Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells
Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function...
Saved in:
Published in | Epilepsia (Copenhagen) Vol. 58; no. 4; pp. 576 - 585 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley
01.04.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Objective
Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post‐epilepsy surgery brain samples.
Methods
PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug‐resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI‐ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI‐ECs (n = 4), and the impact on downstream CYP expression was determined.
Results
PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI‐ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic‐nuclear subcellular fractions, with a significant increase of PXR/GR in EPI‐ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI‐ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI‐ECs. GR silencing in EPI‐ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI‐ECs resulted in the specific downregulation of CYP3A4 expression.
Significance
Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation. |
---|---|
AbstractList | Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples.OBJECTIVERecent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples.PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined.METHODSPXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined.PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression.RESULTSPXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression.Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.SIGNIFICANCEOur results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation. Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples. Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples. PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined. PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression. Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation. Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post‐epilepsy surgery brain samples. Methods PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug‐resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI‐ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI‐ECs (n = 4), and the impact on downstream CYP expression was determined. Results PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI‐ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic‐nuclear subcellular fractions, with a significant increase of PXR/GR in EPI‐ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI‐ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI‐ECs. GR silencing in EPI‐ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI‐ECs resulted in the specific downregulation of CYP3A4 expression. Significance Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation. |
Author | Hossain, Mohammed Solanki, Jesal Ghosh, Chaitali Marchi, Nicola Janigro, Damir Najm, Imad M. |
AuthorAffiliation | 2 Department of Molecular Medicine Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A 3 Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A 6 Case Western Reserve University Cleveland Ohio U.S.A 1 Cerebrovascular Research Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A 5 Flocel, Inc. Cleveland Ohio U.S.A 4 Department of Neuroscience Institute of Functional Genomics CNRS/INSERM Montpellier France |
AuthorAffiliation_xml | – name: 3 Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A – name: 2 Department of Molecular Medicine Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A – name: 1 Cerebrovascular Research Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A – name: 5 Flocel, Inc. Cleveland Ohio U.S.A – name: 4 Department of Neuroscience Institute of Functional Genomics CNRS/INSERM Montpellier France – name: 6 Case Western Reserve University Cleveland Ohio U.S.A |
Author_xml | – sequence: 1 givenname: Chaitali surname: Ghosh fullname: Ghosh, Chaitali email: ghoshc@ccf.org organization: Cleveland Clinic – sequence: 2 givenname: Mohammed surname: Hossain fullname: Hossain, Mohammed organization: Cleveland Clinic – sequence: 3 givenname: Jesal surname: Solanki fullname: Solanki, Jesal organization: Cleveland Clinic – sequence: 4 givenname: Imad M. surname: Najm fullname: Najm, Imad M. organization: Cleveland Clinic – sequence: 5 givenname: Nicola surname: Marchi fullname: Marchi, Nicola organization: CNRS/INSERM – sequence: 6 givenname: Damir surname: Janigro fullname: Janigro, Damir email: djanigro@flocel.com organization: Case Western Reserve University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28199000$$D View this record in MEDLINE/PubMed https://hal.umontpellier.fr/hal-02060379$$DView record in HAL |
BookMark | eNp1Uk1v3CAQRVWqZpP20D9QcWwPTsAY21wqRVGaRFopObRSbwjj8ZoKgwv2pvsX-qvDfiT9UMsFZua9x5uBE3TkvAOE3lJyRtM6h9GcUVYR9gItKM_rjNKyOkILQijLBK_JMTqJ8RshpCor9god5zUVIoUL9PNuDQF-jAFiNN5h3-F0XjnlAH_FyrV4ZWfttQ-T0d60OICGcfIh7opTDymzmq2aDmy9mbzugx8A3xecYONwPw_K4WTSJqbRuAkqZcG1PtGtURZrsDa-Ri87ZSO8Oeyn6Munq8-XN9ny7vr28mKZaU45y3hH26KBgqoidZMCzriGjld1A7XWVAmq6lKRTmjGRMWaloqiU6JuuiavWMlO0ce97jg3A7Qa3BSUlWMwgwob6ZWRf1ac6eXKryVndVnnJAl82Av0f9FuLpZymyM5KQmrxJom7PvDZcF_nyFOcjBx224asJ-jpEmyFEVBt77e_e7rWfnpsRLgfA_QwccYoJPaTLvBJ5vGSkrk9jvINGm5-w6_nD4znkT_hT2oP6R32vwfKK_ub_eMR-4WxsY |
CitedBy_id | crossref_primary_10_1016_j_freeradbiomed_2025_03_032 crossref_primary_10_1111_epi_17625 crossref_primary_10_3892_etm_2019_7538 crossref_primary_10_1016_j_yebeh_2019_07_031 crossref_primary_10_1111_bph_15055 crossref_primary_10_3390_cells12151965 crossref_primary_10_3389_fmedt_2020_623950 crossref_primary_10_1016_j_neuro_2021_08_004 crossref_primary_10_3389_fphar_2021_650027 crossref_primary_10_1080_00498254_2018_1555344 crossref_primary_10_1080_03602532_2018_1554673 crossref_primary_10_1080_03602532_2018_1554674 crossref_primary_10_1016_j_therap_2019_07_003 crossref_primary_10_1155_2022_1451007 crossref_primary_10_3390_pharmaceutics13111779 crossref_primary_10_1080_03602532_2020_1858856 crossref_primary_10_1002_epi4_12542 crossref_primary_10_1016_j_prmcm_2024_100439 crossref_primary_10_2174_1570159X22666231207114346 crossref_primary_10_1016_j_neulet_2018_10_016 crossref_primary_10_3988_jcn_2023_0308 crossref_primary_10_1007_s12035_020_02043_9 crossref_primary_10_1016_j_xphs_2017_11_010 crossref_primary_10_1186_s12951_021_01165_z crossref_primary_10_3233_CH_189125 crossref_primary_10_1111_cns_14279 crossref_primary_10_1007_s12192_023_01378_1 crossref_primary_10_1016_j_drudis_2019_09_009 crossref_primary_10_1111_epi_14567 crossref_primary_10_12677_ACM_2023_133549 crossref_primary_10_1016_j_gene_2018_02_022 crossref_primary_10_1007_s12035_018_1415_z crossref_primary_10_3390_ijms23094940 crossref_primary_10_4103_1673_5374_313046 crossref_primary_10_1007_s12035_019_01673_y crossref_primary_10_1016_j_eplepsyres_2022_107000 crossref_primary_10_1177_0271678X18788769 crossref_primary_10_3390_biomedicines9121834 crossref_primary_10_1007_s10072_021_05293_0 crossref_primary_10_1016_j_gene_2020_145359 crossref_primary_10_1080_00207454_2020_1781110 crossref_primary_10_3390_ijms22084282 crossref_primary_10_4274_balkanmedj_galenos_2024_2024_9_12 crossref_primary_10_3390_ph16111536 |
Cites_doi | 10.1124/mol.105.022046 10.1016/j.drudis.2016.06.004 10.1586/ern.09.114 10.1124/mol.110.063685 10.2478/10004-1254-60-2009-1885 10.1124/dmd.106.012831 10.1016/j.nbd.2012.03.010 10.1124/pr.55.4.2 10.3892/ijo.2014.2306 10.2174/1389200211314030009 10.1002/jps.20324 10.1111/epi.12318 10.1046/j.1528-1157.2001.12301.x 10.1124/mol.105.013169 10.1038/nrd1551 10.1002/jbt.20180 10.1016/S0304-4165(02)00483-X 10.1111/j.1528-1167.2010.02956.x 10.1111/epi.12923 10.1016/S0026-895X(24)05623-2 10.1016/j.pharmthera.2012.12.007 10.1021/mp700103m 10.1016/j.expneurol.2016.05.018 10.1046/j.0014-2956.2001.02540.x 10.1038/ncb2629 10.1074/jbc.M407281200 10.1124/mi.10.5.6 10.1124/mol.111.071845 10.1080/03602530902843483 10.1111/j.1471-4159.2011.07288.x 10.1080/10623320212004 10.1146/annurev.pharmtox.47.120505.105349 10.1093/toxsci/kfn047 10.1111/j.1528-1167.2009.02428.x 10.1124/mol.58.2.361 10.1124/jpet.301.1.7 10.1124/mol.64.1.160 10.1038/clpt.2009.225 10.1096/fj.10-169227 10.1016/0378-4274(95)03510-9 10.1371/journal.pone.0082562 10.1186/1741-7015-2-37 10.1124/mol.58.6.1441 10.1111/j.1471-4159.2008.05720.x 10.1124/mol.106.023796 |
ContentType | Journal Article |
Copyright | 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. – notice: 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
DOI | 10.1111/epi.13703 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
DocumentTitleAlternate | C. Ghosh et al |
EISSN | 1528-1167 |
EndPage | 585 |
ExternalDocumentID | PMC5386820 oai_HAL_hal_02060379v1 28199000 10_1111_epi_13703 EPI13703 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: American Heart Association funderid: 13SDG13950015 – fundername: NIH funderid: R01NS078307; R42MH093302; R21HD057256; UH4TR000491 – fundername: Brain and Behavior Research Foundation (formerly NARSAD) – fundername: Alternatives Research & Development Foundation – fundername: NINDS NIH HHS grantid: R01 NS078307 – fundername: NICHD NIH HHS grantid: R21 HD057256 – fundername: NCATS NIH HHS grantid: UH3 TR000491 – fundername: NCATS NIH HHS grantid: UH2 TR000491 – fundername: NINDS NIH HHS grantid: R01 NS095825 – fundername: NIMH NIH HHS grantid: R42 MH093302 – fundername: American Heart Association grantid: 13SDG13950015 – fundername: NIH grantid: R01NS078307; R42MH093302; R21HD057256; UH4TR000491 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAGKA AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIVO ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FYBCS G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TR2 UB1 V8K V9Y VH1 W8V W99 WBKPD WHWMO WIH WIJ WIK WIN WOHZO WOW WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 YFH YOC YUY ZGI ZXP ZZTAW ~IA ~WT AAFWJ AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c5153-5f1d4be41a4767f1d535cef578be8cc1a91a86a0f9c33973bd194fa98bfb27363 |
IEDL.DBID | DR2 |
ISSN | 0013-9580 1528-1167 |
IngestDate | Thu Aug 21 13:57:16 EDT 2025 Fri May 09 12:22:25 EDT 2025 Fri Jul 11 05:15:41 EDT 2025 Wed Feb 19 02:42:50 EST 2025 Thu Apr 24 23:04:27 EDT 2025 Thu Jul 03 08:42:40 EDT 2025 Wed Jan 22 16:22:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Neurovascular unit Drug resistance Epilepsy Nuclear Receptors |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5153-5f1d4be41a4767f1d535cef578be8cc1a91a86a0f9c33973bd194fa98bfb27363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC5386820 |
ORCID | 0000-0001-9124-0226 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13703 |
PMID | 28199000 |
PQID | 1868694416 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5386820 hal_primary_oai_HAL_hal_02060379v1 proquest_miscellaneous_1868694416 pubmed_primary_28199000 crossref_citationtrail_10_1111_epi_13703 crossref_primary_10_1111_epi_13703 wiley_primary_10_1111_epi_13703_EPI13703 |
PublicationCentury | 2000 |
PublicationDate | April 2017 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Epilepsia (Copenhagen) |
PublicationTitleAlternate | Epilepsia |
PublicationYear | 2017 |
Publisher | Wiley John Wiley and Sons Inc |
Publisher_xml | – name: Wiley – name: John Wiley and Sons Inc |
References | 2006; 70 2010; 78 2004; 66 2015; 56 2010; 10 2009; 41 2011; 118 2002; 9 2011; 80 2009; 60 2004; 3 2011; 52 2008; 107 2008; 5 2004; 2 2008; 103 2001; 29 2003; 1619 2012; 14 2013; 8 2007; 35 2001; 268 2014; 44 2001; 42 2003; 55 2016; 283 2005; 68 2002; 27 1995; 82–83 2010; 87 2013; 14 2004; 279 2000; 58 2013; 54 2013; 138 2002; 301 2016; 21 2008; 48 2009; 9 2005; 94 2011; 25 2012; 46 2007; 21 2003; 64 2010; 51 Gerbal‐Chaloin S (e_1_2_9_4_1) 2001; 29 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_2_1 Miksys SL (e_1_2_9_14_1) 2002; 27 Bauer B (e_1_2_9_7_1) 2004; 66 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 19951138 - Expert Rev Neurother. 2009 Dec;9(12):1791-802 23865846 - Epilepsia. 2013 Sep;54(9):1562-70 14657421 - Pharmacol Rev. 2003 Dec;55(4):649-73 11907151 - J Pharmacol Exp Ther. 2002 Apr;301(1):7-14 21048045 - FASEB J. 2011 Feb;25(2):644-52 15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64 12573484 - Biochim Biophys Acta. 2003 Feb 17;1619(3):243-53 11879359 - Epilepsia. 2001 Dec;42(12):1501-6 11093784 - Mol Pharmacol. 2000 Dec;58(6):1441-50 24340040 - PLoS One. 2013 Dec 10;8(12):e82562 21628639 - Mol Pharmacol. 2011 Sep;80(3):518-28 23178880 - Nat Cell Biol. 2012 Dec;14 (12 ):1295-304 20019694 - Clin Pharmacol Ther. 2010 Jan;87(1):13-5 19094056 - J Neurochem. 2008 Dec;107(6):1518-28 22426401 - Neurobiol Dis. 2012 Jun;46(3):692-700 25656284 - Epilepsia. 2015 Mar;56(3):439-49 18159929 - Mol Pharm. 2008 Jan-Feb;5(1):35-41 21517853 - J Neurochem. 2011 Jul;118(2):163-75 19581216 - Arh Hig Rada Toksikol. 2009 Jun;60(2):217-42 16837625 - Mol Pharmacol. 2006 Oct;70(4):1212-9 21045243 - Mol Interv. 2010 Oct;10(5):293-304 21294720 - Epilepsia. 2011 Mar;52(3):562-71 12815172 - Mol Pharmacol. 2003 Jul;64(1):160-9 12491573 - J Psychiatry Neurosci. 2002 Nov;27(6):406-15 23237007 - Curr Drug Metab. 2013 Mar;14(3):341-50 27312874 - Drug Discov Today. 2016 Oct;21(10 ):1609-1619 20547735 - Mol Pharmacol. 2010 Sep;78(3):376-83 27240521 - Exp Neurol. 2016 Sep;283(Pt A):39-48 17093002 - Drug Metab Dispos. 2007 Feb;35(2):194-200 8597122 - Toxicol Lett. 1995 Dec;82-83:645-53 15473912 - BMC Med. 2004 Oct 09;2:37 19514967 - Drug Metab Rev. 2009;41(2):89-295 16608920 - Mol Pharmacol. 2006 Jul;70(1):329-39 15933212 - Mol Pharmacol. 2005 Sep;68(3):747-57 15858847 - J Pharm Sci. 2005 Jun;94(6):1169-86 17608617 - Annu Rev Pharmacol Toxicol. 2008;48:1-32 23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41 20074231 - Epilepsia. 2010 Aug;51(8):1408-17 15322232 - Mol Pharmacol. 2004 Sep;66(3):413-9 17936931 - J Biochem Mol Toxicol. 2007;21(4):176-81 18332045 - Toxicol Sci. 2008 Jun;103(2):268-77 10908304 - Mol Pharmacol. 2000 Aug;58(2):361-72 11737189 - Eur J Biochem. 2001 Dec;268(24):6346-58 24573652 - Int J Oncol. 2014 May;44(5):1455-60 12200960 - Endothelium. 2002;9(2):89-102 15347657 - J Biol Chem. 2004 Nov 19;279(47):49307-14 11181490 - Drug Metab Dispos. 2001 Mar;29(3):242-51 |
References_xml | – volume: 1619 start-page: 243 year: 2003 end-page: 253 article-title: The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors publication-title: Biochim Biophys Acta – volume: 21 start-page: 1609 year: 2016 end-page: 1619 article-title: Pathophysiological implications of neurovascular P450 in brain disorders publication-title: Drug Discov Today – volume: 9 start-page: 1791 year: 2009 end-page: 1802 article-title: Management of the patient with medically refractory epilepsy publication-title: Expert Rev Neurother – volume: 283 start-page: 39 year: 2016 end-page: 48 article-title: Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo publication-title: Exp Neurol – volume: 48 start-page: 1 year: 2008 end-page: 32 article-title: The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences publication-title: Annu Rev Pharmacol Toxicol – volume: 103 start-page: 268 year: 2008 end-page: 277 article-title: Phthalate induction of CYP3A4 is dependent on glucocorticoid regulation of PXR expression publication-title: Toxicol Sci – volume: 82–83 start-page: 645 year: 1995 end-page: 653 article-title: Blood‐brain interfaces: relevance to cerebral drug metabolism publication-title: Toxicol Lett – volume: 42 start-page: 1501 year: 2001 end-page: 1506 article-title: Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy publication-title: Epilepsia – volume: 10 start-page: 293 year: 2010 end-page: 304 article-title: Regulation of ABC transporters at the blood‐brain barrier: new targets for CNS therapy publication-title: Mol Interv – volume: 268 start-page: 6346 year: 2001 end-page: 6357 article-title: Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes – sequential role of glucocorticoid receptor and pregnane X receptor publication-title: Eur J Biochem – volume: 279 start-page: 49307 year: 2004 end-page: 49314 article-title: Cytoplasmic localization of pregnane X receptor and ligand‐dependent nuclear translocation in mouse liver publication-title: J Biol Chem – volume: 58 start-page: 361 year: 2000 end-page: 372 article-title: Dexamethasone induces pregnane X receptor and retinoid X receptor‐alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators publication-title: Mol Pharmacol – volume: 66 start-page: 413 year: 2004 end-page: 419 article-title: Pregnane X receptor up‐regulation of P‐glycoprotein expression and transport function at the blood‐brain barrier publication-title: Mol Pharmacol – volume: 29 start-page: 242 year: 2001 end-page: 251 article-title: Induction of CYP2C genes in human hepatocytes in primary culture publication-title: Drug Metab Dispos – volume: 8 start-page: e82562 year: 2013 article-title: Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy publication-title: PLoS One – volume: 301 start-page: 7 year: 2002 end-page: 14 article-title: Role of multidrug transporters in pharmacoresistance to antiepileptic drugs publication-title: J Pharmacol Exp Ther – volume: 51 start-page: 1408 year: 2010 end-page: 1417 article-title: Pattern of P450 expression at the human blood‐brain barrier: roles of epileptic condition and laminar flow publication-title: Epilepsia – volume: 14 start-page: 341 year: 2013 end-page: 350 article-title: Pregnane X receptor (PXR) at the crossroads of human metabolism and disease publication-title: Curr Drug Metab – volume: 27 start-page: 406 year: 2002 end-page: 415 article-title: Drug‐metabolizing cytochrome P450s in the brain publication-title: J Psychiatry Neurosci – volume: 87 start-page: 13 year: 2010 end-page: 15 article-title: Transporters in drug‐refractory epilepsy: clinical significance publication-title: Clin Pharmacol Ther – volume: 78 start-page: 376 year: 2010 end-page: 383 article-title: Constitutive androstane receptor‐mediated up‐regulation of ATP‐driven xenobiotic efflux transporters at the blood‐brain barrier publication-title: Mol Pharmacol – volume: 56 start-page: 439 year: 2015 end-page: 449 article-title: Sertraline‐induced potentiation of the CYP3A4‐dependent neurotoxicity of carbamazepine: an in vitro study publication-title: Epilepsia – volume: 5 start-page: 35 year: 2008 end-page: 41 article-title: Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response publication-title: Mol Pharm – volume: 70 start-page: 1212 year: 2006 end-page: 1219 article-title: In vivo activation of human pregnane X receptor tightens the blood‐brain barrier to methadone through P‐glycoprotein up‐regulation publication-title: Mol Pharmacol – volume: 60 start-page: 217 year: 2009 end-page: 242 article-title: Genetic polymorphism of metabolic enzymes P450 (Cyp) as a susceptibility factor for drug response, toxicity, and cancer risk publication-title: Arh Hig Rada Toksikol – volume: 25 start-page: 644 year: 2011 end-page: 652 article-title: Aryl hydrocarbon receptor‐mediated upregulation of ATP‐driven xenobiotic efflux transporters at the blood‐brain barrier publication-title: FASEB J – volume: 3 start-page: 950 year: 2004 end-page: 964 article-title: Principles for modulation of the nuclear receptor superfamily publication-title: Nat Rev Drug Discov – volume: 94 start-page: 1169 year: 2005 end-page: 1186 article-title: Nuclear receptors and drug disposition gene regulation publication-title: J Pharm Sci – volume: 46 start-page: 692 year: 2012 end-page: 700 article-title: A pro‐convulsive carbamazepine metabolite: quinolinic acid in drug resistant epileptic human brain publication-title: Neurobiol Dis – volume: 44 start-page: 1455 year: 2014 end-page: 1460 article-title: Shikonin inhibits the growth of human prostate cancer cells via modulation of the androgen receptor publication-title: Int J Oncol – volume: 52 start-page: 562 year: 2011 end-page: 571 article-title: Cellular localization and functional significance of CYP3A4 in the human epileptic brain publication-title: Epilepsia – volume: 9 start-page: 89 year: 2002 end-page: 102 article-title: Mechanisms of endothelial survival under shear stress publication-title: Endothelium – volume: 58 start-page: 1441 year: 2000 end-page: 1450 article-title: Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation publication-title: Mol Pharmacol – volume: 55 start-page: 649 year: 2003 end-page: 673 article-title: Induction of drug metabolism: the role of nuclear receptors publication-title: Pharmacol Rev – volume: 107 start-page: 1518 year: 2008 end-page: 1528 article-title: ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood‐brain barrier publication-title: J Neurochem – volume: 138 start-page: 103 year: 2013 end-page: 141 article-title: Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation publication-title: Pharmacol Ther – volume: 41 start-page: 89 year: 2009 end-page: 295 article-title: Polymorphism of human cytochrome P450 enzymes and its clinical impact publication-title: Drug Metab Rev – volume: 54 start-page: 1562 year: 2013 end-page: 1570 article-title: Expression and functional relevance of UGT1A4 in a cohort of human drug‐resistant epileptic brains publication-title: Epilepsia – volume: 21 start-page: 176 year: 2007 end-page: 181 article-title: Mechanisms of cytochrome P450 induction publication-title: J Biochem Mol Toxicol – volume: 68 start-page: 747 year: 2005 end-page: 757 article-title: Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha publication-title: Mol Pharmacol – volume: 70 start-page: 329 year: 2006 end-page: 339 article-title: Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor publication-title: Mol Pharmacol – volume: 35 start-page: 194 year: 2007 end-page: 200 article-title: The pregnane X receptor gene‐humanized mouse: a model for investigating drug‐drug interactions mediated by cytochromes P450 3A publication-title: Drug Metab Dispos – volume: 118 start-page: 163 year: 2011 end-page: 175 article-title: Regulation of P‐glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells publication-title: J Neurochem – volume: 2 start-page: 37 year: 2004 article-title: Significance of MDR1 and multiple drug resistance in refractory human epileptic brain publication-title: BMC Med – volume: 80 start-page: 518 year: 2011 end-page: 528 article-title: Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug‐drug interaction in a novel multiple humanized mouse line publication-title: Mol Pharmacol – volume: 64 start-page: 160 year: 2003 end-page: 169 article-title: Colchicine down‐regulates cytochrome P4502B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor‐mediated regulation publication-title: Mol Pharmacol – volume: 14 start-page: 1295 year: 2012 end-page: 1304 article-title: ERK1/2‐dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect publication-title: Nat Cell Biol – ident: e_1_2_9_45_1 doi: 10.1124/mol.105.022046 – ident: e_1_2_9_29_1 doi: 10.1016/j.drudis.2016.06.004 – ident: e_1_2_9_48_1 doi: 10.1586/ern.09.114 – ident: e_1_2_9_32_1 doi: 10.1124/mol.110.063685 – ident: e_1_2_9_34_1 doi: 10.2478/10004-1254-60-2009-1885 – ident: e_1_2_9_40_1 doi: 10.1124/dmd.106.012831 – ident: e_1_2_9_16_1 doi: 10.1016/j.nbd.2012.03.010 – ident: e_1_2_9_26_1 doi: 10.1124/pr.55.4.2 – ident: e_1_2_9_21_1 doi: 10.3892/ijo.2014.2306 – ident: e_1_2_9_39_1 doi: 10.2174/1389200211314030009 – ident: e_1_2_9_3_1 doi: 10.1002/jps.20324 – ident: e_1_2_9_15_1 doi: 10.1111/epi.12318 – volume: 29 start-page: 242 year: 2001 ident: e_1_2_9_4_1 article-title: Induction of CYP2C genes in human hepatocytes in primary culture publication-title: Drug Metab Dispos – ident: e_1_2_9_19_1 doi: 10.1046/j.1528-1157.2001.12301.x – ident: e_1_2_9_46_1 doi: 10.1124/mol.105.013169 – ident: e_1_2_9_2_1 doi: 10.1038/nrd1551 – volume: 27 start-page: 406 year: 2002 ident: e_1_2_9_14_1 article-title: Drug‐metabolizing cytochrome P450s in the brain publication-title: J Psychiatry Neurosci – ident: e_1_2_9_23_1 doi: 10.1002/jbt.20180 – ident: e_1_2_9_5_1 doi: 10.1016/S0304-4165(02)00483-X – ident: e_1_2_9_13_1 doi: 10.1111/j.1528-1167.2010.02956.x – ident: e_1_2_9_41_1 doi: 10.1111/epi.12923 – volume: 66 start-page: 413 year: 2004 ident: e_1_2_9_7_1 article-title: Pregnane X receptor up‐regulation of P‐glycoprotein expression and transport function at the blood‐brain barrier publication-title: Mol Pharmacol doi: 10.1016/S0026-895X(24)05623-2 – ident: e_1_2_9_36_1 doi: 10.1016/j.pharmthera.2012.12.007 – ident: e_1_2_9_8_1 doi: 10.1021/mp700103m – ident: e_1_2_9_33_1 doi: 10.1016/j.expneurol.2016.05.018 – ident: e_1_2_9_9_1 doi: 10.1046/j.0014-2956.2001.02540.x – ident: e_1_2_9_22_1 doi: 10.1038/ncb2629 – ident: e_1_2_9_42_1 doi: 10.1074/jbc.M407281200 – ident: e_1_2_9_27_1 doi: 10.1124/mi.10.5.6 – ident: e_1_2_9_38_1 doi: 10.1124/mol.111.071845 – ident: e_1_2_9_37_1 doi: 10.1080/03602530902843483 – ident: e_1_2_9_18_1 doi: 10.1111/j.1471-4159.2011.07288.x – ident: e_1_2_9_20_1 doi: 10.1080/10623320212004 – ident: e_1_2_9_6_1 doi: 10.1146/annurev.pharmtox.47.120505.105349 – ident: e_1_2_9_44_1 doi: 10.1093/toxsci/kfn047 – ident: e_1_2_9_12_1 doi: 10.1111/j.1528-1167.2009.02428.x – ident: e_1_2_9_43_1 doi: 10.1124/mol.58.2.361 – ident: e_1_2_9_47_1 doi: 10.1124/jpet.301.1.7 – ident: e_1_2_9_24_1 doi: 10.1124/mol.64.1.160 – ident: e_1_2_9_30_1 doi: 10.1038/clpt.2009.225 – ident: e_1_2_9_31_1 doi: 10.1096/fj.10-169227 – ident: e_1_2_9_10_1 doi: 10.1016/0378-4274(95)03510-9 – ident: e_1_2_9_35_1 doi: 10.1371/journal.pone.0082562 – ident: e_1_2_9_28_1 doi: 10.1186/1741-7015-2-37 – ident: e_1_2_9_25_1 doi: 10.1124/mol.58.6.1441 – ident: e_1_2_9_11_1 doi: 10.1111/j.1471-4159.2008.05720.x – ident: e_1_2_9_17_1 doi: 10.1124/mol.106.023796 – reference: 12573484 - Biochim Biophys Acta. 2003 Feb 17;1619(3):243-53 – reference: 15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64 – reference: 8597122 - Toxicol Lett. 1995 Dec;82-83:645-53 – reference: 16837625 - Mol Pharmacol. 2006 Oct;70(4):1212-9 – reference: 11907151 - J Pharmacol Exp Ther. 2002 Apr;301(1):7-14 – reference: 19951138 - Expert Rev Neurother. 2009 Dec;9(12):1791-802 – reference: 12491573 - J Psychiatry Neurosci. 2002 Nov;27(6):406-15 – reference: 17093002 - Drug Metab Dispos. 2007 Feb;35(2):194-200 – reference: 15473912 - BMC Med. 2004 Oct 09;2:37 – reference: 24573652 - Int J Oncol. 2014 May;44(5):1455-60 – reference: 21628639 - Mol Pharmacol. 2011 Sep;80(3):518-28 – reference: 18159929 - Mol Pharm. 2008 Jan-Feb;5(1):35-41 – reference: 15322232 - Mol Pharmacol. 2004 Sep;66(3):413-9 – reference: 15858847 - J Pharm Sci. 2005 Jun;94(6):1169-86 – reference: 14657421 - Pharmacol Rev. 2003 Dec;55(4):649-73 – reference: 15347657 - J Biol Chem. 2004 Nov 19;279(47):49307-14 – reference: 24340040 - PLoS One. 2013 Dec 10;8(12):e82562 – reference: 12200960 - Endothelium. 2002;9(2):89-102 – reference: 23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41 – reference: 18332045 - Toxicol Sci. 2008 Jun;103(2):268-77 – reference: 21045243 - Mol Interv. 2010 Oct;10(5):293-304 – reference: 11093784 - Mol Pharmacol. 2000 Dec;58(6):1441-50 – reference: 20547735 - Mol Pharmacol. 2010 Sep;78(3):376-83 – reference: 21294720 - Epilepsia. 2011 Mar;52(3):562-71 – reference: 21048045 - FASEB J. 2011 Feb;25(2):644-52 – reference: 11181490 - Drug Metab Dispos. 2001 Mar;29(3):242-51 – reference: 11879359 - Epilepsia. 2001 Dec;42(12):1501-6 – reference: 15933212 - Mol Pharmacol. 2005 Sep;68(3):747-57 – reference: 21517853 - J Neurochem. 2011 Jul;118(2):163-75 – reference: 23237007 - Curr Drug Metab. 2013 Mar;14(3):341-50 – reference: 23178880 - Nat Cell Biol. 2012 Dec;14 (12 ):1295-304 – reference: 19514967 - Drug Metab Rev. 2009;41(2):89-295 – reference: 20074231 - Epilepsia. 2010 Aug;51(8):1408-17 – reference: 22426401 - Neurobiol Dis. 2012 Jun;46(3):692-700 – reference: 27312874 - Drug Discov Today. 2016 Oct;21(10 ):1609-1619 – reference: 10908304 - Mol Pharmacol. 2000 Aug;58(2):361-72 – reference: 11737189 - Eur J Biochem. 2001 Dec;268(24):6346-58 – reference: 17608617 - Annu Rev Pharmacol Toxicol. 2008;48:1-32 – reference: 19094056 - J Neurochem. 2008 Dec;107(6):1518-28 – reference: 19581216 - Arh Hig Rada Toksikol. 2009 Jun;60(2):217-42 – reference: 12815172 - Mol Pharmacol. 2003 Jul;64(1):160-9 – reference: 20019694 - Clin Pharmacol Ther. 2010 Jan;87(1):13-5 – reference: 25656284 - Epilepsia. 2015 Mar;56(3):439-49 – reference: 27240521 - Exp Neurol. 2016 Sep;283(Pt A):39-48 – reference: 16608920 - Mol Pharmacol. 2006 Jul;70(1):329-39 – reference: 23865846 - Epilepsia. 2013 Sep;54(9):1562-70 – reference: 17936931 - J Biochem Mol Toxicol. 2007;21(4):176-81 |
SSID | ssj0007673 |
Score | 2.417135 |
Snippet | Summary
Objective
Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy.... Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream... |
SourceID | pubmedcentral hal proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 576 |
SubjectTerms | Analysis of Variance Brain - pathology Cells, Cultured Cytochrome P-450 Enzyme System - metabolism Drug resistance Drug Resistant Epilepsy - pathology Endothelial Cells - drug effects Endothelial Cells - metabolism Epilepsy Full‐Length Original Research Gene Expression Regulation, Enzymologic - drug effects Gene Expression Regulation, Enzymologic - physiology Glial Fibrillary Acidic Protein - metabolism Humans Life Sciences Neurovascular unit Nuclear Receptors Oligonucleotide Array Sequence Analysis Phosphopyruvate Hydratase - metabolism Proliferating Cell Nuclear Antigen - metabolism Receptors, Glucocorticoid - genetics Receptors, Glucocorticoid - metabolism Receptors, Steroid - genetics Receptors, Steroid - metabolism RNA, Messenger - metabolism RNA, Small Interfering - pharmacology Subcellular Fractions - metabolism |
Title | Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13703 https://www.ncbi.nlm.nih.gov/pubmed/28199000 https://www.proquest.com/docview/1868694416 https://hal.umontpellier.fr/hal-02060379 https://pubmed.ncbi.nlm.nih.gov/PMC5386820 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLXaLhAbypvwqAxiwSajJLYTR6wq1GpAFEaISrNAimzH7owYOaPODGr5BL6ae50HHQoSYufEzsPOvfZxfHwuIS-ZlEIyJ2MldRZzBxNWJWoRC5kym7gsSxxuTj75kI9P-bupmO6Q1_1emFYfYvjhhp4R-mt0cKVXV5zcLuejlBVB6RO5WgiIPv2SjirybnU5ZXEpZNKpCiGLZ7hyayzanSET8jrMvM6WvIpiwzB0vE--9BVo2SdfR5u1Hpnvv2k7_mcNb5NbHTylh6093SE71t8lN066Bfh75MdHMH170bFnPW0chfSZV97SKVW-poEDD1NauEEzryl0qHaJEX1CJqBNOHPWhQzDq83lujEz1EygEy4SOvc0hA2k8FoLZNwYqjGKBbW-xs1iC_AXiqsNq_vk9Pjo85tx3IVziA2AJhYLl9ZcW54qDh8HDgQTxjroMrSVxqSqTJXMVeJKwwAlMV2nJXeqlNppAFk5e0D2fOPtI0I57pBVNZRRnLsiKZUWTBUyKUzCSqci8qr_sJXptM4x5Mai6uc8UIkqtG1EXgxFl63Axx8LgXUM-SjJPT58X-E5gNt5woryWxqR573xVOCj2BTQ-M1mVWFIgrwE4JlH5GFrTMO9cCETA7dGpNgys62Hbef4-SzogMNYlQOAg8oGK_r761dHk7ch8fjfiz4hNzNEMIGk9JTsrc839hngr7U-ILsZnxwEd_sJLhAujg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkIAX7oNwNYgHXlIltZ04Ei8TbOqgHRPapL6gyHbstaJyKtYi4CfwqznHubAykBBvSexc7Jxjf7aPv4-QF0xKIZmTsZJ6GHMHA1YlKhELmTKbuOEwcbg5eXKYjU7426mYbpFX3V6Yhh-in3BDzwjtNTo4Tkif83K7nA9SliPV52VU9Ebm_DcffpFH5Vm7vpyyuBAyaXmFMI6nv3WjN7o0w1jIi0DzYrzkeRwbOqL9G-RjV4Qm_uTTYL3SA_P9N3bH_y3jTXK9Rah0tzGpW2TL-tvkyqRdg79DfrwH67df2wBaT2tH4fjUK2_plCpf0RAGD6NaeEA9ryi0qXaJoj4hEQAnXDltVcPwbvNtVZsZ0ibQIy4SOvc0KAdS-KwFBt0YqlHIglpf4X6xBbgMxQWHs7vkZH_v-PUobhUdYgO4icXCpRXXlqeKw9-BE8GEsQ5aDW2lMakqUiUzlbjCMABKTFdpwZ0qpHYacFbGdsi2r729TyjHTbKqgjyKc5cnhdKCqVwmuUlY4VREXnZ_tjQt3TmqbizKbtgDhShD3UbkeZ912XB8_DETmEefjqzco91xidcAcWcJy4svaUSeddZTgptiVUDl1-uzElUJsgKwZxaRe4019c_CtUzUbo1IvmFnGy_bTPHzWaACh-4qAwwHhQ1m9PfPL_eODsLBg3_P-pRcHR1PxuX44PDdQ3JtiIAmxCw9Iturz2v7GODYSj8JXvcTzRwx0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9wgEEZpKkW9VH3H6YtWPfTiCgzYoJ6iNqtNm6R7aKS9WRhDdqUVXjWbqP0L_dWdYb1WVmml3jAM2DAMfHiGGULeCa2VFkHnVjdFLgMcWK1qVa40F56FomABLyefnpXjc_llqqY75OPmLszaP8Twww0lI63XKODLNtwQcr-cf-CiQk-fd1HZh_ZchZwMy3BV9uplLnKjNOvdCqEZz1B1azO6M0NTyNs487a55E0Ym_ah0QNyvweQ9HDN8Ydkx8dHZO-0V5E_Jr-_weT0P3v71ki7QCF9EW30dEptbGmyUodDJzTQzVsKS55fYsydVAh4EHIu-qBeWNv9WnVuhl4N6EQqRueRpsB-FPq3QJsYRxuMM0F9bPE61wJmNEV9wOUTcj46-v5pnPcBF3IHsEbkKvBWNl5yK2H04EEJ5XwAoW68do5bw60uLQvGCcAxomm5kcEa3YQGYFApnpLd2EW_T6jEO6y2BRorZaiYsY0SttKsckyYYDPyfjPyteu9kWNQjEW9OZVAJ-rEpIy8HUiXaxccfyUC9g3l6DR7fHhSYx4A4pKJylzzjLzZcLcGKcKhgMHvri5rDBpQGoCGZUaerbk9tIWqRgytmpFqax5svWy7JM5nyVM37CYlQCzobJox__78-mhynBIH_0_6muxNPo_qk-Ozr8_JvQLhRrIoekF2Vz-u_EsAS6vmVRKKP7vaEFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overexpression+of+pregnane+X+and+glucocorticoid+receptors+and+the+regulation+of+cytochrome+P450+in+human+epileptic+brain+endothelial+cells&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Ghosh%2C+Chaitali&rft.au=Hossain%2C+Mohammed&rft.au=Solanki%2C+Jesal&rft.au=Najm%2C+Imad+M.&rft.date=2017-04-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=58&rft.issue=4&rft.spage=576&rft.epage=585&rft_id=info:doi/10.1111%2Fepi.13703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_epi_13703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon |