Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?

The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 25; no. 37; pp. 5153 - 5176
Main Authors Sun, Xuemei, Sun, Hao, Li, Houpu, Peng, Huisheng
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 04.10.2013
WILEY‐VCH Verlag
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201301926

Cover

Loading…
Abstract The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them.
AbstractList The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them.
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene.The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene.
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene.
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them.
Author Peng, Huisheng
Sun, Xuemei
Sun, Hao
Li, Houpu
Author_xml – sequence: 1
  givenname: Xuemei
  surname: Sun
  fullname: Sun, Xuemei
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
– sequence: 2
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
– sequence: 3
  givenname: Houpu
  surname: Li
  fullname: Li, Houpu
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
– sequence: 4
  givenname: Huisheng
  surname: Peng
  fullname: Peng, Huisheng
  email: penghs@fudan.edu.cn
  organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23813859$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1v00AQhleoiKaFK0fkIxeH_fDsBxcUJW1AagOHonBbrZ0xLNhes-tQ8u9xlBKhSlU5zWGe5x1p3jNy0oUOCXnJ6JRRyt-4TeumnDJBmeHyCZkw4CwvqIETMqFGQG5koU_JWUrfKaVGUvmMnHKhmdBgJuRigb-wCb3vvmafQrNrMWbz0PYh-QGzazdg9K5Jb7O5i2XospXrwrAtMWUhZsvo-m_Y4bvn5Gk9Uvjibp6Tz5cXN_P3-dXH5Yf57CqvgIHMK1FDUTlV1VorIWusOMp6g5LyslJgQCkllSrHjdI1R0AKTBoOtYENghbn5PUht4_h5xbTYFufKmwa12HYJssUCBDCAH0cLQqtCqmY_h90n6klH9FXd-i2bHFj--hbF3f270NHYHoAqhhSilgfEUbtvjG7b8weGxuF4p5Q-cENPnRDdL55WDMH7dY3uHvkiJ0trmf_uvnB9WnA30fXxR9WKqHArldLK1dr_uVmsbBr8QfHwLfu
CitedBy_id crossref_primary_10_1016_j_compositesb_2021_109113
crossref_primary_10_1016_j_engfracmech_2023_109734
crossref_primary_10_1088_1361_651X_aaab7a
crossref_primary_10_1016_j_polymer_2015_01_003
crossref_primary_10_1016_j_pmatsci_2018_10_002
crossref_primary_10_1039_C7TA00863E
crossref_primary_10_1021_acsnano_6b04028
crossref_primary_10_1021_acsami_6b06096
crossref_primary_10_1039_C5RA01851J
crossref_primary_10_1016_j_jmmm_2024_171979
crossref_primary_10_1039_C6RA01772J
crossref_primary_10_1039_C6TA01893A
crossref_primary_10_7124_bc_000AA0
crossref_primary_10_1002_mawe_201700273
crossref_primary_10_1016_j_carbpol_2014_05_016
crossref_primary_10_1134_S0018151X20020017
crossref_primary_10_1002_adem_201700745
crossref_primary_10_1021_acs_chemrev_8b00392
crossref_primary_10_1007_s10118_021_2553_8
crossref_primary_10_1016_j_carbon_2018_04_039
crossref_primary_10_1039_D4NH00224E
crossref_primary_10_1021_acsbiomaterials_8b00190
crossref_primary_10_1177_00219983231207441
crossref_primary_10_1016_j_eurpolymj_2017_12_038
crossref_primary_10_1002_mawe_202400070
crossref_primary_10_1002_pen_25262
crossref_primary_10_1088_2053_1591_ab2edf
crossref_primary_10_1039_C5TA08752J
crossref_primary_10_1016_j_compscitech_2014_10_021
crossref_primary_10_3390_nano11092414
crossref_primary_10_1016_j_est_2020_101302
crossref_primary_10_1039_C4TA03983A
crossref_primary_10_1039_C6RA08823F
crossref_primary_10_3390_nano12010083
crossref_primary_10_1016_j_compscitech_2019_04_021
crossref_primary_10_1049_iet_nde_2019_0028
crossref_primary_10_3390_ma14061436
crossref_primary_10_1080_1536383X_2023_2263597
crossref_primary_10_1002_adma_201907411
crossref_primary_10_1002_aic_16800
crossref_primary_10_1177_0021998319849250
crossref_primary_10_1002_anie_201402780
crossref_primary_10_3390_polym14183766
crossref_primary_10_1016_j_compscitech_2022_109428
crossref_primary_10_1134_S1063783420080223
crossref_primary_10_1007_s10904_024_03439_z
crossref_primary_10_1002_mame_201400245
crossref_primary_10_1016_j_jcomc_2024_100434
crossref_primary_10_1039_C4RA16518G
crossref_primary_10_3390_jcs7080307
crossref_primary_10_1021_acsami_5b08294
crossref_primary_10_1088_1674_4926_39_1_011004
crossref_primary_10_1088_2058_8585_ac515a
crossref_primary_10_1021_jp510836y
crossref_primary_10_1134_S2634827622010032
crossref_primary_10_1186_s40580_015_0050_x
crossref_primary_10_3390_ma11071174
crossref_primary_10_1007_s10965_019_1896_0
crossref_primary_10_1016_j_mser_2023_100734
crossref_primary_10_1016_j_cej_2016_11_093
crossref_primary_10_1016_j_synthmet_2017_05_010
crossref_primary_10_1088_1674_1056_23_8_088801
crossref_primary_10_1039_C6RA26136A
crossref_primary_10_1002_chem_201503150
crossref_primary_10_1002_er_4348
crossref_primary_10_1016_j_eurpolymj_2016_10_004
crossref_primary_10_1016_j_carbon_2014_08_075
crossref_primary_10_1016_j_cis_2015_01_007
crossref_primary_10_1002_cjoc_202300185
crossref_primary_10_1177_0021998319898507
crossref_primary_10_1007_s11998_020_00443_z
crossref_primary_10_1155_2022_2265904
crossref_primary_10_1002_adma_201705027
crossref_primary_10_1016_j_jmatprotec_2021_117470
crossref_primary_10_1080_1536383X_2021_1943367
crossref_primary_10_1016_j_compositesa_2020_106014
crossref_primary_10_1016_j_compositesb_2018_12_073
crossref_primary_10_1021_am502515u
crossref_primary_10_3390_mi11090847
crossref_primary_10_1016_j_compositesb_2019_107663
crossref_primary_10_1021_acsami_5b03269
crossref_primary_10_1016_j_synthmet_2019_116181
crossref_primary_10_1002_app_49742
crossref_primary_10_1007_s00289_025_05709_3
crossref_primary_10_1007_s10853_017_1335_8
crossref_primary_10_1007_s10853_020_05336_5
crossref_primary_10_1039_C6RA11247A
crossref_primary_10_1016_j_bbrc_2019_05_097
crossref_primary_10_1002_adfm_202303519
crossref_primary_10_1002_smll_201401940
crossref_primary_10_1155_2019_2836372
crossref_primary_10_1002_ange_201802663
crossref_primary_10_1002_smsc_202000080
crossref_primary_10_1016_j_vacuum_2024_113180
crossref_primary_10_1039_C7CP07818H
crossref_primary_10_1002_app_44843
crossref_primary_10_1016_j_progpolymsci_2014_03_001
crossref_primary_10_1208_s12249_018_1192_z
crossref_primary_10_3390_polym15163472
crossref_primary_10_1007_s11998_020_00336_1
crossref_primary_10_1016_j_carbon_2016_07_043
crossref_primary_10_1038_s41467_021_24970_4
crossref_primary_10_1039_D2BM00575A
crossref_primary_10_1016_j_physe_2019_04_012
crossref_primary_10_1016_j_carbon_2020_05_045
crossref_primary_10_1016_j_jallcom_2017_04_216
crossref_primary_10_1016_j_matchemphys_2016_03_035
crossref_primary_10_1039_C5RA27104E
crossref_primary_10_1080_09276440_2018_1439632
crossref_primary_10_1002_chin_201348260
crossref_primary_10_1039_C6TC01501H
crossref_primary_10_1016_j_jpcs_2019_109174
crossref_primary_10_1016_j_fuproc_2020_106630
crossref_primary_10_1016_j_envres_2023_117114
crossref_primary_10_3390_polym10050542
crossref_primary_10_1007_s12221_025_00883_7
crossref_primary_10_1016_j_impact_2023_100477
crossref_primary_10_3390_ma16072770
crossref_primary_10_1039_C6TA10553J
crossref_primary_10_3390_ma13092046
crossref_primary_10_1021_acsami_5b02552
crossref_primary_10_1016_j_matpr_2019_03_027
crossref_primary_10_1039_C5NJ00414D
crossref_primary_10_1080_15421406_2021_1962488
crossref_primary_10_1002_pcr2_10137
crossref_primary_10_1080_25740881_2024_2372805
crossref_primary_10_1039_C6NR06515E
crossref_primary_10_3390_polym14091718
crossref_primary_10_1016_j_carbon_2015_11_018
crossref_primary_10_1016_j_coco_2023_101767
crossref_primary_10_1002_adfm_201403809
crossref_primary_10_1007_s10854_022_09611_w
crossref_primary_10_1007_s10570_019_02933_9
crossref_primary_10_1016_j_ijnonlinmec_2018_05_004
crossref_primary_10_1039_C5CS00258C
crossref_primary_10_1002_app_48991
crossref_primary_10_1016_j_polymertesting_2019_105946
crossref_primary_10_1016_j_snb_2014_02_035
crossref_primary_10_1016_j_actphy_2025_100063
crossref_primary_10_1142_S1793292021501198
crossref_primary_10_1016_j_compscitech_2019_03_021
crossref_primary_10_1002_adma_201305359
crossref_primary_10_3390_nano10102077
crossref_primary_10_1016_j_adna_2023_11_001
crossref_primary_10_1016_j_inoche_2024_113880
crossref_primary_10_1002_app_52098
crossref_primary_10_1016_j_ijthermalsci_2015_11_015
crossref_primary_10_1016_j_materresbull_2021_111349
crossref_primary_10_1021_acsnano_6b08408
crossref_primary_10_1080_87559129_2020_1858313
crossref_primary_10_1007_s11664_019_07908_x
crossref_primary_10_1016_j_pmatsci_2017_07_004
crossref_primary_10_1016_j_progpolymsci_2017_09_001
crossref_primary_10_1002_app_43735
crossref_primary_10_1080_09276440_2021_1982334
crossref_primary_10_1142_S1793292019500759
crossref_primary_10_3390_app14072756
crossref_primary_10_1016_j_compscitech_2015_04_008
crossref_primary_10_1021_acs_nanolett_6b04405
crossref_primary_10_1016_j_mtchem_2022_101313
crossref_primary_10_1149_1945_7111_ac5306
crossref_primary_10_1016_j_jallcom_2016_04_276
crossref_primary_10_1134_S0965545X17060049
crossref_primary_10_3390_polym8080281
crossref_primary_10_3390_pharmaceutics15041204
crossref_primary_10_1002_adhm_202002105
crossref_primary_10_1002_anie_201802663
crossref_primary_10_1016_j_progpolymsci_2018_06_001
crossref_primary_10_1021_acsomega_7b00017
crossref_primary_10_1039_C4TA07173E
crossref_primary_10_1149_1945_7111_ace4f6
crossref_primary_10_1177_0021955X16651253
crossref_primary_10_3390_c9010028
crossref_primary_10_1016_j_compscitech_2013_12_019
crossref_primary_10_1021_acsapm_3c00954
crossref_primary_10_1002_app_51690
crossref_primary_10_1063_1_4869635
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126186
crossref_primary_10_1016_j_compscitech_2025_111133
crossref_primary_10_1016_j_cej_2024_155088
crossref_primary_10_1002_pc_28790
crossref_primary_10_1016_j_carbon_2017_10_039
crossref_primary_10_1038_s41467_023_38701_4
crossref_primary_10_1515_psr_2020_0077
crossref_primary_10_1002_adfm_202310008
crossref_primary_10_1039_C4RA07869A
crossref_primary_10_1002_app_44499
crossref_primary_10_1063_1_4935970
crossref_primary_10_1016_j_matlet_2014_10_162
crossref_primary_10_1016_j_ultsonch_2019_104720
crossref_primary_10_3390_fib7020017
crossref_primary_10_1002_adfm_201401886
crossref_primary_10_1016_j_compscitech_2014_03_023
crossref_primary_10_3390_ma17133265
crossref_primary_10_1002_pc_26018
crossref_primary_10_1039_C5NR03363B
crossref_primary_10_3390_ma11091757
crossref_primary_10_3390_polym12123037
crossref_primary_10_1016_j_compscitech_2024_110950
crossref_primary_10_1016_j_progpolymsci_2016_12_005
crossref_primary_10_1002_slct_202101794
crossref_primary_10_1016_j_colsurfa_2019_124369
crossref_primary_10_1016_j_polymer_2016_01_005
crossref_primary_10_1016_j_matdes_2014_09_069
crossref_primary_10_1016_j_compscitech_2017_10_026
crossref_primary_10_1016_j_tws_2020_106678
crossref_primary_10_1039_C4TC01051E
crossref_primary_10_1134_S2075113320010049
crossref_primary_10_3390_nano10071343
crossref_primary_10_3390_polym11091411
crossref_primary_10_1016_j_egyr_2020_03_019
crossref_primary_10_1039_C8RA05007D
crossref_primary_10_1016_j_compositesa_2015_03_015
crossref_primary_10_1016_j_compstruct_2023_116877
crossref_primary_10_1039_C6RA14310E
crossref_primary_10_1016_j_apcata_2014_12_025
crossref_primary_10_1039_D3SM00022B
crossref_primary_10_1039_C4EE03853C
crossref_primary_10_1002_pc_29150
crossref_primary_10_1016_j_flatc_2022_100374
crossref_primary_10_1016_j_compstruct_2016_04_010
crossref_primary_10_1016_j_jelechem_2015_05_032
crossref_primary_10_1021_nn507426u
crossref_primary_10_3103_S1068798X20040127
crossref_primary_10_1016_j_est_2023_108731
crossref_primary_10_1002_adma_201501493
crossref_primary_10_1002_slct_201701019
crossref_primary_10_3390_polym9090446
crossref_primary_10_1088_1757_899X_928_5_052029
crossref_primary_10_1557_mrs_2017_238
crossref_primary_10_1007_s11664_019_07920_1
crossref_primary_10_1002_app_56240
crossref_primary_10_1021_acsanm_0c02539
crossref_primary_10_1039_c3ay41688g
crossref_primary_10_1016_j_progpolymsci_2016_12_010
crossref_primary_10_1016_j_desal_2024_118197
crossref_primary_10_1088_1742_6596_1120_1_012084
crossref_primary_10_1016_j_polymer_2017_11_009
crossref_primary_10_1002_marc_201600702
crossref_primary_10_1002_pat_4164
crossref_primary_10_1177_0954008321996759
crossref_primary_10_1016_j_compositesb_2020_108493
crossref_primary_10_1016_j_giant_2022_100136
crossref_primary_10_1039_C6FD00232C
crossref_primary_10_1039_C4TA04772A
crossref_primary_10_3390_ma17194745
crossref_primary_10_1016_j_jallcom_2018_03_100
crossref_primary_10_3390_polym11040735
crossref_primary_10_1016_j_diamond_2017_06_007
crossref_primary_10_1016_j_compositesa_2024_108490
crossref_primary_10_1016_j_ijft_2024_100915
crossref_primary_10_1016_j_cej_2024_154535
crossref_primary_10_1016_j_rineng_2023_101671
crossref_primary_10_1088_2053_1591_aaff00
crossref_primary_10_1002_pat_3747
crossref_primary_10_1007_s40089_018_0238_2
crossref_primary_10_1002_pi_6279
crossref_primary_10_1080_25740881_2020_1768544
crossref_primary_10_3390_polym11050763
crossref_primary_10_1039_C4RA15881D
crossref_primary_10_1039_D2EN01014C
crossref_primary_10_1002_adma_202306129
crossref_primary_10_1016_j_ssc_2023_115199
crossref_primary_10_1007_s10854_022_09222_5
crossref_primary_10_1016_j_ijbiomac_2019_09_020
crossref_primary_10_1039_D2QM00418F
crossref_primary_10_1039_C9NR00117D
crossref_primary_10_1002_ange_201402780
crossref_primary_10_1007_s10118_020_2386_x
crossref_primary_10_1134_S0036024416130227
crossref_primary_10_1080_03602559_2015_1055504
crossref_primary_10_1134_S1063784219100128
crossref_primary_10_1021_acsapm_2c01630
crossref_primary_10_1016_j_compscitech_2017_05_024
crossref_primary_10_3390_w14091430
crossref_primary_10_1002_brb3_755
crossref_primary_10_1016_j_compositesa_2018_04_003
crossref_primary_10_1080_09276440_2016_1204137
crossref_primary_10_1021_jacs_9b06757
crossref_primary_10_1039_C6TA02161A
crossref_primary_10_1002_pc_25922
crossref_primary_10_3390_nano8110942
crossref_primary_10_1007_s00339_022_06078_8
crossref_primary_10_1016_j_carbon_2019_09_062
crossref_primary_10_2478_amns_2021_2_00248
crossref_primary_10_1111_ijac_12742
crossref_primary_10_1016_j_polymer_2017_11_025
crossref_primary_10_1016_j_compositesa_2016_08_030
crossref_primary_10_1002_sia_7310
crossref_primary_10_1039_C5TC00399G
crossref_primary_10_1002_pen_24774
crossref_primary_10_1016_j_seppur_2021_119428
crossref_primary_10_1007_s11095_020_02902_z
crossref_primary_10_1007_s10853_018_2403_4
crossref_primary_10_1088_2053_1591_aa5bf8
crossref_primary_10_1016_j_physrep_2020_08_004
crossref_primary_10_1016_j_compositesb_2018_09_030
crossref_primary_10_3390_s19051250
crossref_primary_10_1002_pc_29044
crossref_primary_10_1002_pc_25364
crossref_primary_10_1016_j_compscitech_2019_107780
crossref_primary_10_1039_C5NR07147J
crossref_primary_10_1016_j_compositesa_2018_04_011
crossref_primary_10_1016_j_carbon_2021_01_115
crossref_primary_10_1088_2053_1591_aa5ad4
crossref_primary_10_1016_j_matdes_2015_10_032
crossref_primary_10_1039_C5TB00448A
crossref_primary_10_1016_j_susc_2018_03_013
crossref_primary_10_1016_j_compositesa_2017_12_023
crossref_primary_10_1016_j_eurpolymj_2019_04_004
crossref_primary_10_1051_matecconf_201818801015
crossref_primary_10_1002_adma_202408456
crossref_primary_10_1002_adma_201706885
crossref_primary_10_1016_j_eurpolymj_2015_07_059
crossref_primary_10_1038_s41598_024_77083_5
crossref_primary_10_1002_adsu_201900137
crossref_primary_10_1016_j_polymer_2016_03_055
crossref_primary_10_1088_1361_6528_ad8bcd
crossref_primary_10_1021_acsmaterialsau_3c00072
crossref_primary_10_1039_C5RA20214K
crossref_primary_10_1016_j_polymer_2017_08_030
crossref_primary_10_1021_acsami_9b16922
crossref_primary_10_1039_C7CP00209B
crossref_primary_10_1016_j_jallcom_2018_09_032
crossref_primary_10_1016_j_compositesb_2019_106956
crossref_primary_10_1021_acssuschemeng_7b02876
crossref_primary_10_1007_s10965_016_1092_4
crossref_primary_10_1016_j_clay_2017_08_017
crossref_primary_10_1515_ntrev_2022_0041
crossref_primary_10_1039_D2RA04797G
crossref_primary_10_1016_j_compstruct_2020_113062
crossref_primary_10_3934_era_2023178
crossref_primary_10_1002_app_45088
crossref_primary_10_1002_adma_202313354
crossref_primary_10_3390_ma8020652
crossref_primary_10_1039_C9TA04256C
crossref_primary_10_1039_C5RA27471K
crossref_primary_10_1177_0954008316664398
crossref_primary_10_2217_nnm_2020_0198
crossref_primary_10_1016_j_electacta_2020_135700
crossref_primary_10_3390_ma10101120
crossref_primary_10_1016_j_carbon_2016_11_040
crossref_primary_10_3390_s18124364
crossref_primary_10_1016_j_matdes_2017_07_034
crossref_primary_10_1016_j_eurpolymj_2016_03_013
crossref_primary_10_3390_app14031178
crossref_primary_10_1016_j_ceramint_2025_02_193
crossref_primary_10_1002_app_48347
crossref_primary_10_1016_j_compositesa_2019_05_017
crossref_primary_10_1016_j_jdent_2020_103557
crossref_primary_10_1016_j_compscitech_2016_10_008
crossref_primary_10_1039_C6RA28117F
crossref_primary_10_1002_pc_25577
crossref_primary_10_1002_adma_201901971
crossref_primary_10_1007_s12221_017_1126_5
crossref_primary_10_1080_03602559_2014_979503
crossref_primary_10_1039_C6RA08207F
crossref_primary_10_1039_C7PY00182G
crossref_primary_10_1039_C7RA11292K
crossref_primary_10_3390_polym14122440
crossref_primary_10_3390_app8091438
crossref_primary_10_1002_advs_201903501
crossref_primary_10_1016_j_progpolymsci_2016_05_001
crossref_primary_10_1038_s41598_023_29270_z
crossref_primary_10_1039_C5CC05596B
crossref_primary_10_3390_polym10090933
crossref_primary_10_1016_j_diamond_2021_108730
crossref_primary_10_1039_C6RA04511A
crossref_primary_10_1002_cphc_201402625
crossref_primary_10_1016_j_eurpolymj_2018_12_002
crossref_primary_10_1155_2019_4658215
crossref_primary_10_1016_j_compscitech_2020_108356
crossref_primary_10_55003_cast_2023_254564
Cites_doi 10.1016/j.elecom.2009.03.036
10.1016/j.carbon.2011.08.005
10.1080/21663831.2012.686586
10.1002/adma.201003188
10.1038/358220a0
10.1002/pc.20802
10.1002/adma.200306196
10.1002/adfm.200801776
10.1063/1.122125
10.1016/S0009-2614(03)01287-9
10.1246/cl.2003.28
10.1002/macp.201200029
10.1007/s10853-012-6658-x
10.1002/smll.200900765
10.1038/srep01353
10.1021/ma902862u
10.1038/nnano.2008.58
10.1039/C1JM15467B
10.1016/j.compositesb.2011.06.007
10.1016/j.jpowsour.2011.02.090
10.1016/j.progpolymsci.2010.07.005
10.1016/j.elecom.2008.08.007
10.1002/adma.200500467
10.1038/nmat2166
10.1021/jp071798c
10.1016/j.renene.2012.06.056
10.1002/adma.201101862
10.1016/j.carbon.2008.02.008
10.1021/nn103523t
10.1002/adma.201102472
10.1126/science.287.5453.637
10.1103/PhysRevLett.95.146805
10.1063/1.1428116
10.1021/nn3021772
10.1038/423703a
10.1021/cm070991g
10.1016/j.mser.2005.04.002
10.1126/science.284.5418.1340
10.1002/adma.201004228
10.1038/nnano.2008.211
10.1021/nn901850u
10.1021/la1001978
10.1002/adma.201101345
10.1038/ncomms1438
10.1021/nl0731872
10.1126/science.1157996
10.1088/0957-4484/19/7/075609
10.1039/C1JM13769G
10.1002/adma.201201978
10.1038/nnano.2009.264
10.1038/381678a0
10.1021/nl802810g
10.1039/C2TA00274D
10.1016/j.carbon.2010.01.028
10.1063/1.3080243
10.1021/nn304705t
10.1002/adma.200904264
10.1002/adma.200800295
10.1016/j.jpowsour.2009.11.028
10.1021/cm100477v
10.1002/polb.20801
10.1126/science.1104276
10.1016/j.carbon.2006.02.026
10.1016/j.cplett.2012.08.055
10.1002/adma.200902986
10.1016/j.compscitech.2008.06.018
10.1016/S0379-6779(98)00221-5
10.1016/j.cplett.2009.02.008
10.1021/ja0570335
10.1103/PhysRevLett.87.215502
10.1038/nnano.2008.215
10.1021/ma1009337
10.1021/ja0722224
10.1021/nn3003345
10.1002/adma.201200170
10.1016/S0032-3861(03)00539-1
10.1016/j.polymer.2011.02.017
10.1103/PhysRevLett.84.4613
10.1016/j.electacta.2011.07.142
10.1038/nnano.2007.89
10.1021/nn203917d
10.1021/nn201002d
10.1039/C2CP43717A
10.1021/jp211474e
10.1038/nmat1059
10.1126/science.1060928
10.1103/PhysRevB.71.085403
10.1016/j.carbon.2007.03.029
10.1039/c2jm33949h
10.1021/jp068895a
10.1021/nl052238x
10.1021/nl801827v
10.1002/smll.200901364
10.1038/ncomms1583
10.1073/pnas.0900155106
10.1016/j.carbon.2011.07.028
10.1002/adma.200702953
10.1002/app.13460
10.1021/cm020975d
10.1126/science.1061797
10.1021/nn2029617
10.1016/j.eurpolymj.2003.08.005
10.1021/nl051419w
10.1126/science.1101398
10.1039/c2ee22595f
10.1126/science.1101243
10.1126/science.265.5176.1212
10.1016/j.progpolymsci.2009.09.003
10.1063/1.4754709
10.1016/S0032-3861(03)00073-9
10.1016/j.compositesa.2003.09.029
10.1039/c2cc17721h
10.1016/j.matdes.2012.07.065
10.1038/34139
10.1021/j100027a002
10.1002/app.26517
10.1016/j.carbon.2009.11.029
10.1002/adma.200601748
10.1021/nn101671t
10.1016/j.jpcs.2003.10.051
10.1002/adma.201200422
10.1021/nl102661q
10.1021/nn3006812
10.1002/cssc.201100430
10.1021/nl801495p
10.1063/1.108857
10.1002/marc.200400492
10.1038/nnano.2008.96
10.1021/jp900791y
10.1021/jp901284d
10.1021/nn1000035
10.1039/c2py21021e
10.1002/adfm.200500937
10.1038/nature07872
10.1021/nl052145f
10.1038/nnano.2011.36
10.1038/nmat1849
10.1002/adma.200501851
10.1021/ja078267m
10.1016/j.scriptamat.2005.09.014
10.1021/am200114r
10.1002/anie.201201975
10.1021/nn900297m
10.1039/C1JM14694G
10.1002/smll.201100990
10.1016/j.jcis.2010.01.035
10.1039/c1jm11766a
10.1002/aenm.201100136
10.1038/nnano.2008.83
10.1002/ange.200901479
10.1038/384147a0
10.1002/adma.200901545
10.1002/polb.23226
10.1002/aenm.201100449
10.1126/science.1102896
10.1038/nature07719
10.1002/anie.201200723
10.1039/C2CP42790G
10.1039/C1EE02148F
10.1002/adfm.201000570
10.1002/adma.201102207
10.1039/c0jm00307g
10.1002/adma.200401649
10.1021/nn301321j
10.1016/S0379-6779(98)00278-1
10.1126/science.1184014
10.1038/nchem.907
10.1021/nn900020u
10.1038/nmat3001
10.1039/c2cc38290c
10.1021/jp202475m
10.1038/382054a0
10.1038/nmat1782
10.1016/j.carbon.2010.11.013
10.1016/j.compositesa.2007.02.003
10.1016/j.carbon.2009.09.014
10.1016/S0009-2614(00)01013-7
10.1038/nature04969
10.1002/marc.200900370
10.1016/S1369-7021(04)00507-3
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adma.201301926
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage 5176
ExternalDocumentID 23813859
10_1002_adma_201301926
ADMA201301926
ark_67375_WNG_6NW2XTDD_W
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
ADMLS
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c5156-c3f54ca7cf88736fec2e6fde602bc7595777677b6fe78f2e5e0516925f95de583
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 16:19:34 EDT 2025
Fri Jul 11 02:01:06 EDT 2025
Fri Jul 11 04:34:23 EDT 2025
Thu Apr 03 07:03:20 EDT 2025
Tue Jul 01 02:26:33 EDT 2025
Thu Apr 24 23:06:55 EDT 2025
Wed Jan 22 16:21:35 EST 2025
Wed Oct 30 09:56:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 37
Keywords composites
polymers
carbon nanotubes
graphene
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5156-c3f54ca7cf88736fec2e6fde602bc7595777677b6fe78f2e5e0516925f95de583
Notes Dedicated to the 20th Anniversary of the Department of Macromolecular Science of Fudan University
ark:/67375/WNG-6NW2XTDD-W
ArticleID:ADMA201301926
istex:8AEF7607B2FC578E06645914BE6255DA21175CE1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 23813859
PQID 1443395862
PQPubID 23500
PageCount 24
ParticipantIDs proquest_miscellaneous_1753533950
proquest_miscellaneous_1448746718
proquest_miscellaneous_1443395862
pubmed_primary_23813859
crossref_primary_10_1002_adma_201301926
crossref_citationtrail_10_1002_adma_201301926
wiley_primary_10_1002_adma_201301926_ADMA201301926
istex_primary_ark_67375_WNG_6NW2XTDD_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 4, 2013
PublicationDateYYYYMMDD 2013-10-04
PublicationDate_xml – month: 10
  year: 2013
  text: October 4, 2013
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv. Mater
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References b) Q. Meng, J. Hu, Y. Zhu, J. Appl. Polym. Sci. 2007, 106, 837
b) S. Ryu, Y. Lee, J. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee, S. H. Hong, Adv. Mater. 2011, 23, 1971.
M. B. Bryning, M. F. Islam, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2005, 17, 1186.
S. Liu, Y. Liu, H. Cebeci, R. G. de Villoria, J. Lin, B. L. Wardle, Q. M. Zhang, Adv. Funct. Mater. 2010, 20, 3266.
a) M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678
a) J. Bae, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim, Z. L. Wang, Adv. Mater. 2011, 23, 3446
K. Liao, S. Li, Appl. Phys. Lett. 2001, 79, 4225.
M. El Achaby, A. Qaiss, Mater. Design. 2012, 44, 81.
J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Carbon 2011, 49, 1094.
J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn, Carbon 2006, 44, 1898.
b) J. Du, H. M. Cheng, Macromol. Chem. Phys. 2012, 213, 1060.
Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 2008, 9, 220.
H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441.
K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, Y. Ando, Synth. Met. 1999, 103, 2543.
d) X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Mater. Sci. Eng. R. Rep. 2005, 49, 89.
R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett. 2000, 330, 219.
b) S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, H. Peng, Adv. Mater. 2011, 23, 4707
J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206.
T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
b) Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, J. Mater. Chem. 2012, 22, 390.
W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 2008, 10, 1555.
T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 1995, 99, 10694.
a) L. Yang, K. Setyowati, A. Li, S. Gong, J. Chen, Adv. Mater. 2008, 20, 2271
e) H. Peng, J. Am. Chem. Soc. 2008, 130, 42
B. S. Shim, W. Chen, C. Doty, C. Xu, N. A. Kotov, Nano Lett. 2008, 8, 4151.
K. Kalaitzidou, H. Fukushima, L. T. Drzal, Composites, Part A 2007, 38, 1675.
S. Hong, S. Myung, Nat. Nanotechnol. 2007, 2, 207.
b) T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Nat. Nanotechnol. 2008, 3, 327
a) H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, Nat. Nanotechnol. 2009, 4, 738
G. Chen, W. Weng, D. Wu, C. Wu, Eur. Polym. J. 2003, 39, 2329.
X. Xiao, T. Xie, Y.-T. Cheng, J. Mater. Chem. 2010, 20, 3508.
a) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 5859
b) Y. G. Seol, T. Q. Trung, O.-J. Yoon, I.-Y. Sohn, N.-E. Lee, J. Mater. Chem. 2012, 22, 23759
Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, Nano Lett. 2006, 6, 413.
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
b) Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Composites, Part A 2004, 35, 1225
f) S. Zhang, L. Zhu, C. Wong, S. Kumar, Macromol. Rapid Commun. 2009, 30, 1936
V. Yong, J. M. Tour, Small 2010, 6, 313.
T. Gurunathan, C. K. Rao, R. Narayan, K. V. S. N. Raju, J. Mater. Sci. 2013, 48, 67.
a) P.-C. Ma, S.-Y. Mo, B.-Z. Tang, J.-K. Kim, Carbon 2010, 48, 1824
a) W. Guo, C. Liu, X. Sun, Z. Yang, H. G. Kia, H. Peng, J. Mater. Chem. 2012, 22, 903
X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C. M. Ma, J. Mater. Chem. 2011, 21, 13569.
F. Meng, X. Zhang, G. Xu, Z. Yong, H. Chen, M. Chen, Q. Li, Y. Zhu, ACS Appl. Mater. Interfaces 2011, 3, 658.
L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun'ko, Adv. Energy Mater. 2011, 1, 472.
b) J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, Adv. Mater. 2011, 23, 4923
Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571.
b) J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 2012, 24, 4569
b) G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270.
T. L. Wu, T. S. Lo, W. S. Kuo, Polym. Compos. 2010, 31, 292.
W. Guo, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Energy Environ. Sci. 2012, 5, 5221.
c) J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater. 2006, 18, 689.
K. Scott, Chem. Commun. 2012, 48, 5584.
d) S. Berber, Y. K. Kwon, D. Tomanek, Phys. Rev. Lett. 2000, 84, 4613.
c) H. D. Wagner, R. A. Vaia, Materials Today 2004, 7, 38
C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863.
c) L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, H. Peng, Adv. Mater. 2011, 23, 3730.
A. S. Patole, S. P. Patole, H. Kang, J.-B. Yoo, T.-H. Kim, J.-H. Ahn, J. Colloid Interf. Sci 2010, 350, 530.
X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906.
a) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706
J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, J. Oh, M. Kozlov, Y. Ma, F. Li, ACS Nano 2012, 6, 4508.
M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nat. Nanotechnol. 2008, 3, 626.
J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
F. Gong, X. Xu, G. Zhou, Z.-S. Wang, Phys. Chem. Chem. Phys. 2013, 15, 546.
K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 2004, 306, 666.
d) N. V. Viet, W. S. Kuo, Composites, Part B 2012, 43, 332.
H. Lin, L. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Sci. Rep. 2013, 3, 1353.
H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J. Am. Chem. Soc. 2007, 129, 7758.
b) P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502.
g) G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 2012, 101, 131905.
M. N. Hyder, S. W. Lee, F. C. Cebeci, D. J. Schmidt, Y. Shao-Horn, P. T. Hammond, ACS Nano 2011, 5, 8552.
c) H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, G. Park, Sci. Rep. 2013, 3
P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212.
e) B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020
Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273.
b) B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707
H. Huang, C. H. Liu, Y. Wu, S. Fan, Adv. Mater. 2005, 17, 1652.
R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
J. Liu, L. Tao, W. Yang, D. Li, C. Boyer, R. Wuhrer, F. Braet, T. P. Davis, Langmuir. 2010, 26, 10068.
a) X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 2011, 56, 9224
a) Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 411
f) Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 2012, 6, 7103.
d) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat Mater 2006, 5, 987.
G. D. M. R. Dabera, K. D. G. I. Jayawardena, M. R. R. Prabhath, I. Yahya, Y. Y. Tan, N. A. Nismy, H. Shiozawa, M. Sauer, G. Ruiz-Soria, P. Ayala, ACS Nano 2012, 7, 556.
Y. Yang, C. Wang, B. Yue, S. Gambhir, C. O. Too, G. G. Wallace, Adv. Energy Mater. 2012, 2, 266.
b) K. Subrahmanyam, L. Panchakarla, A. Govindaraj, C. Rao, J. Phys. Chem. C 2009, 113, 4257.
d) H. Peng, X. Sun, Chem. Phys. Lett. 2009, 471, 103
H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 1996, 384, 147.
a) M. T. Byrne, Y. K. Gun'ko, Adv. Mater. 2010, 22, 1672
J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 2009, 19, 2297.
W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Angew. Chem. Int. Ed. 2012, 51, 4644.
Z. Yang, T. Chen, R. He, H. Li, H. Lin, L. Li, G. Zou, Q. Jia, H. Peng, Polym. Chem. 2013, 4, 1680.
R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340.
b) C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879.
a) J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, Y. Zhu, Q. Li, ACS Nano 2012, 6, 5457
a) D. Wang, P. C. Song, C. H. Liu, W. Wu, S. S. Fan, Nanotechnology 2008, 19, 075609
a) I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mater. 2004, 16, 865
T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633.
M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 1993, 62, 657.
M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Chem. Commun. 2013, 49, 1612.
b) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357
K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446.
b) Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963.
K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 2003, 32, 28.
a) A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902
b) M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
b) L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 1998, 73, 1197
Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Adv. Mater. 2012, 24, 1856.
a) X. Liu, H. Kim, L. J. Guo, Org. Electron. 2012
b) J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 2010, 195, 3041.
J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, Polymer 2003, 44, 5893.
A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H.
2011; 115
2010; 10
2010 2012; 4 22
2013; 3
2013; 4
2013; 1
2007 2008 2007; 111 20 111
2010 2009; 2 121
2009 2010; 11 4
2011; 52
2004; 3
1999; 284
2009; 113
1996; 384
2011; 196
2010; 22
1994; 265
2010; 20
2010; 26
2013; 50
2012 2012 2012; 22 5
1992; 358
2007; 6
2010; 350
2007; 2
2009; 19
2012; 24
2012; 22
2010; 4
2010; 6
2003; 44
2011 2012 2013 2009 2012 2012; 10 24 3 3 6 6
2009; 69
2007; 19
2010; 31
2011; 2
2011; 1
2010 2008 2004 2012; 48 3 7 43
2003; 39
2013 2010; 51 35
1999; 103
2004; 306
2011; 3
2004; 305
2009 2008; 457 3
2011; 6
2011; 5
2003; 32
2011; 7
2009; 458
1998; 391
2010; 43
2010; 48
2006; 44
2005; 95
2005; 5
2008 2010; 19 22
2008 2010; 8 328
2008; 46
2012; 48
2011 2004 2007 2009 2008 2009 2012; 2 35 19 471 130 30 101
2005; 17
2012; 116
2012; 44
2009; 106
2004; 65
2011 2010; 56 195
1993; 62
2009 2009; 3 113
2008; 9
2008; 7
2003; 15
2008; 8
2000; 330
2008; 3
2012 2011; 22 23
2007; 38
2012; 51
2013; 15
2001; 293
2012 2011 2011; 6 23 23
2011 2011 2011; 23 23 49
2005 2003; 71 378
2011; 21
2005 2001; 6 87
2011; 23
2000; 287
2006; 128
2009 2004; 4 306
2013; 48
2007; 129
2013; 49
2010 2010 2006; 22 35 18
2002; 297
2008 2007 2005; 20 106 26
2006; 16
1995; 99
2006; 6
1996 1996 1999 2000; 381 382 103 84
2006 2012; 442 213
2008; 10
2008; 321
2004; 91
2012; 549
2012; 2
2004 1998 2009 2005; 16 73 105 49
2012; 1
2012; 6
2003; 423
2011; 49
2012; 7
2001; 79
2007; 45
2012; 5
2004 2006 2011 2006; 305 54 49 5
e_1_2_8_45_7
e_1_2_8_49_3
e_1_2_8_45_6
e_1_2_8_49_2
e_1_2_8_45_8
e_1_2_8_45_3
e_1_2_8_45_2
e_1_2_8_45_5
e_1_2_8_26_2
e_1_2_8_45_4
e_1_2_8_68_2
e_1_2_8_9_2
e_1_2_8_1_3
e_1_2_8_1_2
e_1_2_8_132_2
e_1_2_8_1_5
e_1_2_8_1_4
e_1_2_8_5_3
e_1_2_8_5_2
e_1_2_8_41_3
e_1_2_8_60_7
e_1_2_8_64_3
e_1_2_8_41_2
e_1_2_8_64_4
e_1_2_8_87_2
e_1_2_8_60_5
e_1_2_8_22_2
e_1_2_8_41_4
e_1_2_8_60_6
e_1_2_8_64_2
e_1_2_8_117_2
e_1_2_8_60_3
e_1_2_8_83_2
e_1_2_8_60_2
e_1_2_8_113_2
e_1_2_8_38_2
e_1_2_8_19_2
e_1_2_8_109_2
e_1_2_8_34_2
e_1_2_8_15_2
e_1_2_8_57_2
e_1_2_8_91_2
e_1_2_8_120_2
e_1_2_8_95_3
e_1_2_8_95_4
e_1_2_8_99_2
e_1_2_8_30_2
e_1_2_8_76_2
e_1_2_8_105_2
e_1_2_8_11_2
e_1_2_8_53_2
e_1_2_8_128_2
e_1_2_8_72_2
e_1_2_8_101_2
e_1_2_8_124_2
e_1_2_8_48_3
e_1_2_8_29_2
e_1_2_8_29_3
Liu X. (e_1_2_8_95_2) 2012
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_67_2
e_1_2_8_2_2
e_1_2_8_110_2
e_1_2_8_6_2
e_1_2_8_63_4
e_1_2_8_63_5
e_1_2_8_21_2
e_1_2_8_44_2
Ahn H. S. (e_1_2_8_60_4) 2013; 3
e_1_2_8_63_2
e_1_2_8_86_2
e_1_2_8_118_2
e_1_2_8_63_3
e_1_2_8_40_2
e_1_2_8_82_2
e_1_2_8_114_2
e_1_2_8_133_2
e_1_2_8_37_4
e_1_2_8_37_3
e_1_2_8_18_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_56_2
e_1_2_8_79_2
e_1_2_8_90_2
e_1_2_8_94_2
e_1_2_8_121_2
e_1_2_8_98_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_52_2
e_1_2_8_75_2
e_1_2_8_106_2
e_1_2_8_129_2
e_1_2_8_71_2
e_1_2_8_102_2
e_1_2_8_125_2
e_1_2_8_28_2
e_1_2_8_47_4
e_1_2_8_24_2
e_1_2_8_119_2
e_1_2_8_47_3
e_1_2_8_66_3
e_1_2_8_47_2
e_1_2_8_89_2
e_1_2_8_3_3
e_1_2_8_3_2
e_1_2_8_130_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_66_2
e_1_2_8_115_2
e_1_2_8_43_2
e_1_2_8_85_2
e_1_2_8_62_2
e_1_2_8_111_2
e_1_2_8_81_2
e_1_2_8_17_2
e_1_2_8_13_2
e_1_2_8_59_2
e_1_2_8_36_3
e_1_2_8_36_2
e_1_2_8_78_2
e_1_2_8_97_2
e_1_2_8_103_3
e_1_2_8_55_2
e_1_2_8_103_4
e_1_2_8_126_2
e_1_2_8_32_2
e_1_2_8_74_2
e_1_2_8_107_2
e_1_2_8_122_3
e_1_2_8_51_2
e_1_2_8_122_2
e_1_2_8_93_2
e_1_2_8_70_2
e_1_2_8_103_2
e_1_2_8_27_2
e_1_2_8_27_3
e_1_2_8_23_2
e_1_2_8_46_2
e_1_2_8_69_2
e_1_2_8_65_4
e_1_2_8_65_5
e_1_2_8_80_2
e_1_2_8_131_2
e_1_2_8_4_2
e_1_2_8_4_3
e_1_2_8_8_2
e_1_2_8_42_2
e_1_2_8_65_2
e_1_2_8_88_2
e_1_2_8_116_2
e_1_2_8_65_3
e_1_2_8_84_5
e_1_2_8_84_4
e_1_2_8_84_3
e_1_2_8_61_2
e_1_2_8_84_2
e_1_2_8_112_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_39_3
e_1_2_8_12_2
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_108_2
e_1_2_8_12_3
e_1_2_8_35_3
e_1_2_8_96_2
e_1_2_8_31_2
e_1_2_8_54_2
e_1_2_8_77_2
e_1_2_8_104_2
e_1_2_8_127_2
e_1_2_8_50_2
e_1_2_8_73_2
e_1_2_8_100_2
e_1_2_8_123_2
e_1_2_8_92_3
e_1_2_8_92_2
References_xml – reference: b) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357;
– reference: K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446.
– reference: J. Liu, L. Tao, W. Yang, D. Li, C. Boyer, R. Wuhrer, F. Braet, T. P. Davis, Langmuir. 2010, 26, 10068.
– reference: X. Sun, W. Wang, L. Qiu, W. Guo, Y. Yu, H. Peng, Angew. Chem. Int. Ed. 2012, 51, 8520.
– reference: J. Zhang, X. S. Zhao, J. Phys. Chem. C 2012, 116, 5420.
– reference: F. Barroso-Bujans, S. Cerveny, R. Verdejo, J. del Val, J. Alberdi, A. Alegría, J. Colmenero, Carbon 2010, 48, 1079.
– reference: K. Scott, Chem. Commun. 2012, 48, 5584.
– reference: a) I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mater. 2004, 16, 865;
– reference: J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C. M. Ma, J. Mater. Chem. 2011, 21, 13569.
– reference: a) X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 2011, 56, 9224;
– reference: c) H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 1999, 103, 2555;
– reference: f) Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 2012, 6, 7103.
– reference: D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872.
– reference: K. Kalaitzidou, H. Fukushima, L. T. Drzal, Composites, Part A 2007, 38, 1675.
– reference: b) S. Ryu, Y. Lee, J. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee, S. H. Hong, Adv. Mater. 2011, 23, 1971.
– reference: J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 2009, 19, 2297.
– reference: D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482.
– reference: K. Liao, S. Li, Appl. Phys. Lett. 2001, 79, 4225.
– reference: a) J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, Y. Zhu, Q. Li, ACS Nano 2012, 6, 5457;
– reference: A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703.
– reference: b) J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Science 2010, 328, 213.
– reference: Z. Yang, L. Li, H. Lin, Y. Luo, R. He, L. Qiu, J. Ren, H. Peng, Chem. Phys. Lett. 2012, 549, 82.
– reference: A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, R. E. Smalley, Polymer 2003, 44, 2373.
– reference: b) J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, Adv. Mater. 2011, 23, 4923;
– reference: b) T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257.
– reference: a) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706;
– reference: c) D. Zhang, X. Li, H. Li, S. Chen, Z. Sun, X. Yin, S. Huang, Carbon 2011, 49, 5382.
– reference: a) X. Liu, H. Kim, L. J. Guo, Org. Electron. 2012;
– reference: d) S. Berber, Y. K. Kwon, D. Tomanek, Phys. Rev. Lett. 2000, 84, 4613.
– reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, Nat. Nanotechnol. 2008, 3, 563.
– reference: H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 1996, 384, 147.
– reference: Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang, ACS Nano 2011, 5, 3645.
– reference: T. Gurunathan, C. K. Rao, R. Narayan, K. V. S. N. Raju, J. Mater. Sci. 2013, 48, 67.
– reference: G. Yang, C. Lee, J. Kim, F. Ren, S. J. Pearton, Phys. Chem. Chem. Phys. 2013, 15, 1798.
– reference: d) X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Mater. Sci. Eng. R. Rep. 2005, 49, 89.
– reference: F. Gong, X. Xu, G. Zhou, Z.-S. Wang, Phys. Chem. Chem. Phys. 2013, 15, 546.
– reference: P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri, Nano Lett. 2005, 5, 2212.
– reference: b) P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502.
– reference: a) E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2005, 6, 96;
– reference: Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571.
– reference: H. Kim, S. Kobayashi, M. A. AbdurRahim, M. J. Zhang, A. Khusainova, M. A. Hillmyer, A. A. Abdala, C. W. Macosko, Polymer 2011, 52, 1837.
– reference: D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633.
– reference: S. Ansari, A. Kelarakis, L. Estevez, E. P. Giannelis, Small 2010, 6, 205.
– reference: b) Y. A. Kim, T. Hayashi, M. Endo, Y. Gotoh, N. Wada, J. Seiyama, Scripta Mater. 2006, 54, 31;
– reference: T. L. Wu, T. S. Lo, W. S. Kuo, Polym. Compos. 2010, 31, 292.
– reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385.
– reference: R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett. 2000, 330, 219.
– reference: Z. Xu, C. Gao, Macromolecules. 2010, 43, 6716.
– reference: H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441.
– reference: P. May, U. Khan, A. O'Neill, J. N. Coleman, J. Mater. Chem. 2012, 22, 1278.
– reference: G. D. M. R. Dabera, K. D. G. I. Jayawardena, M. R. R. Prabhath, I. Yahya, Y. Y. Tan, N. A. Nismy, H. Shiozawa, M. Sauer, G. Ruiz-Soria, P. Ayala, ACS Nano 2012, 7, 556.
– reference: L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, K. S. Novoselov, Adv. Mater. 2010, 22, 2694.
– reference: c) Y.-F. Zhu, C. Ma, W. Zhang, R.-P. Zhang, N. Koratkar, J. Liang, J. Appl. Phys. 2009, 105, 054319;
– reference: A. Eitan, K. Jiang, D. Dukes, R. Andrews, L. S. Schadler, Chem. Mater. 2003, 15, 3198.
– reference: F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, K. I. Winey, J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1513.
– reference: S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806.
– reference: b) Q. Meng, J. Hu, Y. Zhu, J. Appl. Polym. Sci. 2007, 106, 837;
– reference: Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, J. Mater. Chem. A 2013, 1, 258.
– reference: M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Chem. Commun. 2013, 49, 1612.
– reference: d) D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, H.-M. Cheng, ACS Nano 2009, 3, 1745;
– reference: b) B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707;
– reference: b) K. Subrahmanyam, L. Panchakarla, A. Govindaraj, C. Rao, J. Phys. Chem. C 2009, 113, 4257.
– reference: M. N. Hyder, S. W. Lee, F. C. Cebeci, D. J. Schmidt, Y. Shao-Horn, P. T. Hammond, ACS Nano 2011, 5, 8552.
– reference: b) J. Du, H. M. Cheng, Macromol. Chem. Phys. 2012, 213, 1060.
– reference: Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273.
– reference: H. Koerner, G. Price, N. A. Pearce, M. Alexander, R. A. Vaia, Nat. Mater. 2004, 3, 115.
– reference: J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59.
– reference: V. Yong, J. M. Tour, Small 2010, 6, 313.
– reference: c) J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater. 2006, 18, 689.
– reference: J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Carbon 2011, 49, 1094.
– reference: a) K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015;
– reference: Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Adv. Mater. 2012, 24, 1856.
– reference: a) M. T. Byrne, Y. K. Gun'ko, Adv. Mater. 2010, 22, 1672;
– reference: J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, F. Li, T. Guo, Y. Chen, J. Phys. Chem. C 2009, 113, 9921.
– reference: J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, J. Oh, M. Kozlov, Y. Ma, F. Li, ACS Nano 2012, 6, 4508.
– reference: L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun'ko, Adv. Energy Mater. 2011, 1, 472.
– reference: S. Liu, Y. Liu, H. Cebeci, R. G. de Villoria, J. Lin, B. L. Wardle, Q. M. Zhang, Adv. Funct. Mater. 2010, 20, 3266.
– reference: B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nat. Nanotechnol. 2008, 3, 626.
– reference: K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 2003, 32, 28.
– reference: M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 1993, 62, 657.
– reference: P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212.
– reference: c) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 17933.
– reference: S. Hong, S. Myung, Nat. Nanotechnol. 2007, 2, 207.
– reference: c) J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo, Macromol. Rapid Commun. 2005, 26, 412.
– reference: L. Gong, R. J. Young, I. A. Kinloch, I. Riaz, R. Jalil, K. S. Novoselov, ACS Nano 2012, 6, 2086.
– reference: Q. F. Cheng, J. P. Wang, J. J. Wen, C. H. Liu, K. L. Jiang, Q. Q. Li, S. S. Fan, Carbon 2010, 48, 260.
– reference: a) L. Yang, K. Setyowati, A. Li, S. Gong, J. Chen, Adv. Mater. 2008, 20, 2271;
– reference: Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 2008, 9, 220.
– reference: c) M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2007, 19, 661;
– reference: d) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat Mater 2006, 5, 987.
– reference: c) D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Energy Environ. Sci. 2012, 5, 9662.
– reference: a) H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 2009, 11, 1158;
– reference: f) S. Zhang, L. Zhu, C. Wong, S. Kumar, Macromol. Rapid Commun. 2009, 30, 1936;
– reference: K. Lota, V. Khomenko, E. Frackowiak, J. Phys. Chem. Solids 2004, 65, 295.
– reference: a) W. Guo, C. Liu, X. Sun, Z. Yang, H. G. Kia, H. Peng, J. Mater. Chem. 2012, 22, 903;
– reference: W. Bauhofer, J. Z. Kovacs, Compos. Sci. Technol. 2009, 69, 1486.
– reference: M. El Achaby, A. Qaiss, Mater. Design. 2012, 44, 81.
– reference: M. B. Bryning, M. F. Islam, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2005, 17, 1186.
– reference: C. Wei, L. Dai, A. Roy, T. B. Tolle, J. Am. Chem. Soc. 2006, 128, 1412.
– reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163.
– reference: K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, Y. Ando, Synth. Met. 1999, 103, 2543.
– reference: d) H. Peng, X. Sun, Chem. Phys. Lett. 2009, 471, 103;
– reference: a) Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424;
– reference: a) P.-C. Ma, S.-Y. Mo, B.-Z. Tang, J.-K. Kim, Carbon 2010, 48, 1824;
– reference: H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 2001, 293, 76.
– reference: g) G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 2012, 101, 131905.
– reference: a) D. Wang, P. C. Song, C. H. Liu, W. Wu, S. S. Fan, Nanotechnology 2008, 19, 075609;
– reference: b) J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 2010, 195, 3041.
– reference: b) J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 2012, 24, 4569;
– reference: K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 2004, 306, 666.
– reference: H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J. Am. Chem. Soc. 2007, 129, 7758.
– reference: D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources 2011, 196, 5990.
– reference: D.-J. Yun, H. Ra, S.-W. Rhee, Renew. Energ. 2013, 50, 692.
– reference: K. S. Lee, Y. Lee, J. Y. Lee, J.-H. Ahn, J. H. Park, ChemSusChem 2012, 5, 379.
– reference: a) Y. Murakami, S. Chiashi, E. Einarsson, S. Maruyama, Phys. Rev. B 2005, 71, 085403;
– reference: c) L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, H. Peng, Adv. Mater. 2011, 23, 3730.
– reference: a) L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321;
– reference: A. S. Patole, S. P. Patole, H. Kang, J.-B. Yoo, T.-H. Kim, J.-H. Ahn, J. Colloid Interf. Sci 2010, 350, 530.
– reference: b) Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, J. Mater. Chem. 2012, 22, 390.
– reference: b) T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Nat. Nanotechnol. 2008, 3, 327;
– reference: a) Y. Sun, G. Shi, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 231;
– reference: T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 1995, 99, 10694.
– reference: J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, Polymer 2003, 44, 5893.
– reference: b) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617.
– reference: J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206.
– reference: X. Zhou, J.-Y. Park, S. Huang, J. Liu, P. L. McEuen, Phys. Rev. Lett. 2005, 95, 146805.
– reference: e) B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020;
– reference: X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906.
– reference: b) S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, H. Peng, Adv. Mater. 2011, 23, 4707;
– reference: H. Lin, L. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Sci. Rep. 2013, 3, 1353.
– reference: X. Gui, H. Li, L. Zhang, Y. Jia, L. Liu, Z. Li, J. Wei, K. Wang, H. Zhu, Z. Tang, D. Wu, A. Cao, ACS Nano 2011, 5, 4276.
– reference: B. S. Shim, W. Chen, C. Doty, C. Xu, N. A. Kotov, Nano Lett. 2008, 8, 4151.
– reference: A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2008, 9, 30.
– reference: Q. Wang, Z. H. Wen, J. H. Li, Adv. Funct. Mater. 2006, 16, 2141.
– reference: b) Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Composites, Part A 2004, 35, 1225;
– reference: X. Xiao, T. Xie, Y.-T. Cheng, J. Mater. Chem. 2010, 20, 3508.
– reference: b) Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963.
– reference: c) K. Kobashi, H. Nishino, T. Yamada, D. N. Futaba, M. Yumura, K. Hata, Carbon 2011, 49, 5090;
– reference: X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H. Wang, F. G. Yuan, Y. T. Zhu, Mater. Res. Lett. 2012, 1, 19.
– reference: a) A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902;
– reference: J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, G. G. Wallace, Chem. Mater. 2007, 19, 3595.
– reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183.
– reference: K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 6044.
– reference: R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787.
– reference: c) H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, G. Park, Sci. Rep. 2013, 3;
– reference: b) G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270.
– reference: Y. Yang, C. Wang, B. Yue, S. Gambhir, C. O. Too, G. G. Wallace, Adv. Energy Mater. 2012, 2, 266.
– reference: a) L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447;
– reference: F. Meng, X. Zhang, G. Xu, Z. Yong, H. Chen, M. Chen, Q. Li, Y. Zhu, ACS Appl. Mater. Interfaces 2011, 3, 658.
– reference: X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 2011, 115, 11673.
– reference: b) T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 1996, 382, 54;
– reference: C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863.
– reference: T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220.
– reference: e) H. Peng, J. Am. Chem. Soc. 2008, 130, 42;
– reference: Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, Nano Lett. 2006, 6, 413.
– reference: b) T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Prog. Polym. Sci. 2010, 35, 1350.
– reference: a) H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, Nat. Nanotechnol. 2009, 4, 738;
– reference: b) L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 1998, 73, 1197;
– reference: a) S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282;
– reference: a) Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 411;
– reference: J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn, Carbon 2006, 44, 1898.
– reference: Z. Yang, T. Chen, R. He, H. Li, H. Lin, L. Li, G. Zou, Q. Jia, H. Peng, Polym. Chem. 2013, 4, 1680.
– reference: c) H. D. Wagner, R. A. Vaia, Materials Today 2004, 7, 38;
– reference: W. Guo, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Energy Environ. Sci. 2012, 5, 5221.
– reference: R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340.
– reference: b) C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879.
– reference: d) N. V. Viet, W. S. Kuo, Composites, Part B 2012, 43, 332.
– reference: T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296.
– reference: b) M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358.
– reference: W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 2008, 10, 1555.
– reference: a) G. F. Zou, H. M. Luo, S. Baily, Y. Y. Zhang, N. F. Haberkorn, J. Xiong, E. Bauer, T. M. McCleskey, A. K. Burrell, L. Civale, Y. T. Zhu, J. L. MacManus-Driscoll, Q. X. Jia, Nat. Commun. 2011, 2, 428;
– reference: M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637.
– reference: a) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 5859;
– reference: H. Huang, C. H. Liu, Y. Wu, S. Fan, Adv. Mater. 2005, 17, 1652.
– reference: P. W. Sutter, J.-I. Flege, E. A. Sutter, Nat. Mater. 2008, 7, 406.
– reference: W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Angew. Chem. Int. Ed. 2012, 51, 4644.
– reference: a) J. Bae, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim, Z. L. Wang, Adv. Mater. 2011, 23, 3446;
– reference: b) Y. G. Seol, T. Q. Trung, O.-J. Yoon, I.-Y. Sohn, N.-E. Lee, J. Mater. Chem. 2012, 22, 23759;
– reference: a) M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678;
– reference: X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules. 2010, 43, 2357.
– reference: G. Chen, W. Weng, D. Wu, C. Wu, Eur. Polym. J. 2003, 39, 2329.
– reference: W. Zheng, X. Lu, S. C. Wong, J. Appl. Polym. Sci. 2004, 91, 2781.
– volume: 115
  start-page: 11673
  year: 2011
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 556
  year: 2012
  publication-title: ACS Nano
– volume: 21
  start-page: 13569
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 293
  start-page: 76
  year: 2001
  publication-title: Science
– volume: 6 23 23
  start-page: 5457 4707 3730
  year: 2012 2011 2011
  publication-title: ACS Nano Adv. Mater. Adv. Mater.
– volume: 20
  start-page: 3266
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 3645
  year: 2011
  publication-title: ACS Nano
– volume: 6
  start-page: 313
  year: 2010
  publication-title: Small
– volume: 10
  start-page: 1555
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 23
  start-page: 1482
  year: 2011
  publication-title: Adv. Mater.
– volume: 8 328
  start-page: 902 213
  year: 2008 2010
  publication-title: Nano Lett. Science
– volume: 7
  start-page: 3163
  year: 2011
  publication-title: Small
– volume: 3
  start-page: 206
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 22 5
  start-page: 23759 9662
  year: 2012 2012 2012
  publication-title: Org. Electron. J. Mater. Chem. Energy Environ. Sci.
– volume: 265
  start-page: 1212
  year: 1994
  publication-title: Science
– volume: 15
  start-page: 3198
  year: 2003
  publication-title: Chem. Mater.
– volume: 3
  start-page: 115
  year: 2004
  publication-title: Nat. Mater.
– volume: 16 73 105 49
  start-page: 865 1197 054319 89
  year: 2004 1998 2009 2005
  publication-title: Adv. Mater. Appl. Phys. Lett. J. Appl. Phys. Mater. Sci. Eng. R. Rep.
– volume: 44
  start-page: 81
  year: 2012
  publication-title: Mater. Design.
– volume: 6
  start-page: 296
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 287
  start-page: 637
  year: 2000
  publication-title: Science
– volume: 24
  start-page: 2906
  year: 2012
  publication-title: Adv. Mater.
– volume: 15
  start-page: 546
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 220
  year: 2008
  publication-title: Nano Lett.
– volume: 2 121
  start-page: 1015 4879
  year: 2010 2009
  publication-title: Nat. Chem. Angew. Chem.
– volume: 43
  start-page: 6716
  year: 2010
  publication-title: Macromolecules.
– volume: 8
  start-page: 4151
  year: 2008
  publication-title: Nano Lett.
– volume: 99
  start-page: 10694
  year: 1995
  publication-title: J. Phys. Chem.
– volume: 4
  start-page: 5633
  year: 2010
  publication-title: ACS Nano
– volume: 3 113
  start-page: 411 4257
  year: 2009 2009
  publication-title: ACS Nano J. Phys. Chem. C
– volume: 49
  start-page: 1094
  year: 2011
  publication-title: Carbon
– volume: 16
  start-page: 2141
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 111 20 111
  start-page: 5859 2707 17933
  year: 2007 2008 2007
  publication-title: J. Phys. Chem. C Adv. Mater. J. Phys. Chem. C
– volume: 4 22
  start-page: 1321 390
  year: 2010 2012
  publication-title: ACS Nano J. Mater. Chem.
– volume: 1
  start-page: 472
  year: 2011
  publication-title: Adv. Energy Mater.
– volume: 45
  start-page: 1446
  year: 2007
  publication-title: Carbon
– volume: 38
  start-page: 1675
  year: 2007
  publication-title: Composites, Part A
– volume: 128
  start-page: 1412
  year: 2006
  publication-title: J. Am. Chem. Soc.
– volume: 350
  start-page: 530
  year: 2010
  publication-title: J. Colloid Interf. Sci
– volume: 358
  start-page: 220
  year: 1992
  publication-title: Nature
– volume: 116
  start-page: 5420
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 8552
  year: 2011
  publication-title: ACS Nano
– volume: 6 87
  start-page: 96 215502
  year: 2005 2001
  publication-title: Nano Lett. Phys. Rev. Lett.
– volume: 5
  start-page: 379
  year: 2012
  publication-title: ChemSusChem
– volume: 44
  start-page: 1898
  year: 2006
  publication-title: Carbon
– volume: 95
  start-page: 146805
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 44
  start-page: 1513
  year: 2006
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 20 106 26
  start-page: 2271 837 412
  year: 2008 2007 2005
  publication-title: Adv. Mater. J. Appl. Polym. Sci. Macromol. Rapid Commun.
– volume: 391
  start-page: 59
  year: 1998
  publication-title: Nature
– volume: 15
  start-page: 1798
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 1353
  year: 2013
  publication-title: Sci. Rep.
– volume: 106
  start-page: 6044
  year: 2009
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 44
  start-page: 5893
  year: 2003
  publication-title: Polymer
– volume: 3
  start-page: 658
  year: 2011
  publication-title: ACS Appl. Mater. Interfaces
– volume: 56 195
  start-page: 9224 3041
  year: 2011 2010
  publication-title: Electrochim. Acta J. Power Sources
– volume: 10 24 3 3 6 6
  start-page: 424 4569 1745 4020 7103
  year: 2011 2012 2013 2009 2012 2012
  publication-title: Nat. Mater. Adv. Mater. Sci. Rep. ACS Nano ACS Nano ACS Nano
– volume: 48
  start-page: 260
  year: 2010
  publication-title: Carbon
– volume: 3
  start-page: 563
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 50
  start-page: 692
  year: 2013
  publication-title: Renew. Energ.
– volume: 7
  start-page: 406
  year: 2008
  publication-title: Nat. Mater.
– volume: 48
  start-page: 1079
  year: 2010
  publication-title: Carbon
– volume: 381 382 103 84
  start-page: 678 54 2555 4613
  year: 1996 1996 1999 2000
  publication-title: Nature Nature Synth. Met. Phys. Rev. Lett.
– volume: 1
  start-page: 19
  year: 2012
  publication-title: Mater. Res. Lett.
– volume: 549
  start-page: 82
  year: 2012
  publication-title: Chem. Phys. Lett.
– volume: 11 4
  start-page: 1158 1963
  year: 2009 2010
  publication-title: Electrochem. Commun. ACS Nano
– volume: 65
  start-page: 295
  year: 2004
  publication-title: J. Phys. Chem. Solids
– volume: 17
  start-page: 1186
  year: 2005
  publication-title: Adv. Mater.
– volume: 297
  start-page: 787
  year: 2002
  publication-title: Science
– volume: 2
  start-page: 266
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 442 213
  start-page: 282 1060
  year: 2006 2012
  publication-title: Nature Macromol. Chem. Phys.
– volume: 4 306
  start-page: 738 1358
  year: 2009 2004
  publication-title: Nat. Nanotechnol. Science
– volume: 49
  start-page: 1612
  year: 2013
  publication-title: Chem. Commun.
– volume: 9
  start-page: 30
  year: 2008
  publication-title: Nano Lett.
– volume: 48 3 7 43
  start-page: 1824 327 38 332
  year: 2010 2008 2004 2012
  publication-title: Carbon Nat. Nanotechnol. Materials Today Composites, Part B
– volume: 48
  start-page: 67
  year: 2013
  publication-title: J. Mater. Sci.
– volume: 129
  start-page: 7758
  year: 2007
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 413
  year: 2006
  publication-title: Nano Lett.
– volume: 423
  start-page: 703
  year: 2003
  publication-title: Nature
– volume: 22 35 18
  start-page: 1672 357 689
  year: 2010 2010 2006
  publication-title: Adv. Mater. Prog. Polym. Sci. Adv. Mater.
– volume: 5
  start-page: 5221
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 571
  year: 2011
  publication-title: Nat. Commun.
– volume: 19
  start-page: 3595
  year: 2007
  publication-title: Chem. Mater.
– volume: 305
  start-page: 1273
  year: 2004
  publication-title: Science
– volume: 52
  start-page: 1837
  year: 2011
  publication-title: Polymer
– volume: 321
  start-page: 385
  year: 2008
  publication-title: Science
– volume: 5
  start-page: 4276
  year: 2011
  publication-title: ACS Nano
– volume: 20
  start-page: 3508
  year: 2010
  publication-title: J. Mater. Chem.
– volume: 103
  start-page: 2543
  year: 1999
  publication-title: Synth. Met.
– volume: 62
  start-page: 657
  year: 1993
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 4508
  year: 2012
  publication-title: ACS Nano
– volume: 46
  start-page: 806
  year: 2008
  publication-title: Carbon
– volume: 71 378
  start-page: 085403 257
  year: 2005 2003
  publication-title: Phys. Rev. B Chem. Phys. Lett.
– volume: 3
  start-page: 626
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 2
  start-page: 207
  year: 2007
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 4863
  year: 2010
  publication-title: Nano Lett.
– volume: 51
  start-page: 4644
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 457 3
  start-page: 706 270
  year: 2009 2008
  publication-title: Nature Nat. Nanotechnol.
– volume: 22
  start-page: 1278
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 2 35 19 471 130 30 101
  start-page: 428 1225 661 103 42 1936 131905
  year: 2011 2004 2007 2009 2008 2009 2012
  publication-title: Nat. Commun. Composites, Part A Adv. Mater. Chem. Phys. Lett. J. Am. Chem. Soc. Macromol. Rapid Commun. Appl. Phys. Lett.
– volume: 91
  start-page: 2781
  year: 2004
  publication-title: J. Appl. Polym. Sci.
– volume: 44
  start-page: 2373
  year: 2003
  publication-title: Polymer
– volume: 19
  start-page: 2297
  year: 2009
  publication-title: Adv. Funct. Mater.
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 79
  start-page: 4225
  year: 2001
  publication-title: Appl. Phys. Lett.
– volume: 26
  start-page: 10068
  year: 2010
  publication-title: Langmuir.
– volume: 6
  start-page: 183
  year: 2007
  publication-title: Nat. Mater.
– volume: 305 54 49 5
  start-page: 1447 31 5090 987
  year: 2004 2006 2011 2006
  publication-title: Science Scripta Mater. Carbon Nat Mater
– volume: 17
  start-page: 1652
  year: 2005
  publication-title: Adv. Mater.
– volume: 284
  start-page: 1340
  year: 1999
  publication-title: Science
– volume: 330
  start-page: 219
  year: 2000
  publication-title: Chem. Phys. Lett.
– volume: 48
  start-page: 5584
  year: 2012
  publication-title: Chem. Commun.
– volume: 458
  start-page: 872
  year: 2009
  publication-title: Nature
– volume: 22
  start-page: 3441
  year: 2010
  publication-title: Chem. Mater.
– volume: 51 35
  start-page: 231 1350
  year: 2013 2010
  publication-title: J. Polym. Sci., Part B: Polym. Phys. Prog. Polym. Sci.
– volume: 24
  start-page: 1856
  year: 2012
  publication-title: Adv. Mater.
– volume: 113
  start-page: 9921
  year: 2009
  publication-title: J. Phys. Chem. C
– volume: 1
  start-page: 258
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 2086
  year: 2012
  publication-title: ACS Nano
– volume: 51
  start-page: 8520
  year: 2012
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 205
  year: 2010
  publication-title: Small
– volume: 23 23 49
  start-page: 3446 4923 5382
  year: 2011 2011 2011
  publication-title: Adv. Mater. Adv. Mater. Carbon
– volume: 5
  start-page: 2212
  year: 2005
  publication-title: Nano Lett.
– volume: 4
  start-page: 1680
  year: 2013
  publication-title: Polym. Chem.
– volume: 22
  start-page: 2694
  year: 2010
  publication-title: Adv. Mater.
– volume: 384
  start-page: 147
  year: 1996
  publication-title: Nature
– volume: 69
  start-page: 1486
  year: 2009
  publication-title: Compos. Sci. Technol.
– volume: 32
  start-page: 28
  year: 2003
  publication-title: Chem. Lett.
– volume: 31
  start-page: 292
  year: 2010
  publication-title: Polym. Compos.
– volume: 19 22
  start-page: 075609 617
  year: 2008 2010
  publication-title: Nanotechnology Adv. Mater.
– volume: 39
  start-page: 2329
  year: 2003
  publication-title: Eur. Polym. J.
– volume: 22 23
  start-page: 903 1971
  year: 2012 2011
  publication-title: J. Mater. Chem. Adv. Mater.
– volume: 43
  start-page: 2357
  year: 2010
  publication-title: Macromolecules.
– volume: 196
  start-page: 5990
  year: 2011
  publication-title: J. Power Sources
– ident: e_1_2_8_92_2
  doi: 10.1016/j.elecom.2009.03.036
– ident: e_1_2_8_37_4
  doi: 10.1016/j.carbon.2011.08.005
– ident: e_1_2_8_80_2
  doi: 10.1080/21663831.2012.686586
– ident: e_1_2_8_62_2
  doi: 10.1002/adma.201003188
– ident: e_1_2_8_15_2
  doi: 10.1038/358220a0
– ident: e_1_2_8_68_2
  doi: 10.1002/pc.20802
– ident: e_1_2_8_63_2
  doi: 10.1002/adma.200306196
– ident: e_1_2_8_50_2
  doi: 10.1002/adfm.200801776
– ident: e_1_2_8_63_3
  doi: 10.1063/1.122125
– ident: e_1_2_8_66_3
  doi: 10.1016/S0009-2614(03)01287-9
– ident: e_1_2_8_14_2
  doi: 10.1246/cl.2003.28
– ident: e_1_2_8_4_3
  doi: 10.1002/macp.201200029
– ident: e_1_2_8_42_2
  doi: 10.1007/s10853-012-6658-x
– ident: e_1_2_8_51_2
  doi: 10.1002/smll.200900765
– ident: e_1_2_8_119_2
  doi: 10.1038/srep01353
– ident: e_1_2_8_81_2
  doi: 10.1021/ma902862u
– ident: e_1_2_8_25_2
  doi: 10.1038/nnano.2008.58
– ident: e_1_2_8_72_2
  doi: 10.1039/C1JM15467B
– ident: e_1_2_8_84_5
  doi: 10.1016/j.compositesb.2011.06.007
– ident: e_1_2_8_93_2
  doi: 10.1016/j.jpowsour.2011.02.090
– ident: e_1_2_8_5_3
  doi: 10.1016/j.progpolymsci.2010.07.005
– ident: e_1_2_8_94_2
  doi: 10.1016/j.elecom.2008.08.007
– ident: e_1_2_8_97_2
  doi: 10.1002/adma.200500467
– ident: e_1_2_8_31_2
  doi: 10.1038/nmat2166
– ident: e_1_2_8_64_4
  doi: 10.1021/jp071798c
– ident: e_1_2_8_91_2
  doi: 10.1016/j.renene.2012.06.056
– ident: e_1_2_8_47_4
  doi: 10.1002/adma.201101862
– ident: e_1_2_8_99_2
  doi: 10.1016/j.carbon.2008.02.008
– ident: e_1_2_8_109_2
  doi: 10.1021/nn103523t
– ident: e_1_2_8_47_3
  doi: 10.1002/adma.201102472
– ident: e_1_2_8_6_2
  doi: 10.1126/science.287.5453.637
– ident: e_1_2_8_9_2
  doi: 10.1103/PhysRevLett.95.146805
– ident: e_1_2_8_87_2
  doi: 10.1063/1.1428116
– ident: e_1_2_8_60_7
  doi: 10.1021/nn3021772
– ident: e_1_2_8_79_2
  doi: 10.1038/423703a
– ident: e_1_2_8_125_2
  doi: 10.1021/cm070991g
– ident: e_1_2_8_63_5
  doi: 10.1016/j.mser.2005.04.002
– ident: e_1_2_8_19_2
  doi: 10.1126/science.284.5418.1340
– ident: e_1_2_8_49_3
  doi: 10.1002/adma.201004228
– ident: e_1_2_8_7_2
  doi: 10.1038/nnano.2008.211
– ident: e_1_2_8_39_2
  doi: 10.1021/nn901850u
– ident: e_1_2_8_74_2
  doi: 10.1021/la1001978
– ident: e_1_2_8_37_2
  doi: 10.1002/adma.201101345
– ident: e_1_2_8_45_2
  doi: 10.1038/ncomms1438
– ident: e_1_2_8_27_2
  doi: 10.1021/nl0731872
– ident: e_1_2_8_24_2
  doi: 10.1126/science.1157996
– ident: e_1_2_8_3_2
  doi: 10.1088/0957-4484/19/7/075609
– ident: e_1_2_8_49_2
  doi: 10.1039/C1JM13769G
– ident: e_1_2_8_60_3
  doi: 10.1002/adma.201201978
– ident: e_1_2_8_48_2
  doi: 10.1038/nnano.2009.264
– ident: e_1_2_8_1_2
  doi: 10.1038/381678a0
– ident: e_1_2_8_26_2
  doi: 10.1021/nl802810g
– ident: e_1_2_8_120_2
  doi: 10.1039/C2TA00274D
– ident: e_1_2_8_84_2
  doi: 10.1016/j.carbon.2010.01.028
– ident: e_1_2_8_63_4
  doi: 10.1063/1.3080243
– ident: e_1_2_8_113_2
  doi: 10.1021/nn304705t
– ident: e_1_2_8_73_2
  doi: 10.1002/adma.200904264
– ident: e_1_2_8_64_3
  doi: 10.1002/adma.200800295
– ident: e_1_2_8_122_3
  doi: 10.1016/j.jpowsour.2009.11.028
– ident: e_1_2_8_52_2
  doi: 10.1021/cm100477v
– ident: e_1_2_8_98_2
  doi: 10.1002/polb.20801
– ident: e_1_2_8_48_3
  doi: 10.1126/science.1104276
– ident: e_1_2_8_86_2
  doi: 10.1016/j.carbon.2006.02.026
– ident: e_1_2_8_22_2
  doi: 10.1016/j.cplett.2012.08.055
– ident: e_1_2_8_3_3
  doi: 10.1002/adma.200902986
– ident: e_1_2_8_88_2
  doi: 10.1016/j.compscitech.2008.06.018
– ident: e_1_2_8_11_2
  doi: 10.1016/S0379-6779(98)00221-5
– ident: e_1_2_8_45_5
  doi: 10.1016/j.cplett.2009.02.008
– ident: e_1_2_8_100_2
  doi: 10.1021/ja0570335
– ident: e_1_2_8_12_3
  doi: 10.1103/PhysRevLett.87.215502
– ident: e_1_2_8_34_2
  doi: 10.1038/nnano.2008.215
– ident: e_1_2_8_82_2
  doi: 10.1021/ma1009337
– ident: e_1_2_8_123_2
  doi: 10.1021/ja0722224
– ident: e_1_2_8_60_6
  doi: 10.1021/nn3003345
– ident: e_1_2_8_77_2
  doi: 10.1002/adma.201200170
– ident: e_1_2_8_90_2
  doi: 10.1016/S0032-3861(03)00539-1
– ident: e_1_2_8_75_2
  doi: 10.1016/j.polymer.2011.02.017
– ident: e_1_2_8_1_5
  doi: 10.1103/PhysRevLett.84.4613
– ident: e_1_2_8_122_2
  doi: 10.1016/j.electacta.2011.07.142
– ident: e_1_2_8_10_2
  doi: 10.1038/nnano.2007.89
– ident: e_1_2_8_71_2
  doi: 10.1021/nn203917d
– ident: e_1_2_8_46_2
  doi: 10.1021/nn201002d
– ident: e_1_2_8_108_2
  doi: 10.1039/C2CP43717A
– ident: e_1_2_8_121_2
  doi: 10.1021/jp211474e
– ident: e_1_2_8_102_2
  doi: 10.1038/nmat1059
– ident: e_1_2_8_2_2
  doi: 10.1126/science.1060928
– ident: e_1_2_8_66_2
  doi: 10.1103/PhysRevB.71.085403
– ident: e_1_2_8_56_2
  doi: 10.1016/j.carbon.2007.03.029
– ident: e_1_2_8_95_3
  doi: 10.1039/c2jm33949h
– ident: e_1_2_8_64_2
  doi: 10.1021/jp068895a
– ident: e_1_2_8_129_2
  doi: 10.1021/nl052238x
– ident: e_1_2_8_30_2
  doi: 10.1021/nl801827v
– ident: e_1_2_8_117_2
  doi: 10.1002/smll.200901364
– ident: e_1_2_8_76_2
  doi: 10.1038/ncomms1583
– ident: e_1_2_8_13_2
  doi: 10.1073/pnas.0900155106
– ident: e_1_2_8_65_4
  doi: 10.1016/j.carbon.2011.07.028
– ident: e_1_2_8_103_2
  doi: 10.1002/adma.200702953
– ident: e_1_2_8_57_2
  doi: 10.1002/app.13460
– ident: e_1_2_8_85_2
  doi: 10.1021/cm020975d
– ident: e_1_2_8_23_2
  doi: 10.1126/science.1061797
– ident: e_1_2_8_124_2
  doi: 10.1021/nn2029617
– ident: e_1_2_8_54_2
  doi: 10.1016/j.eurpolymj.2003.08.005
– ident: e_1_2_8_44_2
  doi: 10.1021/nl051419w
– ident: e_1_2_8_65_2
  doi: 10.1126/science.1101398
– ident: e_1_2_8_95_4
  doi: 10.1039/c2ee22595f
– ident: e_1_2_8_20_2
  doi: 10.1126/science.1101243
– ident: e_1_2_8_40_2
  doi: 10.1126/science.265.5176.1212
– ident: e_1_2_8_41_3
  doi: 10.1016/j.progpolymsci.2009.09.003
– ident: e_1_2_8_45_8
  doi: 10.1063/1.4754709
– ident: e_1_2_8_67_2
  doi: 10.1016/S0032-3861(03)00073-9
– ident: e_1_2_8_45_3
  doi: 10.1016/j.compositesa.2003.09.029
– ident: e_1_2_8_131_2
  doi: 10.1039/c2cc17721h
– ident: e_1_2_8_83_2
  doi: 10.1016/j.matdes.2012.07.065
– ident: e_1_2_8_8_2
  doi: 10.1038/34139
– ident: e_1_2_8_16_2
  doi: 10.1021/j100027a002
– ident: e_1_2_8_103_3
  doi: 10.1002/app.26517
– ident: e_1_2_8_55_2
  doi: 10.1016/j.carbon.2009.11.029
– ident: e_1_2_8_45_4
  doi: 10.1002/adma.200601748
– ident: e_1_2_8_116_2
  doi: 10.1021/nn101671t
– ident: e_1_2_8_118_2
  doi: 10.1016/j.jpcs.2003.10.051
– ident: e_1_2_8_130_2
  doi: 10.1002/adma.201200422
– ident: e_1_2_8_38_2
  doi: 10.1021/nl102661q
– ident: e_1_2_8_53_2
  doi: 10.1021/nn3006812
– ident: e_1_2_8_115_2
  doi: 10.1002/cssc.201100430
– ident: e_1_2_8_128_2
  doi: 10.1021/nl801495p
– ident: e_1_2_8_17_2
  doi: 10.1063/1.108857
– ident: e_1_2_8_103_4
  doi: 10.1002/marc.200400492
– ident: e_1_2_8_84_3
  doi: 10.1038/nnano.2008.96
– ident: e_1_2_8_29_3
  doi: 10.1021/jp900791y
– ident: e_1_2_8_110_2
  doi: 10.1021/jp901284d
– ident: e_1_2_8_92_3
  doi: 10.1021/nn1000035
– ident: e_1_2_8_112_2
  doi: 10.1039/c2py21021e
– ident: e_1_2_8_21_2
  doi: 10.1002/adfm.200500937
– ident: e_1_2_8_32_2
  doi: 10.1038/nature07872
– ident: e_1_2_8_12_2
  doi: 10.1021/nl052145f
– ident: e_1_2_8_101_2
  doi: 10.1038/nnano.2011.36
– ident: e_1_2_8_33_2
  doi: 10.1038/nmat1849
– ident: e_1_2_8_41_4
  doi: 10.1002/adma.200501851
– ident: e_1_2_8_45_6
  doi: 10.1021/ja078267m
– ident: e_1_2_8_65_3
  doi: 10.1016/j.scriptamat.2005.09.014
– ident: e_1_2_8_107_2
  doi: 10.1021/am200114r
– ident: e_1_2_8_105_2
  doi: 10.1002/anie.201201975
– ident: e_1_2_8_60_5
  doi: 10.1021/nn900297m
– ident: e_1_2_8_39_3
  doi: 10.1039/C1JM14694G
– volume: 3
  year: 2013
  ident: e_1_2_8_60_4
  publication-title: Sci. Rep.
– ident: e_1_2_8_61_2
  doi: 10.1002/smll.201100990
– ident: e_1_2_8_59_2
  doi: 10.1016/j.jcis.2010.01.035
– ident: e_1_2_8_69_2
  doi: 10.1039/c1jm11766a
– ident: e_1_2_8_111_2
  doi: 10.1002/aenm.201100136
– ident: e_1_2_8_35_3
  doi: 10.1038/nnano.2008.83
– ident: e_1_2_8_36_3
  doi: 10.1002/ange.200901479
– ident: e_1_2_8_18_2
  doi: 10.1038/384147a0
– ident: e_1_2_8_41_2
  doi: 10.1002/adma.200901545
– ident: e_1_2_8_5_2
  doi: 10.1002/polb.23226
– ident: e_1_2_8_126_2
  doi: 10.1002/aenm.201100449
– ident: e_1_2_8_28_2
  doi: 10.1126/science.1102896
– ident: e_1_2_8_35_2
  doi: 10.1038/nature07719
– ident: e_1_2_8_104_2
  doi: 10.1002/anie.201200723
– year: 2012
  ident: e_1_2_8_95_2
  publication-title: Org. Electron.
– ident: e_1_2_8_114_2
  doi: 10.1039/C2CP42790G
– ident: e_1_2_8_127_2
  doi: 10.1039/C1EE02148F
– ident: e_1_2_8_106_2
  doi: 10.1002/adfm.201000570
– ident: e_1_2_8_37_3
  doi: 10.1002/adma.201102207
– ident: e_1_2_8_70_2
  doi: 10.1039/c0jm00307g
– ident: e_1_2_8_89_2
  doi: 10.1002/adma.200401649
– ident: e_1_2_8_47_2
  doi: 10.1021/nn301321j
– ident: e_1_2_8_1_4
  doi: 10.1016/S0379-6779(98)00278-1
– ident: e_1_2_8_27_3
  doi: 10.1126/science.1184014
– ident: e_1_2_8_36_2
  doi: 10.1038/nchem.907
– ident: e_1_2_8_29_2
  doi: 10.1021/nn900020u
– ident: e_1_2_8_60_2
  doi: 10.1038/nmat3001
– ident: e_1_2_8_133_2
  doi: 10.1039/c2cc38290c
– ident: e_1_2_8_132_2
  doi: 10.1021/jp202475m
– ident: e_1_2_8_1_3
  doi: 10.1038/382054a0
– ident: e_1_2_8_65_5
  doi: 10.1038/nmat1782
– ident: e_1_2_8_96_2
  doi: 10.1016/j.carbon.2010.11.013
– ident: e_1_2_8_58_2
  doi: 10.1016/j.compositesa.2007.02.003
– ident: e_1_2_8_78_2
  doi: 10.1016/j.carbon.2009.09.014
– ident: e_1_2_8_43_2
  doi: 10.1016/S0009-2614(00)01013-7
– ident: e_1_2_8_4_2
  doi: 10.1038/nature04969
– ident: e_1_2_8_45_7
  doi: 10.1002/marc.200900370
– ident: e_1_2_8_84_4
  doi: 10.1016/S1369-7021(04)00507-3
SSID ssj0009606
Score 2.5928762
SecondaryResourceType review_article
Snippet The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5153
SubjectTerms Carbon nanotubes
Catalysis
Composite materials
Composite structures
composites
Graphene
Graphite - chemistry
Nanotechnology - methods
Nanotubes, Carbon - chemistry
Optical properties
Polymer matrix composites
polymers
Polymers - chemistry
Strategy
Synthesis
Title Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?
URI https://api.istex.fr/ark:/67375/WNG-6NW2XTDD-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201301926
https://www.ncbi.nlm.nih.gov/pubmed/23813859
https://www.proquest.com/docview/1443395862
https://www.proquest.com/docview/1448746718
https://www.proquest.com/docview/1753533950
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQeYEH7iPlkJEQPKXN-ogTXtCq20NIu0Ko1e6b5fOlJUHZrFT49cwku2kXQZHgLcc4Gtsz48_x-DMhb30ejBzh-qDjMhWRxdTAqJ0GUfLImGVc4X7n6Sw_OROfFnJxbRd_zw8x_HBDz-jiNTq4scv9K9JQ4zveIIjBAFKQcxsTthAVfbnij0J43pHtgR5lLooNa2PG9reLb41Kt7GBL38HObcRbDcEHd0nZqN8n3lyvrdq7Z778Quv4__U7gG5t8andNwb1ENyK1SPyN1rrIWPyeFk2GhFP9cX37-GhmJYwfSvQKem7Y36Az0wja0rCgG8blc2LGnd0GMkyIb4-vEJOTs6PD04SdenMaQOME-eOh6lcEa5CHGJ5zE4FvLoQ54x65QspUJiIGXhjSoiCzJkuAbHZCylD7LgT8lOVVfhOaEeHnhbjJQRXljlytIAEPGZMV6AUZmEpJve0G5NVY4nZlzonmSZaWwePTRPQt4P8t96ko4_Sr7rOncQM805prYpqeezY53P5mxxOpnoeULebHpfg8PhKoqpQr1awlxJcF5KmAneKFPgOS6j4gYZmChK_FKWkGe9eQ1aIY7ihSwTwjoj-Uut9HgyHQ93u_9S6AW5g9ddmqJ4SXbaZhVeAdxq7evOpX4CPaMftQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvEvD00gITmmzjh8JF7Rq2i7QXSG01fZm2Y5zaZugNCsBvx5PsklZBEWCY5Jx5MfM-LM9_gbgVS6c5iM8H7QxD1lBi1D7WTt0LI0LSg2NJd53ns7E5Jh9OOF9NCHehen4IYYNN7SM1l-jgeOG9O4la6jOW-Ig74Q9ShHXYRPTemMSg-zzJYMUAvSWbs_XJBUs6XkbI7q7Xn5tXtrELv76O9C5jmHbSejgDpi--l3syenOsjE79vsvzI7_1b67cHsFUcm406l7cM2V9-HWT8SFD2A_G-5akU_V2bdzVxP0LBgB5shUN51evyV7ujZVSbwPr5qlcRekqskhcmR7F_vuIRwf7M_3JuEqIUNoPewRoY0LzqyWtvCuKRaFs9SJInciosZKnnKJ3EDS-C8yKajjLsJjOMqLlOeOJ_EWbJRV6baB5P5FbpKR1CxnRto01R6L5JHWOfN6pQMI--FQdsVWjkkzzlTHs0wVdo8auieAN4P8l46n44-Sr9vRHcR0fYrRbZKrxexQidmCnsyzTC0CeNkPv_I2hwcpunTV8sIvl1gcp9wvBq-USTCVyyi5QsavFTn-KQrgUadfQ60QSsUJTwOgrZb8pVVqnE3Hw9Pjfyn0Am5M5tMjdfR-9vEJ3MT3bdQiewobTb10zzz6aszz1r5-AC39I88
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48C4EWggSglParGM7SS_Vqum2PHZVoVa7N8vPS0tSpVkJ-PV4kt20i6BIcIwzjvyYGX-OZz4DvDXcSjbA80GdsIg64iLpV-3I0jxxhCiSpJjvPJ7wo1P6ccZm17L4O36I_ocbWkbrr9HAL4zbuSINlablDfI-2IMUfhvWKfcWg7DoyxWBFOLzlm3PNyTnNFvSNsZkZ7X-yrK0jiP87XeYcxXCtmvQ6AHIZeu70JOz7XmjtvWPX4gd_6d7D-H-AqCGw06jHsEtWz6Ge9doC5_AQdFnWoXH1fn3r7YO0a9g_JcNx7LptHo33Je1qsrQe_CqmSt7GVZ1eIgM2d7B7j2F09HByf5RtLiOIdIe9PBIJ45RLVPtvGNKuLOaWO6M5TFROmU5S5EZKFX-TZo5YpmN8RCOMJczY1mWbMBaWZX2OYTGFxiVDVJJDVWpznPpkYiJpTTUa5UMIFrOhtALrnK8MuNcdCzLRODwiH54Anjfy190LB1_lHzXTm4vJuszjG1LmZhODgWfTMnspCjENIA3y9kX3uLwGEWWtppf-s0STZKc-a3gjTIZXuQyyG6Q8TtFhl-KA3jWqVffKgRSScbyAEirJH_plRgW42H_9OJfKr2GO8fFSHz-MPn0Eu5icRuySDdhranndstDr0a9aq3rJ7qOIoc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+polymer+composite+materials%3A+carbon+nanotubes+or+graphene%3F&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Xuemei&rft.au=Sun%2C+Hao&rft.au=Li%2C+Houpu&rft.au=Peng%2C+Huisheng&rft.date=2013-10-04&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=25&rft.issue=37&rft.spage=5153&rft_id=info:doi/10.1002%2Fadma.201301926&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon