Developing Polymer Composite Materials: Carbon Nanotubes or Graphene?
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 25; no. 37; pp. 5153 - 5176 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
04.10.2013
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201301926 |
Cover
Loading…
Abstract | The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene.
Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. |
---|---|
AbstractList | The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene.The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Carbon nanotubes and graphene have been widely incorporated into polymers to synthesize high performance composite materials. This review article describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. |
Author | Peng, Huisheng Sun, Xuemei Sun, Hao Li, Houpu |
Author_xml | – sequence: 1 givenname: Xuemei surname: Sun fullname: Sun, Xuemei organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China – sequence: 2 givenname: Hao surname: Sun fullname: Sun, Hao organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China – sequence: 3 givenname: Houpu surname: Li fullname: Li, Houpu organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China – sequence: 4 givenname: Huisheng surname: Peng fullname: Peng, Huisheng email: penghs@fudan.edu.cn organization: State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23813859$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1v00AQhleoiKaFK0fkIxeH_fDsBxcUJW1AagOHonBbrZ0xLNhes-tQ8u9xlBKhSlU5zWGe5x1p3jNy0oUOCXnJ6JRRyt-4TeumnDJBmeHyCZkw4CwvqIETMqFGQG5koU_JWUrfKaVGUvmMnHKhmdBgJuRigb-wCb3vvmafQrNrMWbz0PYh-QGzazdg9K5Jb7O5i2XospXrwrAtMWUhZsvo-m_Y4bvn5Gk9Uvjibp6Tz5cXN_P3-dXH5Yf57CqvgIHMK1FDUTlV1VorIWusOMp6g5LyslJgQCkllSrHjdI1R0AKTBoOtYENghbn5PUht4_h5xbTYFufKmwa12HYJssUCBDCAH0cLQqtCqmY_h90n6klH9FXd-i2bHFj--hbF3f270NHYHoAqhhSilgfEUbtvjG7b8weGxuF4p5Q-cENPnRDdL55WDMH7dY3uHvkiJ0trmf_uvnB9WnA30fXxR9WKqHArldLK1dr_uVmsbBr8QfHwLfu |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2021_109113 crossref_primary_10_1016_j_engfracmech_2023_109734 crossref_primary_10_1088_1361_651X_aaab7a crossref_primary_10_1016_j_polymer_2015_01_003 crossref_primary_10_1016_j_pmatsci_2018_10_002 crossref_primary_10_1039_C7TA00863E crossref_primary_10_1021_acsnano_6b04028 crossref_primary_10_1021_acsami_6b06096 crossref_primary_10_1039_C5RA01851J crossref_primary_10_1016_j_jmmm_2024_171979 crossref_primary_10_1039_C6RA01772J crossref_primary_10_1039_C6TA01893A crossref_primary_10_7124_bc_000AA0 crossref_primary_10_1002_mawe_201700273 crossref_primary_10_1016_j_carbpol_2014_05_016 crossref_primary_10_1134_S0018151X20020017 crossref_primary_10_1002_adem_201700745 crossref_primary_10_1021_acs_chemrev_8b00392 crossref_primary_10_1007_s10118_021_2553_8 crossref_primary_10_1016_j_carbon_2018_04_039 crossref_primary_10_1039_D4NH00224E crossref_primary_10_1021_acsbiomaterials_8b00190 crossref_primary_10_1177_00219983231207441 crossref_primary_10_1016_j_eurpolymj_2017_12_038 crossref_primary_10_1002_mawe_202400070 crossref_primary_10_1002_pen_25262 crossref_primary_10_1088_2053_1591_ab2edf crossref_primary_10_1039_C5TA08752J crossref_primary_10_1016_j_compscitech_2014_10_021 crossref_primary_10_3390_nano11092414 crossref_primary_10_1016_j_est_2020_101302 crossref_primary_10_1039_C4TA03983A crossref_primary_10_1039_C6RA08823F crossref_primary_10_3390_nano12010083 crossref_primary_10_1016_j_compscitech_2019_04_021 crossref_primary_10_1049_iet_nde_2019_0028 crossref_primary_10_3390_ma14061436 crossref_primary_10_1080_1536383X_2023_2263597 crossref_primary_10_1002_adma_201907411 crossref_primary_10_1002_aic_16800 crossref_primary_10_1177_0021998319849250 crossref_primary_10_1002_anie_201402780 crossref_primary_10_3390_polym14183766 crossref_primary_10_1016_j_compscitech_2022_109428 crossref_primary_10_1134_S1063783420080223 crossref_primary_10_1007_s10904_024_03439_z crossref_primary_10_1002_mame_201400245 crossref_primary_10_1016_j_jcomc_2024_100434 crossref_primary_10_1039_C4RA16518G crossref_primary_10_3390_jcs7080307 crossref_primary_10_1021_acsami_5b08294 crossref_primary_10_1088_1674_4926_39_1_011004 crossref_primary_10_1088_2058_8585_ac515a crossref_primary_10_1021_jp510836y crossref_primary_10_1134_S2634827622010032 crossref_primary_10_1186_s40580_015_0050_x crossref_primary_10_3390_ma11071174 crossref_primary_10_1007_s10965_019_1896_0 crossref_primary_10_1016_j_mser_2023_100734 crossref_primary_10_1016_j_cej_2016_11_093 crossref_primary_10_1016_j_synthmet_2017_05_010 crossref_primary_10_1088_1674_1056_23_8_088801 crossref_primary_10_1039_C6RA26136A crossref_primary_10_1002_chem_201503150 crossref_primary_10_1002_er_4348 crossref_primary_10_1016_j_eurpolymj_2016_10_004 crossref_primary_10_1016_j_carbon_2014_08_075 crossref_primary_10_1016_j_cis_2015_01_007 crossref_primary_10_1002_cjoc_202300185 crossref_primary_10_1177_0021998319898507 crossref_primary_10_1007_s11998_020_00443_z crossref_primary_10_1155_2022_2265904 crossref_primary_10_1002_adma_201705027 crossref_primary_10_1016_j_jmatprotec_2021_117470 crossref_primary_10_1080_1536383X_2021_1943367 crossref_primary_10_1016_j_compositesa_2020_106014 crossref_primary_10_1016_j_compositesb_2018_12_073 crossref_primary_10_1021_am502515u crossref_primary_10_3390_mi11090847 crossref_primary_10_1016_j_compositesb_2019_107663 crossref_primary_10_1021_acsami_5b03269 crossref_primary_10_1016_j_synthmet_2019_116181 crossref_primary_10_1002_app_49742 crossref_primary_10_1007_s00289_025_05709_3 crossref_primary_10_1007_s10853_017_1335_8 crossref_primary_10_1007_s10853_020_05336_5 crossref_primary_10_1039_C6RA11247A crossref_primary_10_1016_j_bbrc_2019_05_097 crossref_primary_10_1002_adfm_202303519 crossref_primary_10_1002_smll_201401940 crossref_primary_10_1155_2019_2836372 crossref_primary_10_1002_ange_201802663 crossref_primary_10_1002_smsc_202000080 crossref_primary_10_1016_j_vacuum_2024_113180 crossref_primary_10_1039_C7CP07818H crossref_primary_10_1002_app_44843 crossref_primary_10_1016_j_progpolymsci_2014_03_001 crossref_primary_10_1208_s12249_018_1192_z crossref_primary_10_3390_polym15163472 crossref_primary_10_1007_s11998_020_00336_1 crossref_primary_10_1016_j_carbon_2016_07_043 crossref_primary_10_1038_s41467_021_24970_4 crossref_primary_10_1039_D2BM00575A crossref_primary_10_1016_j_physe_2019_04_012 crossref_primary_10_1016_j_carbon_2020_05_045 crossref_primary_10_1016_j_jallcom_2017_04_216 crossref_primary_10_1016_j_matchemphys_2016_03_035 crossref_primary_10_1039_C5RA27104E crossref_primary_10_1080_09276440_2018_1439632 crossref_primary_10_1002_chin_201348260 crossref_primary_10_1039_C6TC01501H crossref_primary_10_1016_j_jpcs_2019_109174 crossref_primary_10_1016_j_fuproc_2020_106630 crossref_primary_10_1016_j_envres_2023_117114 crossref_primary_10_3390_polym10050542 crossref_primary_10_1007_s12221_025_00883_7 crossref_primary_10_1016_j_impact_2023_100477 crossref_primary_10_3390_ma16072770 crossref_primary_10_1039_C6TA10553J crossref_primary_10_3390_ma13092046 crossref_primary_10_1021_acsami_5b02552 crossref_primary_10_1016_j_matpr_2019_03_027 crossref_primary_10_1039_C5NJ00414D crossref_primary_10_1080_15421406_2021_1962488 crossref_primary_10_1002_pcr2_10137 crossref_primary_10_1080_25740881_2024_2372805 crossref_primary_10_1039_C6NR06515E crossref_primary_10_3390_polym14091718 crossref_primary_10_1016_j_carbon_2015_11_018 crossref_primary_10_1016_j_coco_2023_101767 crossref_primary_10_1002_adfm_201403809 crossref_primary_10_1007_s10854_022_09611_w crossref_primary_10_1007_s10570_019_02933_9 crossref_primary_10_1016_j_ijnonlinmec_2018_05_004 crossref_primary_10_1039_C5CS00258C crossref_primary_10_1002_app_48991 crossref_primary_10_1016_j_polymertesting_2019_105946 crossref_primary_10_1016_j_snb_2014_02_035 crossref_primary_10_1016_j_actphy_2025_100063 crossref_primary_10_1142_S1793292021501198 crossref_primary_10_1016_j_compscitech_2019_03_021 crossref_primary_10_1002_adma_201305359 crossref_primary_10_3390_nano10102077 crossref_primary_10_1016_j_adna_2023_11_001 crossref_primary_10_1016_j_inoche_2024_113880 crossref_primary_10_1002_app_52098 crossref_primary_10_1016_j_ijthermalsci_2015_11_015 crossref_primary_10_1016_j_materresbull_2021_111349 crossref_primary_10_1021_acsnano_6b08408 crossref_primary_10_1080_87559129_2020_1858313 crossref_primary_10_1007_s11664_019_07908_x crossref_primary_10_1016_j_pmatsci_2017_07_004 crossref_primary_10_1016_j_progpolymsci_2017_09_001 crossref_primary_10_1002_app_43735 crossref_primary_10_1080_09276440_2021_1982334 crossref_primary_10_1142_S1793292019500759 crossref_primary_10_3390_app14072756 crossref_primary_10_1016_j_compscitech_2015_04_008 crossref_primary_10_1021_acs_nanolett_6b04405 crossref_primary_10_1016_j_mtchem_2022_101313 crossref_primary_10_1149_1945_7111_ac5306 crossref_primary_10_1016_j_jallcom_2016_04_276 crossref_primary_10_1134_S0965545X17060049 crossref_primary_10_3390_polym8080281 crossref_primary_10_3390_pharmaceutics15041204 crossref_primary_10_1002_adhm_202002105 crossref_primary_10_1002_anie_201802663 crossref_primary_10_1016_j_progpolymsci_2018_06_001 crossref_primary_10_1021_acsomega_7b00017 crossref_primary_10_1039_C4TA07173E crossref_primary_10_1149_1945_7111_ace4f6 crossref_primary_10_1177_0021955X16651253 crossref_primary_10_3390_c9010028 crossref_primary_10_1016_j_compscitech_2013_12_019 crossref_primary_10_1021_acsapm_3c00954 crossref_primary_10_1002_app_51690 crossref_primary_10_1063_1_4869635 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126186 crossref_primary_10_1016_j_compscitech_2025_111133 crossref_primary_10_1016_j_cej_2024_155088 crossref_primary_10_1002_pc_28790 crossref_primary_10_1016_j_carbon_2017_10_039 crossref_primary_10_1038_s41467_023_38701_4 crossref_primary_10_1515_psr_2020_0077 crossref_primary_10_1002_adfm_202310008 crossref_primary_10_1039_C4RA07869A crossref_primary_10_1002_app_44499 crossref_primary_10_1063_1_4935970 crossref_primary_10_1016_j_matlet_2014_10_162 crossref_primary_10_1016_j_ultsonch_2019_104720 crossref_primary_10_3390_fib7020017 crossref_primary_10_1002_adfm_201401886 crossref_primary_10_1016_j_compscitech_2014_03_023 crossref_primary_10_3390_ma17133265 crossref_primary_10_1002_pc_26018 crossref_primary_10_1039_C5NR03363B crossref_primary_10_3390_ma11091757 crossref_primary_10_3390_polym12123037 crossref_primary_10_1016_j_compscitech_2024_110950 crossref_primary_10_1016_j_progpolymsci_2016_12_005 crossref_primary_10_1002_slct_202101794 crossref_primary_10_1016_j_colsurfa_2019_124369 crossref_primary_10_1016_j_polymer_2016_01_005 crossref_primary_10_1016_j_matdes_2014_09_069 crossref_primary_10_1016_j_compscitech_2017_10_026 crossref_primary_10_1016_j_tws_2020_106678 crossref_primary_10_1039_C4TC01051E crossref_primary_10_1134_S2075113320010049 crossref_primary_10_3390_nano10071343 crossref_primary_10_3390_polym11091411 crossref_primary_10_1016_j_egyr_2020_03_019 crossref_primary_10_1039_C8RA05007D crossref_primary_10_1016_j_compositesa_2015_03_015 crossref_primary_10_1016_j_compstruct_2023_116877 crossref_primary_10_1039_C6RA14310E crossref_primary_10_1016_j_apcata_2014_12_025 crossref_primary_10_1039_D3SM00022B crossref_primary_10_1039_C4EE03853C crossref_primary_10_1002_pc_29150 crossref_primary_10_1016_j_flatc_2022_100374 crossref_primary_10_1016_j_compstruct_2016_04_010 crossref_primary_10_1016_j_jelechem_2015_05_032 crossref_primary_10_1021_nn507426u crossref_primary_10_3103_S1068798X20040127 crossref_primary_10_1016_j_est_2023_108731 crossref_primary_10_1002_adma_201501493 crossref_primary_10_1002_slct_201701019 crossref_primary_10_3390_polym9090446 crossref_primary_10_1088_1757_899X_928_5_052029 crossref_primary_10_1557_mrs_2017_238 crossref_primary_10_1007_s11664_019_07920_1 crossref_primary_10_1002_app_56240 crossref_primary_10_1021_acsanm_0c02539 crossref_primary_10_1039_c3ay41688g crossref_primary_10_1016_j_progpolymsci_2016_12_010 crossref_primary_10_1016_j_desal_2024_118197 crossref_primary_10_1088_1742_6596_1120_1_012084 crossref_primary_10_1016_j_polymer_2017_11_009 crossref_primary_10_1002_marc_201600702 crossref_primary_10_1002_pat_4164 crossref_primary_10_1177_0954008321996759 crossref_primary_10_1016_j_compositesb_2020_108493 crossref_primary_10_1016_j_giant_2022_100136 crossref_primary_10_1039_C6FD00232C crossref_primary_10_1039_C4TA04772A crossref_primary_10_3390_ma17194745 crossref_primary_10_1016_j_jallcom_2018_03_100 crossref_primary_10_3390_polym11040735 crossref_primary_10_1016_j_diamond_2017_06_007 crossref_primary_10_1016_j_compositesa_2024_108490 crossref_primary_10_1016_j_ijft_2024_100915 crossref_primary_10_1016_j_cej_2024_154535 crossref_primary_10_1016_j_rineng_2023_101671 crossref_primary_10_1088_2053_1591_aaff00 crossref_primary_10_1002_pat_3747 crossref_primary_10_1007_s40089_018_0238_2 crossref_primary_10_1002_pi_6279 crossref_primary_10_1080_25740881_2020_1768544 crossref_primary_10_3390_polym11050763 crossref_primary_10_1039_C4RA15881D crossref_primary_10_1039_D2EN01014C crossref_primary_10_1002_adma_202306129 crossref_primary_10_1016_j_ssc_2023_115199 crossref_primary_10_1007_s10854_022_09222_5 crossref_primary_10_1016_j_ijbiomac_2019_09_020 crossref_primary_10_1039_D2QM00418F crossref_primary_10_1039_C9NR00117D crossref_primary_10_1002_ange_201402780 crossref_primary_10_1007_s10118_020_2386_x crossref_primary_10_1134_S0036024416130227 crossref_primary_10_1080_03602559_2015_1055504 crossref_primary_10_1134_S1063784219100128 crossref_primary_10_1021_acsapm_2c01630 crossref_primary_10_1016_j_compscitech_2017_05_024 crossref_primary_10_3390_w14091430 crossref_primary_10_1002_brb3_755 crossref_primary_10_1016_j_compositesa_2018_04_003 crossref_primary_10_1080_09276440_2016_1204137 crossref_primary_10_1021_jacs_9b06757 crossref_primary_10_1039_C6TA02161A crossref_primary_10_1002_pc_25922 crossref_primary_10_3390_nano8110942 crossref_primary_10_1007_s00339_022_06078_8 crossref_primary_10_1016_j_carbon_2019_09_062 crossref_primary_10_2478_amns_2021_2_00248 crossref_primary_10_1111_ijac_12742 crossref_primary_10_1016_j_polymer_2017_11_025 crossref_primary_10_1016_j_compositesa_2016_08_030 crossref_primary_10_1002_sia_7310 crossref_primary_10_1039_C5TC00399G crossref_primary_10_1002_pen_24774 crossref_primary_10_1016_j_seppur_2021_119428 crossref_primary_10_1007_s11095_020_02902_z crossref_primary_10_1007_s10853_018_2403_4 crossref_primary_10_1088_2053_1591_aa5bf8 crossref_primary_10_1016_j_physrep_2020_08_004 crossref_primary_10_1016_j_compositesb_2018_09_030 crossref_primary_10_3390_s19051250 crossref_primary_10_1002_pc_29044 crossref_primary_10_1002_pc_25364 crossref_primary_10_1016_j_compscitech_2019_107780 crossref_primary_10_1039_C5NR07147J crossref_primary_10_1016_j_compositesa_2018_04_011 crossref_primary_10_1016_j_carbon_2021_01_115 crossref_primary_10_1088_2053_1591_aa5ad4 crossref_primary_10_1016_j_matdes_2015_10_032 crossref_primary_10_1039_C5TB00448A crossref_primary_10_1016_j_susc_2018_03_013 crossref_primary_10_1016_j_compositesa_2017_12_023 crossref_primary_10_1016_j_eurpolymj_2019_04_004 crossref_primary_10_1051_matecconf_201818801015 crossref_primary_10_1002_adma_202408456 crossref_primary_10_1002_adma_201706885 crossref_primary_10_1016_j_eurpolymj_2015_07_059 crossref_primary_10_1038_s41598_024_77083_5 crossref_primary_10_1002_adsu_201900137 crossref_primary_10_1016_j_polymer_2016_03_055 crossref_primary_10_1088_1361_6528_ad8bcd crossref_primary_10_1021_acsmaterialsau_3c00072 crossref_primary_10_1039_C5RA20214K crossref_primary_10_1016_j_polymer_2017_08_030 crossref_primary_10_1021_acsami_9b16922 crossref_primary_10_1039_C7CP00209B crossref_primary_10_1016_j_jallcom_2018_09_032 crossref_primary_10_1016_j_compositesb_2019_106956 crossref_primary_10_1021_acssuschemeng_7b02876 crossref_primary_10_1007_s10965_016_1092_4 crossref_primary_10_1016_j_clay_2017_08_017 crossref_primary_10_1515_ntrev_2022_0041 crossref_primary_10_1039_D2RA04797G crossref_primary_10_1016_j_compstruct_2020_113062 crossref_primary_10_3934_era_2023178 crossref_primary_10_1002_app_45088 crossref_primary_10_1002_adma_202313354 crossref_primary_10_3390_ma8020652 crossref_primary_10_1039_C9TA04256C crossref_primary_10_1039_C5RA27471K crossref_primary_10_1177_0954008316664398 crossref_primary_10_2217_nnm_2020_0198 crossref_primary_10_1016_j_electacta_2020_135700 crossref_primary_10_3390_ma10101120 crossref_primary_10_1016_j_carbon_2016_11_040 crossref_primary_10_3390_s18124364 crossref_primary_10_1016_j_matdes_2017_07_034 crossref_primary_10_1016_j_eurpolymj_2016_03_013 crossref_primary_10_3390_app14031178 crossref_primary_10_1016_j_ceramint_2025_02_193 crossref_primary_10_1002_app_48347 crossref_primary_10_1016_j_compositesa_2019_05_017 crossref_primary_10_1016_j_jdent_2020_103557 crossref_primary_10_1016_j_compscitech_2016_10_008 crossref_primary_10_1039_C6RA28117F crossref_primary_10_1002_pc_25577 crossref_primary_10_1002_adma_201901971 crossref_primary_10_1007_s12221_017_1126_5 crossref_primary_10_1080_03602559_2014_979503 crossref_primary_10_1039_C6RA08207F crossref_primary_10_1039_C7PY00182G crossref_primary_10_1039_C7RA11292K crossref_primary_10_3390_polym14122440 crossref_primary_10_3390_app8091438 crossref_primary_10_1002_advs_201903501 crossref_primary_10_1016_j_progpolymsci_2016_05_001 crossref_primary_10_1038_s41598_023_29270_z crossref_primary_10_1039_C5CC05596B crossref_primary_10_3390_polym10090933 crossref_primary_10_1016_j_diamond_2021_108730 crossref_primary_10_1039_C6RA04511A crossref_primary_10_1002_cphc_201402625 crossref_primary_10_1016_j_eurpolymj_2018_12_002 crossref_primary_10_1155_2019_4658215 crossref_primary_10_1016_j_compscitech_2020_108356 crossref_primary_10_55003_cast_2023_254564 |
Cites_doi | 10.1016/j.elecom.2009.03.036 10.1016/j.carbon.2011.08.005 10.1080/21663831.2012.686586 10.1002/adma.201003188 10.1038/358220a0 10.1002/pc.20802 10.1002/adma.200306196 10.1002/adfm.200801776 10.1063/1.122125 10.1016/S0009-2614(03)01287-9 10.1246/cl.2003.28 10.1002/macp.201200029 10.1007/s10853-012-6658-x 10.1002/smll.200900765 10.1038/srep01353 10.1021/ma902862u 10.1038/nnano.2008.58 10.1039/C1JM15467B 10.1016/j.compositesb.2011.06.007 10.1016/j.jpowsour.2011.02.090 10.1016/j.progpolymsci.2010.07.005 10.1016/j.elecom.2008.08.007 10.1002/adma.200500467 10.1038/nmat2166 10.1021/jp071798c 10.1016/j.renene.2012.06.056 10.1002/adma.201101862 10.1016/j.carbon.2008.02.008 10.1021/nn103523t 10.1002/adma.201102472 10.1126/science.287.5453.637 10.1103/PhysRevLett.95.146805 10.1063/1.1428116 10.1021/nn3021772 10.1038/423703a 10.1021/cm070991g 10.1016/j.mser.2005.04.002 10.1126/science.284.5418.1340 10.1002/adma.201004228 10.1038/nnano.2008.211 10.1021/nn901850u 10.1021/la1001978 10.1002/adma.201101345 10.1038/ncomms1438 10.1021/nl0731872 10.1126/science.1157996 10.1088/0957-4484/19/7/075609 10.1039/C1JM13769G 10.1002/adma.201201978 10.1038/nnano.2009.264 10.1038/381678a0 10.1021/nl802810g 10.1039/C2TA00274D 10.1016/j.carbon.2010.01.028 10.1063/1.3080243 10.1021/nn304705t 10.1002/adma.200904264 10.1002/adma.200800295 10.1016/j.jpowsour.2009.11.028 10.1021/cm100477v 10.1002/polb.20801 10.1126/science.1104276 10.1016/j.carbon.2006.02.026 10.1016/j.cplett.2012.08.055 10.1002/adma.200902986 10.1016/j.compscitech.2008.06.018 10.1016/S0379-6779(98)00221-5 10.1016/j.cplett.2009.02.008 10.1021/ja0570335 10.1103/PhysRevLett.87.215502 10.1038/nnano.2008.215 10.1021/ma1009337 10.1021/ja0722224 10.1021/nn3003345 10.1002/adma.201200170 10.1016/S0032-3861(03)00539-1 10.1016/j.polymer.2011.02.017 10.1103/PhysRevLett.84.4613 10.1016/j.electacta.2011.07.142 10.1038/nnano.2007.89 10.1021/nn203917d 10.1021/nn201002d 10.1039/C2CP43717A 10.1021/jp211474e 10.1038/nmat1059 10.1126/science.1060928 10.1103/PhysRevB.71.085403 10.1016/j.carbon.2007.03.029 10.1039/c2jm33949h 10.1021/jp068895a 10.1021/nl052238x 10.1021/nl801827v 10.1002/smll.200901364 10.1038/ncomms1583 10.1073/pnas.0900155106 10.1016/j.carbon.2011.07.028 10.1002/adma.200702953 10.1002/app.13460 10.1021/cm020975d 10.1126/science.1061797 10.1021/nn2029617 10.1016/j.eurpolymj.2003.08.005 10.1021/nl051419w 10.1126/science.1101398 10.1039/c2ee22595f 10.1126/science.1101243 10.1126/science.265.5176.1212 10.1016/j.progpolymsci.2009.09.003 10.1063/1.4754709 10.1016/S0032-3861(03)00073-9 10.1016/j.compositesa.2003.09.029 10.1039/c2cc17721h 10.1016/j.matdes.2012.07.065 10.1038/34139 10.1021/j100027a002 10.1002/app.26517 10.1016/j.carbon.2009.11.029 10.1002/adma.200601748 10.1021/nn101671t 10.1016/j.jpcs.2003.10.051 10.1002/adma.201200422 10.1021/nl102661q 10.1021/nn3006812 10.1002/cssc.201100430 10.1021/nl801495p 10.1063/1.108857 10.1002/marc.200400492 10.1038/nnano.2008.96 10.1021/jp900791y 10.1021/jp901284d 10.1021/nn1000035 10.1039/c2py21021e 10.1002/adfm.200500937 10.1038/nature07872 10.1021/nl052145f 10.1038/nnano.2011.36 10.1038/nmat1849 10.1002/adma.200501851 10.1021/ja078267m 10.1016/j.scriptamat.2005.09.014 10.1021/am200114r 10.1002/anie.201201975 10.1021/nn900297m 10.1039/C1JM14694G 10.1002/smll.201100990 10.1016/j.jcis.2010.01.035 10.1039/c1jm11766a 10.1002/aenm.201100136 10.1038/nnano.2008.83 10.1002/ange.200901479 10.1038/384147a0 10.1002/adma.200901545 10.1002/polb.23226 10.1002/aenm.201100449 10.1126/science.1102896 10.1038/nature07719 10.1002/anie.201200723 10.1039/C2CP42790G 10.1039/C1EE02148F 10.1002/adfm.201000570 10.1002/adma.201102207 10.1039/c0jm00307g 10.1002/adma.200401649 10.1021/nn301321j 10.1016/S0379-6779(98)00278-1 10.1126/science.1184014 10.1038/nchem.907 10.1021/nn900020u 10.1038/nmat3001 10.1039/c2cc38290c 10.1021/jp202475m 10.1038/382054a0 10.1038/nmat1782 10.1016/j.carbon.2010.11.013 10.1016/j.compositesa.2007.02.003 10.1016/j.carbon.2009.09.014 10.1016/S0009-2614(00)01013-7 10.1038/nature04969 10.1002/marc.200900370 10.1016/S1369-7021(04)00507-3 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adma.201301926 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 5176 |
ExternalDocumentID | 23813859 10_1002_adma_201301926 ADMA201301926 ark_67375_WNG_6NW2XTDD_W |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX ADMLS AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c5156-c3f54ca7cf88736fec2e6fde602bc7595777677b6fe78f2e5e0516925f95de583 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 16:19:34 EDT 2025 Fri Jul 11 02:01:06 EDT 2025 Fri Jul 11 04:34:23 EDT 2025 Thu Apr 03 07:03:20 EDT 2025 Tue Jul 01 02:26:33 EDT 2025 Thu Apr 24 23:06:55 EDT 2025 Wed Jan 22 16:21:35 EST 2025 Wed Oct 30 09:56:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 37 |
Keywords | composites polymers carbon nanotubes graphene |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5156-c3f54ca7cf88736fec2e6fde602bc7595777677b6fe78f2e5e0516925f95de583 |
Notes | Dedicated to the 20th Anniversary of the Department of Macromolecular Science of Fudan University ark:/67375/WNG-6NW2XTDD-W ArticleID:ADMA201301926 istex:8AEF7607B2FC578E06645914BE6255DA21175CE1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 23813859 |
PQID | 1443395862 |
PQPubID | 23500 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1753533950 proquest_miscellaneous_1448746718 proquest_miscellaneous_1443395862 pubmed_primary_23813859 crossref_primary_10_1002_adma_201301926 crossref_citationtrail_10_1002_adma_201301926 wiley_primary_10_1002_adma_201301926_ADMA201301926 istex_primary_ark_67375_WNG_6NW2XTDD_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 4, 2013 |
PublicationDateYYYYMMDD | 2013-10-04 |
PublicationDate_xml | – month: 10 year: 2013 text: October 4, 2013 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | b) Q. Meng, J. Hu, Y. Zhu, J. Appl. Polym. Sci. 2007, 106, 837 b) S. Ryu, Y. Lee, J. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee, S. H. Hong, Adv. Mater. 2011, 23, 1971. M. B. Bryning, M. F. Islam, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2005, 17, 1186. S. Liu, Y. Liu, H. Cebeci, R. G. de Villoria, J. Lin, B. L. Wardle, Q. M. Zhang, Adv. Funct. Mater. 2010, 20, 3266. a) M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678 a) J. Bae, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim, Z. L. Wang, Adv. Mater. 2011, 23, 3446 K. Liao, S. Li, Appl. Phys. Lett. 2001, 79, 4225. M. El Achaby, A. Qaiss, Mater. Design. 2012, 44, 81. J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Carbon 2011, 49, 1094. J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn, Carbon 2006, 44, 1898. b) J. Du, H. M. Cheng, Macromol. Chem. Phys. 2012, 213, 1060. Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 2008, 9, 220. H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441. K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, Y. Ando, Synth. Met. 1999, 103, 2543. d) X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Mater. Sci. Eng. R. Rep. 2005, 49, 89. R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett. 2000, 330, 219. b) S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, H. Peng, Adv. Mater. 2011, 23, 4707 J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206. T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220. b) Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, J. Mater. Chem. 2012, 22, 390. W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 2008, 10, 1555. T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 1995, 99, 10694. a) L. Yang, K. Setyowati, A. Li, S. Gong, J. Chen, Adv. Mater. 2008, 20, 2271 e) H. Peng, J. Am. Chem. Soc. 2008, 130, 42 B. S. Shim, W. Chen, C. Doty, C. Xu, N. A. Kotov, Nano Lett. 2008, 8, 4151. K. Kalaitzidou, H. Fukushima, L. T. Drzal, Composites, Part A 2007, 38, 1675. S. Hong, S. Myung, Nat. Nanotechnol. 2007, 2, 207. b) T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Nat. Nanotechnol. 2008, 3, 327 a) H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, Nat. Nanotechnol. 2009, 4, 738 G. Chen, W. Weng, D. Wu, C. Wu, Eur. Polym. J. 2003, 39, 2329. X. Xiao, T. Xie, Y.-T. Cheng, J. Mater. Chem. 2010, 20, 3508. a) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 5859 b) Y. G. Seol, T. Q. Trung, O.-J. Yoon, I.-Y. Sohn, N.-E. Lee, J. Mater. Chem. 2012, 22, 23759 Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, Nano Lett. 2006, 6, 413. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872. A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. b) Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Composites, Part A 2004, 35, 1225 f) S. Zhang, L. Zhu, C. Wong, S. Kumar, Macromol. Rapid Commun. 2009, 30, 1936 V. Yong, J. M. Tour, Small 2010, 6, 313. T. Gurunathan, C. K. Rao, R. Narayan, K. V. S. N. Raju, J. Mater. Sci. 2013, 48, 67. a) P.-C. Ma, S.-Y. Mo, B.-Z. Tang, J.-K. Kim, Carbon 2010, 48, 1824 a) W. Guo, C. Liu, X. Sun, Z. Yang, H. G. Kia, H. Peng, J. Mater. Chem. 2012, 22, 903 X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C. M. Ma, J. Mater. Chem. 2011, 21, 13569. F. Meng, X. Zhang, G. Xu, Z. Yong, H. Chen, M. Chen, Q. Li, Y. Zhu, ACS Appl. Mater. Interfaces 2011, 3, 658. L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun'ko, Adv. Energy Mater. 2011, 1, 472. b) J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, Adv. Mater. 2011, 23, 4923 Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571. b) J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 2012, 24, 4569 b) G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270. T. L. Wu, T. S. Lo, W. S. Kuo, Polym. Compos. 2010, 31, 292. W. Guo, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Energy Environ. Sci. 2012, 5, 5221. c) J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater. 2006, 18, 689. K. Scott, Chem. Commun. 2012, 48, 5584. d) S. Berber, Y. K. Kwon, D. Tomanek, Phys. Rev. Lett. 2000, 84, 4613. c) H. D. Wagner, R. A. Vaia, Materials Today 2004, 7, 38 C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863. c) L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, H. Peng, Adv. Mater. 2011, 23, 3730. A. S. Patole, S. P. Patole, H. Kang, J.-B. Yoo, T.-H. Kim, J.-H. Ahn, J. Colloid Interf. Sci 2010, 350, 530. X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906. a) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706 J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, J. Oh, M. Kozlov, Y. Ma, F. Li, ACS Nano 2012, 6, 4508. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637. B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nat. Nanotechnol. 2008, 3, 626. J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59. F. Gong, X. Xu, G. Zhou, Z.-S. Wang, Phys. Chem. Chem. Phys. 2013, 15, 546. K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 2004, 306, 666. d) N. V. Viet, W. S. Kuo, Composites, Part B 2012, 43, 332. H. Lin, L. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Sci. Rep. 2013, 3, 1353. H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J. Am. Chem. Soc. 2007, 129, 7758. b) P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502. g) G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 2012, 101, 131905. M. N. Hyder, S. W. Lee, F. C. Cebeci, D. J. Schmidt, Y. Shao-Horn, P. T. Hammond, ACS Nano 2011, 5, 8552. c) H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, G. Park, Sci. Rep. 2013, 3 P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212. e) B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020 Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273. b) B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707 H. Huang, C. H. Liu, Y. Wu, S. Fan, Adv. Mater. 2005, 17, 1652. R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787. J. Liu, L. Tao, W. Yang, D. Li, C. Boyer, R. Wuhrer, F. Braet, T. P. Davis, Langmuir. 2010, 26, 10068. a) X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 2011, 56, 9224 a) Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 411 f) Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 2012, 6, 7103. d) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat Mater 2006, 5, 987. G. D. M. R. Dabera, K. D. G. I. Jayawardena, M. R. R. Prabhath, I. Yahya, Y. Y. Tan, N. A. Nismy, H. Shiozawa, M. Sauer, G. Ruiz-Soria, P. Ayala, ACS Nano 2012, 7, 556. Y. Yang, C. Wang, B. Yue, S. Gambhir, C. O. Too, G. G. Wallace, Adv. Energy Mater. 2012, 2, 266. b) K. Subrahmanyam, L. Panchakarla, A. Govindaraj, C. Rao, J. Phys. Chem. C 2009, 113, 4257. d) H. Peng, X. Sun, Chem. Phys. Lett. 2009, 471, 103 H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 1996, 384, 147. a) M. T. Byrne, Y. K. Gun'ko, Adv. Mater. 2010, 22, 1672 J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 2009, 19, 2297. W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Angew. Chem. Int. Ed. 2012, 51, 4644. Z. Yang, T. Chen, R. He, H. Li, H. Lin, L. Li, G. Zou, Q. Jia, H. Peng, Polym. Chem. 2013, 4, 1680. R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340. b) C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879. a) J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, Y. Zhu, Q. Li, ACS Nano 2012, 6, 5457 a) D. Wang, P. C. Song, C. H. Liu, W. Wu, S. S. Fan, Nanotechnology 2008, 19, 075609 a) I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mater. 2004, 16, 865 T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296. D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633. M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 1993, 62, 657. M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Chem. Commun. 2013, 49, 1612. b) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357 K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446. b) Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963. K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 2003, 32, 28. a) A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902 b) M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. b) L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 1998, 73, 1197 Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Adv. Mater. 2012, 24, 1856. a) X. Liu, H. Kim, L. J. Guo, Org. Electron. 2012 b) J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 2010, 195, 3041. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, Polymer 2003, 44, 5893. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. 2011; 115 2010; 10 2010 2012; 4 22 2013; 3 2013; 4 2013; 1 2007 2008 2007; 111 20 111 2010 2009; 2 121 2009 2010; 11 4 2011; 52 2004; 3 1999; 284 2009; 113 1996; 384 2011; 196 2010; 22 1994; 265 2010; 20 2010; 26 2013; 50 2012 2012 2012; 22 5 1992; 358 2007; 6 2010; 350 2007; 2 2009; 19 2012; 24 2012; 22 2010; 4 2010; 6 2003; 44 2011 2012 2013 2009 2012 2012; 10 24 3 3 6 6 2009; 69 2007; 19 2010; 31 2011; 2 2011; 1 2010 2008 2004 2012; 48 3 7 43 2003; 39 2013 2010; 51 35 1999; 103 2004; 306 2011; 3 2004; 305 2009 2008; 457 3 2011; 6 2011; 5 2003; 32 2011; 7 2009; 458 1998; 391 2010; 43 2010; 48 2006; 44 2005; 95 2005; 5 2008 2010; 19 22 2008 2010; 8 328 2008; 46 2012; 48 2011 2004 2007 2009 2008 2009 2012; 2 35 19 471 130 30 101 2005; 17 2012; 116 2012; 44 2009; 106 2004; 65 2011 2010; 56 195 1993; 62 2009 2009; 3 113 2008; 9 2008; 7 2003; 15 2008; 8 2000; 330 2008; 3 2012 2011; 22 23 2007; 38 2012; 51 2013; 15 2001; 293 2012 2011 2011; 6 23 23 2011 2011 2011; 23 23 49 2005 2003; 71 378 2011; 21 2005 2001; 6 87 2011; 23 2000; 287 2006; 128 2009 2004; 4 306 2013; 48 2007; 129 2013; 49 2010 2010 2006; 22 35 18 2002; 297 2008 2007 2005; 20 106 26 2006; 16 1995; 99 2006; 6 1996 1996 1999 2000; 381 382 103 84 2006 2012; 442 213 2008; 10 2008; 321 2004; 91 2012; 549 2012; 2 2004 1998 2009 2005; 16 73 105 49 2012; 1 2012; 6 2003; 423 2011; 49 2012; 7 2001; 79 2007; 45 2012; 5 2004 2006 2011 2006; 305 54 49 5 e_1_2_8_45_7 e_1_2_8_49_3 e_1_2_8_45_6 e_1_2_8_49_2 e_1_2_8_45_8 e_1_2_8_45_3 e_1_2_8_45_2 e_1_2_8_45_5 e_1_2_8_26_2 e_1_2_8_45_4 e_1_2_8_68_2 e_1_2_8_9_2 e_1_2_8_1_3 e_1_2_8_1_2 e_1_2_8_132_2 e_1_2_8_1_5 e_1_2_8_1_4 e_1_2_8_5_3 e_1_2_8_5_2 e_1_2_8_41_3 e_1_2_8_60_7 e_1_2_8_64_3 e_1_2_8_41_2 e_1_2_8_64_4 e_1_2_8_87_2 e_1_2_8_60_5 e_1_2_8_22_2 e_1_2_8_41_4 e_1_2_8_60_6 e_1_2_8_64_2 e_1_2_8_117_2 e_1_2_8_60_3 e_1_2_8_83_2 e_1_2_8_60_2 e_1_2_8_113_2 e_1_2_8_38_2 e_1_2_8_19_2 e_1_2_8_109_2 e_1_2_8_34_2 e_1_2_8_15_2 e_1_2_8_57_2 e_1_2_8_91_2 e_1_2_8_120_2 e_1_2_8_95_3 e_1_2_8_95_4 e_1_2_8_99_2 e_1_2_8_30_2 e_1_2_8_76_2 e_1_2_8_105_2 e_1_2_8_11_2 e_1_2_8_53_2 e_1_2_8_128_2 e_1_2_8_72_2 e_1_2_8_101_2 e_1_2_8_124_2 e_1_2_8_48_3 e_1_2_8_29_2 e_1_2_8_29_3 Liu X. (e_1_2_8_95_2) 2012 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_67_2 e_1_2_8_2_2 e_1_2_8_110_2 e_1_2_8_6_2 e_1_2_8_63_4 e_1_2_8_63_5 e_1_2_8_21_2 e_1_2_8_44_2 Ahn H. S. (e_1_2_8_60_4) 2013; 3 e_1_2_8_63_2 e_1_2_8_86_2 e_1_2_8_118_2 e_1_2_8_63_3 e_1_2_8_40_2 e_1_2_8_82_2 e_1_2_8_114_2 e_1_2_8_133_2 e_1_2_8_37_4 e_1_2_8_37_3 e_1_2_8_18_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_56_2 e_1_2_8_79_2 e_1_2_8_90_2 e_1_2_8_94_2 e_1_2_8_121_2 e_1_2_8_98_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_52_2 e_1_2_8_75_2 e_1_2_8_106_2 e_1_2_8_129_2 e_1_2_8_71_2 e_1_2_8_102_2 e_1_2_8_125_2 e_1_2_8_28_2 e_1_2_8_47_4 e_1_2_8_24_2 e_1_2_8_119_2 e_1_2_8_47_3 e_1_2_8_66_3 e_1_2_8_47_2 e_1_2_8_89_2 e_1_2_8_3_3 e_1_2_8_3_2 e_1_2_8_130_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_66_2 e_1_2_8_115_2 e_1_2_8_43_2 e_1_2_8_85_2 e_1_2_8_62_2 e_1_2_8_111_2 e_1_2_8_81_2 e_1_2_8_17_2 e_1_2_8_13_2 e_1_2_8_59_2 e_1_2_8_36_3 e_1_2_8_36_2 e_1_2_8_78_2 e_1_2_8_97_2 e_1_2_8_103_3 e_1_2_8_55_2 e_1_2_8_103_4 e_1_2_8_126_2 e_1_2_8_32_2 e_1_2_8_74_2 e_1_2_8_107_2 e_1_2_8_122_3 e_1_2_8_51_2 e_1_2_8_122_2 e_1_2_8_93_2 e_1_2_8_70_2 e_1_2_8_103_2 e_1_2_8_27_2 e_1_2_8_27_3 e_1_2_8_23_2 e_1_2_8_46_2 e_1_2_8_69_2 e_1_2_8_65_4 e_1_2_8_65_5 e_1_2_8_80_2 e_1_2_8_131_2 e_1_2_8_4_2 e_1_2_8_4_3 e_1_2_8_8_2 e_1_2_8_42_2 e_1_2_8_65_2 e_1_2_8_88_2 e_1_2_8_116_2 e_1_2_8_65_3 e_1_2_8_84_5 e_1_2_8_84_4 e_1_2_8_84_3 e_1_2_8_61_2 e_1_2_8_84_2 e_1_2_8_112_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_39_3 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_58_2 e_1_2_8_108_2 e_1_2_8_12_3 e_1_2_8_35_3 e_1_2_8_96_2 e_1_2_8_31_2 e_1_2_8_54_2 e_1_2_8_77_2 e_1_2_8_104_2 e_1_2_8_127_2 e_1_2_8_50_2 e_1_2_8_73_2 e_1_2_8_100_2 e_1_2_8_123_2 e_1_2_8_92_3 e_1_2_8_92_2 |
References_xml | – reference: b) Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357; – reference: K. Kalaitzidou, H. Fukushima, L. T. Drzal, Carbon 2007, 45, 1446. – reference: J. Liu, L. Tao, W. Yang, D. Li, C. Boyer, R. Wuhrer, F. Braet, T. P. Davis, Langmuir. 2010, 26, 10068. – reference: X. Sun, W. Wang, L. Qiu, W. Guo, Y. Yu, H. Peng, Angew. Chem. Int. Ed. 2012, 51, 8520. – reference: J. Zhang, X. S. Zhao, J. Phys. Chem. C 2012, 116, 5420. – reference: F. Barroso-Bujans, S. Cerveny, R. Verdejo, J. del Val, J. Alberdi, A. Alegría, J. Colmenero, Carbon 2010, 48, 1079. – reference: K. Scott, Chem. Commun. 2012, 48, 5584. – reference: a) I. Dierking, G. Scalia, P. Morales, D. LeClere, Adv. Mater. 2004, 16, 865; – reference: J.-Y. Wang, S.-Y. Yang, Y.-L. Huang, H.-W. Tien, W.-K. Chin, C.-C. M. Ma, J. Mater. Chem. 2011, 21, 13569. – reference: a) X. Lu, H. Dou, S. Yang, L. Hao, L. Zhang, L. Shen, F. Zhang, X. Zhang, Electrochim. Acta 2011, 56, 9224; – reference: c) H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba, Synth. Met. 1999, 103, 2555; – reference: f) Z. Xu, Y. Zhang, P. Li, C. Gao, ACS Nano 2012, 6, 7103. – reference: D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 2009, 458, 872. – reference: K. Kalaitzidou, H. Fukushima, L. T. Drzal, Composites, Part A 2007, 38, 1675. – reference: b) S. Ryu, Y. Lee, J. Hwang, S. Hong, C. Kim, T. G. Park, H. Lee, S. H. Hong, Adv. Mater. 2011, 23, 1971. – reference: J. Liang, Y. Huang, L. Zhang, Y. Wang, Y. Ma, T. Guo, Y. Chen, Adv. Funct. Mater. 2009, 19, 2297. – reference: D. S. Hecht, L. Hu, G. Irvin, Adv. Mater. 2011, 23, 1482. – reference: K. Liao, S. Li, Appl. Phys. Lett. 2001, 79, 4225. – reference: a) J. Di, D. Hu, H. Chen, Z. Yong, M. Chen, Z. Feng, Y. Zhu, Q. Li, ACS Nano 2012, 6, 5457; – reference: A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim, R. H. Baughman, Nature 2003, 423, 703. – reference: b) J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, Science 2010, 328, 213. – reference: Z. Yang, L. Li, H. Lin, Y. Luo, R. He, L. Qiu, J. Ren, H. Peng, Chem. Phys. Lett. 2012, 549, 82. – reference: A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, R. E. Smalley, Polymer 2003, 44, 2373. – reference: b) J. M. Yun, J. S. Yeo, J. Kim, H. G. Jeong, D. Y. Kim, Y. J. Noh, S. S. Kim, B. C. Ku, S. I. Na, Adv. Mater. 2011, 23, 4923; – reference: b) T. Liu, S. Kumar, Chem. Phys. Lett. 2003, 378, 257. – reference: a) K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B. H. Hong, Nature 2009, 457, 706; – reference: c) D. Zhang, X. Li, H. Li, S. Chen, Z. Sun, X. Yin, S. Huang, Carbon 2011, 49, 5382. – reference: a) X. Liu, H. Kim, L. J. Guo, Org. Electron. 2012; – reference: d) S. Berber, Y. K. Kwon, D. Tomanek, Phys. Rev. Lett. 2000, 84, 4613. – reference: Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, Nat. Nanotechnol. 2008, 3, 563. – reference: H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, R. E. Smalley, Nature 1996, 384, 147. – reference: Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, G. Zhang, ACS Nano 2011, 5, 3645. – reference: T. Gurunathan, C. K. Rao, R. Narayan, K. V. S. N. Raju, J. Mater. Sci. 2013, 48, 67. – reference: G. Yang, C. Lee, J. Kim, F. Ren, S. J. Pearton, Phys. Chem. Chem. Phys. 2013, 15, 1798. – reference: d) X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Mater. Sci. Eng. R. Rep. 2005, 49, 89. – reference: F. Gong, X. Xu, G. Zhou, Z.-S. Wang, Phys. Chem. Chem. Phys. 2013, 15, 546. – reference: P. Miaudet, S. Badaire, M. Maugey, A. Derre, V. Pichot, P. Launois, P. Poulin, C. Zakri, Nano Lett. 2005, 5, 2212. – reference: b) P. Kim, L. Shi, A. Majumdar, P. L. McEuen, Phys. Rev. Lett. 2001, 87, 215502. – reference: a) E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 2005, 6, 96; – reference: Z. Xu, C. Gao, Nat. Commun. 2011, 2, 571. – reference: H. Kim, S. Kobayashi, M. A. AbdurRahim, M. J. Zhang, A. Khusainova, M. A. Hillmyer, A. A. Abdala, C. W. Macosko, Polymer 2011, 52, 1837. – reference: D. Yu, Y. Yang, M. Durstock, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 5633. – reference: S. Ansari, A. Kelarakis, L. Estevez, E. P. Giannelis, Small 2010, 6, 205. – reference: b) Y. A. Kim, T. Hayashi, M. Endo, Y. Gotoh, N. Wada, J. Seiyama, Scripta Mater. 2006, 54, 31; – reference: T. L. Wu, T. S. Lo, W. S. Kuo, Polym. Compos. 2010, 31, 292. – reference: C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 2008, 321, 385. – reference: R. Haggenmueller, H. H. Gommans, A. G. Rinzler, J. E. Fischer, K. I. Winey, Chem. Phys. Lett. 2000, 330, 219. – reference: Z. Xu, C. Gao, Macromolecules. 2010, 43, 6716. – reference: H. Kim, Y. Miura, C. W. Macosko, Chem. Mater. 2010, 22, 3441. – reference: P. May, U. Khan, A. O'Neill, J. N. Coleman, J. Mater. Chem. 2012, 22, 1278. – reference: G. D. M. R. Dabera, K. D. G. I. Jayawardena, M. R. R. Prabhath, I. Yahya, Y. Y. Tan, N. A. Nismy, H. Shiozawa, M. Sauer, G. Ruiz-Soria, P. Ayala, ACS Nano 2012, 7, 556. – reference: L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil, K. S. Novoselov, Adv. Mater. 2010, 22, 2694. – reference: c) Y.-F. Zhu, C. Ma, W. Zhang, R.-P. Zhang, N. Koratkar, J. Liang, J. Appl. Phys. 2009, 105, 054319; – reference: A. Eitan, K. Jiang, D. Dukes, R. Andrews, L. S. Schadler, Chem. Mater. 2003, 15, 3198. – reference: F. Du, C. Guthy, T. Kashiwagi, J. E. Fischer, K. I. Winey, J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 1513. – reference: S. Ganguli, A. K. Roy, D. P. Anderson, Carbon 2008, 46, 806. – reference: b) Q. Meng, J. Hu, Y. Zhu, J. Appl. Polym. Sci. 2007, 106, 837; – reference: Z. Cai, L. Li, J. Ren, L. Qiu, H. Lin, H. Peng, J. Mater. Chem. A 2013, 1, 258. – reference: M. Chen, T. Tao, L. Zhang, W. Gao, C. Li, Chem. Commun. 2013, 49, 1612. – reference: d) D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, H.-M. Cheng, ACS Nano 2009, 3, 1745; – reference: b) B. L. Wardle, D. S. Saito, E. J. García, A. J. Hart, R. G. de Villoria, E. A. Verploegen, Adv. Mater. 2008, 20, 2707; – reference: b) K. Subrahmanyam, L. Panchakarla, A. Govindaraj, C. Rao, J. Phys. Chem. C 2009, 113, 4257. – reference: M. N. Hyder, S. W. Lee, F. C. Cebeci, D. J. Schmidt, Y. Shao-Horn, P. T. Hammond, ACS Nano 2011, 5, 8552. – reference: b) J. Du, H. M. Cheng, Macromol. Chem. Phys. 2012, 213, 1060. – reference: Z. C. Wu, Z. H. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 2004, 305, 1273. – reference: H. Koerner, G. Price, N. A. Pearce, M. Alexander, R. A. Vaia, Nat. Mater. 2004, 3, 115. – reference: J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 1998, 391, 59. – reference: V. Yong, J. M. Tour, Small 2010, 6, 313. – reference: c) J. N. Coleman, U. Khan, Y. K. Gun'ko, Adv. Mater. 2006, 18, 689. – reference: J. Du, L. Zhao, Y. Zeng, L. Zhang, F. Li, P. Liu, C. Liu, Carbon 2011, 49, 1094. – reference: a) K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015; – reference: Z. Dong, C. Jiang, H. Cheng, Y. Zhao, G. Shi, L. Jiang, L. Qu, Adv. Mater. 2012, 24, 1856. – reference: a) M. T. Byrne, Y. K. Gun'ko, Adv. Mater. 2010, 22, 1672; – reference: J. Liang, Y. Xu, Y. Huang, L. Zhang, Y. Wang, Y. Ma, F. Li, T. Guo, Y. Chen, J. Phys. Chem. C 2009, 113, 9921. – reference: J. Liang, L. Huang, N. Li, Y. Huang, Y. Wu, S. Fang, J. Oh, M. Kozlov, Y. Ma, F. Li, ACS Nano 2012, 6, 4508. – reference: L. J. Brennan, M. T. Byrne, M. Bari, Y. K. Gun'ko, Adv. Energy Mater. 2011, 1, 472. – reference: S. Liu, Y. Liu, H. Cebeci, R. G. de Villoria, J. Lin, B. L. Wardle, Q. M. Zhang, Adv. Funct. Mater. 2010, 20, 3266. – reference: B. Peng, M. Locascio, P. Zapol, S. Li, S. L. Mielke, G. C. Schatz, H. D. Espinosa, Nat. Nanotechnol. 2008, 3, 626. – reference: K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida, Chem. Lett. 2003, 32, 28. – reference: M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, J. G. Santiesteban, Appl. Phys. Lett. 1993, 62, 657. – reference: P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science 1994, 265, 1212. – reference: c) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 17933. – reference: S. Hong, S. Myung, Nat. Nanotechnol. 2007, 2, 207. – reference: c) J. W. Cho, J. W. Kim, Y. C. Jung, N. S. Goo, Macromol. Rapid Commun. 2005, 26, 412. – reference: L. Gong, R. J. Young, I. A. Kinloch, I. Riaz, R. Jalil, K. S. Novoselov, ACS Nano 2012, 6, 2086. – reference: Q. F. Cheng, J. P. Wang, J. J. Wen, C. H. Liu, K. L. Jiang, Q. Q. Li, S. S. Fan, Carbon 2010, 48, 260. – reference: a) L. Yang, K. Setyowati, A. Li, S. Gong, J. Chen, Adv. Mater. 2008, 20, 2271; – reference: Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, Y. Chen, Nano Lett. 2008, 9, 220. – reference: c) M. B. Bryning, D. E. Milkie, M. F. Islam, L. A. Hough, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2007, 19, 661; – reference: d) D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu, Y. Kakudate, O. Tanaike, H. Hatori, M. Yumura, S. Iijima, Nat Mater 2006, 5, 987. – reference: c) D. Alemu, H.-Y. Wei, K.-C. Ho, C.-W. Chu, Energy Environ. Sci. 2012, 5, 9662. – reference: a) H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Electrochem. Commun. 2009, 11, 1158; – reference: f) S. Zhang, L. Zhu, C. Wong, S. Kumar, Macromol. Rapid Commun. 2009, 30, 1936; – reference: K. Lota, V. Khomenko, E. Frackowiak, J. Phys. Chem. Solids 2004, 65, 295. – reference: a) W. Guo, C. Liu, X. Sun, Z. Yang, H. G. Kia, H. Peng, J. Mater. Chem. 2012, 22, 903; – reference: W. Bauhofer, J. Z. Kovacs, Compos. Sci. Technol. 2009, 69, 1486. – reference: M. El Achaby, A. Qaiss, Mater. Design. 2012, 44, 81. – reference: M. B. Bryning, M. F. Islam, J. M. Kikkawa, A. G. Yodh, Adv. Mater. 2005, 17, 1186. – reference: C. Wei, L. Dai, A. Roy, T. B. Tolle, J. Am. Chem. Soc. 2006, 128, 1412. – reference: X. Cao, Y. Shi, W. Shi, G. Lu, X. Huang, Q. Yan, Q. Zhang, H. Zhang, Small 2011, 7, 3163. – reference: K. Kaneto, M. Tsuruta, G. Sakai, W. Y. Cho, Y. Ando, Synth. Met. 1999, 103, 2543. – reference: d) H. Peng, X. Sun, Chem. Phys. Lett. 2009, 471, 103; – reference: a) Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H.-M. Cheng, Nat. Mater. 2011, 10, 424; – reference: a) P.-C. Ma, S.-Y. Mo, B.-Z. Tang, J.-K. Kim, Carbon 2010, 48, 1824; – reference: H. W. C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker, Science 2001, 293, 76. – reference: g) G. Sun, J. H. L. Pang, J. Zhou, Y. Zhang, Z. Zhan, L. Zheng, Appl. Phys. Lett. 2012, 101, 131905. – reference: a) D. Wang, P. C. Song, C. H. Liu, W. Wu, S. S. Fan, Nanotechnology 2008, 19, 075609; – reference: b) J. Yan, T. Wei, Z. Fan, W. Qian, M. Zhang, X. Shen, F. Wei, J. Power Sources 2010, 195, 3041. – reference: b) J. Chen, K. Sheng, P. Luo, C. Li, G. Shi, Adv. Mater. 2012, 24, 4569; – reference: K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 2004, 306, 666. – reference: H.-Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, Y. H. Lee, J. Am. Chem. Soc. 2007, 129, 7758. – reference: D. Zhang, X. Zhang, Y. Chen, P. Yu, C. Wang, Y. Ma, J. Power Sources 2011, 196, 5990. – reference: D.-J. Yun, H. Ra, S.-W. Rhee, Renew. Energ. 2013, 50, 692. – reference: K. S. Lee, Y. Lee, J. Y. Lee, J.-H. Ahn, J. H. Park, ChemSusChem 2012, 5, 379. – reference: a) Y. Murakami, S. Chiashi, E. Einarsson, S. Maruyama, Phys. Rev. B 2005, 71, 085403; – reference: c) L. Li, Z. Yang, H. Gao, H. Zhang, J. Ren, X. Sun, T. Chen, H. G. Kia, H. Peng, Adv. Mater. 2011, 23, 3730. – reference: a) L. Qu, Y. Liu, J.-B. Baek, L. Dai, ACS Nano 2010, 4, 1321; – reference: A. S. Patole, S. P. Patole, H. Kang, J.-B. Yoo, T.-H. Kim, J.-H. Ahn, J. Colloid Interf. Sci 2010, 350, 530. – reference: b) Z.-H. Sheng, H.-L. Gao, W.-J. Bao, F.-B. Wang, X.-H. Xia, J. Mater. Chem. 2012, 22, 390. – reference: b) T. Ramanathan, A. Abdala, S. Stankovich, D. Dikin, M. Herrera-Alonso, R. Piner, D. Adamson, H. Schniepp, X. Chen, R. Ruoff, Nat. Nanotechnol. 2008, 3, 327; – reference: a) Y. Sun, G. Shi, J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 231; – reference: T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, J. Phys. Chem. 1995, 99, 10694. – reference: J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, A. H. Windle, Polymer 2003, 44, 5893. – reference: b) X. Gui, J. Wei, K. Wang, A. Cao, H. Zhu, Y. Jia, Q. Shu, D. Wu, Adv. Mater. 2010, 22, 617. – reference: J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, M. S. Fuhrer, Nat. Nanotechnol. 2008, 3, 206. – reference: X. Zhou, J.-Y. Park, S. Huang, J. Liu, P. L. McEuen, Phys. Rev. Lett. 2005, 95, 146805. – reference: e) B. G. Choi, M. Yang, W. H. Hong, J. W. Choi, Y. S. Huh, ACS Nano 2012, 6, 4020; – reference: X. Sun, L. Qiu, Z. Cai, Z. Meng, T. Chen, Y. Lu, H. Peng, Adv. Mater. 2012, 24, 2906. – reference: b) S. Huang, L. Li, Z. Yang, L. Zhang, H. Saiyin, T. Chen, H. Peng, Adv. Mater. 2011, 23, 4707; – reference: H. Lin, L. Li, J. Ren, Z. Cai, L. Qiu, Z. Yang, H. Peng, Sci. Rep. 2013, 3, 1353. – reference: X. Gui, H. Li, L. Zhang, Y. Jia, L. Liu, Z. Li, J. Wei, K. Wang, H. Zhu, Z. Tang, D. Wu, A. Cao, ACS Nano 2011, 5, 4276. – reference: B. S. Shim, W. Chen, C. Doty, C. Xu, N. A. Kotov, Nano Lett. 2008, 8, 4151. – reference: A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, J. Kong, Nano Lett. 2008, 9, 30. – reference: Q. Wang, Z. H. Wen, J. H. Li, Adv. Funct. Mater. 2006, 16, 2141. – reference: b) Z. Wang, Z. Liang, B. Wang, C. Zhang, L. Kramer, Composites, Part A 2004, 35, 1225; – reference: X. Xiao, T. Xie, Y.-T. Cheng, J. Mater. Chem. 2010, 20, 3508. – reference: b) Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 2010, 4, 1963. – reference: c) K. Kobashi, H. Nishino, T. Yamada, D. N. Futaba, M. Yumura, K. Hata, Carbon 2011, 49, 5090; – reference: X. Wang, Z. Z. Yong, Q. W. Li, P. D. Bradford, W. Liu, D. S. Tucker, W. Cai, H. Wang, F. G. Yuan, Y. T. Zhu, Mater. Res. Lett. 2012, 1, 19. – reference: a) A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 2008, 8, 902; – reference: J. Chen, Y. Liu, A. I. Minett, C. Lynam, J. Wang, G. G. Wallace, Chem. Mater. 2007, 19, 3595. – reference: A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183. – reference: K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D. N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 6044. – reference: R. H. Baughman, A. A. Zakhidov, W. A. de Heer, Science 2002, 297, 787. – reference: c) H. S. Ahn, J.-W. Jang, M. Seol, J. M. Kim, D.-J. Yun, C. Park, H. Kim, D. H. Youn, J. Y. Kim, G. Park, Sci. Rep. 2013, 3; – reference: b) G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 2008, 3, 270. – reference: Y. Yang, C. Wang, B. Yue, S. Gambhir, C. O. Too, G. G. Wallace, Adv. Energy Mater. 2012, 2, 266. – reference: a) L. M. Ericson, H. Fan, H. Peng, V. A. Davis, W. Zhou, J. Sulpizio, Y. Wang, R. Booker, J. Vavro, C. Guthy, A. N. G. Parra-Vasquez, M. J. Kim, S. Ramesh, R. K. Saini, C. Kittrell, G. Lavin, H. Schmidt, W. W. Adams, W. E. Billups, M. Pasquali, W.-F. Hwang, R. H. Hauge, J. E. Fischer, R. E. Smalley, Science 2004, 305, 1447; – reference: F. Meng, X. Zhang, G. Xu, Z. Yong, H. Chen, M. Chen, Q. Li, Y. Zhu, ACS Appl. Mater. Interfaces 2011, 3, 658. – reference: X. Bai, Y. Zhai, Y. Zhang, J. Phys. Chem. C 2011, 115, 11673. – reference: b) T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, T. Thio, Nature 1996, 382, 54; – reference: C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863. – reference: T. W. Ebbesen, P. M. Ajayan, Nature 1992, 358, 220. – reference: e) H. Peng, J. Am. Chem. Soc. 2008, 130, 42; – reference: Y. J. Jung, S. Kar, S. Talapatra, C. Soldano, G. Viswanathan, X. Li, Z. Yao, F. S. Ou, A. Avadhanula, R. Vajtai, Nano Lett. 2006, 6, 413. – reference: b) T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, J. H. Lee, Prog. Polym. Sci. 2010, 35, 1350. – reference: a) H. Peng, X. Sun, F. Cai, X. Chen, Y. Zhu, G. Liao, D. Chen, Q. Li, Y. Lu, Y. Zhu, Nat. Nanotechnol. 2009, 4, 738; – reference: b) L. Jin, C. Bower, O. Zhou, Appl. Phys. Lett. 1998, 73, 1197; – reference: a) S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, R. S. Ruoff, Nature 2006, 442, 282; – reference: a) Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 411; – reference: J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn, Carbon 2006, 44, 1898. – reference: Z. Yang, T. Chen, R. He, H. Li, H. Lin, L. Li, G. Zou, Q. Jia, H. Peng, Polym. Chem. 2013, 4, 1680. – reference: c) H. D. Wagner, R. A. Vaia, Materials Today 2004, 7, 38; – reference: W. Guo, Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Energy Environ. Sci. 2012, 5, 5221. – reference: R. H. Baughman, C. X. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. De Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz, Science 1999, 284, 1340. – reference: b) C. H. Lu, H. H. Yang, C. L. Zhu, X. Chen, G. N. Chen, Angew. Chem. 2009, 121, 4879. – reference: d) N. V. Viet, W. S. Kuo, Composites, Part B 2012, 43, 332. – reference: T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296. – reference: b) M. Zhang, K. R. Atkinson, R. H. Baughman, Science 2004, 306, 1358. – reference: W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochem. Commun. 2008, 10, 1555. – reference: a) G. F. Zou, H. M. Luo, S. Baily, Y. Y. Zhang, N. F. Haberkorn, J. Xiong, E. Bauer, T. M. McCleskey, A. K. Burrell, L. Civale, Y. T. Zhu, J. L. MacManus-Driscoll, Q. X. Jia, Nat. Commun. 2011, 2, 428; – reference: M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, Science 2000, 287, 637. – reference: a) B. N. Wang, R. D. Bennett, E. Verploegen, A. J. Hart, R. E. Cohen, J. Phys. Chem. C 2007, 111, 5859; – reference: H. Huang, C. H. Liu, Y. Wu, S. Fan, Adv. Mater. 2005, 17, 1652. – reference: P. W. Sutter, J.-I. Flege, E. A. Sutter, Nat. Mater. 2008, 7, 406. – reference: W. Wang, X. Sun, W. Wu, H. Peng, Y. Yu, Angew. Chem. Int. Ed. 2012, 51, 4644. – reference: a) J. Bae, Y. J. Park, M. Lee, S. N. Cha, Y. J. Choi, C. S. Lee, J. M. Kim, Z. L. Wang, Adv. Mater. 2011, 23, 3446; – reference: b) Y. G. Seol, T. Q. Trung, O.-J. Yoon, I.-Y. Sohn, N.-E. Lee, J. Mater. Chem. 2012, 22, 23759; – reference: a) M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature 1996, 381, 678; – reference: X. Zhao, Q. Zhang, D. Chen, P. Lu, Macromolecules. 2010, 43, 2357. – reference: G. Chen, W. Weng, D. Wu, C. Wu, Eur. Polym. J. 2003, 39, 2329. – reference: W. Zheng, X. Lu, S. C. Wong, J. Appl. Polym. Sci. 2004, 91, 2781. – volume: 115 start-page: 11673 year: 2011 publication-title: J. Phys. Chem. C – volume: 7 start-page: 556 year: 2012 publication-title: ACS Nano – volume: 21 start-page: 13569 year: 2011 publication-title: J. Mater. Chem. – volume: 293 start-page: 76 year: 2001 publication-title: Science – volume: 6 23 23 start-page: 5457 4707 3730 year: 2012 2011 2011 publication-title: ACS Nano Adv. Mater. Adv. Mater. – volume: 20 start-page: 3266 year: 2010 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 3645 year: 2011 publication-title: ACS Nano – volume: 6 start-page: 313 year: 2010 publication-title: Small – volume: 10 start-page: 1555 year: 2008 publication-title: Electrochem. Commun. – volume: 23 start-page: 1482 year: 2011 publication-title: Adv. Mater. – volume: 8 328 start-page: 902 213 year: 2008 2010 publication-title: Nano Lett. Science – volume: 7 start-page: 3163 year: 2011 publication-title: Small – volume: 3 start-page: 206 year: 2008 publication-title: Nat. Nanotechnol. – volume: 22 5 start-page: 23759 9662 year: 2012 2012 2012 publication-title: Org. Electron. J. Mater. Chem. Energy Environ. Sci. – volume: 265 start-page: 1212 year: 1994 publication-title: Science – volume: 15 start-page: 3198 year: 2003 publication-title: Chem. Mater. – volume: 3 start-page: 115 year: 2004 publication-title: Nat. Mater. – volume: 16 73 105 49 start-page: 865 1197 054319 89 year: 2004 1998 2009 2005 publication-title: Adv. Mater. Appl. Phys. Lett. J. Appl. Phys. Mater. Sci. Eng. R. Rep. – volume: 44 start-page: 81 year: 2012 publication-title: Mater. Design. – volume: 6 start-page: 296 year: 2011 publication-title: Nat. Nanotechnol. – volume: 287 start-page: 637 year: 2000 publication-title: Science – volume: 24 start-page: 2906 year: 2012 publication-title: Adv. Mater. – volume: 15 start-page: 546 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 220 year: 2008 publication-title: Nano Lett. – volume: 2 121 start-page: 1015 4879 year: 2010 2009 publication-title: Nat. Chem. Angew. Chem. – volume: 43 start-page: 6716 year: 2010 publication-title: Macromolecules. – volume: 8 start-page: 4151 year: 2008 publication-title: Nano Lett. – volume: 99 start-page: 10694 year: 1995 publication-title: J. Phys. Chem. – volume: 4 start-page: 5633 year: 2010 publication-title: ACS Nano – volume: 3 113 start-page: 411 4257 year: 2009 2009 publication-title: ACS Nano J. Phys. Chem. C – volume: 49 start-page: 1094 year: 2011 publication-title: Carbon – volume: 16 start-page: 2141 year: 2006 publication-title: Adv. Funct. Mater. – volume: 111 20 111 start-page: 5859 2707 17933 year: 2007 2008 2007 publication-title: J. Phys. Chem. C Adv. Mater. J. Phys. Chem. C – volume: 4 22 start-page: 1321 390 year: 2010 2012 publication-title: ACS Nano J. Mater. Chem. – volume: 1 start-page: 472 year: 2011 publication-title: Adv. Energy Mater. – volume: 45 start-page: 1446 year: 2007 publication-title: Carbon – volume: 38 start-page: 1675 year: 2007 publication-title: Composites, Part A – volume: 128 start-page: 1412 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 350 start-page: 530 year: 2010 publication-title: J. Colloid Interf. Sci – volume: 358 start-page: 220 year: 1992 publication-title: Nature – volume: 116 start-page: 5420 year: 2012 publication-title: J. Phys. Chem. C – volume: 5 start-page: 8552 year: 2011 publication-title: ACS Nano – volume: 6 87 start-page: 96 215502 year: 2005 2001 publication-title: Nano Lett. Phys. Rev. Lett. – volume: 5 start-page: 379 year: 2012 publication-title: ChemSusChem – volume: 44 start-page: 1898 year: 2006 publication-title: Carbon – volume: 95 start-page: 146805 year: 2005 publication-title: Phys. Rev. Lett. – volume: 44 start-page: 1513 year: 2006 publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 20 106 26 start-page: 2271 837 412 year: 2008 2007 2005 publication-title: Adv. Mater. J. Appl. Polym. Sci. Macromol. Rapid Commun. – volume: 391 start-page: 59 year: 1998 publication-title: Nature – volume: 15 start-page: 1798 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 3 start-page: 1353 year: 2013 publication-title: Sci. Rep. – volume: 106 start-page: 6044 year: 2009 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 44 start-page: 5893 year: 2003 publication-title: Polymer – volume: 3 start-page: 658 year: 2011 publication-title: ACS Appl. Mater. Interfaces – volume: 56 195 start-page: 9224 3041 year: 2011 2010 publication-title: Electrochim. Acta J. Power Sources – volume: 10 24 3 3 6 6 start-page: 424 4569 1745 4020 7103 year: 2011 2012 2013 2009 2012 2012 publication-title: Nat. Mater. Adv. Mater. Sci. Rep. ACS Nano ACS Nano ACS Nano – volume: 48 start-page: 260 year: 2010 publication-title: Carbon – volume: 3 start-page: 563 year: 2008 publication-title: Nat. Nanotechnol. – volume: 50 start-page: 692 year: 2013 publication-title: Renew. Energ. – volume: 7 start-page: 406 year: 2008 publication-title: Nat. Mater. – volume: 48 start-page: 1079 year: 2010 publication-title: Carbon – volume: 381 382 103 84 start-page: 678 54 2555 4613 year: 1996 1996 1999 2000 publication-title: Nature Nature Synth. Met. Phys. Rev. Lett. – volume: 1 start-page: 19 year: 2012 publication-title: Mater. Res. Lett. – volume: 549 start-page: 82 year: 2012 publication-title: Chem. Phys. Lett. – volume: 11 4 start-page: 1158 1963 year: 2009 2010 publication-title: Electrochem. Commun. ACS Nano – volume: 65 start-page: 295 year: 2004 publication-title: J. Phys. Chem. Solids – volume: 17 start-page: 1186 year: 2005 publication-title: Adv. Mater. – volume: 297 start-page: 787 year: 2002 publication-title: Science – volume: 2 start-page: 266 year: 2012 publication-title: Adv. Energy Mater. – volume: 442 213 start-page: 282 1060 year: 2006 2012 publication-title: Nature Macromol. Chem. Phys. – volume: 4 306 start-page: 738 1358 year: 2009 2004 publication-title: Nat. Nanotechnol. Science – volume: 49 start-page: 1612 year: 2013 publication-title: Chem. Commun. – volume: 9 start-page: 30 year: 2008 publication-title: Nano Lett. – volume: 48 3 7 43 start-page: 1824 327 38 332 year: 2010 2008 2004 2012 publication-title: Carbon Nat. Nanotechnol. Materials Today Composites, Part B – volume: 48 start-page: 67 year: 2013 publication-title: J. Mater. Sci. – volume: 129 start-page: 7758 year: 2007 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 413 year: 2006 publication-title: Nano Lett. – volume: 423 start-page: 703 year: 2003 publication-title: Nature – volume: 22 35 18 start-page: 1672 357 689 year: 2010 2010 2006 publication-title: Adv. Mater. Prog. Polym. Sci. Adv. Mater. – volume: 5 start-page: 5221 year: 2012 publication-title: Energy Environ. Sci. – volume: 2 start-page: 571 year: 2011 publication-title: Nat. Commun. – volume: 19 start-page: 3595 year: 2007 publication-title: Chem. Mater. – volume: 305 start-page: 1273 year: 2004 publication-title: Science – volume: 52 start-page: 1837 year: 2011 publication-title: Polymer – volume: 321 start-page: 385 year: 2008 publication-title: Science – volume: 5 start-page: 4276 year: 2011 publication-title: ACS Nano – volume: 20 start-page: 3508 year: 2010 publication-title: J. Mater. Chem. – volume: 103 start-page: 2543 year: 1999 publication-title: Synth. Met. – volume: 62 start-page: 657 year: 1993 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 4508 year: 2012 publication-title: ACS Nano – volume: 46 start-page: 806 year: 2008 publication-title: Carbon – volume: 71 378 start-page: 085403 257 year: 2005 2003 publication-title: Phys. Rev. B Chem. Phys. Lett. – volume: 3 start-page: 626 year: 2008 publication-title: Nat. Nanotechnol. – volume: 2 start-page: 207 year: 2007 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 4863 year: 2010 publication-title: Nano Lett. – volume: 51 start-page: 4644 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 457 3 start-page: 706 270 year: 2009 2008 publication-title: Nature Nat. Nanotechnol. – volume: 22 start-page: 1278 year: 2012 publication-title: J. Mater. Chem. – volume: 2 35 19 471 130 30 101 start-page: 428 1225 661 103 42 1936 131905 year: 2011 2004 2007 2009 2008 2009 2012 publication-title: Nat. Commun. Composites, Part A Adv. Mater. Chem. Phys. Lett. J. Am. Chem. Soc. Macromol. Rapid Commun. Appl. Phys. Lett. – volume: 91 start-page: 2781 year: 2004 publication-title: J. Appl. Polym. Sci. – volume: 44 start-page: 2373 year: 2003 publication-title: Polymer – volume: 19 start-page: 2297 year: 2009 publication-title: Adv. Funct. Mater. – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 79 start-page: 4225 year: 2001 publication-title: Appl. Phys. Lett. – volume: 26 start-page: 10068 year: 2010 publication-title: Langmuir. – volume: 6 start-page: 183 year: 2007 publication-title: Nat. Mater. – volume: 305 54 49 5 start-page: 1447 31 5090 987 year: 2004 2006 2011 2006 publication-title: Science Scripta Mater. Carbon Nat Mater – volume: 17 start-page: 1652 year: 2005 publication-title: Adv. Mater. – volume: 284 start-page: 1340 year: 1999 publication-title: Science – volume: 330 start-page: 219 year: 2000 publication-title: Chem. Phys. Lett. – volume: 48 start-page: 5584 year: 2012 publication-title: Chem. Commun. – volume: 458 start-page: 872 year: 2009 publication-title: Nature – volume: 22 start-page: 3441 year: 2010 publication-title: Chem. Mater. – volume: 51 35 start-page: 231 1350 year: 2013 2010 publication-title: J. Polym. Sci., Part B: Polym. Phys. Prog. Polym. Sci. – volume: 24 start-page: 1856 year: 2012 publication-title: Adv. Mater. – volume: 113 start-page: 9921 year: 2009 publication-title: J. Phys. Chem. C – volume: 1 start-page: 258 year: 2013 publication-title: J. Mater. Chem. A – volume: 6 start-page: 2086 year: 2012 publication-title: ACS Nano – volume: 51 start-page: 8520 year: 2012 publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 205 year: 2010 publication-title: Small – volume: 23 23 49 start-page: 3446 4923 5382 year: 2011 2011 2011 publication-title: Adv. Mater. Adv. Mater. Carbon – volume: 5 start-page: 2212 year: 2005 publication-title: Nano Lett. – volume: 4 start-page: 1680 year: 2013 publication-title: Polym. Chem. – volume: 22 start-page: 2694 year: 2010 publication-title: Adv. Mater. – volume: 384 start-page: 147 year: 1996 publication-title: Nature – volume: 69 start-page: 1486 year: 2009 publication-title: Compos. Sci. Technol. – volume: 32 start-page: 28 year: 2003 publication-title: Chem. Lett. – volume: 31 start-page: 292 year: 2010 publication-title: Polym. Compos. – volume: 19 22 start-page: 075609 617 year: 2008 2010 publication-title: Nanotechnology Adv. Mater. – volume: 39 start-page: 2329 year: 2003 publication-title: Eur. Polym. J. – volume: 22 23 start-page: 903 1971 year: 2012 2011 publication-title: J. Mater. Chem. Adv. Mater. – volume: 43 start-page: 2357 year: 2010 publication-title: Macromolecules. – volume: 196 start-page: 5990 year: 2011 publication-title: J. Power Sources – ident: e_1_2_8_92_2 doi: 10.1016/j.elecom.2009.03.036 – ident: e_1_2_8_37_4 doi: 10.1016/j.carbon.2011.08.005 – ident: e_1_2_8_80_2 doi: 10.1080/21663831.2012.686586 – ident: e_1_2_8_62_2 doi: 10.1002/adma.201003188 – ident: e_1_2_8_15_2 doi: 10.1038/358220a0 – ident: e_1_2_8_68_2 doi: 10.1002/pc.20802 – ident: e_1_2_8_63_2 doi: 10.1002/adma.200306196 – ident: e_1_2_8_50_2 doi: 10.1002/adfm.200801776 – ident: e_1_2_8_63_3 doi: 10.1063/1.122125 – ident: e_1_2_8_66_3 doi: 10.1016/S0009-2614(03)01287-9 – ident: e_1_2_8_14_2 doi: 10.1246/cl.2003.28 – ident: e_1_2_8_4_3 doi: 10.1002/macp.201200029 – ident: e_1_2_8_42_2 doi: 10.1007/s10853-012-6658-x – ident: e_1_2_8_51_2 doi: 10.1002/smll.200900765 – ident: e_1_2_8_119_2 doi: 10.1038/srep01353 – ident: e_1_2_8_81_2 doi: 10.1021/ma902862u – ident: e_1_2_8_25_2 doi: 10.1038/nnano.2008.58 – ident: e_1_2_8_72_2 doi: 10.1039/C1JM15467B – ident: e_1_2_8_84_5 doi: 10.1016/j.compositesb.2011.06.007 – ident: e_1_2_8_93_2 doi: 10.1016/j.jpowsour.2011.02.090 – ident: e_1_2_8_5_3 doi: 10.1016/j.progpolymsci.2010.07.005 – ident: e_1_2_8_94_2 doi: 10.1016/j.elecom.2008.08.007 – ident: e_1_2_8_97_2 doi: 10.1002/adma.200500467 – ident: e_1_2_8_31_2 doi: 10.1038/nmat2166 – ident: e_1_2_8_64_4 doi: 10.1021/jp071798c – ident: e_1_2_8_91_2 doi: 10.1016/j.renene.2012.06.056 – ident: e_1_2_8_47_4 doi: 10.1002/adma.201101862 – ident: e_1_2_8_99_2 doi: 10.1016/j.carbon.2008.02.008 – ident: e_1_2_8_109_2 doi: 10.1021/nn103523t – ident: e_1_2_8_47_3 doi: 10.1002/adma.201102472 – ident: e_1_2_8_6_2 doi: 10.1126/science.287.5453.637 – ident: e_1_2_8_9_2 doi: 10.1103/PhysRevLett.95.146805 – ident: e_1_2_8_87_2 doi: 10.1063/1.1428116 – ident: e_1_2_8_60_7 doi: 10.1021/nn3021772 – ident: e_1_2_8_79_2 doi: 10.1038/423703a – ident: e_1_2_8_125_2 doi: 10.1021/cm070991g – ident: e_1_2_8_63_5 doi: 10.1016/j.mser.2005.04.002 – ident: e_1_2_8_19_2 doi: 10.1126/science.284.5418.1340 – ident: e_1_2_8_49_3 doi: 10.1002/adma.201004228 – ident: e_1_2_8_7_2 doi: 10.1038/nnano.2008.211 – ident: e_1_2_8_39_2 doi: 10.1021/nn901850u – ident: e_1_2_8_74_2 doi: 10.1021/la1001978 – ident: e_1_2_8_37_2 doi: 10.1002/adma.201101345 – ident: e_1_2_8_45_2 doi: 10.1038/ncomms1438 – ident: e_1_2_8_27_2 doi: 10.1021/nl0731872 – ident: e_1_2_8_24_2 doi: 10.1126/science.1157996 – ident: e_1_2_8_3_2 doi: 10.1088/0957-4484/19/7/075609 – ident: e_1_2_8_49_2 doi: 10.1039/C1JM13769G – ident: e_1_2_8_60_3 doi: 10.1002/adma.201201978 – ident: e_1_2_8_48_2 doi: 10.1038/nnano.2009.264 – ident: e_1_2_8_1_2 doi: 10.1038/381678a0 – ident: e_1_2_8_26_2 doi: 10.1021/nl802810g – ident: e_1_2_8_120_2 doi: 10.1039/C2TA00274D – ident: e_1_2_8_84_2 doi: 10.1016/j.carbon.2010.01.028 – ident: e_1_2_8_63_4 doi: 10.1063/1.3080243 – ident: e_1_2_8_113_2 doi: 10.1021/nn304705t – ident: e_1_2_8_73_2 doi: 10.1002/adma.200904264 – ident: e_1_2_8_64_3 doi: 10.1002/adma.200800295 – ident: e_1_2_8_122_3 doi: 10.1016/j.jpowsour.2009.11.028 – ident: e_1_2_8_52_2 doi: 10.1021/cm100477v – ident: e_1_2_8_98_2 doi: 10.1002/polb.20801 – ident: e_1_2_8_48_3 doi: 10.1126/science.1104276 – ident: e_1_2_8_86_2 doi: 10.1016/j.carbon.2006.02.026 – ident: e_1_2_8_22_2 doi: 10.1016/j.cplett.2012.08.055 – ident: e_1_2_8_3_3 doi: 10.1002/adma.200902986 – ident: e_1_2_8_88_2 doi: 10.1016/j.compscitech.2008.06.018 – ident: e_1_2_8_11_2 doi: 10.1016/S0379-6779(98)00221-5 – ident: e_1_2_8_45_5 doi: 10.1016/j.cplett.2009.02.008 – ident: e_1_2_8_100_2 doi: 10.1021/ja0570335 – ident: e_1_2_8_12_3 doi: 10.1103/PhysRevLett.87.215502 – ident: e_1_2_8_34_2 doi: 10.1038/nnano.2008.215 – ident: e_1_2_8_82_2 doi: 10.1021/ma1009337 – ident: e_1_2_8_123_2 doi: 10.1021/ja0722224 – ident: e_1_2_8_60_6 doi: 10.1021/nn3003345 – ident: e_1_2_8_77_2 doi: 10.1002/adma.201200170 – ident: e_1_2_8_90_2 doi: 10.1016/S0032-3861(03)00539-1 – ident: e_1_2_8_75_2 doi: 10.1016/j.polymer.2011.02.017 – ident: e_1_2_8_1_5 doi: 10.1103/PhysRevLett.84.4613 – ident: e_1_2_8_122_2 doi: 10.1016/j.electacta.2011.07.142 – ident: e_1_2_8_10_2 doi: 10.1038/nnano.2007.89 – ident: e_1_2_8_71_2 doi: 10.1021/nn203917d – ident: e_1_2_8_46_2 doi: 10.1021/nn201002d – ident: e_1_2_8_108_2 doi: 10.1039/C2CP43717A – ident: e_1_2_8_121_2 doi: 10.1021/jp211474e – ident: e_1_2_8_102_2 doi: 10.1038/nmat1059 – ident: e_1_2_8_2_2 doi: 10.1126/science.1060928 – ident: e_1_2_8_66_2 doi: 10.1103/PhysRevB.71.085403 – ident: e_1_2_8_56_2 doi: 10.1016/j.carbon.2007.03.029 – ident: e_1_2_8_95_3 doi: 10.1039/c2jm33949h – ident: e_1_2_8_64_2 doi: 10.1021/jp068895a – ident: e_1_2_8_129_2 doi: 10.1021/nl052238x – ident: e_1_2_8_30_2 doi: 10.1021/nl801827v – ident: e_1_2_8_117_2 doi: 10.1002/smll.200901364 – ident: e_1_2_8_76_2 doi: 10.1038/ncomms1583 – ident: e_1_2_8_13_2 doi: 10.1073/pnas.0900155106 – ident: e_1_2_8_65_4 doi: 10.1016/j.carbon.2011.07.028 – ident: e_1_2_8_103_2 doi: 10.1002/adma.200702953 – ident: e_1_2_8_57_2 doi: 10.1002/app.13460 – ident: e_1_2_8_85_2 doi: 10.1021/cm020975d – ident: e_1_2_8_23_2 doi: 10.1126/science.1061797 – ident: e_1_2_8_124_2 doi: 10.1021/nn2029617 – ident: e_1_2_8_54_2 doi: 10.1016/j.eurpolymj.2003.08.005 – ident: e_1_2_8_44_2 doi: 10.1021/nl051419w – ident: e_1_2_8_65_2 doi: 10.1126/science.1101398 – ident: e_1_2_8_95_4 doi: 10.1039/c2ee22595f – ident: e_1_2_8_20_2 doi: 10.1126/science.1101243 – ident: e_1_2_8_40_2 doi: 10.1126/science.265.5176.1212 – ident: e_1_2_8_41_3 doi: 10.1016/j.progpolymsci.2009.09.003 – ident: e_1_2_8_45_8 doi: 10.1063/1.4754709 – ident: e_1_2_8_67_2 doi: 10.1016/S0032-3861(03)00073-9 – ident: e_1_2_8_45_3 doi: 10.1016/j.compositesa.2003.09.029 – ident: e_1_2_8_131_2 doi: 10.1039/c2cc17721h – ident: e_1_2_8_83_2 doi: 10.1016/j.matdes.2012.07.065 – ident: e_1_2_8_8_2 doi: 10.1038/34139 – ident: e_1_2_8_16_2 doi: 10.1021/j100027a002 – ident: e_1_2_8_103_3 doi: 10.1002/app.26517 – ident: e_1_2_8_55_2 doi: 10.1016/j.carbon.2009.11.029 – ident: e_1_2_8_45_4 doi: 10.1002/adma.200601748 – ident: e_1_2_8_116_2 doi: 10.1021/nn101671t – ident: e_1_2_8_118_2 doi: 10.1016/j.jpcs.2003.10.051 – ident: e_1_2_8_130_2 doi: 10.1002/adma.201200422 – ident: e_1_2_8_38_2 doi: 10.1021/nl102661q – ident: e_1_2_8_53_2 doi: 10.1021/nn3006812 – ident: e_1_2_8_115_2 doi: 10.1002/cssc.201100430 – ident: e_1_2_8_128_2 doi: 10.1021/nl801495p – ident: e_1_2_8_17_2 doi: 10.1063/1.108857 – ident: e_1_2_8_103_4 doi: 10.1002/marc.200400492 – ident: e_1_2_8_84_3 doi: 10.1038/nnano.2008.96 – ident: e_1_2_8_29_3 doi: 10.1021/jp900791y – ident: e_1_2_8_110_2 doi: 10.1021/jp901284d – ident: e_1_2_8_92_3 doi: 10.1021/nn1000035 – ident: e_1_2_8_112_2 doi: 10.1039/c2py21021e – ident: e_1_2_8_21_2 doi: 10.1002/adfm.200500937 – ident: e_1_2_8_32_2 doi: 10.1038/nature07872 – ident: e_1_2_8_12_2 doi: 10.1021/nl052145f – ident: e_1_2_8_101_2 doi: 10.1038/nnano.2011.36 – ident: e_1_2_8_33_2 doi: 10.1038/nmat1849 – ident: e_1_2_8_41_4 doi: 10.1002/adma.200501851 – ident: e_1_2_8_45_6 doi: 10.1021/ja078267m – ident: e_1_2_8_65_3 doi: 10.1016/j.scriptamat.2005.09.014 – ident: e_1_2_8_107_2 doi: 10.1021/am200114r – ident: e_1_2_8_105_2 doi: 10.1002/anie.201201975 – ident: e_1_2_8_60_5 doi: 10.1021/nn900297m – ident: e_1_2_8_39_3 doi: 10.1039/C1JM14694G – volume: 3 year: 2013 ident: e_1_2_8_60_4 publication-title: Sci. Rep. – ident: e_1_2_8_61_2 doi: 10.1002/smll.201100990 – ident: e_1_2_8_59_2 doi: 10.1016/j.jcis.2010.01.035 – ident: e_1_2_8_69_2 doi: 10.1039/c1jm11766a – ident: e_1_2_8_111_2 doi: 10.1002/aenm.201100136 – ident: e_1_2_8_35_3 doi: 10.1038/nnano.2008.83 – ident: e_1_2_8_36_3 doi: 10.1002/ange.200901479 – ident: e_1_2_8_18_2 doi: 10.1038/384147a0 – ident: e_1_2_8_41_2 doi: 10.1002/adma.200901545 – ident: e_1_2_8_5_2 doi: 10.1002/polb.23226 – ident: e_1_2_8_126_2 doi: 10.1002/aenm.201100449 – ident: e_1_2_8_28_2 doi: 10.1126/science.1102896 – ident: e_1_2_8_35_2 doi: 10.1038/nature07719 – ident: e_1_2_8_104_2 doi: 10.1002/anie.201200723 – year: 2012 ident: e_1_2_8_95_2 publication-title: Org. Electron. – ident: e_1_2_8_114_2 doi: 10.1039/C2CP42790G – ident: e_1_2_8_127_2 doi: 10.1039/C1EE02148F – ident: e_1_2_8_106_2 doi: 10.1002/adfm.201000570 – ident: e_1_2_8_37_3 doi: 10.1002/adma.201102207 – ident: e_1_2_8_70_2 doi: 10.1039/c0jm00307g – ident: e_1_2_8_89_2 doi: 10.1002/adma.200401649 – ident: e_1_2_8_47_2 doi: 10.1021/nn301321j – ident: e_1_2_8_1_4 doi: 10.1016/S0379-6779(98)00278-1 – ident: e_1_2_8_27_3 doi: 10.1126/science.1184014 – ident: e_1_2_8_36_2 doi: 10.1038/nchem.907 – ident: e_1_2_8_29_2 doi: 10.1021/nn900020u – ident: e_1_2_8_60_2 doi: 10.1038/nmat3001 – ident: e_1_2_8_133_2 doi: 10.1039/c2cc38290c – ident: e_1_2_8_132_2 doi: 10.1021/jp202475m – ident: e_1_2_8_1_3 doi: 10.1038/382054a0 – ident: e_1_2_8_65_5 doi: 10.1038/nmat1782 – ident: e_1_2_8_96_2 doi: 10.1016/j.carbon.2010.11.013 – ident: e_1_2_8_58_2 doi: 10.1016/j.compositesa.2007.02.003 – ident: e_1_2_8_78_2 doi: 10.1016/j.carbon.2009.09.014 – ident: e_1_2_8_43_2 doi: 10.1016/S0009-2614(00)01013-7 – ident: e_1_2_8_4_2 doi: 10.1038/nature04969 – ident: e_1_2_8_45_7 doi: 10.1002/marc.200900370 – ident: e_1_2_8_84_4 doi: 10.1016/S1369-7021(04)00507-3 |
SSID | ssj0009606 |
Score | 2.5928762 |
SecondaryResourceType | review_article |
Snippet | The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5153 |
SubjectTerms | Carbon nanotubes Catalysis Composite materials Composite structures composites Graphene Graphite - chemistry Nanotechnology - methods Nanotubes, Carbon - chemistry Optical properties Polymer matrix composites polymers Polymers - chemistry Strategy Synthesis |
Title | Developing Polymer Composite Materials: Carbon Nanotubes or Graphene? |
URI | https://api.istex.fr/ark:/67375/WNG-6NW2XTDD-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201301926 https://www.ncbi.nlm.nih.gov/pubmed/23813859 https://www.proquest.com/docview/1443395862 https://www.proquest.com/docview/1448746718 https://www.proquest.com/docview/1753533950 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwELZQeYEH7iPlkJEQPKXN-ogTXtCq20NIu0Ko1e6b5fOlJUHZrFT49cwku2kXQZHgLcc4Gtsz48_x-DMhb30ejBzh-qDjMhWRxdTAqJ0GUfLImGVc4X7n6Sw_OROfFnJxbRd_zw8x_HBDz-jiNTq4scv9K9JQ4zveIIjBAFKQcxsTthAVfbnij0J43pHtgR5lLooNa2PG9reLb41Kt7GBL38HObcRbDcEHd0nZqN8n3lyvrdq7Z778Quv4__U7gG5t8andNwb1ENyK1SPyN1rrIWPyeFk2GhFP9cX37-GhmJYwfSvQKem7Y36Az0wja0rCgG8blc2LGnd0GMkyIb4-vEJOTs6PD04SdenMaQOME-eOh6lcEa5CHGJ5zE4FvLoQ54x65QspUJiIGXhjSoiCzJkuAbHZCylD7LgT8lOVVfhOaEeHnhbjJQRXljlytIAEPGZMV6AUZmEpJve0G5NVY4nZlzonmSZaWwePTRPQt4P8t96ko4_Sr7rOncQM805prYpqeezY53P5mxxOpnoeULebHpfg8PhKoqpQr1awlxJcF5KmAneKFPgOS6j4gYZmChK_FKWkGe9eQ1aIY7ihSwTwjoj-Uut9HgyHQ93u_9S6AW5g9ddmqJ4SXbaZhVeAdxq7evOpX4CPaMftQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAOvEvD00gITmmzjh8JF7Rq2i7QXSG01fZm2Y5zaZugNCsBvx5PsklZBEWCY5Jx5MfM-LM9_gbgVS6c5iM8H7QxD1lBi1D7WTt0LI0LSg2NJd53ns7E5Jh9OOF9NCHehen4IYYNN7SM1l-jgeOG9O4la6jOW-Ig74Q9ShHXYRPTemMSg-zzJYMUAvSWbs_XJBUs6XkbI7q7Xn5tXtrELv76O9C5jmHbSejgDpi--l3syenOsjE79vsvzI7_1b67cHsFUcm406l7cM2V9-HWT8SFD2A_G-5akU_V2bdzVxP0LBgB5shUN51evyV7ujZVSbwPr5qlcRekqskhcmR7F_vuIRwf7M_3JuEqIUNoPewRoY0LzqyWtvCuKRaFs9SJInciosZKnnKJ3EDS-C8yKajjLsJjOMqLlOeOJ_EWbJRV6baB5P5FbpKR1CxnRto01R6L5JHWOfN6pQMI--FQdsVWjkkzzlTHs0wVdo8auieAN4P8l46n44-Sr9vRHcR0fYrRbZKrxexQidmCnsyzTC0CeNkPv_I2hwcpunTV8sIvl1gcp9wvBq-USTCVyyi5QsavFTn-KQrgUadfQ60QSsUJTwOgrZb8pVVqnE3Hw9Pjfyn0Am5M5tMjdfR-9vEJ3MT3bdQiewobTb10zzz6aszz1r5-AC39I88 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BKyE48C4EWggSglParGM7SS_Vqum2PHZVoVa7N8vPS0tSpVkJ-PV4kt20i6BIcIwzjvyYGX-OZz4DvDXcSjbA80GdsIg64iLpV-3I0jxxhCiSpJjvPJ7wo1P6ccZm17L4O36I_ocbWkbrr9HAL4zbuSINlablDfI-2IMUfhvWKfcWg7DoyxWBFOLzlm3PNyTnNFvSNsZkZ7X-yrK0jiP87XeYcxXCtmvQ6AHIZeu70JOz7XmjtvWPX4gd_6d7D-H-AqCGw06jHsEtWz6Ge9doC5_AQdFnWoXH1fn3r7YO0a9g_JcNx7LptHo33Je1qsrQe_CqmSt7GVZ1eIgM2d7B7j2F09HByf5RtLiOIdIe9PBIJ45RLVPtvGNKuLOaWO6M5TFROmU5S5EZKFX-TZo5YpmN8RCOMJczY1mWbMBaWZX2OYTGFxiVDVJJDVWpznPpkYiJpTTUa5UMIFrOhtALrnK8MuNcdCzLRODwiH54Anjfy190LB1_lHzXTm4vJuszjG1LmZhODgWfTMnspCjENIA3y9kX3uLwGEWWtppf-s0STZKc-a3gjTIZXuQyyG6Q8TtFhl-KA3jWqVffKgRSScbyAEirJH_plRgW42H_9OJfKr2GO8fFSHz-MPn0Eu5icRuySDdhranndstDr0a9aq3rJ7qOIoc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+polymer+composite+materials%3A+carbon+nanotubes+or+graphene%3F&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Sun%2C+Xuemei&rft.au=Sun%2C+Hao&rft.au=Li%2C+Houpu&rft.au=Peng%2C+Huisheng&rft.date=2013-10-04&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=25&rft.issue=37&rft.spage=5153&rft_id=info:doi/10.1002%2Fadma.201301926&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |