Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide

1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and bel...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of ecology Vol. 101; no. 4; pp. 943 - 952
Main Authors Freschet, Grégoire T., Cornwell, William K., Wardle, David A., Elumeeva, Tatyana G., Liu, Wendan, Jackson, Benjamin G., Onipchenko, Vladimir G., Soudzilovskaia, Nadejda A., Tao, Jianping, Cornelissen, Johannes H.C.
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing 01.07.2013
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN0022-0477
1365-2745
1365-2745
DOI10.1111/1365-2745.12092

Cover

Loading…
Abstract 1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and below-ground plant organs in ecosystem labile organic matter dynamics. 2. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. 3. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. 4. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above-versus belowground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition.
AbstractList Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above- versus below-ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition.
Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a whole‐plant perspective. Through the use of meta‐analysis and global literature data, we quantified the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below‐ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below‐ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis . Our results provide evidence that within ecosystems, the relative inputs of above‐ versus below‐ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition.
Summary Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a whole‐plant perspective. Through the use of meta‐analysis and global literature data, we quantified the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below‐ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below‐ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above‐ versus below‐ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. In this study, using meta‐analysis techniques and global literature data, we provide evidence for worldwide interspecific coordination in leaf‐root‐stem decomposability, and quantify the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. Based on these results, we propose a new conceptual framework relating plant traits to organic matter dynamics taking the whole‐plant perspective.
Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Our results provide evidence that within ecosystems, the relative inputs of above- versus below-ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition.
Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. In this study, using meta-analysis techniques and global literature data, we provide evidence for worldwide interspecific coordination in leaf-root-stem decomposability, and quantify the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. Based on these results, we propose a new conceptual framework relating plant traits to organic matter dynamics taking the whole-plant perspective.
1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and below-ground plant organs in ecosystem labile organic matter dynamics. 2. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. 3. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. 4. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above-versus belowground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition.
Author Liu, Wendan
Onipchenko, Vladimir G.
Tao, Jianping
Cornwell, William K.
Cornelissen, Johannes H.C.
Jackson, Benjamin G.
Wardle, David A.
Elumeeva, Tatyana G.
Freschet, Grégoire T.
Soudzilovskaia, Nadejda A.
Author_xml – sequence: 1
  givenname: Grégoire T.
  surname: Freschet
  fullname: Freschet, Grégoire T.
– sequence: 2
  givenname: William K.
  surname: Cornwell
  fullname: Cornwell, William K.
– sequence: 3
  givenname: David A.
  surname: Wardle
  fullname: Wardle, David A.
– sequence: 4
  givenname: Tatyana G.
  surname: Elumeeva
  fullname: Elumeeva, Tatyana G.
– sequence: 5
  givenname: Wendan
  surname: Liu
  fullname: Liu, Wendan
– sequence: 6
  givenname: Benjamin G.
  surname: Jackson
  fullname: Jackson, Benjamin G.
– sequence: 7
  givenname: Vladimir G.
  surname: Onipchenko
  fullname: Onipchenko, Vladimir G.
– sequence: 8
  givenname: Nadejda A.
  surname: Soudzilovskaia
  fullname: Soudzilovskaia, Nadejda A.
– sequence: 9
  givenname: Jianping
  surname: Tao
  fullname: Tao, Jianping
– sequence: 10
  givenname: Johannes H.C.
  surname: Cornelissen
  fullname: Cornelissen, Johannes H.C.
BackLink https://res.slu.se/id/publ/52617$$DView record from Swedish Publication Index
BookMark eNqFkb9v1DAUxy1UJK6FmQnJEgtLWv-Ik3hEpxaKTmKB2djx88lXXxzshKj_PQ5Hb-hSL0-2Ph_b730v0cUQB0DoPSXXtKwbyhtRsbYW15QRyV6hzfnkAm0IYawiddu-QZc5HwghTSvIBv3a-eHBD3sc_DRBwhb6eBxj9pOPA44OaxP_QIX1YLGBEJdqn-JcNjHt9ZDxFPEY9DBVOfqAHYA1un_IeIkp2MVbeIteOx0yvPtfr9DPu9sf26_V7vuX--3nXdULKlglrDGN7GojTUctbdtOMmdZT3VrXVMTbmRjOK25dQa4E1q6xnU9SEIZWFbzK1Sd7s0LjLNRY_JHnR5V1F7lMBud1qIyKMEa2hb-04kfU_w9Q57U0eceQmkG4pwV5VJKRogQBf34DD3EOQ2lm0K1nPG6TLpQNyeqTzHnBO78BUrUmpBa81BrHupfQsUQz4zeT3od_JS0Dy97iw_w-NIz6tvt9sn7cPIOeYrp7NVMdIQzwf8CcuavnQ
CODEN JECOAB
CitedBy_id crossref_primary_10_1016_j_foreco_2017_01_012
crossref_primary_10_3390_f11010014
crossref_primary_10_1007_s11104_018_03929_3
crossref_primary_10_1007_s13157_019_01256_6
crossref_primary_10_15446_rfmvz_v67n1_87689
crossref_primary_10_3390_f7080167
crossref_primary_10_1111_1365_2745_14319
crossref_primary_10_1007_s10705_023_10333_6
crossref_primary_10_1111_nph_17460
crossref_primary_10_7717_peerj_14264
crossref_primary_10_1007_s11104_023_05925_8
crossref_primary_10_1111_jvs_13153
crossref_primary_10_1016_j_catena_2024_108502
crossref_primary_10_1016_j_geoderma_2017_10_004
crossref_primary_10_1007_s00442_019_04546_2
crossref_primary_10_1007_s11104_017_3477_5
crossref_primary_10_1016_j_soilbio_2021_108530
crossref_primary_10_3389_fpls_2022_1065807
crossref_primary_10_1016_j_agrformet_2024_110368
crossref_primary_10_1016_j_soilbio_2017_03_003
crossref_primary_10_1016_j_soilbio_2018_08_006
crossref_primary_10_1111_nph_17572
crossref_primary_10_1134_S1995425518070028
crossref_primary_10_3389_fenvs_2022_956309
crossref_primary_10_1111_jvs_12192
crossref_primary_10_1038_s41467_024_49666_3
crossref_primary_10_1111_1365_2745_12921
crossref_primary_10_1111_jbi_13206
crossref_primary_10_1890_ES15_00206_1
crossref_primary_10_1016_j_scitotenv_2023_164978
crossref_primary_10_12974_2311_858X_2016_04_01_4
crossref_primary_10_1016_j_ecss_2021_107391
crossref_primary_10_1016_j_soilbio_2025_109751
crossref_primary_10_2139_ssrn_4169666
crossref_primary_10_1016_j_pedobi_2017_08_002
crossref_primary_10_1007_s11104_018_3654_1
crossref_primary_10_1007_s11104_016_2964_4
crossref_primary_10_1016_j_indic_2025_100670
crossref_primary_10_1016_j_scitotenv_2023_169504
crossref_primary_10_1007_s11104_024_06876_4
crossref_primary_10_3390_f8060183
crossref_primary_10_1016_j_apsoil_2022_104735
crossref_primary_10_1016_j_apsoil_2020_103516
crossref_primary_10_1016_j_agee_2021_107705
crossref_primary_10_1016_j_scitotenv_2022_156194
crossref_primary_10_1016_j_catena_2024_108649
crossref_primary_10_1002_ldr_2862
crossref_primary_10_1016_j_soilbio_2023_109289
crossref_primary_10_1016_j_foreco_2016_03_045
crossref_primary_10_1111_1365_2435_14198
crossref_primary_10_1093_jpe_rty034
crossref_primary_10_1016_j_flora_2020_151659
crossref_primary_10_1038_s41598_024_61120_4
crossref_primary_10_3389_fmicb_2021_541583
crossref_primary_10_1007_s11104_024_06488_y
crossref_primary_10_1002_ecs2_1448
crossref_primary_10_1086_686199
crossref_primary_10_5194_bg_11_6081_2014
crossref_primary_10_1007_s10021_015_9899_0
crossref_primary_10_1016_j_ecolind_2022_109275
crossref_primary_10_1007_s10021_017_0163_7
crossref_primary_10_1007_s11104_022_05645_5
crossref_primary_10_1111_plb_12172
crossref_primary_10_1007_s10021_024_00934_9
crossref_primary_10_3390_agronomy12030747
crossref_primary_10_1016_j_jaridenv_2021_104696
crossref_primary_10_3390_plants11070846
crossref_primary_10_1007_s10021_023_00827_3
crossref_primary_10_1016_j_soilbio_2018_02_016
crossref_primary_10_3390_f13010093
crossref_primary_10_1111_gcb_14770
crossref_primary_10_1007_s00374_016_1125_5
crossref_primary_10_1007_s00442_024_05524_z
crossref_primary_10_1016_j_jes_2021_06_006
crossref_primary_10_3390_microorganisms10061125
crossref_primary_10_1093_aob_mcz166
crossref_primary_10_1111_jbi_13791
crossref_primary_10_1093_jpe_rtad021
crossref_primary_10_1016_j_catena_2021_105423
crossref_primary_10_1016_j_jenvman_2024_122823
crossref_primary_10_1016_j_tree_2022_07_008
crossref_primary_10_1016_j_scitotenv_2024_175844
crossref_primary_10_1007_s10530_024_03405_3
crossref_primary_10_1016_j_foreco_2021_119081
crossref_primary_10_1016_j_ecoser_2024_101634
crossref_primary_10_1002_ldr_4902
crossref_primary_10_1016_j_jenvman_2025_124725
crossref_primary_10_1016_j_soilbio_2021_108450
crossref_primary_10_1016_j_tplants_2025_02_004
crossref_primary_10_1111_oik_05697
crossref_primary_10_3390_f12020236
crossref_primary_10_1111_nph_13904
crossref_primary_10_1007_s11104_016_2939_5
crossref_primary_10_1016_j_agee_2013_12_027
crossref_primary_10_1016_j_soilbio_2023_109023
crossref_primary_10_1134_S1064229319100119
crossref_primary_10_1111_nph_15524
crossref_primary_10_1590_2179_8087_019618
crossref_primary_10_1111_1365_2435_12883
crossref_primary_10_1007_s10021_017_0162_8
crossref_primary_10_1016_j_ppees_2016_09_002
crossref_primary_10_1007_s11104_022_05642_8
crossref_primary_10_1111_1365_2435_13057
crossref_primary_10_1093_aob_mcad102
crossref_primary_10_1093_jpe_rtac027
crossref_primary_10_1111_nph_16841
crossref_primary_10_1139_cjfr_2023_0280
crossref_primary_10_1007_s00253_023_12480_w
crossref_primary_10_1016_j_scitotenv_2024_175298
crossref_primary_10_3390_f10040340
crossref_primary_10_1016_j_foreco_2018_08_036
crossref_primary_10_1016_j_scitotenv_2024_174083
crossref_primary_10_1007_s11104_015_2491_8
crossref_primary_10_1016_j_soilbio_2025_109715
crossref_primary_10_1016_j_geoderma_2021_115296
crossref_primary_10_1016_j_foreco_2021_119522
crossref_primary_10_1007_s11368_020_02797_8
crossref_primary_10_1007_s11104_025_07310_z
crossref_primary_10_1111_nph_16844
crossref_primary_10_1016_j_ecss_2022_107809
crossref_primary_10_1371_journal_pone_0222973
crossref_primary_10_17129_botsci_2732
crossref_primary_10_1016_j_scitotenv_2024_175025
crossref_primary_10_1016_j_apsoil_2024_105824
crossref_primary_10_1016_j_agee_2022_108006
crossref_primary_10_1007_s11104_019_04248_x
crossref_primary_10_1017_S0266467422000384
crossref_primary_10_1007_s00374_022_01659_4
crossref_primary_10_1016_j_jenvman_2023_118186
crossref_primary_10_1111_avsc_12638
crossref_primary_10_1016_j_scitotenv_2021_146748
crossref_primary_10_1007_s11104_021_05098_2
crossref_primary_10_1016_j_scitotenv_2025_178387
crossref_primary_10_1111_jvs_12168
crossref_primary_10_1007_s10886_016_0750_7
crossref_primary_10_1016_j_soilbio_2024_109442
crossref_primary_10_1016_j_soilbio_2019_107688
crossref_primary_10_1007_s10533_022_00988_8
crossref_primary_10_2139_ssrn_3983928
crossref_primary_10_1016_j_soilbio_2015_11_026
crossref_primary_10_3390_f14071351
crossref_primary_10_1111_1365_2435_13877
crossref_primary_10_1111_nph_16266
crossref_primary_10_1007_s11104_021_05163_w
crossref_primary_10_1073_pnas_1716595115
crossref_primary_10_1038_sdata_2018_303
crossref_primary_10_1016_j_apsoil_2014_10_015
crossref_primary_10_1007_s11104_017_3353_3
crossref_primary_10_1890_13_1666_1
crossref_primary_10_1016_j_scitotenv_2017_03_136
crossref_primary_10_1016_j_geodrs_2025_e00938
crossref_primary_10_1016_j_scitotenv_2017_10_287
crossref_primary_10_1111_1365_2745_13832
crossref_primary_10_1007_s10533_017_0345_6
crossref_primary_10_1016_j_jaridenv_2019_104036
crossref_primary_10_1016_j_soilbio_2018_01_019
crossref_primary_10_1111_1365_2745_14009
crossref_primary_10_1111_mec_16852
crossref_primary_10_1371_journal_pone_0197363
crossref_primary_10_1007_s11104_020_04759_y
crossref_primary_10_1007_s10457_022_00801_3
crossref_primary_10_1016_j_soilbio_2021_108483
crossref_primary_10_1016_j_soilbio_2024_109436
crossref_primary_10_1890_14_0777_1
crossref_primary_10_1016_j_scitotenv_2020_141442
crossref_primary_10_1016_j_soilbio_2021_108482
crossref_primary_10_1038_srep11043
crossref_primary_10_1016_j_gecco_2024_e02885
crossref_primary_10_1007_s11104_022_05522_1
crossref_primary_10_7717_peerj_10902
crossref_primary_10_7717_peerj_5095
crossref_primary_10_1007_s11104_021_04974_1
crossref_primary_10_1111_gfs_12280
crossref_primary_10_1007_s10342_016_0978_3
crossref_primary_10_1111_nph_14766
crossref_primary_10_1007_s11104_024_06590_1
crossref_primary_10_3389_fenvs_2019_00168
crossref_primary_10_1007_s11258_019_00945_w
crossref_primary_10_1111_nph_12902
crossref_primary_10_1111_oik_09025
crossref_primary_10_1016_j_scitotenv_2024_171168
crossref_primary_10_1016_j_eja_2022_126535
crossref_primary_10_1007_s10021_015_9946_x
crossref_primary_10_1111_nph_13385
crossref_primary_10_1007_s10021_015_9900_y
crossref_primary_10_1007_s13593_017_0421_2
crossref_primary_10_1071_FP22242
crossref_primary_10_1007_s11104_025_07276_y
crossref_primary_10_1007_s11284_014_1141_6
crossref_primary_10_1111_1365_2745_12537
crossref_primary_10_1007_s11629_018_5303_9
crossref_primary_10_1016_j_envres_2023_115482
crossref_primary_10_1111_jvs_12341
crossref_primary_10_1016_j_baae_2019_08_001
crossref_primary_10_5194_bg_16_1955_2019
crossref_primary_10_1016_j_jenvman_2018_10_103
crossref_primary_10_1007_s11104_020_04502_7
crossref_primary_10_1016_j_geoderma_2020_114454
crossref_primary_10_1016_j_tree_2017_11_005
crossref_primary_10_1007_s11104_015_2647_6
crossref_primary_10_1007_s11104_019_03981_7
crossref_primary_10_1016_j_tree_2022_06_003
crossref_primary_10_1016_j_soilbio_2017_09_031
crossref_primary_10_1016_j_apsoil_2015_07_010
crossref_primary_10_1007_s11104_014_2282_7
crossref_primary_10_1007_s10021_021_00728_3
crossref_primary_10_1007_s11104_016_3082_z
crossref_primary_10_1111_ele_13248
crossref_primary_10_1111_nph_20105
crossref_primary_10_1111_nph_13494
crossref_primary_10_1016_j_actao_2021_103775
crossref_primary_10_1111_ele_13923
crossref_primary_10_1111_1365_2745_12769
crossref_primary_10_1890_13_0824_1
crossref_primary_10_1016_j_geoderma_2021_115011
crossref_primary_10_1134_S1064229323601956
crossref_primary_10_1111_nph_12845
crossref_primary_10_1128_AEM_02061_17
crossref_primary_10_1007_s00374_020_01457_w
crossref_primary_10_1016_j_tree_2015_03_015
crossref_primary_10_1002_ecy_1790
crossref_primary_10_1111_1365_2745_13299
crossref_primary_10_2135_cropsci2018_08_0523
crossref_primary_10_1016_j_soilbio_2015_05_005
crossref_primary_10_3389_fmicb_2021_633751
crossref_primary_10_1007_s11104_019_03931_3
crossref_primary_10_1016_j_ecolind_2020_107200
crossref_primary_10_1007_s10021_020_00583_8
crossref_primary_10_1016_j_soilbio_2018_11_018
crossref_primary_10_1016_j_catena_2021_105803
crossref_primary_10_1016_j_jenvman_2024_120468
crossref_primary_10_1155_2014_329031
crossref_primary_10_1007_s11104_023_06308_9
crossref_primary_10_1016_j_scitotenv_2024_173203
crossref_primary_10_1111_1365_2435_13027
crossref_primary_10_1111_nph_14571
crossref_primary_10_1016_j_apsoil_2024_105742
crossref_primary_10_1007_s11104_015_2528_z
crossref_primary_10_1007_s11104_016_3077_9
crossref_primary_10_1016_j_catena_2019_104186
crossref_primary_10_1016_j_ecolmodel_2022_109940
crossref_primary_10_3390_plants11223042
crossref_primary_10_1016_j_geodrs_2024_e00823
crossref_primary_10_1016_j_scitotenv_2019_135397
crossref_primary_10_3390_f7100234
crossref_primary_10_1111_1365_2745_12433
crossref_primary_10_1007_s11284_013_1106_1
crossref_primary_10_1111_1365_2745_13641
crossref_primary_10_1016_j_foreco_2022_120008
crossref_primary_10_1016_j_soilbio_2021_108278
crossref_primary_10_1007_s10342_024_01729_2
crossref_primary_10_1111_1365_2435_12619
crossref_primary_10_1111_nph_13003
crossref_primary_10_1111_nph_19900
crossref_primary_10_1111_nph_16517
crossref_primary_10_12677_GSER_2023_121005
crossref_primary_10_3390_f15091492
crossref_primary_10_1016_j_catena_2018_05_009
crossref_primary_10_1007_s00248_022_02051_3
crossref_primary_10_1007_s11676_020_01273_w
crossref_primary_10_1016_j_envexpbot_2019_103865
crossref_primary_10_1111_1365_2435_12853
crossref_primary_10_1111_1365_2435_13029
crossref_primary_10_1007_s00248_021_01840_6
crossref_primary_10_1111_1365_2664_12939
crossref_primary_10_1111_1365_2435_13278
crossref_primary_10_1007_s42832_021_0085_3
crossref_primary_10_1111_nph_17279
crossref_primary_10_1111_nph_13352
crossref_primary_10_1007_s00374_019_01429_9
crossref_primary_10_1590_18069657rbcs20170355
crossref_primary_10_1007_s11104_016_3066_z
crossref_primary_10_1016_j_scitotenv_2017_12_199
crossref_primary_10_1080_15320383_2017_1403415
crossref_primary_10_1007_s11056_019_09763_4
crossref_primary_10_1016_j_fmre_2022_01_029
crossref_primary_10_3390_environments4010004
crossref_primary_10_1111_oik_08899
crossref_primary_10_1128_MMBR_00063_16
crossref_primary_10_1016_j_jhydrol_2024_131086
crossref_primary_10_1016_j_soilbio_2015_10_023
crossref_primary_10_1016_j_geoderma_2017_09_033
crossref_primary_10_1007_s11104_017_3423_6
crossref_primary_10_1007_s11104_025_07379_6
crossref_primary_10_3389_fpls_2022_878908
crossref_primary_10_1007_s11104_020_04624_y
crossref_primary_10_1016_j_foreco_2022_120355
crossref_primary_10_3390_atmos13060851
crossref_primary_10_1007_s11104_021_04855_7
crossref_primary_10_1111_nph_14206
crossref_primary_10_1007_s11104_021_05191_6
crossref_primary_10_1016_j_foreco_2016_06_033
crossref_primary_10_1111_nph_18870
crossref_primary_10_1088_1748_9326_10_9_094020
crossref_primary_10_1111_1365_2745_12217
crossref_primary_10_1007_s11104_023_05908_9
crossref_primary_10_1007_s11104_023_06268_0
crossref_primary_10_1111_oik_01374
crossref_primary_10_1111_1365_2745_12211
crossref_primary_10_1007_s11104_022_05785_8
crossref_primary_10_1016_j_scitotenv_2023_165003
crossref_primary_10_1002_sae2_12048
crossref_primary_10_1016_j_agee_2015_12_026
crossref_primary_10_1016_j_apsoil_2020_103651
crossref_primary_10_1016_j_geoderma_2022_115744
crossref_primary_10_1016_j_catena_2022_106523
crossref_primary_10_1007_s10021_020_00570_z
crossref_primary_10_1111_nph_18515
crossref_primary_10_1186_s13765_022_00758_y
crossref_primary_10_1111_1365_2435_13208
crossref_primary_10_1590_1519_6984_264237
crossref_primary_10_1007_s11104_024_06487_z
crossref_primary_10_1007_s10533_015_0080_9
crossref_primary_10_1016_j_scitotenv_2021_152317
crossref_primary_10_1016_j_envres_2023_115575
crossref_primary_10_1016_j_geoderma_2022_116160
crossref_primary_10_1016_j_agee_2022_108051
crossref_primary_10_1016_j_apsoil_2017_07_038
crossref_primary_10_1111_nph_18742
crossref_primary_10_5194_bg_21_3165_2024
crossref_primary_10_1007_s00442_024_05616_w
crossref_primary_10_1111_nph_70001
crossref_primary_10_3390_rs13112223
crossref_primary_10_1111_1365_2745_13536
crossref_primary_10_1080_13416979_2020_1826622
crossref_primary_10_3389_fpls_2023_1077631
crossref_primary_10_3390_f13081207
crossref_primary_10_1007_s10021_022_00800_6
crossref_primary_10_1007_s10533_018_0513_3
crossref_primary_10_1111_nph_13619
crossref_primary_10_1016_j_geoderma_2016_05_019
crossref_primary_10_1111_oik_02457
crossref_primary_10_1016_j_agee_2017_10_007
crossref_primary_10_1016_j_scitotenv_2017_07_063
crossref_primary_10_1111_1365_2435_13338
crossref_primary_10_7717_peerj_3777
crossref_primary_10_7717_peerj_5710
crossref_primary_10_1016_j_foreco_2015_09_026
crossref_primary_10_1093_femsec_fiac025
crossref_primary_10_31857_S0032180X23600701
crossref_primary_10_1016_j_geoderma_2022_115883
crossref_primary_10_1016_j_agee_2020_107074
crossref_primary_10_1007_s00442_016_3702_6
crossref_primary_10_3389_ffgc_2021_686468
crossref_primary_10_1002_sae2_70022
crossref_primary_10_1002_ece3_3522
crossref_primary_10_1111_1365_2745_13688
crossref_primary_10_1016_j_scitotenv_2018_07_038
crossref_primary_10_1016_j_foreco_2023_120848
crossref_primary_10_1007_s00442_020_04756_z
crossref_primary_10_1002_ecy_3348
crossref_primary_10_1111_1365_2745_12474
crossref_primary_10_1093_jpe_rtae025
crossref_primary_10_1016_j_pedobi_2017_06_005
crossref_primary_10_4236_ajcc_2024_132008
crossref_primary_10_1007_s11104_015_2762_4
crossref_primary_10_1093_aob_mcx175
crossref_primary_10_1007_s11104_022_05590_3
crossref_primary_10_1111_1365_2435_14327
crossref_primary_10_1007_s00374_025_01897_2
crossref_primary_10_1007_s12583_019_1017_3
crossref_primary_10_1111_nph_15454
crossref_primary_10_1111_nph_19490
crossref_primary_10_3390_land13111963
crossref_primary_10_1111_1365_2745_12228
crossref_primary_10_1007_s00442_017_3962_9
crossref_primary_10_1007_s10021_016_0031_x
crossref_primary_10_1016_j_tplants_2017_01_005
crossref_primary_10_1007_s00468_015_1221_4
crossref_primary_10_1007_s10530_022_02736_3
crossref_primary_10_1007_s11104_021_05144_z
crossref_primary_10_1016_j_foreco_2014_03_039
crossref_primary_10_1080_17480272_2024_2431168
crossref_primary_10_1093_aob_mcu113
crossref_primary_10_1021_acs_est_4c01172
crossref_primary_10_1111_1365_2435_14200
crossref_primary_10_1007_s11104_022_05675_z
crossref_primary_10_1111_nph_14007
crossref_primary_10_1007_s11104_023_06208_y
crossref_primary_10_1016_j_envexpbot_2014_09_009
crossref_primary_10_1186_s13021_020_00165_0
Cites_doi 10.1890/03-0799
10.1086/284466
10.1139/x03-241
10.1111/j.1600‐0706.2012.00056.x
10.1023/A:1021201012950
10.1016/S0169-5347(97)01001-X
10.1111/j.1365-2745.2009.01615.x
10.1017/S1464793106007007
10.1111/j.1365-2435.2011.01913.x
10.2307/3543688
10.1111/j.1469-8137.2008.02438.x
10.1111/j.1365-2486.2008.01557.x
10.1111/j.1365-2745.2011.01943.x
10.5194/bg-9-565-2012
10.1111/j.1461-0248.2008.01219.x
10.1080/07352689.2010.483579
10.1080/00103620600767108
10.1046/j.1365-2745.1998.00268.x
10.1046/j.1365-2435.2002.00664.x
10.1111/j.1469-8137.2005.01349.x
10.1111/j.1461-0248.2010.01517.x
10.1007/s004420050201
10.1007/978-3-540-92706-8_8
10.1007/s11104-010-0415-1
10.1111/j.1365-2745.2008.01395.x
10.1016/S0378-1127(99)00062-6
10.1007/s00374-005-0006-0
10.2307/2261479
10.1046/j.1469-8137.2000.00681.x
10.1007/s13280-012-0304-3
10.1111/j.1654-1103.2004.tb02266.x
10.1890/04-1075
10.1007/s10533-010-9439-0
10.1111/j.1469-8137.2005.01428.x
10.1111/j.2006.0030-1299.15354.x
10.1016/S0006-3207(03)00235-0
10.1016/S0169-5347(00)88978-8
10.1126/science.1094875
10.1016/S0065-2504(08)60121-X
10.1111/j.1469-8137.2011.03952.x
10.1139/b91-281
10.2307/2963492
10.1111/j.1365-2486.2008.01672.x
10.1890/03-8002
10.1016/j.soilbio.2006.12.037
10.1007/s00442-009-1479-6
10.1016/j.foreco.2009.02.021
10.1093/jxb/50.330.29
10.1016/0169-5347(92)90126-V
10.1038/nature10386
10.1139/x99-132
10.1046/j.1365-2745.1998.00306.x
10.1093/aob/mcr297
10.1111/j.1469-8137.2010.03228.x
10.1016/0378-1127(93)90087-4
10.1007/s004420100740
10.1093/treephys/9.1-2.185
10.2307/2656636
10.1890/04-1254
10.1111/j.1365-2435.2007.01289.x
10.1007/BF00002935
10.1139/b96-084
10.1046/j.1365-2486.2002.00512.x
10.1007/s00442-006-0495-z
ContentType Journal Article
Copyright 2013 British Ecological Society
2013 The Authors. Journal of Ecology © 2013 British Ecological Society
Copyright Blackwell Publishing Ltd. Jul 2013
Copyright_xml – notice: 2013 British Ecological Society
– notice: 2013 The Authors. Journal of Ecology © 2013 British Ecological Society
– notice: Copyright Blackwell Publishing Ltd. Jul 2013
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
ADTPV
AOWAS
DOI 10.1111/1365-2745.12092
DatabaseName CrossRef
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
SwePub
SwePub Articles
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
DatabaseTitleList
CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Ecology Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Botany
EISSN 1365-2745
EndPage 952
ExternalDocumentID oai_slubar_slu_se_52617
3009953801
10_1111_1365_2745_12092
JEC12092
42580325
Genre article
Feature
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29K
2AX
2WC
3-9
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHKG
AAHQN
AAISJ
AAKGQ
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABAWQ
ABBHK
ABCQN
ABCUV
ABEML
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABPQH
ABPVW
ABSQW
ABTLG
ABXSQ
ACAHQ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHIC
ACHJO
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUBG
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHG
ADOZA
ADULT
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUPB
AEUYR
AEYWJ
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFXHP
AFZJQ
AGUYK
AGXDD
AGYGG
AHBTC
AHXOZ
AIAGR
AIDQK
AIDYY
AILXY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQVQM
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CBGCD
CUYZI
D-E
D-F
D-I
DCZOG
DEVKO
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAU
EBS
ECGQY
EJD
F00
F01
F04
F5P
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
YF5
YQT
YZZ
ZCA
ZZTAW
~02
~IA
~KM
~WT
24P
42X
8WZ
A6W
AAHHS
ABEFU
ABTAH
ABYAD
ACCFJ
ACTWD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
AS~
CAG
COF
DOOOF
ESX
FVMVE
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
JSODD
MVM
WHG
WRC
XIH
YXE
ZCG
ZY4
AAYXX
AGHNM
CITATION
7QG
7SN
7SS
7ST
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
SOI
ADTPV
AOWAS
ID FETCH-LOGICAL-c5152-5dbb6984b9b81d177892fd2c1a7df6403b96b3143dfbe3f5a9f6f8ce9012ed243
IEDL.DBID DR2
ISSN 0022-0477
1365-2745
IngestDate Thu Aug 21 06:58:17 EDT 2025
Fri Jul 11 09:07:37 EDT 2025
Fri Jul 25 10:52:43 EDT 2025
Tue Jul 01 03:13:36 EDT 2025
Thu Apr 24 22:50:11 EDT 2025
Wed Jan 22 17:01:50 EST 2025
Sun Aug 24 12:10:36 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5152-5dbb6984b9b81d177892fd2c1a7df6403b96b3143dfbe3f5a9f6f8ce9012ed243
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12092
PQID 1373234136
PQPubID 37508
PageCount 10
ParticipantIDs swepub_primary_oai_slubar_slu_se_52617
proquest_miscellaneous_1399920055
proquest_journals_1373234136
crossref_primary_10_1111_1365_2745_12092
crossref_citationtrail_10_1111_1365_2745_12092
wiley_primary_10_1111_1365_2745_12092_JEC12092
jstor_primary_42580325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle The Journal of ecology
PublicationYear 2013
Publisher Blackwell Publishing
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing
– name: Blackwell Publishing Ltd
References 2002; 16
2007; 39
2011; 478
2010; 13
1993; 60
2000; 87
1997; 111
2010; 101
2006; 37
1996; 74
1992; 15
1999; 123
1998; 86
1992; 7
2001
2000
2010; 29
2004; 34
1997; 12
1970; 21
1999; 50
2007; 21
2003; 164
1996; 66
2004; 85
2010a; 98
1999; 29
1995; 10
1986; 15
2002; 8
2009
2008; 14
2005; 42
2005; 86
2008; 11
2010; 162
2012b; 26
2008; 96
2006; 150
2004; 428
2006; 115
2001; 129
1991; 9
2004; 304
2009; 257
2012; 109
2006; 81
1986; 127
1991; 69
2000; 147
2005; 167
2004; 15
2010; 335
2012; 193
1996; 84
2008; 179
2013
2012a; 100
2004; 117
2012; 41
2010b; 186
2012; 9
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_66_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
Rosenberg M.S. (e_1_2_6_48_1) 2000
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_65_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
Grime J.P. (e_1_2_6_27_1) 2001
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
e_1_2_6_46_1
References_xml – volume: 74
  start-page: 659
  year: 1996
  end-page: 672
  article-title: Maximum decomposition limits of forest litter types: a synthesis
  publication-title: Canadian Journal of Botany
– volume: 150
  start-page: 97
  year: 2006
  end-page: 107
  article-title: Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America
  publication-title: Oecologia
– volume: 478
  start-page: 49
  year: 2011
  end-page: 56
  article-title: Persistence of soil organic matter as an ecosystem property
  publication-title: Nature
– volume: 115
  start-page: 453
  year: 2006
  end-page: 462
  article-title: Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence
  publication-title: Oikos
– year: 2001
– volume: 37
  start-page: 1859
  year: 2006
  end-page: 1875
  article-title: Effects of litter and fine root composition on their decomposition in a Rhodic Paleustalf under different land uses
  publication-title: Communications in Soil Science and Plant Analysis
– volume: 86
  start-page: 320
  year: 2005
  end-page: 326
  article-title: Litter quality and the temperature sensitivity of decomposition
  publication-title: Ecology
– volume: 123
  start-page: 231
  year: 1999
  end-page: 244
  article-title: Litter production and leaf‐litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India
  publication-title: Forest Ecology and Management
– volume: 14
  start-page: 2661
  year: 2008
  end-page: 2677
  article-title: Global decomposition experiment shows soil animal impacts on decomposition are climate‐dependent
  publication-title: Global Change Biology
– volume: 42
  start-page: 119
  year: 2005
  end-page: 128
  article-title: Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality
  publication-title: Biology and Fertility of Soils
– volume: 98
  start-page: 362
  year: 2010a
  end-page: 373
  article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora
  publication-title: Journal of Ecology
– volume: 9
  start-page: 565
  year: 2012
  end-page: 576
  article-title: Plant‐driven variation in decomposition rates improves projections of global litter stock distribution
  publication-title: Biogeosciences
– volume: 12
  start-page: 139
  year: 1997
  end-page: 143
  article-title: Competition for nitrogen between plants and soil microorganisms
  publication-title: Trends in Ecology & Evolution
– volume: 50
  start-page: 29
  year: 1999
  end-page: 37
  article-title: Interspecific competition in natural plant communities: mechanisms, trade‐offs and plant‐soil feedbacks
  publication-title: Journal of Experimental Botany
– year: 2013
  article-title: Are functional traits and litter decomposability coordinated across leaves, twigs, and wood? A test using temperate rainforest tree species
  publication-title: Oikos
– volume: 29
  start-page: 204
  year: 2010
  end-page: 221
  article-title: Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta‐analyses
  publication-title: Critical Reviews in Plant Sciences
– volume: 84
  start-page: 573
  year: 1996
  end-page: 582
  article-title: An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types
  publication-title: Journal of Ecology
– volume: 117
  start-page: 1
  year: 2004
  end-page: 10
  article-title: Relative importance of coarse and fine woody debris for the diversity of wood‐inhabiting fungi in temperate broadleaf forests
  publication-title: Biological Conservation
– volume: 7
  start-page: 336
  year: 1992
  end-page: 339
  article-title: Effects of plant species on nutrient cycling
  publication-title: Trends in Ecology & Evolution
– volume: 60
  start-page: 327
  year: 1993
  end-page: 344
  article-title: Litter and fine root dynamics of a relict sacred grove forest at Cherrapunji in north‐eastern India
  publication-title: Forest Ecology and Management
– volume: 34
  start-page: 763
  year: 2004
  end-page: 777
  article-title: Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis
  publication-title: Canadian Journal of Forest Research
– volume: 257
  start-page: 2133
  year: 2009
  end-page: 2144
  article-title: Litterfall and nutrient return in five tree species in a common garden experiment
  publication-title: Forest Ecology and Management
– volume: 164
  start-page: 157
  year: 2003
  end-page: 170
  article-title: Litterfall and nutrient dynamics in a montane moist evergreen broad‐leaved forest in Ailao Mountains, SW China
  publication-title: Plant Ecology
– volume: 87
  start-page: 402
  year: 2000
  end-page: 411
  article-title: Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of above‐ground and below‐ground resources
  publication-title: American Journal of Botany
– volume: 85
  start-page: 2630
  year: 2004
  end-page: 2637
  article-title: Plant functional markers capture ecosystem properties during secondary succession
  publication-title: Ecology
– volume: 41
  start-page: 231
  year: 2012
  end-page: 245
  article-title: Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment
  publication-title: Ambio
– volume: 13
  start-page: 1338
  year: 2010
  end-page: 1347
  article-title: Decoupled leaf and stem economics in rain forest trees
  publication-title: Ecology Letters
– volume: 179
  start-page: 165
  year: 2008
  end-page: 175
  article-title: High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community
  publication-title: New Phytologist
– volume: 15
  start-page: 295
  year: 2004
  end-page: 304
  article-title: The plant traits that drive ecosystems: Evidence from three continents
  publication-title: Journal of Vegetation Science
– volume: 193
  start-page: 30
  year: 2012
  end-page: 50
  article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control
  publication-title: New Phytologist
– volume: 16
  start-page: 545
  year: 2002
  end-page: 556
  article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail
  publication-title: Functional Ecology
– volume: 8
  start-page: 736
  year: 2002
  end-page: 753
  article-title: Estimating net primary productivity from grassland biomass dynamics measurements
  publication-title: Global Change Biology
– volume: 162
  start-page: 505
  year: 2010
  end-page: 513
  article-title: Fine root decomposition rates do not mirror those of leaf litter among temperate tree species
  publication-title: Oecologia
– volume: 39
  start-page: 1428
  year: 2007
  end-page: 1436
  article-title: Nitrogen transfer between decomposing leaves of different N status
  publication-title: Soil Biology and Biochemistry
– volume: 21
  start-page: 326
  year: 1970
  end-page: 329
  article-title: Fluctuations in litter‐fall in a mixed deciduous woodland over a three‐year period 1966–68
  publication-title: Oikos
– volume: 109
  start-page: 463
  year: 2012
  end-page: 472
  article-title: Plant traits and decomposition: are the relationships for roots comparable to those for leaves?
  publication-title: Annals of Botany
– volume: 21
  start-page: 387
  year: 2007
  end-page: 393
  article-title: Evolution on ecological time‐scales
  publication-title: Functional Ecology
– volume: 101
  start-page: 133
  year: 2010
  end-page: 149
  article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?
  publication-title: Biogeochemistry
– volume: 26
  start-page: 56
  year: 2012b
  end-page: 65
  article-title: A plant economics spectrum of litter decomposability
  publication-title: Functional Ecology
– volume: 147
  start-page: 13
  year: 2000
  end-page: 31
  article-title: Global patterns of root turnover for terrestrial ecosystems
  publication-title: New Phytologist
– volume: 335
  start-page: 289
  year: 2010
  end-page: 298
  article-title: Correlation between leaf litter and fine root decomposition among subtropical tree species
  publication-title: Plant and Soil
– volume: 9
  start-page: 185
  year: 1991
  end-page: 207
  article-title: Nutrient retranslocation in temperate conifers
  publication-title: Tree Physiology
– volume: 29
  start-page: 1592
  year: 1999
  end-page: 1603
  article-title: The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests
  publication-title: Canadian Journal of Forest Research
– volume: 11
  start-page: 1065
  year: 2008
  end-page: 1071
  article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide
  publication-title: Ecology Letters
– volume: 86
  start-page: 12
  year: 2005
  end-page: 19
  article-title: Environmental constraints on a global relationship among leaf and root traits of grasses
  publication-title: Ecology
– volume: 86
  start-page: 902
  year: 1998
  end-page: 910
  article-title: Benefits of plant diversity to ecosystems: immediate, filter and founder effects
  publication-title: Journal of Ecology
– year: 2000
– volume: 96
  start-page: 884
  year: 2008
  end-page: 893
  article-title: Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland
  publication-title: Journal of Ecology
– volume: 127
  start-page: 48
  year: 1986
  end-page: 58
  article-title: The nature of nutrient limitation in plant communities
  publication-title: The American Naturalist
– volume: 69
  start-page: 2242
  year: 1991
  end-page: 2250
  article-title: Substrate control of litter decomposition in 4 Rocky‐Mountain coniferous forests
  publication-title: Canadian Journal of Botany
– volume: 14
  start-page: 1125
  year: 2008
  end-page: 1140
  article-title: Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants
  publication-title: Global Change Biology
– volume: 129
  start-page: 407
  year: 2001
  end-page: 419
  article-title: Global patterns in root decomposition: comparisons of climate and litter quality effects
  publication-title: Oecologia
– volume: 428
  start-page: 821
  year: 2004
  end-page: 827
  article-title: The worldwide leaf economics spectrum
  publication-title: Nature
– start-page: 159
  year: 2009
  end-page: 190
– volume: 85
  start-page: 591
  year: 2004
  end-page: 602
  article-title: Nitrogen mineralization: challenges of a changing paradigm
  publication-title: Ecology
– volume: 186
  start-page: 879
  year: 2010b
  end-page: 889
  article-title: Substantial nutrient resorption from leaves, stems and roots in a sub‐arctic flora: what is the link with other resource economics traits?
  publication-title: New Phytologist
– volume: 66
  start-page: 503
  year: 1996
  end-page: 522
  article-title: Temperature and plant species control over litter decomposition in Alaskan tundra
  publication-title: Ecological Monographs
– volume: 304
  start-page: 1629
  year: 2004
  end-page: 1633
  article-title: Ecological linkages between aboveground and belowground biota
  publication-title: Science
– volume: 100
  start-page: 619
  year: 2012a
  end-page: 630
  article-title: Multiple mechanisms for trait effects on litter decomposition: moving beyond home‐field advantage with a new hypothesis
  publication-title: Journal of Ecology
– volume: 15
  start-page: 133
  year: 1986
  end-page: 302
– volume: 86
  start-page: 405
  year: 1998
  end-page: 420
  article-title: Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?
  publication-title: Journal of Ecology
– volume: 15
  start-page: 175
  year: 1992
  end-page: 190
  article-title: Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem
  publication-title: Biogeochemistry
– volume: 81
  start-page: 259
  year: 2006
  end-page: 291
  article-title: Bivariate line‐fitting methods for allometry
  publication-title: Biological Reviews
– volume: 10
  start-page: 63
  year: 1995
  end-page: 66
  article-title: Litter decomposition, climate and litter quality
  publication-title: Trends in Ecology & Evolution
– volume: 167
  start-page: 493
  year: 2005
  end-page: 508
  article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species
  publication-title: New Phytologist
– volume: 111
  start-page: 1
  year: 1997
  end-page: 11
  article-title: Root biomass allocation in the world's upland forests
  publication-title: Oecologia
– ident: e_1_2_6_24_1
  doi: 10.1890/03-0799
– ident: e_1_2_6_11_1
  doi: 10.1086/284466
– ident: e_1_2_6_40_1
  doi: 10.1139/x03-241
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1600‐0706.2012.00056.x
– volume-title: Plant Strategies, Vegetation Processes, and Ecosystem Properties
  year: 2001
  ident: e_1_2_6_27_1
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1021201012950
– ident: e_1_2_6_37_1
  doi: 10.1016/S0169-5347(97)01001-X
– ident: e_1_2_6_22_1
  doi: 10.1111/j.1365-2745.2009.01615.x
– ident: e_1_2_6_65_1
  doi: 10.1017/S1464793106007007
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1365-2435.2011.01913.x
– ident: e_1_2_6_57_1
  doi: 10.2307/3543688
– ident: e_1_2_6_31_1
  doi: 10.1111/j.1469-8137.2008.02438.x
– ident: e_1_2_6_55_1
  doi: 10.1111/j.1365-2486.2008.01557.x
– ident: e_1_2_6_20_1
  doi: 10.1111/j.1365-2745.2011.01943.x
– ident: e_1_2_6_8_1
  doi: 10.5194/bg-9-565-2012
– ident: e_1_2_6_14_1
  doi: 10.1111/j.1461-0248.2008.01219.x
– ident: e_1_2_6_67_1
  doi: 10.1080/07352689.2010.483579
– ident: e_1_2_6_36_1
  doi: 10.1080/00103620600767108
– ident: e_1_2_6_63_1
  doi: 10.1046/j.1365-2745.1998.00268.x
– ident: e_1_2_6_41_1
  doi: 10.1046/j.1365-2435.2002.00664.x
– ident: e_1_2_6_66_1
  doi: 10.1111/j.1469-8137.2005.01349.x
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1461-0248.2010.01517.x
– ident: e_1_2_6_9_1
  doi: 10.1007/s004420050201
– ident: e_1_2_6_29_1
  doi: 10.1007/978-3-540-92706-8_8
– ident: e_1_2_6_62_1
  doi: 10.1007/s11104-010-0415-1
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1365-2745.2008.01395.x
– ident: e_1_2_6_56_1
  doi: 10.1016/S0378-1127(99)00062-6
– ident: e_1_2_6_2_1
  doi: 10.1007/s00374-005-0006-0
– ident: e_1_2_6_12_1
  doi: 10.2307/2261479
– ident: e_1_2_6_25_1
  doi: 10.1046/j.1469-8137.2000.00681.x
– ident: e_1_2_6_13_1
  doi: 10.1007/s13280-012-0304-3
– ident: e_1_2_6_18_1
  doi: 10.1111/j.1654-1103.2004.tb02266.x
– ident: e_1_2_6_16_1
  doi: 10.1890/04-1075
– ident: e_1_2_6_47_1
  doi: 10.1007/s10533-010-9439-0
– ident: e_1_2_6_59_1
  doi: 10.1111/j.1469-8137.2005.01428.x
– volume-title: MetaWin: Statistical Software for Meta‐Analysis
  year: 2000
  ident: e_1_2_6_48_1
– ident: e_1_2_6_17_1
  doi: 10.1111/j.2006.0030-1299.15354.x
– ident: e_1_2_6_45_1
  doi: 10.1016/S0006-3207(03)00235-0
– ident: e_1_2_6_15_1
  doi: 10.1016/S0169-5347(00)88978-8
– ident: e_1_2_6_64_1
  doi: 10.1126/science.1094875
– ident: e_1_2_6_30_1
  doi: 10.1016/S0065-2504(08)60121-X
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1469-8137.2011.03952.x
– ident: e_1_2_6_58_1
  doi: 10.1139/b91-281
– ident: e_1_2_6_33_1
  doi: 10.2307/2963492
– ident: e_1_2_6_61_1
  doi: 10.1111/j.1365-2486.2008.01672.x
– ident: e_1_2_6_50_1
  doi: 10.1890/03-8002
– ident: e_1_2_6_51_1
  doi: 10.1016/j.soilbio.2006.12.037
– ident: e_1_2_6_34_1
  doi: 10.1007/s00442-009-1479-6
– ident: e_1_2_6_28_1
  doi: 10.1016/j.foreco.2009.02.021
– ident: e_1_2_6_3_1
  doi: 10.1093/jxb/50.330.29
– ident: e_1_2_6_32_1
  doi: 10.1016/0169-5347(92)90126-V
– ident: e_1_2_6_52_1
  doi: 10.1038/nature10386
– ident: e_1_2_6_39_1
  doi: 10.1139/x99-132
– ident: e_1_2_6_26_1
  doi: 10.1046/j.1365-2745.1998.00306.x
– ident: e_1_2_6_7_1
  doi: 10.1093/aob/mcr297
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1469-8137.2010.03228.x
– ident: e_1_2_6_38_1
  doi: 10.1016/0378-1127(93)90087-4
– ident: e_1_2_6_54_1
  doi: 10.1007/s004420100740
– ident: e_1_2_6_44_1
  doi: 10.1093/treephys/9.1-2.185
– ident: e_1_2_6_49_1
  doi: 10.2307/2656636
– ident: e_1_2_6_19_1
  doi: 10.1890/04-1254
– ident: e_1_2_6_10_1
  doi: 10.1111/j.1365-2435.2007.01289.x
– ident: e_1_2_6_4_1
  doi: 10.1007/BF00002935
– ident: e_1_2_6_6_1
  doi: 10.1139/b96-084
– ident: e_1_2_6_53_1
  doi: 10.1046/j.1365-2486.2002.00512.x
– ident: e_1_2_6_60_1
  doi: 10.1007/s00442-006-0495-z
SSID ssj0006750
Score 2.5723708
Snippet 1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a...
Summary Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a...
Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a...
Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a...
SourceID swepub
proquest
crossref
wiley
jstor
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 943
SubjectTerms Community composition
Decomposition
decomposition rate (k)
Ecosystems
fine root
Forest Science
Forests
Grasslands
Human ecology
leaf
Leaf litter
Leaves
litter decomposability
litter input
Litter traits
Meta-analysis
Nutrient dynamics
Nutrient release
Organic matter
Plant communities
Plant ecology
plant economics spectrum
plant functional traits
Plant litter
Plant nutrition
Plant roots
Plant-soil (below-ground) interactions
Plants
plant–soil feedback
response‐effect framework
Roots
Skogsvetenskap
Soils
Species
Stems
Title Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide
URI https://www.jstor.org/stable/42580325
https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12092
https://www.proquest.com/docview/1373234136
https://www.proquest.com/docview/1399920055
https://res.slu.se/id/publ/52617
Volume 101
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA8yNvBFt-nw6hwRRHzp5d4k_cijzjvGUB_EgW-lJx8wLO1Y792YT_sTBP_D_SWek7TVOxARn5q2SZqPc5Jf0pPfYeylc0bn2rpEOpElRH-SgJv7RCtQQklZ6UAp9OFjdnyqTr6kgzUhnYWJ_BDjhhtpRhivScEr6H5T8v40lUqndPyTRmF8Quz57z79IpBCODwb-MJnKs97ch-y5bmTfm1eiqaJ66AzEomuY9gwCR09ZDAUP9qefJ2uljA13-4wO_5X_bbZgx6i8jdRpnbYPdfssq3otPJ6l22-bRFQYmBrERivrx8x_z56YOCI6bGfuHVkqd6bg_HWc5S0S3d7851XjeXg6vYKb-hACd4Gv1IdX7b8vMZuvr350bVnNfc4rQIRAPBA6np1Zt1jdnq0-Hx4nPQOHBKDMAkXuRYg04UCDQiL53leaOGtMPMqtz5TMwk6A4mIzXpw0qeV9pkvjEOMIpxFUdljG03buCeMpyYDnQLIwCAoLK6rrSkK5ZVKtRHphE2H7itNz25OTjbqcljlUHuW1J5laM8Jez0mOI_EHn-OuhfkYYyH41wxk_TR_UFAyl71O0ycS0HYIJuwF-NrVFr6E1M1rl1RHMTltJ-HWbyKgjVmTnzfXb2C6oIuZefKlFjzsYJBWv5W2PJkcRgCT_81wTN2XwRfH2SLvM82lhcr9xwR1xIOglL9BBY4IC0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoaIXHoWKLQWMhBCXrHZj5-FjW7ZayrYH1Eq9WfFLqoiSqtlt1Z76E5D4h_0lzNhJ6FZCCHGKo9hObM_Y3zjjbwj5YK0WmTA2YjZOI6Q_iZQdu0hwxWPOWCE8pdDBYTo95vsnycmdszCBH6LfcEPN8PM1KjhuSN_R8vY4FU-GeP4TpuGHHOAGGmCfv_2mkAJAPOoYw0c8y1p6H_TmuVfB0soUnBOXYWegEl1GsX4Z2ntKdNeA4H3yfbiYq6G-vsft-H8tfEaetCiVbgexek4e2GqdrIa4lVfr5NFODZgSEqsTT3p99YK4WQjCQAHWw1BRY9FZvfUIo7WjIGwX9vbmBy0qQ5Ut60u4wTMlcOtDSzV0XtOzEkb69uZnU5-W1MHKqpADgHpe18tTY1-S473J0e40amM4RBqQEti5RqlU5FwJBch4nGW5iJ2J9bjIjEv5iCmRKgagzThlmUsK4VKXawswJbYGpGWDrFR1ZV8RmuhUiUQp5kkEYwOmtdF5zh3nidBxMiDDbvykbgnOMc5GKTtDB_tTYn9K358D8qkvcBa4Pf6cdcMLRJ8Pprp8xPClW52EyFb7GyicsRjhQTog7_vHoLf4M6aobL3APADNcUsPqvgYJKuvHCm_m3KhinO8yMbKBInzoYFeXP72sXJ_susTm_9a4B15PD06mMnZl8Ovr8la7EN_oGvyFlmZny_sGwBgc_XWa9gvHlQkTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFA5SrXjjT7W4WjWCiDez7CaZzORS6y611iJiwbswmSRQOswsnV1LveojCL5hn8RzkpnRLYiIV5MwSSY_5yRfMiffIeSFc6XKlHUJd0wmSH-SGDf1iRJGMMF5oQKl0IdDuXck9r-kvTUh3oWJ_BDDgRtqRpivUcEX1v-m5N1tKpGO8fonzMLXhQQ8gbjo0y8GKcDDk54wfCKyrGP3QWOeKwWsLUzRNnEddUYm0XUQG1ah-R1i-vpH45OT8WppxuW3K9SO_9XAu-R2h1Hp6yhU98g1V2-Rzei18nyL3HjTAKKEwOYsUF6f3yf-ILpgoADqYaCodWiq3tmD0cZTELWv7vLiOy1qS42rmjOI4I0SiAbHUi1dNnRRwThfXvxom-OKelhXDTIA0MDqenZs3QNyNJ993t1LOg8OSQk4CXa51hipcmGUAVw8zbJcMW9ZOS0y66WYcKOk4QDZrDeO-7RQXvq8dABSmLMgK9tko25q95DQtJRGpcbwQCHILGysbZnnwguRqpKlIzLuh0-XHb05etmodL_Nwf7U2J869OeIvBoyLCKzx5-Tbgd5GNLBRJdPOH50pxcQ3el-C5kzzhAcyBF5PrwGrcVfMUXtmhWmAWCOB3pQxMsoWEPhSPjdVitTnOJDt06nSJsPDQzS8rfK6v3Zbgg8-tcMz8jNj2_n-uDd4fvH5BYLfj_QLnmHbCxPV-4JoK-leRr06yeKsiL7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+litter+decomposition+of+above-+and+below-ground+organs+to+plant-soil+feedbacks+worldwide&rft.jtitle=The+Journal+of+ecology&rft.au=Freschet%2C+Gregoire+T&rft.au=Cornwell%2C+William+K&rft.au=Wardle%2C+David+A&rft.au=Elumeeva%2C+Tatyana+G&rft.date=2013-07-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=101&rft.issue=4&rft.spage=943&rft.epage=952&rft_id=info:doi/10.1111%2F1365-2745.12092&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon