Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells

Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 58; no. 4; pp. 576 - 585
Main Authors Ghosh, Chaitali, Hossain, Mohammed, Solanki, Jesal, Najm, Imad M., Marchi, Nicola, Janigro, Damir
Format Journal Article
LanguageEnglish
Published United States Wiley 01.04.2017
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post‐epilepsy surgery brain samples. Methods PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug‐resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI‐ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI‐ECs (n = 4), and the impact on downstream CYP expression was determined. Results PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI‐ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic‐nuclear subcellular fractions, with a significant increase of PXR/GR in EPI‐ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI‐ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI‐ECs. GR silencing in EPI‐ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI‐ECs resulted in the specific downregulation of CYP3A4 expression. Significance Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.
AbstractList Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples.OBJECTIVERecent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples.PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined.METHODSPXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined.PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression.RESULTSPXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression.Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.SIGNIFICANCEOur results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.
Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples.
Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post-epilepsy surgery brain samples. PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug-resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI-ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI-ECs (n = 4), and the impact on downstream CYP expression was determined. PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI-ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic-nuclear subcellular fractions, with a significant increase of PXR/GR in EPI-ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI-ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI-ECs. GR silencing in EPI-ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI-ECs resulted in the specific downregulation of CYP3A4 expression. Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.
Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy. However, the upstream molecular regulators of CYP in the epileptic brain remain understudied. We therefore investigated the expression and function of pregnane xenobiotic (PXR) and glucocorticoid (GR) nuclear receptors in endothelial cells established from post‐epilepsy surgery brain samples. Methods PXR/GR localization was evaluated by immunohistochemistry in specimens from subjects who underwent temporal lobe resections to relieve drug‐resistant seizures. We used primary cultures of endothelial cells obtained from epileptic brain tissues (EPI‐ECs; n = 8), commercially available human brain microvascular endothelial cells (HBMECs; n = 8), and human hepatocytes (n = 3). PXR/GR messenger RNA (mRNA) levels in brain ECs was initially determined by complementary DNA (cDNA) microarrays. The expression of PXR/GR proteins was quantified by Western blot. PXR and GR silencing was performed in EPI‐ECs (n = 4), and the impact on downstream CYP expression was determined. Results PXR/GR expression was detected by immunofluorescence in ECs and neurons in the human temporal lobe samples analyzed. Elevated mRNA and protein levels of PXR and GR were found in EPI‐ECs versus control HBMECs. Hepatocytes, used as a positive control, displayed the highest levels of PXR/GR expression. We confirmed expression of PXR/GR in cytoplasmic‐nuclear subcellular fractions, with a significant increase of PXR/GR in EPI‐ECs versus controls. CYP3A4, CYP2C9, and CYP2E1 were overexpressed in EPI‐ECs versus control, whereas CYP2D6 and CYP2C19 were downregulated or absent in EPI‐ECs. GR silencing in EPI‐ECs led to decreased CYP3A4, CYP2C9, and PXR expression. PXR silencing in EPI‐ECs resulted in the specific downregulation of CYP3A4 expression. Significance Our results indicate increased PXR and GR in primary ECs derived from human epileptic brains. PXR or GR may be responsible for a local drug brain metabolism sustained by abnormal CYP regulation.
Author Hossain, Mohammed
Solanki, Jesal
Ghosh, Chaitali
Marchi, Nicola
Janigro, Damir
Najm, Imad M.
AuthorAffiliation 2 Department of Molecular Medicine Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
3 Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
6 Case Western Reserve University Cleveland Ohio U.S.A
1 Cerebrovascular Research Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
5 Flocel, Inc. Cleveland Ohio U.S.A
4 Department of Neuroscience Institute of Functional Genomics CNRS/INSERM Montpellier France
AuthorAffiliation_xml – name: 3 Epilepsy Center Neurological Institute Cleveland Clinic Cleveland Ohio U.S.A
– name: 2 Department of Molecular Medicine Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
– name: 1 Cerebrovascular Research Department of Biomedical Engineering Lerner Research Institute Cleveland Clinic Cleveland Ohio U.S.A
– name: 5 Flocel, Inc. Cleveland Ohio U.S.A
– name: 4 Department of Neuroscience Institute of Functional Genomics CNRS/INSERM Montpellier France
– name: 6 Case Western Reserve University Cleveland Ohio U.S.A
Author_xml – sequence: 1
  givenname: Chaitali
  surname: Ghosh
  fullname: Ghosh, Chaitali
  email: ghoshc@ccf.org
  organization: Cleveland Clinic
– sequence: 2
  givenname: Mohammed
  surname: Hossain
  fullname: Hossain, Mohammed
  organization: Cleveland Clinic
– sequence: 3
  givenname: Jesal
  surname: Solanki
  fullname: Solanki, Jesal
  organization: Cleveland Clinic
– sequence: 4
  givenname: Imad M.
  surname: Najm
  fullname: Najm, Imad M.
  organization: Cleveland Clinic
– sequence: 5
  givenname: Nicola
  surname: Marchi
  fullname: Marchi, Nicola
  organization: CNRS/INSERM
– sequence: 6
  givenname: Damir
  surname: Janigro
  fullname: Janigro, Damir
  email: djanigro@flocel.com
  organization: Case Western Reserve University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28199000$$D View this record in MEDLINE/PubMed
https://hal.umontpellier.fr/hal-02060379$$DView record in HAL
BookMark eNp1Uk1v3CAQRVWqZpP20D9QcWwPTsAY21wqRVGaRFopObRSbwjj8ZoKgwv2pvsX-qvDfiT9UMsFZua9x5uBE3TkvAOE3lJyRtM6h9GcUVYR9gItKM_rjNKyOkILQijLBK_JMTqJ8RshpCor9god5zUVIoUL9PNuDQF-jAFiNN5h3-F0XjnlAH_FyrV4ZWfttQ-T0d60OICGcfIh7opTDymzmq2aDmy9mbzugx8A3xecYONwPw_K4WTSJqbRuAkqZcG1PtGtURZrsDa-Ri87ZSO8Oeyn6Munq8-XN9ny7vr28mKZaU45y3hH26KBgqoidZMCzriGjld1A7XWVAmq6lKRTmjGRMWaloqiU6JuuiavWMlO0ce97jg3A7Qa3BSUlWMwgwob6ZWRf1ac6eXKryVndVnnJAl82Av0f9FuLpZymyM5KQmrxJom7PvDZcF_nyFOcjBx224asJ-jpEmyFEVBt77e_e7rWfnpsRLgfA_QwccYoJPaTLvBJ5vGSkrk9jvINGm5-w6_nD4znkT_hT2oP6R32vwfKK_ub_eMR-4WxsY
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2025_03_032
crossref_primary_10_1111_epi_17625
crossref_primary_10_3892_etm_2019_7538
crossref_primary_10_1016_j_yebeh_2019_07_031
crossref_primary_10_1111_bph_15055
crossref_primary_10_3390_cells12151965
crossref_primary_10_3389_fmedt_2020_623950
crossref_primary_10_1016_j_neuro_2021_08_004
crossref_primary_10_3389_fphar_2021_650027
crossref_primary_10_1080_00498254_2018_1555344
crossref_primary_10_1080_03602532_2018_1554673
crossref_primary_10_1080_03602532_2018_1554674
crossref_primary_10_1016_j_therap_2019_07_003
crossref_primary_10_1155_2022_1451007
crossref_primary_10_3390_pharmaceutics13111779
crossref_primary_10_1080_03602532_2020_1858856
crossref_primary_10_1002_epi4_12542
crossref_primary_10_1016_j_prmcm_2024_100439
crossref_primary_10_2174_1570159X22666231207114346
crossref_primary_10_1016_j_neulet_2018_10_016
crossref_primary_10_3988_jcn_2023_0308
crossref_primary_10_1007_s12035_020_02043_9
crossref_primary_10_1016_j_xphs_2017_11_010
crossref_primary_10_1186_s12951_021_01165_z
crossref_primary_10_3233_CH_189125
crossref_primary_10_1111_cns_14279
crossref_primary_10_1007_s12192_023_01378_1
crossref_primary_10_1016_j_drudis_2019_09_009
crossref_primary_10_1111_epi_14567
crossref_primary_10_12677_ACM_2023_133549
crossref_primary_10_1016_j_gene_2018_02_022
crossref_primary_10_1007_s12035_018_1415_z
crossref_primary_10_3390_ijms23094940
crossref_primary_10_4103_1673_5374_313046
crossref_primary_10_1007_s12035_019_01673_y
crossref_primary_10_1016_j_eplepsyres_2022_107000
crossref_primary_10_1177_0271678X18788769
crossref_primary_10_3390_biomedicines9121834
crossref_primary_10_1007_s10072_021_05293_0
crossref_primary_10_1016_j_gene_2020_145359
crossref_primary_10_1080_00207454_2020_1781110
crossref_primary_10_3390_ijms22084282
crossref_primary_10_4274_balkanmedj_galenos_2024_2024_9_12
crossref_primary_10_3390_ph16111536
Cites_doi 10.1124/mol.105.022046
10.1016/j.drudis.2016.06.004
10.1586/ern.09.114
10.1124/mol.110.063685
10.2478/10004-1254-60-2009-1885
10.1124/dmd.106.012831
10.1016/j.nbd.2012.03.010
10.1124/pr.55.4.2
10.3892/ijo.2014.2306
10.2174/1389200211314030009
10.1002/jps.20324
10.1111/epi.12318
10.1046/j.1528-1157.2001.12301.x
10.1124/mol.105.013169
10.1038/nrd1551
10.1002/jbt.20180
10.1016/S0304-4165(02)00483-X
10.1111/j.1528-1167.2010.02956.x
10.1111/epi.12923
10.1016/S0026-895X(24)05623-2
10.1016/j.pharmthera.2012.12.007
10.1021/mp700103m
10.1016/j.expneurol.2016.05.018
10.1046/j.0014-2956.2001.02540.x
10.1038/ncb2629
10.1074/jbc.M407281200
10.1124/mi.10.5.6
10.1124/mol.111.071845
10.1080/03602530902843483
10.1111/j.1471-4159.2011.07288.x
10.1080/10623320212004
10.1146/annurev.pharmtox.47.120505.105349
10.1093/toxsci/kfn047
10.1111/j.1528-1167.2009.02428.x
10.1124/mol.58.2.361
10.1124/jpet.301.1.7
10.1124/mol.64.1.160
10.1038/clpt.2009.225
10.1096/fj.10-169227
10.1016/0378-4274(95)03510-9
10.1371/journal.pone.0082562
10.1186/1741-7015-2-37
10.1124/mol.58.6.1441
10.1111/j.1471-4159.2008.05720.x
10.1124/mol.106.023796
ContentType Journal Article
Copyright 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 The Authors. published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
– notice: 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
DOI 10.1111/epi.13703
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate C. Ghosh et al
EISSN 1528-1167
EndPage 585
ExternalDocumentID PMC5386820
oai_HAL_hal_02060379v1
28199000
10_1111_epi_13703
EPI13703
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: American Heart Association
  funderid: 13SDG13950015
– fundername: NIH
  funderid: R01NS078307; R42MH093302; R21HD057256; UH4TR000491
– fundername: Brain and Behavior Research Foundation (formerly NARSAD)
– fundername: Alternatives Research & Development Foundation
– fundername: NINDS NIH HHS
  grantid: R01 NS078307
– fundername: NICHD NIH HHS
  grantid: R21 HD057256
– fundername: NCATS NIH HHS
  grantid: UH3 TR000491
– fundername: NCATS NIH HHS
  grantid: UH2 TR000491
– fundername: NINDS NIH HHS
  grantid: R01 NS095825
– fundername: NIMH NIH HHS
  grantid: R42 MH093302
– fundername: American Heart Association
  grantid: 13SDG13950015
– fundername: NIH
  grantid: R01NS078307; R42MH093302; R21HD057256; UH4TR000491
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
1XC
5PM
ID FETCH-LOGICAL-c5153-5f1d4be41a4767f1d535cef578be8cc1a91a86a0f9c33973bd194fa98bfb27363
IEDL.DBID DR2
ISSN 0013-9580
1528-1167
IngestDate Thu Aug 21 13:57:16 EDT 2025
Fri May 09 12:22:25 EDT 2025
Fri Jul 11 05:15:41 EDT 2025
Wed Feb 19 02:42:50 EST 2025
Thu Apr 24 23:04:27 EDT 2025
Thu Jul 03 08:42:40 EDT 2025
Wed Jan 22 16:22:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Neurovascular unit
Drug resistance
Epilepsy
Nuclear Receptors
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5153-5f1d4be41a4767f1d535cef578be8cc1a91a86a0f9c33973bd194fa98bfb27363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC5386820
ORCID 0000-0001-9124-0226
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13703
PMID 28199000
PQID 1868694416
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5386820
hal_primary_oai_HAL_hal_02060379v1
proquest_miscellaneous_1868694416
pubmed_primary_28199000
crossref_citationtrail_10_1111_epi_13703
crossref_primary_10_1111_epi_13703
wiley_primary_10_1111_epi_13703_EPI13703
PublicationCentury 2000
PublicationDate April 2017
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationYear 2017
Publisher Wiley
John Wiley and Sons Inc
Publisher_xml – name: Wiley
– name: John Wiley and Sons Inc
References 2006; 70
2010; 78
2004; 66
2015; 56
2010; 10
2009; 41
2011; 118
2002; 9
2011; 80
2009; 60
2004; 3
2011; 52
2008; 107
2008; 5
2004; 2
2008; 103
2001; 29
2003; 1619
2012; 14
2013; 8
2007; 35
2001; 268
2014; 44
2001; 42
2003; 55
2016; 283
2005; 68
2002; 27
1995; 82–83
2010; 87
2013; 14
2004; 279
2000; 58
2013; 54
2013; 138
2002; 301
2016; 21
2008; 48
2009; 9
2005; 94
2011; 25
2012; 46
2007; 21
2003; 64
2010; 51
Gerbal‐Chaloin S (e_1_2_9_4_1) 2001; 29
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_39_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_2_1
Miksys SL (e_1_2_9_14_1) 2002; 27
Bauer B (e_1_2_9_7_1) 2004; 66
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
19951138 - Expert Rev Neurother. 2009 Dec;9(12):1791-802
23865846 - Epilepsia. 2013 Sep;54(9):1562-70
14657421 - Pharmacol Rev. 2003 Dec;55(4):649-73
11907151 - J Pharmacol Exp Ther. 2002 Apr;301(1):7-14
21048045 - FASEB J. 2011 Feb;25(2):644-52
15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64
12573484 - Biochim Biophys Acta. 2003 Feb 17;1619(3):243-53
11879359 - Epilepsia. 2001 Dec;42(12):1501-6
11093784 - Mol Pharmacol. 2000 Dec;58(6):1441-50
24340040 - PLoS One. 2013 Dec 10;8(12):e82562
21628639 - Mol Pharmacol. 2011 Sep;80(3):518-28
23178880 - Nat Cell Biol. 2012 Dec;14 (12 ):1295-304
20019694 - Clin Pharmacol Ther. 2010 Jan;87(1):13-5
19094056 - J Neurochem. 2008 Dec;107(6):1518-28
22426401 - Neurobiol Dis. 2012 Jun;46(3):692-700
25656284 - Epilepsia. 2015 Mar;56(3):439-49
18159929 - Mol Pharm. 2008 Jan-Feb;5(1):35-41
21517853 - J Neurochem. 2011 Jul;118(2):163-75
19581216 - Arh Hig Rada Toksikol. 2009 Jun;60(2):217-42
16837625 - Mol Pharmacol. 2006 Oct;70(4):1212-9
21045243 - Mol Interv. 2010 Oct;10(5):293-304
21294720 - Epilepsia. 2011 Mar;52(3):562-71
12815172 - Mol Pharmacol. 2003 Jul;64(1):160-9
12491573 - J Psychiatry Neurosci. 2002 Nov;27(6):406-15
23237007 - Curr Drug Metab. 2013 Mar;14(3):341-50
27312874 - Drug Discov Today. 2016 Oct;21(10 ):1609-1619
20547735 - Mol Pharmacol. 2010 Sep;78(3):376-83
27240521 - Exp Neurol. 2016 Sep;283(Pt A):39-48
17093002 - Drug Metab Dispos. 2007 Feb;35(2):194-200
8597122 - Toxicol Lett. 1995 Dec;82-83:645-53
15473912 - BMC Med. 2004 Oct 09;2:37
19514967 - Drug Metab Rev. 2009;41(2):89-295
16608920 - Mol Pharmacol. 2006 Jul;70(1):329-39
15933212 - Mol Pharmacol. 2005 Sep;68(3):747-57
15858847 - J Pharm Sci. 2005 Jun;94(6):1169-86
17608617 - Annu Rev Pharmacol Toxicol. 2008;48:1-32
23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41
20074231 - Epilepsia. 2010 Aug;51(8):1408-17
15322232 - Mol Pharmacol. 2004 Sep;66(3):413-9
17936931 - J Biochem Mol Toxicol. 2007;21(4):176-81
18332045 - Toxicol Sci. 2008 Jun;103(2):268-77
10908304 - Mol Pharmacol. 2000 Aug;58(2):361-72
11737189 - Eur J Biochem. 2001 Dec;268(24):6346-58
24573652 - Int J Oncol. 2014 May;44(5):1455-60
12200960 - Endothelium. 2002;9(2):89-102
15347657 - J Biol Chem. 2004 Nov 19;279(47):49307-14
11181490 - Drug Metab Dispos. 2001 Mar;29(3):242-51
References_xml – volume: 1619
  start-page: 243
  year: 2003
  end-page: 253
  article-title: The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors
  publication-title: Biochim Biophys Acta
– volume: 21
  start-page: 1609
  year: 2016
  end-page: 1619
  article-title: Pathophysiological implications of neurovascular P450 in brain disorders
  publication-title: Drug Discov Today
– volume: 9
  start-page: 1791
  year: 2009
  end-page: 1802
  article-title: Management of the patient with medically refractory epilepsy
  publication-title: Expert Rev Neurother
– volume: 283
  start-page: 39
  year: 2016
  end-page: 48
  article-title: Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo
  publication-title: Exp Neurol
– volume: 48
  start-page: 1
  year: 2008
  end-page: 32
  article-title: The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences
  publication-title: Annu Rev Pharmacol Toxicol
– volume: 103
  start-page: 268
  year: 2008
  end-page: 277
  article-title: Phthalate induction of CYP3A4 is dependent on glucocorticoid regulation of PXR expression
  publication-title: Toxicol Sci
– volume: 82–83
  start-page: 645
  year: 1995
  end-page: 653
  article-title: Blood‐brain interfaces: relevance to cerebral drug metabolism
  publication-title: Toxicol Lett
– volume: 42
  start-page: 1501
  year: 2001
  end-page: 1506
  article-title: Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy
  publication-title: Epilepsia
– volume: 10
  start-page: 293
  year: 2010
  end-page: 304
  article-title: Regulation of ABC transporters at the blood‐brain barrier: new targets for CNS therapy
  publication-title: Mol Interv
– volume: 268
  start-page: 6346
  year: 2001
  end-page: 6357
  article-title: Dual effect of dexamethasone on CYP3A4 gene expression in human hepatocytes – sequential role of glucocorticoid receptor and pregnane X receptor
  publication-title: Eur J Biochem
– volume: 279
  start-page: 49307
  year: 2004
  end-page: 49314
  article-title: Cytoplasmic localization of pregnane X receptor and ligand‐dependent nuclear translocation in mouse liver
  publication-title: J Biol Chem
– volume: 58
  start-page: 361
  year: 2000
  end-page: 372
  article-title: Dexamethasone induces pregnane X receptor and retinoid X receptor‐alpha expression in human hepatocytes: synergistic increase of CYP3A4 induction by pregnane X receptor activators
  publication-title: Mol Pharmacol
– volume: 66
  start-page: 413
  year: 2004
  end-page: 419
  article-title: Pregnane X receptor up‐regulation of P‐glycoprotein expression and transport function at the blood‐brain barrier
  publication-title: Mol Pharmacol
– volume: 29
  start-page: 242
  year: 2001
  end-page: 251
  article-title: Induction of CYP2C genes in human hepatocytes in primary culture
  publication-title: Drug Metab Dispos
– volume: 8
  start-page: e82562
  year: 2013
  article-title: Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy
  publication-title: PLoS One
– volume: 301
  start-page: 7
  year: 2002
  end-page: 14
  article-title: Role of multidrug transporters in pharmacoresistance to antiepileptic drugs
  publication-title: J Pharmacol Exp Ther
– volume: 51
  start-page: 1408
  year: 2010
  end-page: 1417
  article-title: Pattern of P450 expression at the human blood‐brain barrier: roles of epileptic condition and laminar flow
  publication-title: Epilepsia
– volume: 14
  start-page: 341
  year: 2013
  end-page: 350
  article-title: Pregnane X receptor (PXR) at the crossroads of human metabolism and disease
  publication-title: Curr Drug Metab
– volume: 27
  start-page: 406
  year: 2002
  end-page: 415
  article-title: Drug‐metabolizing cytochrome P450s in the brain
  publication-title: J Psychiatry Neurosci
– volume: 87
  start-page: 13
  year: 2010
  end-page: 15
  article-title: Transporters in drug‐refractory epilepsy: clinical significance
  publication-title: Clin Pharmacol Ther
– volume: 78
  start-page: 376
  year: 2010
  end-page: 383
  article-title: Constitutive androstane receptor‐mediated up‐regulation of ATP‐driven xenobiotic efflux transporters at the blood‐brain barrier
  publication-title: Mol Pharmacol
– volume: 56
  start-page: 439
  year: 2015
  end-page: 449
  article-title: Sertraline‐induced potentiation of the CYP3A4‐dependent neurotoxicity of carbamazepine: an in vitro study
  publication-title: Epilepsia
– volume: 5
  start-page: 35
  year: 2008
  end-page: 41
  article-title: Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response
  publication-title: Mol Pharm
– volume: 70
  start-page: 1212
  year: 2006
  end-page: 1219
  article-title: In vivo activation of human pregnane X receptor tightens the blood‐brain barrier to methadone through P‐glycoprotein up‐regulation
  publication-title: Mol Pharmacol
– volume: 60
  start-page: 217
  year: 2009
  end-page: 242
  article-title: Genetic polymorphism of metabolic enzymes P450 (Cyp) as a susceptibility factor for drug response, toxicity, and cancer risk
  publication-title: Arh Hig Rada Toksikol
– volume: 25
  start-page: 644
  year: 2011
  end-page: 652
  article-title: Aryl hydrocarbon receptor‐mediated upregulation of ATP‐driven xenobiotic efflux transporters at the blood‐brain barrier
  publication-title: FASEB J
– volume: 3
  start-page: 950
  year: 2004
  end-page: 964
  article-title: Principles for modulation of the nuclear receptor superfamily
  publication-title: Nat Rev Drug Discov
– volume: 94
  start-page: 1169
  year: 2005
  end-page: 1186
  article-title: Nuclear receptors and drug disposition gene regulation
  publication-title: J Pharm Sci
– volume: 46
  start-page: 692
  year: 2012
  end-page: 700
  article-title: A pro‐convulsive carbamazepine metabolite: quinolinic acid in drug resistant epileptic human brain
  publication-title: Neurobiol Dis
– volume: 44
  start-page: 1455
  year: 2014
  end-page: 1460
  article-title: Shikonin inhibits the growth of human prostate cancer cells via modulation of the androgen receptor
  publication-title: Int J Oncol
– volume: 52
  start-page: 562
  year: 2011
  end-page: 571
  article-title: Cellular localization and functional significance of CYP3A4 in the human epileptic brain
  publication-title: Epilepsia
– volume: 9
  start-page: 89
  year: 2002
  end-page: 102
  article-title: Mechanisms of endothelial survival under shear stress
  publication-title: Endothelium
– volume: 58
  start-page: 1441
  year: 2000
  end-page: 1450
  article-title: Dexamethasone enhances constitutive androstane receptor expression in human hepatocytes: consequences on cytochrome P450 gene regulation
  publication-title: Mol Pharmacol
– volume: 55
  start-page: 649
  year: 2003
  end-page: 673
  article-title: Induction of drug metabolism: the role of nuclear receptors
  publication-title: Pharmacol Rev
– volume: 107
  start-page: 1518
  year: 2008
  end-page: 1528
  article-title: ABC transporters, cytochromes P450 and their main transcription factors: expression at the human blood‐brain barrier
  publication-title: J Neurochem
– volume: 138
  start-page: 103
  year: 2013
  end-page: 141
  article-title: Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation
  publication-title: Pharmacol Ther
– volume: 41
  start-page: 89
  year: 2009
  end-page: 295
  article-title: Polymorphism of human cytochrome P450 enzymes and its clinical impact
  publication-title: Drug Metab Rev
– volume: 54
  start-page: 1562
  year: 2013
  end-page: 1570
  article-title: Expression and functional relevance of UGT1A4 in a cohort of human drug‐resistant epileptic brains
  publication-title: Epilepsia
– volume: 21
  start-page: 176
  year: 2007
  end-page: 181
  article-title: Mechanisms of cytochrome P450 induction
  publication-title: J Biochem Mol Toxicol
– volume: 68
  start-page: 747
  year: 2005
  end-page: 757
  article-title: Human CYP2C8 is transcriptionally regulated by the nuclear receptors constitutive androstane receptor, pregnane X receptor, glucocorticoid receptor, and hepatic nuclear factor 4alpha
  publication-title: Mol Pharmacol
– volume: 70
  start-page: 329
  year: 2006
  end-page: 339
  article-title: Ketoconazole and miconazole are antagonists of the human glucocorticoid receptor: consequences on the expression and function of the constitutive androstane receptor and the pregnane X receptor
  publication-title: Mol Pharmacol
– volume: 35
  start-page: 194
  year: 2007
  end-page: 200
  article-title: The pregnane X receptor gene‐humanized mouse: a model for investigating drug‐drug interactions mediated by cytochromes P450 3A
  publication-title: Drug Metab Dispos
– volume: 118
  start-page: 163
  year: 2011
  end-page: 175
  article-title: Regulation of P‐glycoprotein by orphan nuclear receptors in human brain microvessel endothelial cells
  publication-title: J Neurochem
– volume: 2
  start-page: 37
  year: 2004
  article-title: Significance of MDR1 and multiple drug resistance in refractory human epileptic brain
  publication-title: BMC Med
– volume: 80
  start-page: 518
  year: 2011
  end-page: 528
  article-title: Quantitative prediction of human pregnane X receptor and cytochrome P450 3A4 mediated drug‐drug interaction in a novel multiple humanized mouse line
  publication-title: Mol Pharmacol
– volume: 64
  start-page: 160
  year: 2003
  end-page: 169
  article-title: Colchicine down‐regulates cytochrome P4502B6, 2C8, 2C9, and 3A4 in human hepatocytes by affecting their glucocorticoid receptor‐mediated regulation
  publication-title: Mol Pharmacol
– volume: 14
  start-page: 1295
  year: 2012
  end-page: 1304
  article-title: ERK1/2‐dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect
  publication-title: Nat Cell Biol
– ident: e_1_2_9_45_1
  doi: 10.1124/mol.105.022046
– ident: e_1_2_9_29_1
  doi: 10.1016/j.drudis.2016.06.004
– ident: e_1_2_9_48_1
  doi: 10.1586/ern.09.114
– ident: e_1_2_9_32_1
  doi: 10.1124/mol.110.063685
– ident: e_1_2_9_34_1
  doi: 10.2478/10004-1254-60-2009-1885
– ident: e_1_2_9_40_1
  doi: 10.1124/dmd.106.012831
– ident: e_1_2_9_16_1
  doi: 10.1016/j.nbd.2012.03.010
– ident: e_1_2_9_26_1
  doi: 10.1124/pr.55.4.2
– ident: e_1_2_9_21_1
  doi: 10.3892/ijo.2014.2306
– ident: e_1_2_9_39_1
  doi: 10.2174/1389200211314030009
– ident: e_1_2_9_3_1
  doi: 10.1002/jps.20324
– ident: e_1_2_9_15_1
  doi: 10.1111/epi.12318
– volume: 29
  start-page: 242
  year: 2001
  ident: e_1_2_9_4_1
  article-title: Induction of CYP2C genes in human hepatocytes in primary culture
  publication-title: Drug Metab Dispos
– ident: e_1_2_9_19_1
  doi: 10.1046/j.1528-1157.2001.12301.x
– ident: e_1_2_9_46_1
  doi: 10.1124/mol.105.013169
– ident: e_1_2_9_2_1
  doi: 10.1038/nrd1551
– volume: 27
  start-page: 406
  year: 2002
  ident: e_1_2_9_14_1
  article-title: Drug‐metabolizing cytochrome P450s in the brain
  publication-title: J Psychiatry Neurosci
– ident: e_1_2_9_23_1
  doi: 10.1002/jbt.20180
– ident: e_1_2_9_5_1
  doi: 10.1016/S0304-4165(02)00483-X
– ident: e_1_2_9_13_1
  doi: 10.1111/j.1528-1167.2010.02956.x
– ident: e_1_2_9_41_1
  doi: 10.1111/epi.12923
– volume: 66
  start-page: 413
  year: 2004
  ident: e_1_2_9_7_1
  article-title: Pregnane X receptor up‐regulation of P‐glycoprotein expression and transport function at the blood‐brain barrier
  publication-title: Mol Pharmacol
  doi: 10.1016/S0026-895X(24)05623-2
– ident: e_1_2_9_36_1
  doi: 10.1016/j.pharmthera.2012.12.007
– ident: e_1_2_9_8_1
  doi: 10.1021/mp700103m
– ident: e_1_2_9_33_1
  doi: 10.1016/j.expneurol.2016.05.018
– ident: e_1_2_9_9_1
  doi: 10.1046/j.0014-2956.2001.02540.x
– ident: e_1_2_9_22_1
  doi: 10.1038/ncb2629
– ident: e_1_2_9_42_1
  doi: 10.1074/jbc.M407281200
– ident: e_1_2_9_27_1
  doi: 10.1124/mi.10.5.6
– ident: e_1_2_9_38_1
  doi: 10.1124/mol.111.071845
– ident: e_1_2_9_37_1
  doi: 10.1080/03602530902843483
– ident: e_1_2_9_18_1
  doi: 10.1111/j.1471-4159.2011.07288.x
– ident: e_1_2_9_20_1
  doi: 10.1080/10623320212004
– ident: e_1_2_9_6_1
  doi: 10.1146/annurev.pharmtox.47.120505.105349
– ident: e_1_2_9_44_1
  doi: 10.1093/toxsci/kfn047
– ident: e_1_2_9_12_1
  doi: 10.1111/j.1528-1167.2009.02428.x
– ident: e_1_2_9_43_1
  doi: 10.1124/mol.58.2.361
– ident: e_1_2_9_47_1
  doi: 10.1124/jpet.301.1.7
– ident: e_1_2_9_24_1
  doi: 10.1124/mol.64.1.160
– ident: e_1_2_9_30_1
  doi: 10.1038/clpt.2009.225
– ident: e_1_2_9_31_1
  doi: 10.1096/fj.10-169227
– ident: e_1_2_9_10_1
  doi: 10.1016/0378-4274(95)03510-9
– ident: e_1_2_9_35_1
  doi: 10.1371/journal.pone.0082562
– ident: e_1_2_9_28_1
  doi: 10.1186/1741-7015-2-37
– ident: e_1_2_9_25_1
  doi: 10.1124/mol.58.6.1441
– ident: e_1_2_9_11_1
  doi: 10.1111/j.1471-4159.2008.05720.x
– ident: e_1_2_9_17_1
  doi: 10.1124/mol.106.023796
– reference: 12573484 - Biochim Biophys Acta. 2003 Feb 17;1619(3):243-53
– reference: 15520817 - Nat Rev Drug Discov. 2004 Nov;3(11):950-64
– reference: 8597122 - Toxicol Lett. 1995 Dec;82-83:645-53
– reference: 16837625 - Mol Pharmacol. 2006 Oct;70(4):1212-9
– reference: 11907151 - J Pharmacol Exp Ther. 2002 Apr;301(1):7-14
– reference: 19951138 - Expert Rev Neurother. 2009 Dec;9(12):1791-802
– reference: 12491573 - J Psychiatry Neurosci. 2002 Nov;27(6):406-15
– reference: 17093002 - Drug Metab Dispos. 2007 Feb;35(2):194-200
– reference: 15473912 - BMC Med. 2004 Oct 09;2:37
– reference: 24573652 - Int J Oncol. 2014 May;44(5):1455-60
– reference: 21628639 - Mol Pharmacol. 2011 Sep;80(3):518-28
– reference: 18159929 - Mol Pharm. 2008 Jan-Feb;5(1):35-41
– reference: 15322232 - Mol Pharmacol. 2004 Sep;66(3):413-9
– reference: 15858847 - J Pharm Sci. 2005 Jun;94(6):1169-86
– reference: 14657421 - Pharmacol Rev. 2003 Dec;55(4):649-73
– reference: 15347657 - J Biol Chem. 2004 Nov 19;279(47):49307-14
– reference: 24340040 - PLoS One. 2013 Dec 10;8(12):e82562
– reference: 12200960 - Endothelium. 2002;9(2):89-102
– reference: 23333322 - Pharmacol Ther. 2013 Apr;138(1):103-41
– reference: 18332045 - Toxicol Sci. 2008 Jun;103(2):268-77
– reference: 21045243 - Mol Interv. 2010 Oct;10(5):293-304
– reference: 11093784 - Mol Pharmacol. 2000 Dec;58(6):1441-50
– reference: 20547735 - Mol Pharmacol. 2010 Sep;78(3):376-83
– reference: 21294720 - Epilepsia. 2011 Mar;52(3):562-71
– reference: 21048045 - FASEB J. 2011 Feb;25(2):644-52
– reference: 11181490 - Drug Metab Dispos. 2001 Mar;29(3):242-51
– reference: 11879359 - Epilepsia. 2001 Dec;42(12):1501-6
– reference: 15933212 - Mol Pharmacol. 2005 Sep;68(3):747-57
– reference: 21517853 - J Neurochem. 2011 Jul;118(2):163-75
– reference: 23237007 - Curr Drug Metab. 2013 Mar;14(3):341-50
– reference: 23178880 - Nat Cell Biol. 2012 Dec;14 (12 ):1295-304
– reference: 19514967 - Drug Metab Rev. 2009;41(2):89-295
– reference: 20074231 - Epilepsia. 2010 Aug;51(8):1408-17
– reference: 22426401 - Neurobiol Dis. 2012 Jun;46(3):692-700
– reference: 27312874 - Drug Discov Today. 2016 Oct;21(10 ):1609-1619
– reference: 10908304 - Mol Pharmacol. 2000 Aug;58(2):361-72
– reference: 11737189 - Eur J Biochem. 2001 Dec;268(24):6346-58
– reference: 17608617 - Annu Rev Pharmacol Toxicol. 2008;48:1-32
– reference: 19094056 - J Neurochem. 2008 Dec;107(6):1518-28
– reference: 19581216 - Arh Hig Rada Toksikol. 2009 Jun;60(2):217-42
– reference: 12815172 - Mol Pharmacol. 2003 Jul;64(1):160-9
– reference: 20019694 - Clin Pharmacol Ther. 2010 Jan;87(1):13-5
– reference: 25656284 - Epilepsia. 2015 Mar;56(3):439-49
– reference: 27240521 - Exp Neurol. 2016 Sep;283(Pt A):39-48
– reference: 16608920 - Mol Pharmacol. 2006 Jul;70(1):329-39
– reference: 23865846 - Epilepsia. 2013 Sep;54(9):1562-70
– reference: 17936931 - J Biochem Mol Toxicol. 2007;21(4):176-81
SSID ssj0007673
Score 2.417135
Snippet Summary Objective Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug‐resistant phenotype in human epilepsy....
Recent evidence suggests a metabolic contribution of cytochrome P450 enzymes (CYPs) to the drug-resistant phenotype in human epilepsy. However, the upstream...
SourceID pubmedcentral
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 576
SubjectTerms Analysis of Variance
Brain - pathology
Cells, Cultured
Cytochrome P-450 Enzyme System - metabolism
Drug resistance
Drug Resistant Epilepsy - pathology
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Epilepsy
Full‐Length Original Research
Gene Expression Regulation, Enzymologic - drug effects
Gene Expression Regulation, Enzymologic - physiology
Glial Fibrillary Acidic Protein - metabolism
Humans
Life Sciences
Neurovascular unit
Nuclear Receptors
Oligonucleotide Array Sequence Analysis
Phosphopyruvate Hydratase - metabolism
Proliferating Cell Nuclear Antigen - metabolism
Receptors, Glucocorticoid - genetics
Receptors, Glucocorticoid - metabolism
Receptors, Steroid - genetics
Receptors, Steroid - metabolism
RNA, Messenger - metabolism
RNA, Small Interfering - pharmacology
Subcellular Fractions - metabolism
Title Overexpression of pregnane X and glucocorticoid receptors and the regulation of cytochrome P450 in human epileptic brain endothelial cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.13703
https://www.ncbi.nlm.nih.gov/pubmed/28199000
https://www.proquest.com/docview/1868694416
https://hal.umontpellier.fr/hal-02060379
https://pubmed.ncbi.nlm.nih.gov/PMC5386820
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLXaLhAbypvwqAxiwSajJLYTR6wq1GpAFEaISrNAimzH7owYOaPODGr5BL6ae50HHQoSYufEzsPOvfZxfHwuIS-ZlEIyJ2MldRZzBxNWJWoRC5kym7gsSxxuTj75kI9P-bupmO6Q1_1emFYfYvjhhp4R-mt0cKVXV5zcLuejlBVB6RO5WgiIPv2SjirybnU5ZXEpZNKpCiGLZ7hyayzanSET8jrMvM6WvIpiwzB0vE--9BVo2SdfR5u1Hpnvv2k7_mcNb5NbHTylh6093SE71t8lN066Bfh75MdHMH170bFnPW0chfSZV97SKVW-poEDD1NauEEzryl0qHaJEX1CJqBNOHPWhQzDq83lujEz1EygEy4SOvc0hA2k8FoLZNwYqjGKBbW-xs1iC_AXiqsNq_vk9Pjo85tx3IVziA2AJhYLl9ZcW54qDh8HDgQTxjroMrSVxqSqTJXMVeJKwwAlMV2nJXeqlNppAFk5e0D2fOPtI0I57pBVNZRRnLsiKZUWTBUyKUzCSqci8qr_sJXptM4x5Mai6uc8UIkqtG1EXgxFl63Axx8LgXUM-SjJPT58X-E5gNt5woryWxqR573xVOCj2BTQ-M1mVWFIgrwE4JlH5GFrTMO9cCETA7dGpNgys62Hbef4-SzogMNYlQOAg8oGK_r761dHk7ch8fjfiz4hNzNEMIGk9JTsrc839hngr7U-ILsZnxwEd_sJLhAujg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbGkIAX7oNwNYgHXlIltZ04Ei8TbOqgHRPapL6gyHbstaJyKtYi4CfwqznHubAykBBvSexc7Jxjf7aPv4-QF0xKIZmTsZJ6GHMHA1YlKhELmTKbuOEwcbg5eXKYjU7426mYbpFX3V6Yhh-in3BDzwjtNTo4Tkif83K7nA9SliPV52VU9Ebm_DcffpFH5Vm7vpyyuBAyaXmFMI6nv3WjN7o0w1jIi0DzYrzkeRwbOqL9G-RjV4Qm_uTTYL3SA_P9N3bH_y3jTXK9Rah0tzGpW2TL-tvkyqRdg79DfrwH67df2wBaT2tH4fjUK2_plCpf0RAGD6NaeEA9ryi0qXaJoj4hEQAnXDltVcPwbvNtVZsZ0ibQIy4SOvc0KAdS-KwFBt0YqlHIglpf4X6xBbgMxQWHs7vkZH_v-PUobhUdYgO4icXCpRXXlqeKw9-BE8GEsQ5aDW2lMakqUiUzlbjCMABKTFdpwZ0qpHYacFbGdsi2r729TyjHTbKqgjyKc5cnhdKCqVwmuUlY4VREXnZ_tjQt3TmqbizKbtgDhShD3UbkeZ912XB8_DETmEefjqzco91xidcAcWcJy4svaUSeddZTgptiVUDl1-uzElUJsgKwZxaRe4019c_CtUzUbo1IvmFnGy_bTPHzWaACh-4qAwwHhQ1m9PfPL_eODsLBg3_P-pRcHR1PxuX44PDdQ3JtiIAmxCw9Iturz2v7GODYSj8JXvcTzRwx0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9wgEEZpKkW9VH3H6YtWPfTiCgzYoJ6iNqtNm6R7aKS9WRhDdqUVXjWbqP0L_dWdYb1WVmml3jAM2DAMfHiGGULeCa2VFkHnVjdFLgMcWK1qVa40F56FomABLyefnpXjc_llqqY75OPmLszaP8Twww0lI63XKODLNtwQcr-cf-CiQk-fd1HZh_ZchZwMy3BV9uplLnKjNOvdCqEZz1B1azO6M0NTyNs487a55E0Ym_ah0QNyvweQ9HDN8Ydkx8dHZO-0V5E_Jr-_weT0P3v71ki7QCF9EW30dEptbGmyUodDJzTQzVsKS55fYsydVAh4EHIu-qBeWNv9WnVuhl4N6EQqRueRpsB-FPq3QJsYRxuMM0F9bPE61wJmNEV9wOUTcj46-v5pnPcBF3IHsEbkKvBWNl5yK2H04EEJ5XwAoW68do5bw60uLQvGCcAxomm5kcEa3YQGYFApnpLd2EW_T6jEO6y2BRorZaiYsY0SttKsckyYYDPyfjPyteu9kWNQjEW9OZVAJ-rEpIy8HUiXaxccfyUC9g3l6DR7fHhSYx4A4pKJylzzjLzZcLcGKcKhgMHvri5rDBpQGoCGZUaerbk9tIWqRgytmpFqax5svWy7JM5nyVM37CYlQCzobJox__78-mhynBIH_0_6muxNPo_qk-Ozr8_JvQLhRrIoekF2Vz-u_EsAS6vmVRKKP7vaEFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Overexpression+of+pregnane+X+and+glucocorticoid+receptors+and+the+regulation+of+cytochrome+P450+in+human+epileptic+brain+endothelial+cells&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Ghosh%2C+Chaitali&rft.au=Hossain%2C+Mohammed&rft.au=Solanki%2C+Jesal&rft.au=Najm%2C+Imad+M.&rft.date=2017-04-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=58&rft.issue=4&rft.spage=576&rft.epage=585&rft_id=info:doi/10.1111%2Fepi.13703&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_epi_13703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon