feinberg
  middlename: W.
  fullname: Feinberg, Mark W.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31092013$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxiNURP_AC3BAPpZDuraTOMkFKV0Vilp2UXfhajnOJGvw2ovtUPZ1eFK82i0qHHqyR_P7vk-jmdPkyFgDSfKa4AtCGJk0y6-XzXUTi_oiI7Sk7FlyQgqapznL2FH847JOC5bT4-TU-28Y45xS_CI5zgiuKSbZSfL7k5LO3s2alJEiLTboDoZRiwAeNWZQdgADXnkkTIeWyvsRIrERyqF2i5bCDRCUGVBzs5zAbL5A55-dDaAMulFGeECXkyvT2bACrYRGMxWckmj-S3WAFlsTVpF5ixZqMELvfKLwMT8Frf3L5HkvtIdXh_cs-fL-ajm9Tm_nHz5Om9tUFqRgqeypFFlbFV1VgizjiJLkIhMYQ1bmfSsKEF1fka4irRQtBgysrErcQt92hOXZWfJu77sZ2zV0EkxwQvONU2vhttwKxf_tGLXig_3JWVHnVU2jwfnBwNkfI_jA18rLOIIwYEfPKc0oppTkVUTfPM76G_KwmAhUeyBux3sHPZcqiKDsLlppTjDf3QA_3EAsar6_gSil_0kf3J8Usb3o3uoAzn_X4z04vgKhw-op4R-30MfS
CitedBy_id crossref_primary_10_1161_ATVBAHA_120_315857
crossref_primary_10_1002_adma_202108476
crossref_primary_10_1002_kjm2_12605
crossref_primary_10_3390_biomedicines10050992
crossref_primary_10_3389_fimmu_2024_1467531
crossref_primary_10_3390_cells9071566
crossref_primary_10_1007_s11596_023_2818_2
crossref_primary_10_1111_jcmm_17811
crossref_primary_10_3389_fcvm_2021_814402
crossref_primary_10_1007_s12031_021_01916_5
crossref_primary_10_1016_j_omtn_2022_08_020
crossref_primary_10_3390_ani14162331
crossref_primary_10_1155_2022_1659338
crossref_primary_10_1161_ATVBAHA_120_314330
crossref_primary_10_1016_j_yexcr_2020_112464
crossref_primary_10_1042_CS20220011
crossref_primary_10_3389_fcell_2022_898657
crossref_primary_10_3389_fphys_2020_579892
crossref_primary_10_1016_j_phrs_2020_105390
crossref_primary_10_31083_j_fbl2811282
crossref_primary_10_1016_j_pbiomolbio_2024_07_006
crossref_primary_10_1016_j_biomaterials_2023_122188
crossref_primary_10_1177_1358863X20947467
crossref_primary_10_12688_f1000research_147482_1
crossref_primary_10_12688_f1000research_147482_2
crossref_primary_10_4103_1673_5374_314320
crossref_primary_10_1172_jci_insight_150761
crossref_primary_10_1016_j_tice_2023_102232
crossref_primary_10_1007_s10561_021_09956_2
crossref_primary_10_3390_biomedicines11061655
crossref_primary_10_1186_s12920_021_01108_5
crossref_primary_10_1007_s10557_022_07337_9
crossref_primary_10_1016_j_bbrc_2020_10_032
crossref_primary_10_1002_jcla_24463
crossref_primary_10_3389_fmed_2023_1140979
crossref_primary_10_1016_j_ejphar_2020_173660
crossref_primary_10_1016_j_ultras_2021_106561
crossref_primary_10_1016_j_omtn_2021_03_015
crossref_primary_10_1152_ajpcell_00542_2019
crossref_primary_10_1016_j_bbrc_2020_07_066
crossref_primary_10_3389_fphar_2022_840521
crossref_primary_10_1161_JAHA_121_023085
crossref_primary_10_1089_cell_2024_0059
crossref_primary_10_1111_febs_16160
crossref_primary_10_4155_tde_2022_0003
crossref_primary_10_1007_s12038_022_00295_2
crossref_primary_10_3390_cimb46070423
crossref_primary_10_1111_jcmm_15374
crossref_primary_10_1146_annurev_bioeng_010220_113008
crossref_primary_10_1172_jci_insight_163041
crossref_primary_10_1172_jci_insight_163360
crossref_primary_10_1002_ptr_8121
crossref_primary_10_3390_cells11152439
crossref_primary_10_1096_fj_202302124RR
crossref_primary_10_3389_fcvm_2023_1148040
crossref_primary_10_1097_MD_0000000000035597
crossref_primary_10_3389_fgene_2021_650874
crossref_primary_10_1002_2211_5463_13067
crossref_primary_10_3389_fendo_2024_1465975
crossref_primary_10_1007_s10142_025_01535_y
crossref_primary_10_3390_cancers12010071
crossref_primary_10_1002_mnfr_202000221
crossref_primary_10_1101_cshperspect_a041230
crossref_primary_10_3390_ijms23158621
crossref_primary_10_1111_cbdd_14434
crossref_primary_10_1002_adhm_202303941
crossref_primary_10_3390_cells11172651
crossref_primary_10_3390_ijms22042045
crossref_primary_10_1155_2022_1433221
crossref_primary_10_1016_j_gene_2024_148141
crossref_primary_10_1111_omi_12415
crossref_primary_10_1016_j_rdc_2022_07_005
crossref_primary_10_1089_wound_2020_1167
crossref_primary_10_1161_ATVBAHA_119_312860
crossref_primary_10_3389_fcvm_2022_881526
crossref_primary_10_1007_s10456_022_09856_3
Cites_doi 10.1152/physrev.00006.2010
10.1161/CIRCRESAHA.116.303577
10.1159/000477597
10.1016/j.jacbts.2017.07.012
10.1161/01.CIR.97.12.1108
10.1093/cvr/cvs143
10.1016/S0140-6736(02)09328-5
10.1074/jbc.M113.506899
10.2337/dc11-s239
10.1097/01.sap.0000202831.43294.02
10.1158/0008-5472.CAN-05-1783
10.1161/CIRCRESAHA.113.301780
10.1016/j.jacc.2008.02.045
10.1172/JCI70212
10.1002/clc.4960270509
10.1093/cvr/cvx098
10.1016/j.cell.2005.01.014
10.1172/JCI61495
10.1093/cvr/cvw039
10.1096/fj.201500163R
10.1161/CIRCRESAHA.113.302089
10.3390/ijms18071419
10.1182/blood-2011-06-363457
10.1096/fj.201802063RR
10.1172/JCI24726
10.1371/journal.pone.0064434
10.1161/CIRCULATIONAHA.110.952325
10.1016/S0140-6736(05)67700-8
10.1097/SLA.0b013e31820563a8
10.1152/ajprenal.00333.2004
10.1161/CIRCRESAHA.107.160630
10.3390/ijms160511294
10.1056/NEJM199512283332608
10.1016/j.arr.2009.04.003
10.1101/gad.290619.116
10.1016/S0140-6736(99)12323-7
10.1016/j.yjmcc.2016.01.007
10.1177/1358863X12438270
10.1093/bja/aeq064
10.2337/dc06-1551
10.1053/j.gastro.2005.03.051
10.1002/ijc.22185
10.1677/JME-10-0043
10.1161/01.CIR.0000093398.16124.29
10.1016/S0735-1097(99)00632-4
10.1111/j.1524-475X.2010.00595.x
10.15252/emmm.201404156
10.1038/21224
10.1161/ATVBAHA.118.310748
10.1016/j.tcm.2018.08.002
10.1016/S0140-6736(99)07072-5
10.1016/j.cell.2011.08.039
10.1172/jci.insight.90651
10.1161/CIRCULATIONAHA.110.009407
10.1161/01.CIR.0000012529.00367.0F
10.1089/hum.2006.17.683
10.1161/CIRCRESAHA.115.303565
10.2174/157016112798829751
10.1111/j.1464-5491.2006.01773.x
10.1161/ATVBAHA.112.248583
10.1097/HCO.0b013e328236741b
10.2174/138945010791591313
10.1101/cshperspect.a006643
10.1016/S0076-6879(08)03013-9
10.1016/S0140-6736(11)60394-2
10.1038/nrc2442
10.1182/blood-2011-06-363713
10.1038/414813a
10.1016/j.jss.2014.02.027
10.1016/j.devcel.2008.07.002
10.1073/pnas.1408472111
10.1016/j.bbamcr.2007.05.014
10.1016/j.ccr.2010.07.001
10.1038/onc.2014.101
10.1016/S0022-2828(02)00310-3
10.1016/j.ahj.2007.01.038
10.1016/j.scr.2017.03.001
10.1097/PRS.0b013e318230c521
10.1007/s12079-016-0352-8
10.1210/er.2016-1122.2017.1.test
10.4103/2277-9175.186987
10.1074/jbc.M300554200
10.1161/CIRCULATIONAHA.107.727347
ContentType Journal Article
Copyright 2019 American Heart Association, Inc.
Copyright_xml – notice: 2019 American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/ATVBAHA.119.312726
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4636
EndPage 1474
ExternalDocumentID PMC6594892
31092013
10_1161_ATVBAHA_119_312726
10.1161/ATVBAHA.119.312726
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL134849
– fundername: NIGMS NIH HHS
  grantid: R01 GM115605
– fundername: NHLBI NIH HHS
  grantid: R01 HL117994
– fundername: NHLBI NIH HHS
  grantid: R01 HL115141
– fundername: NIDDK NIH HHS
  grantid: P30 DK034854
– fundername: NHLBI NIH HHS
  grantid: R01 HL148207
GroupedDBID ---
.3C
.55
.GJ
.Z2
01R
0R~
1J1
23N
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABPXF
ABQRW
ABVCZ
ABXVJ
ABZAD
ABZZY
ACCJW
ACDDN
ACEWG
ACGFS
ACGOD
ACILI
ACLDA
ACPRK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEETU
AENEX
AFBFQ
AFDTB
AFFNX
AFUWQ
AGINI
AHJKT
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJNYG
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
AYCSE
BAWUL
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FRP
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
J5H
JF9
JG8
JK3
JK8
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
N~M
O9-
OAG
OAH
OB2
OCUKA
ODA
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
PZZ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
ZGI
ZZMQN
AAYXX
ADGHP
CITATION
ACIJW
AWKKM
CGR
CUY
CVF
ECM
EIF
NPM
OK1
OLW
RHF
7X8
5PM
ADSXY
ID FETCH-LOGICAL-c5156-cf2ca3b85d87ec7310c14a3a00e374fba5eadf81d81bcab0e0e67870befbd1643
ISSN 1079-5642
1524-4636
IngestDate Thu Aug 21 13:47:30 EDT 2025
Fri Jul 11 04:36:04 EDT 2025
Wed Feb 19 02:28:27 EST 2025
Tue Jul 01 00:38:31 EDT 2025
Thu Apr 24 22:58:08 EDT 2025
Fri May 16 03:42:09 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords microRNAs
endothelial cells
AKT/eNOS signaling
angiogenesis
tissue repair
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5156-cf2ca3b85d87ec7310c14a3a00e374fba5eadf81d81bcab0e0e67870befbd1643
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/6594892
PMID 31092013
PQID 2232022148
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6594892
proquest_miscellaneous_2232022148
pubmed_primary_31092013
crossref_citationtrail_10_1161_ATVBAHA_119_312726
crossref_primary_10_1161_ATVBAHA_119_312726
wolterskluwer_health_10_1161_ATVBAHA_119_312726
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-July
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Arteriosclerosis, thrombosis, and vascular biology
PublicationTitleAlternate Arterioscler Thromb Vasc Biol
PublicationYear 2019
Publisher American Heart Association, Inc
Publisher_xml – name: American Heart Association, Inc
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_65_2
e_1_3_5_46_2
e_1_3_5_67_2
e_1_3_5_88_2
e_1_3_5_48_2
e_1_3_5_69_2
e_1_3_5_29_2
e_1_3_5_82_2
e_1_3_5_80_2
e_1_3_5_40_2
e_1_3_5_61_2
e_1_3_5_86_2
Annex BH (e_1_3_5_22_2) 2016; 127
e_1_3_5_42_2
e_1_3_5_63_2
e_1_3_5_84_2
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
e_1_3_5_33_2
Zhang Y (e_1_3_5_49_2) 2014; 7
e_1_3_5_54_2
e_1_3_5_77_2
e_1_3_5_56_2
e_1_3_5_79_2
e_1_3_5_58_2
e_1_3_5_18_2
e_1_3_5_71_2
e_1_3_5_50_2
e_1_3_5_73_2
e_1_3_5_52_2
e_1_3_5_75_2
Haque R (e_1_3_5_87_2) 2015; 21
e_1_3_5_28_2
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_43_2
e_1_3_5_66_2
e_1_3_5_89_2
e_1_3_5_45_2
e_1_3_5_68_2
e_1_3_5_47_2
e_1_3_5_81_2
e_1_3_5_2_2
e_1_3_5_60_2
e_1_3_5_62_2
e_1_3_5_85_2
e_1_3_5_41_2
e_1_3_5_64_2
e_1_3_5_83_2
e_1_3_5_8_2
e_1_3_5_20_2
Lu ZY (e_1_3_5_31_2) 2016; 8
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_13_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_76_2
e_1_3_5_57_2
e_1_3_5_78_2
e_1_3_5_59_2
e_1_3_5_19_2
e_1_3_5_70_2
e_1_3_5_51_2
e_1_3_5_72_2
e_1_3_5_53_2
e_1_3_5_74_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_33_2
  doi: 10.1152/physrev.00006.2010
– ident: e_1_3_5_5_2
  doi: 10.1161/CIRCRESAHA.116.303577
– ident: e_1_3_5_86_2
  doi: 10.1159/000477597
– ident: e_1_3_5_18_2
  doi: 10.1016/j.jacbts.2017.07.012
– ident: e_1_3_5_8_2
  doi: 10.1161/01.CIR.97.12.1108
– ident: e_1_3_5_78_2
  doi: 10.1093/cvr/cvs143
– ident: e_1_3_5_66_2
  doi: 10.1016/S0140-6736(02)09328-5
– ident: e_1_3_5_76_2
  doi: 10.1074/jbc.M113.506899
– ident: e_1_3_5_62_2
  doi: 10.2337/dc11-s239
– ident: e_1_3_5_57_2
  doi: 10.1097/01.sap.0000202831.43294.02
– ident: e_1_3_5_85_2
  doi: 10.1158/0008-5472.CAN-05-1783
– ident: e_1_3_5_20_2
  doi: 10.1161/CIRCRESAHA.113.301780
– ident: e_1_3_5_25_2
  doi: 10.1016/j.jacc.2008.02.045
– ident: e_1_3_5_70_2
  doi: 10.1172/JCI70212
– ident: e_1_3_5_24_2
  doi: 10.1002/clc.4960270509
– volume: 7
  start-page: 8112
  year: 2014
  ident: e_1_3_5_49_2
  article-title: PI3K/AKT signaling pathway plays a role in enhancement of eNOS activity by recombinant human angiotensin converting enzyme 2 in human umbilical vein endothelial cells.
  publication-title: Int J Clin Exp Pathol
– ident: e_1_3_5_37_2
  doi: 10.1093/cvr/cvx098
– ident: e_1_3_5_83_2
  doi: 10.1016/j.cell.2005.01.014
– ident: e_1_3_5_46_2
  doi: 10.1172/JCI61495
– ident: e_1_3_5_36_2
  doi: 10.1093/cvr/cvw039
– ident: e_1_3_5_89_2
  doi: 10.1096/fj.201500163R
– ident: e_1_3_5_88_2
  doi: 10.1161/CIRCRESAHA.113.302089
– ident: e_1_3_5_35_2
  doi: 10.3390/ijms18071419
– ident: e_1_3_5_44_2
  doi: 10.1182/blood-2011-06-363457
– ident: e_1_3_5_53_2
  doi: 10.1096/fj.201802063RR
– ident: e_1_3_5_75_2
  doi: 10.1172/JCI24726
– ident: e_1_3_5_21_2
  doi: 10.1371/journal.pone.0064434
– ident: e_1_3_5_40_2
  doi: 10.1161/CIRCULATIONAHA.110.952325
– ident: e_1_3_5_3_2
  doi: 10.1016/S0140-6736(05)67700-8
– ident: e_1_3_5_56_2
  doi: 10.1097/SLA.0b013e31820563a8
– ident: e_1_3_5_61_2
  doi: 10.1152/ajprenal.00333.2004
– ident: e_1_3_5_27_2
  doi: 10.1161/CIRCRESAHA.107.160630
– ident: e_1_3_5_4_2
  doi: 10.3390/ijms160511294
– ident: e_1_3_5_7_2
  doi: 10.1056/NEJM199512283332608
– ident: e_1_3_5_60_2
  doi: 10.1016/j.arr.2009.04.003
– ident: e_1_3_5_54_2
  doi: 10.1101/gad.290619.116
– ident: e_1_3_5_34_2
  doi: 10.1016/S0140-6736(99)12323-7
– ident: e_1_3_5_19_2
  doi: 10.1016/j.yjmcc.2016.01.007
– ident: e_1_3_5_16_2
  doi: 10.1177/1358863X12438270
– ident: e_1_3_5_50_2
  doi: 10.1093/bja/aeq064
– ident: e_1_3_5_67_2
  doi: 10.2337/dc06-1551
– ident: e_1_3_5_80_2
  doi: 10.1053/j.gastro.2005.03.051
– volume: 127
  start-page: 224
  year: 2016
  ident: e_1_3_5_22_2
  article-title: Towards the development of novel therapeutics for peripheral artery disease.
  publication-title: Trans Am Clin Climatol Assoc
– volume: 8
  start-page: 3666
  year: 2016
  ident: e_1_3_5_31_2
  article-title: Therapeutic ultrasound reverses peripheral ischemia in type 2 diabetic mice through PI3K-Akt-eNOS pathway.
  publication-title: Am J Transl Res
– ident: e_1_3_5_64_2
  doi: 10.1016/S0140-6736(99)12323-7
– ident: e_1_3_5_81_2
  doi: 10.1002/ijc.22185
– ident: e_1_3_5_55_2
  doi: 10.1677/JME-10-0043
– ident: e_1_3_5_12_2
  doi: 10.1161/01.CIR.0000093398.16124.29
– ident: e_1_3_5_23_2
  doi: 10.1016/S0735-1097(99)00632-4
– ident: e_1_3_5_59_2
  doi: 10.1111/j.1524-475X.2010.00595.x
– ident: e_1_3_5_63_2
  doi: 10.15252/emmm.201404156
– ident: e_1_3_5_73_2
  doi: 10.1038/21224
– ident: e_1_3_5_30_2
  doi: 10.1161/ATVBAHA.118.310748
– ident: e_1_3_5_39_2
  doi: 10.1016/j.tcm.2018.08.002
– ident: e_1_3_5_65_2
  doi: 10.1016/S0140-6736(99)07072-5
– ident: e_1_3_5_6_2
  doi: 10.1016/j.cell.2011.08.039
– ident: e_1_3_5_48_2
  doi: 10.1172/jci.insight.90651
– ident: e_1_3_5_14_2
  doi: 10.1161/CIRCULATIONAHA.110.009407
– ident: e_1_3_5_29_2
  doi: 10.1161/01.CIR.0000012529.00367.0F
– ident: e_1_3_5_10_2
  doi: 10.1089/hum.2006.17.683
– ident: e_1_3_5_17_2
  doi: 10.1161/CIRCRESAHA.115.303565
– ident: e_1_3_5_71_2
  doi: 10.2174/157016112798829751
– ident: e_1_3_5_2_2
  doi: 10.1111/j.1464-5491.2006.01773.x
– ident: e_1_3_5_41_2
  doi: 10.1161/ATVBAHA.112.248583
– ident: e_1_3_5_15_2
  doi: 10.1097/HCO.0b013e328236741b
– ident: e_1_3_5_32_2
  doi: 10.2174/138945010791591313
– ident: e_1_3_5_72_2
  doi: 10.1101/cshperspect.a006643
– ident: e_1_3_5_43_2
  doi: 10.1016/S0076-6879(08)03013-9
– ident: e_1_3_5_9_2
  doi: 10.1016/S0140-6736(11)60394-2
– volume: 21
  start-page: 224
  year: 2015
  ident: e_1_3_5_87_2
  article-title: MicroRNA-152 represses VEGF and TGFβ1 expressions through post-transcriptional inhibition of (Pro)renin receptor in human retinal endothelial cells.
  publication-title: Mol Vis
– ident: e_1_3_5_69_2
  doi: 10.1038/nrc2442
– ident: e_1_3_5_45_2
  doi: 10.1182/blood-2011-06-363713
– ident: e_1_3_5_77_2
  doi: 10.1038/414813a
– ident: e_1_3_5_52_2
  doi: 10.1016/j.jss.2014.02.027
– ident: e_1_3_5_42_2
  doi: 10.1016/j.devcel.2008.07.002
– ident: e_1_3_5_74_2
  doi: 10.1073/pnas.1408472111
– ident: e_1_3_5_51_2
  doi: 10.1016/j.bbamcr.2007.05.014
– ident: e_1_3_5_68_2
  doi: 10.1016/j.ccr.2010.07.001
– ident: e_1_3_5_79_2
  doi: 10.1038/onc.2014.101
– ident: e_1_3_5_28_2
  doi: 10.1016/S0022-2828(02)00310-3
– ident: e_1_3_5_13_2
  doi: 10.1016/j.ahj.2007.01.038
– ident: e_1_3_5_47_2
  doi: 10.1016/j.scr.2017.03.001
– ident: e_1_3_5_58_2
  doi: 10.1097/PRS.0b013e318230c521
– ident: e_1_3_5_26_2
  doi: 10.1007/s12079-016-0352-8
– ident: e_1_3_5_38_2
  doi: 10.1210/er.2016-1122.2017.1.test
– ident: e_1_3_5_84_2
  doi: 10.4103/2277-9175.186987
– ident: e_1_3_5_82_2
  doi: 10.1074/jbc.M300554200
– ident: e_1_3_5_11_2
  doi: 10.1161/CIRCULATIONAHA.107.727347
SSID ssj0004220
Score 2.5655732
Snippet OBJECTIVE—In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and antiangiogenic...
Objective- In response to tissue injury, the appropriate progression of events in angiogenesis is controlled by a careful balance between pro and...
SourceID pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1458
SubjectTerms Animals
Endothelial Cells - physiology
Humans
Male
Mice
Mice, Inbred C57BL
MicroRNAs - physiology
Neovascularization, Physiologic
Nitric Oxide Synthase Type III - antagonists & inhibitors
Nitric Oxide Synthase Type III - physiology
Phosphorylation
Proto-Oncogene Proteins c-akt - antagonists & inhibitors
Proto-Oncogene Proteins c-akt - physiology
Signal Transduction - physiology
Tumor Suppressor Proteins - physiology
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - physiology
Title MicroRNA-615-5p Regulates Angiogenesis and Tissue Repair by Targeting AKT/eNOS (Protein Kinase B/Endothelial Nitric Oxide Synthase) Signaling in Endothelial Cells
URI https://www.ncbi.nlm.nih.gov/pubmed/31092013
https://www.proquest.com/docview/2232022148
https://pubmed.ncbi.nlm.nih.gov/PMC6594892
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBahg1IYY_dlNzTYW3AS3-1Ht2yElaS7pFvfjCTLrVlih1wYy6_aT9w5kuw6yyhbX0xkO5bs8_lc5HM-EfI2FEHIhCct_KRmeQGHdy6LYgssreuJSIpQ0RePJ8Ho3Ptw4V90Or9aWUubNe-L7V_rSm4jVdgHcsUq2f-QbHNR2AG_Qb6wBQnD9p9kPMZsus-TBCIz3_IXvaVeWF4i7_JlUV2iHis0CfNaPWD8RMCKpfI5VQq4mhQ5neJ9Tc6-9DCbg81MmYssMyzPmuGcOs7vr9qObIKpoEW1ghGBndVEBbjkwpzXLey1yXM1XE8NEIWuyj5mK9aUCn3bqIS_oqzKxlacbTF7f6k1Y1lsr1opRHq9bVa1Jy5UrVQ9caF17TCMASKaXKsvjf51PAs5zNoKWrMdGSCGLW1re5r23Vhu29ML_uxbhQCtQjL9epyMEmjGfdd2Ql2p34LJYq5wglypMF732kI2eYsfxycB8tvEYPTvOBCY4JoZp59a_PSOo_kvzK3VZVqBPdjv_ogc1n3tekV7oc5-xu7dHxVmU6y-q2KKlks0vU_umViGJhqYD0hHlg_J4dhkazwi8z_wSRt80jY-oZFRjU-q8Un5T9rgkwI-B4hO2qCTFiVtoZMqdD4m5-_fTU9GllnewxLgRAeWyB3BXB75WRSCToBHIWyPuWw4lG7o5Zz5oOVyiKcgshKMD-VQBmheuMx5BlG--4QcACLlM0L9MOPMi6UfZQwsv80iLngMwYcTO3luR11i1483FYb7HpdgmaUqBg7s1EgHGnGqpdMlveY_C838cuPZb2qppaCg8b5ZKavNKgX_2wFH2fZgFE-1FJvr1eLvknBHvs0JSP6-e6QsrhQJvMFhlwx2kJDq8ukbRvr81n29IEfX7_FLcrBebuQrcMnX_LV6C34DpMDgGg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MicroRNA-615-5p+regulates+angiogenesis+and+tissue+repair+by+targeting+AKT%2FeNOS+signaling+in+endothelial+cells&rft.jtitle=Arteriosclerosis%2C+thrombosis%2C+and+vascular+biology&rft.au=Icli%2C+Basak&rft.au=Wu%2C+Winona&rft.au=Ozdemir%2C+Denizhan&rft.au=Li%2C+Hao&rft.date=2019-07-01&rft.issn=1079-5642&rft.eissn=1524-4636&rft.volume=39&rft.issue=7&rft.spage=1458&rft.epage=1474&rft_id=info:doi/10.1161%2FATVBAHA.119.312726&rft_id=info%3Apmid%2F31092013&rft.externalDocID=PMC6594892
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1079-5642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1079-5642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1079-5642&client=summon