Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide
1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and bel...
Saved in:
Published in | The Journal of ecology Vol. 101; no. 4; pp. 943 - 952 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing
01.07.2013
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0022-0477 1365-2745 1365-2745 |
DOI | 10.1111/1365-2745.12092 |
Cover
Loading…
Abstract | 1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and below-ground plant organs in ecosystem labile organic matter dynamics. 2. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. 3. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. 4. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above-versus belowground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. |
---|---|
AbstractList | Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above- versus below-ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a whole‐plant perspective. Through the use of meta‐analysis and global literature data, we quantified the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below‐ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below‐ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis . Our results provide evidence that within ecosystems, the relative inputs of above‐ versus below‐ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. Summary Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a whole‐plant perspective. Through the use of meta‐analysis and global literature data, we quantified the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below‐ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below‐ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above‐ versus below‐ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. In this study, using meta‐analysis techniques and global literature data, we provide evidence for worldwide interspecific coordination in leaf‐root‐stem decomposability, and quantify the relative roles of litters from above‐ and below‐ground plant organs in ecosystem labile organic matter dynamics. Based on these results, we propose a new conceptual framework relating plant traits to organic matter dynamics taking the whole‐plant perspective. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. Our results provide evidence that within ecosystems, the relative inputs of above- versus below-ground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. In this study, using meta-analysis techniques and global literature data, we provide evidence for worldwide interspecific coordination in leaf-root-stem decomposability, and quantify the relative roles of litters from above- and below-ground plant organs in ecosystem labile organic matter dynamics. Based on these results, we propose a new conceptual framework relating plant traits to organic matter dynamics taking the whole-plant perspective. 1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a whole-plant perspective. Through the use of meta-analysis and global literature data, we quantified the relative roles of litters from above-and below-ground plant organs in ecosystem labile organic matter dynamics. 2. We found that decomposition rates of leaves, fine roots and fine stems were coordinated across species worldwide although less strongly within ecosystems. We also show that fine roots and stems had lower decomposition rates relative to leaves, with large differences between woody and herbaceous species. Further, we estimated that on average below-ground litter represents approximately 33 and 48% of annual litter inputs in grasslands and forests, respectively. 3. These results suggest a major role for below-ground litter as a driver of ecosystem organic matter dynamics. We also suggest that, given that fine stem and fine root litters decompose approximately 1.5 and 2.8 times slower, respectively, than leaf litter derived from the same species, cycling of labile organic matter is likely to be much slower than predicted by data from leaf litter decomposition only. 4. Synthesis. Our results provide evidence that within ecosystems, the relative inputs of above-versus belowground litter strongly control the overall quality of the litter entering the decomposition system. This in turn determines soil labile organic matter dynamics and associated nutrient release in the ecosystem, which potentially feeds back to the mineral nutrition of plants and therefore plant trait values and plant community composition. |
Author | Liu, Wendan Onipchenko, Vladimir G. Tao, Jianping Cornwell, William K. Cornelissen, Johannes H.C. Jackson, Benjamin G. Wardle, David A. Elumeeva, Tatyana G. Freschet, Grégoire T. Soudzilovskaia, Nadejda A. |
Author_xml | – sequence: 1 givenname: Grégoire T. surname: Freschet fullname: Freschet, Grégoire T. – sequence: 2 givenname: William K. surname: Cornwell fullname: Cornwell, William K. – sequence: 3 givenname: David A. surname: Wardle fullname: Wardle, David A. – sequence: 4 givenname: Tatyana G. surname: Elumeeva fullname: Elumeeva, Tatyana G. – sequence: 5 givenname: Wendan surname: Liu fullname: Liu, Wendan – sequence: 6 givenname: Benjamin G. surname: Jackson fullname: Jackson, Benjamin G. – sequence: 7 givenname: Vladimir G. surname: Onipchenko fullname: Onipchenko, Vladimir G. – sequence: 8 givenname: Nadejda A. surname: Soudzilovskaia fullname: Soudzilovskaia, Nadejda A. – sequence: 9 givenname: Jianping surname: Tao fullname: Tao, Jianping – sequence: 10 givenname: Johannes H.C. surname: Cornelissen fullname: Cornelissen, Johannes H.C. |
BackLink | https://res.slu.se/id/publ/52617$$DView record from Swedish Publication Index |
BookMark | eNqFkb9v1DAUxy1UJK6FmQnJEgtLWv-Ik3hEpxaKTmKB2djx88lXXxzshKj_PQ5Hb-hSL0-2Ph_b730v0cUQB0DoPSXXtKwbyhtRsbYW15QRyV6hzfnkAm0IYawiddu-QZc5HwghTSvIBv3a-eHBD3sc_DRBwhb6eBxj9pOPA44OaxP_QIX1YLGBEJdqn-JcNjHt9ZDxFPEY9DBVOfqAHYA1un_IeIkp2MVbeIteOx0yvPtfr9DPu9sf26_V7vuX--3nXdULKlglrDGN7GojTUctbdtOMmdZT3VrXVMTbmRjOK25dQa4E1q6xnU9SEIZWFbzK1Sd7s0LjLNRY_JHnR5V1F7lMBud1qIyKMEa2hb-04kfU_w9Q57U0eceQmkG4pwV5VJKRogQBf34DD3EOQ2lm0K1nPG6TLpQNyeqTzHnBO78BUrUmpBa81BrHupfQsUQz4zeT3od_JS0Dy97iw_w-NIz6tvt9sn7cPIOeYrp7NVMdIQzwf8CcuavnQ |
CODEN | JECOAB |
CitedBy_id | crossref_primary_10_1016_j_foreco_2017_01_012 crossref_primary_10_3390_f11010014 crossref_primary_10_1007_s11104_018_03929_3 crossref_primary_10_1007_s13157_019_01256_6 crossref_primary_10_15446_rfmvz_v67n1_87689 crossref_primary_10_3390_f7080167 crossref_primary_10_1111_1365_2745_14319 crossref_primary_10_1007_s10705_023_10333_6 crossref_primary_10_1111_nph_17460 crossref_primary_10_7717_peerj_14264 crossref_primary_10_1007_s11104_023_05925_8 crossref_primary_10_1111_jvs_13153 crossref_primary_10_1016_j_catena_2024_108502 crossref_primary_10_1016_j_geoderma_2017_10_004 crossref_primary_10_1007_s00442_019_04546_2 crossref_primary_10_1007_s11104_017_3477_5 crossref_primary_10_1016_j_soilbio_2021_108530 crossref_primary_10_3389_fpls_2022_1065807 crossref_primary_10_1016_j_agrformet_2024_110368 crossref_primary_10_1016_j_soilbio_2017_03_003 crossref_primary_10_1016_j_soilbio_2018_08_006 crossref_primary_10_1111_nph_17572 crossref_primary_10_1134_S1995425518070028 crossref_primary_10_3389_fenvs_2022_956309 crossref_primary_10_1111_jvs_12192 crossref_primary_10_1038_s41467_024_49666_3 crossref_primary_10_1111_1365_2745_12921 crossref_primary_10_1111_jbi_13206 crossref_primary_10_1890_ES15_00206_1 crossref_primary_10_1016_j_scitotenv_2023_164978 crossref_primary_10_12974_2311_858X_2016_04_01_4 crossref_primary_10_1016_j_ecss_2021_107391 crossref_primary_10_1016_j_soilbio_2025_109751 crossref_primary_10_2139_ssrn_4169666 crossref_primary_10_1016_j_pedobi_2017_08_002 crossref_primary_10_1007_s11104_018_3654_1 crossref_primary_10_1007_s11104_016_2964_4 crossref_primary_10_1016_j_indic_2025_100670 crossref_primary_10_1016_j_scitotenv_2023_169504 crossref_primary_10_1007_s11104_024_06876_4 crossref_primary_10_3390_f8060183 crossref_primary_10_1016_j_apsoil_2022_104735 crossref_primary_10_1016_j_apsoil_2020_103516 crossref_primary_10_1016_j_agee_2021_107705 crossref_primary_10_1016_j_scitotenv_2022_156194 crossref_primary_10_1016_j_catena_2024_108649 crossref_primary_10_1002_ldr_2862 crossref_primary_10_1016_j_soilbio_2023_109289 crossref_primary_10_1016_j_foreco_2016_03_045 crossref_primary_10_1111_1365_2435_14198 crossref_primary_10_1093_jpe_rty034 crossref_primary_10_1016_j_flora_2020_151659 crossref_primary_10_1038_s41598_024_61120_4 crossref_primary_10_3389_fmicb_2021_541583 crossref_primary_10_1007_s11104_024_06488_y crossref_primary_10_1002_ecs2_1448 crossref_primary_10_1086_686199 crossref_primary_10_5194_bg_11_6081_2014 crossref_primary_10_1007_s10021_015_9899_0 crossref_primary_10_1016_j_ecolind_2022_109275 crossref_primary_10_1007_s10021_017_0163_7 crossref_primary_10_1007_s11104_022_05645_5 crossref_primary_10_1111_plb_12172 crossref_primary_10_1007_s10021_024_00934_9 crossref_primary_10_3390_agronomy12030747 crossref_primary_10_1016_j_jaridenv_2021_104696 crossref_primary_10_3390_plants11070846 crossref_primary_10_1007_s10021_023_00827_3 crossref_primary_10_1016_j_soilbio_2018_02_016 crossref_primary_10_3390_f13010093 crossref_primary_10_1111_gcb_14770 crossref_primary_10_1007_s00374_016_1125_5 crossref_primary_10_1007_s00442_024_05524_z crossref_primary_10_1016_j_jes_2021_06_006 crossref_primary_10_3390_microorganisms10061125 crossref_primary_10_1093_aob_mcz166 crossref_primary_10_1111_jbi_13791 crossref_primary_10_1093_jpe_rtad021 crossref_primary_10_1016_j_catena_2021_105423 crossref_primary_10_1016_j_jenvman_2024_122823 crossref_primary_10_1016_j_tree_2022_07_008 crossref_primary_10_1016_j_scitotenv_2024_175844 crossref_primary_10_1007_s10530_024_03405_3 crossref_primary_10_1016_j_foreco_2021_119081 crossref_primary_10_1016_j_ecoser_2024_101634 crossref_primary_10_1002_ldr_4902 crossref_primary_10_1016_j_jenvman_2025_124725 crossref_primary_10_1016_j_soilbio_2021_108450 crossref_primary_10_1016_j_tplants_2025_02_004 crossref_primary_10_1111_oik_05697 crossref_primary_10_3390_f12020236 crossref_primary_10_1111_nph_13904 crossref_primary_10_1007_s11104_016_2939_5 crossref_primary_10_1016_j_agee_2013_12_027 crossref_primary_10_1016_j_soilbio_2023_109023 crossref_primary_10_1134_S1064229319100119 crossref_primary_10_1111_nph_15524 crossref_primary_10_1590_2179_8087_019618 crossref_primary_10_1111_1365_2435_12883 crossref_primary_10_1007_s10021_017_0162_8 crossref_primary_10_1016_j_ppees_2016_09_002 crossref_primary_10_1007_s11104_022_05642_8 crossref_primary_10_1111_1365_2435_13057 crossref_primary_10_1093_aob_mcad102 crossref_primary_10_1093_jpe_rtac027 crossref_primary_10_1111_nph_16841 crossref_primary_10_1139_cjfr_2023_0280 crossref_primary_10_1007_s00253_023_12480_w crossref_primary_10_1016_j_scitotenv_2024_175298 crossref_primary_10_3390_f10040340 crossref_primary_10_1016_j_foreco_2018_08_036 crossref_primary_10_1016_j_scitotenv_2024_174083 crossref_primary_10_1007_s11104_015_2491_8 crossref_primary_10_1016_j_soilbio_2025_109715 crossref_primary_10_1016_j_geoderma_2021_115296 crossref_primary_10_1016_j_foreco_2021_119522 crossref_primary_10_1007_s11368_020_02797_8 crossref_primary_10_1007_s11104_025_07310_z crossref_primary_10_1111_nph_16844 crossref_primary_10_1016_j_ecss_2022_107809 crossref_primary_10_1371_journal_pone_0222973 crossref_primary_10_17129_botsci_2732 crossref_primary_10_1016_j_scitotenv_2024_175025 crossref_primary_10_1016_j_apsoil_2024_105824 crossref_primary_10_1016_j_agee_2022_108006 crossref_primary_10_1007_s11104_019_04248_x crossref_primary_10_1017_S0266467422000384 crossref_primary_10_1007_s00374_022_01659_4 crossref_primary_10_1016_j_jenvman_2023_118186 crossref_primary_10_1111_avsc_12638 crossref_primary_10_1016_j_scitotenv_2021_146748 crossref_primary_10_1007_s11104_021_05098_2 crossref_primary_10_1016_j_scitotenv_2025_178387 crossref_primary_10_1111_jvs_12168 crossref_primary_10_1007_s10886_016_0750_7 crossref_primary_10_1016_j_soilbio_2024_109442 crossref_primary_10_1016_j_soilbio_2019_107688 crossref_primary_10_1007_s10533_022_00988_8 crossref_primary_10_2139_ssrn_3983928 crossref_primary_10_1016_j_soilbio_2015_11_026 crossref_primary_10_3390_f14071351 crossref_primary_10_1111_1365_2435_13877 crossref_primary_10_1111_nph_16266 crossref_primary_10_1007_s11104_021_05163_w crossref_primary_10_1073_pnas_1716595115 crossref_primary_10_1038_sdata_2018_303 crossref_primary_10_1016_j_apsoil_2014_10_015 crossref_primary_10_1007_s11104_017_3353_3 crossref_primary_10_1890_13_1666_1 crossref_primary_10_1016_j_scitotenv_2017_03_136 crossref_primary_10_1016_j_geodrs_2025_e00938 crossref_primary_10_1016_j_scitotenv_2017_10_287 crossref_primary_10_1111_1365_2745_13832 crossref_primary_10_1007_s10533_017_0345_6 crossref_primary_10_1016_j_jaridenv_2019_104036 crossref_primary_10_1016_j_soilbio_2018_01_019 crossref_primary_10_1111_1365_2745_14009 crossref_primary_10_1111_mec_16852 crossref_primary_10_1371_journal_pone_0197363 crossref_primary_10_1007_s11104_020_04759_y crossref_primary_10_1007_s10457_022_00801_3 crossref_primary_10_1016_j_soilbio_2021_108483 crossref_primary_10_1016_j_soilbio_2024_109436 crossref_primary_10_1890_14_0777_1 crossref_primary_10_1016_j_scitotenv_2020_141442 crossref_primary_10_1016_j_soilbio_2021_108482 crossref_primary_10_1038_srep11043 crossref_primary_10_1016_j_gecco_2024_e02885 crossref_primary_10_1007_s11104_022_05522_1 crossref_primary_10_7717_peerj_10902 crossref_primary_10_7717_peerj_5095 crossref_primary_10_1007_s11104_021_04974_1 crossref_primary_10_1111_gfs_12280 crossref_primary_10_1007_s10342_016_0978_3 crossref_primary_10_1111_nph_14766 crossref_primary_10_1007_s11104_024_06590_1 crossref_primary_10_3389_fenvs_2019_00168 crossref_primary_10_1007_s11258_019_00945_w crossref_primary_10_1111_nph_12902 crossref_primary_10_1111_oik_09025 crossref_primary_10_1016_j_scitotenv_2024_171168 crossref_primary_10_1016_j_eja_2022_126535 crossref_primary_10_1007_s10021_015_9946_x crossref_primary_10_1111_nph_13385 crossref_primary_10_1007_s10021_015_9900_y crossref_primary_10_1007_s13593_017_0421_2 crossref_primary_10_1071_FP22242 crossref_primary_10_1007_s11104_025_07276_y crossref_primary_10_1007_s11284_014_1141_6 crossref_primary_10_1111_1365_2745_12537 crossref_primary_10_1007_s11629_018_5303_9 crossref_primary_10_1016_j_envres_2023_115482 crossref_primary_10_1111_jvs_12341 crossref_primary_10_1016_j_baae_2019_08_001 crossref_primary_10_5194_bg_16_1955_2019 crossref_primary_10_1016_j_jenvman_2018_10_103 crossref_primary_10_1007_s11104_020_04502_7 crossref_primary_10_1016_j_geoderma_2020_114454 crossref_primary_10_1016_j_tree_2017_11_005 crossref_primary_10_1007_s11104_015_2647_6 crossref_primary_10_1007_s11104_019_03981_7 crossref_primary_10_1016_j_tree_2022_06_003 crossref_primary_10_1016_j_soilbio_2017_09_031 crossref_primary_10_1016_j_apsoil_2015_07_010 crossref_primary_10_1007_s11104_014_2282_7 crossref_primary_10_1007_s10021_021_00728_3 crossref_primary_10_1007_s11104_016_3082_z crossref_primary_10_1111_ele_13248 crossref_primary_10_1111_nph_20105 crossref_primary_10_1111_nph_13494 crossref_primary_10_1016_j_actao_2021_103775 crossref_primary_10_1111_ele_13923 crossref_primary_10_1111_1365_2745_12769 crossref_primary_10_1890_13_0824_1 crossref_primary_10_1016_j_geoderma_2021_115011 crossref_primary_10_1134_S1064229323601956 crossref_primary_10_1111_nph_12845 crossref_primary_10_1128_AEM_02061_17 crossref_primary_10_1007_s00374_020_01457_w crossref_primary_10_1016_j_tree_2015_03_015 crossref_primary_10_1002_ecy_1790 crossref_primary_10_1111_1365_2745_13299 crossref_primary_10_2135_cropsci2018_08_0523 crossref_primary_10_1016_j_soilbio_2015_05_005 crossref_primary_10_3389_fmicb_2021_633751 crossref_primary_10_1007_s11104_019_03931_3 crossref_primary_10_1016_j_ecolind_2020_107200 crossref_primary_10_1007_s10021_020_00583_8 crossref_primary_10_1016_j_soilbio_2018_11_018 crossref_primary_10_1016_j_catena_2021_105803 crossref_primary_10_1016_j_jenvman_2024_120468 crossref_primary_10_1155_2014_329031 crossref_primary_10_1007_s11104_023_06308_9 crossref_primary_10_1016_j_scitotenv_2024_173203 crossref_primary_10_1111_1365_2435_13027 crossref_primary_10_1111_nph_14571 crossref_primary_10_1016_j_apsoil_2024_105742 crossref_primary_10_1007_s11104_015_2528_z crossref_primary_10_1007_s11104_016_3077_9 crossref_primary_10_1016_j_catena_2019_104186 crossref_primary_10_1016_j_ecolmodel_2022_109940 crossref_primary_10_3390_plants11223042 crossref_primary_10_1016_j_geodrs_2024_e00823 crossref_primary_10_1016_j_scitotenv_2019_135397 crossref_primary_10_3390_f7100234 crossref_primary_10_1111_1365_2745_12433 crossref_primary_10_1007_s11284_013_1106_1 crossref_primary_10_1111_1365_2745_13641 crossref_primary_10_1016_j_foreco_2022_120008 crossref_primary_10_1016_j_soilbio_2021_108278 crossref_primary_10_1007_s10342_024_01729_2 crossref_primary_10_1111_1365_2435_12619 crossref_primary_10_1111_nph_13003 crossref_primary_10_1111_nph_19900 crossref_primary_10_1111_nph_16517 crossref_primary_10_12677_GSER_2023_121005 crossref_primary_10_3390_f15091492 crossref_primary_10_1016_j_catena_2018_05_009 crossref_primary_10_1007_s00248_022_02051_3 crossref_primary_10_1007_s11676_020_01273_w crossref_primary_10_1016_j_envexpbot_2019_103865 crossref_primary_10_1111_1365_2435_12853 crossref_primary_10_1111_1365_2435_13029 crossref_primary_10_1007_s00248_021_01840_6 crossref_primary_10_1111_1365_2664_12939 crossref_primary_10_1111_1365_2435_13278 crossref_primary_10_1007_s42832_021_0085_3 crossref_primary_10_1111_nph_17279 crossref_primary_10_1111_nph_13352 crossref_primary_10_1007_s00374_019_01429_9 crossref_primary_10_1590_18069657rbcs20170355 crossref_primary_10_1007_s11104_016_3066_z crossref_primary_10_1016_j_scitotenv_2017_12_199 crossref_primary_10_1080_15320383_2017_1403415 crossref_primary_10_1007_s11056_019_09763_4 crossref_primary_10_1016_j_fmre_2022_01_029 crossref_primary_10_3390_environments4010004 crossref_primary_10_1111_oik_08899 crossref_primary_10_1128_MMBR_00063_16 crossref_primary_10_1016_j_jhydrol_2024_131086 crossref_primary_10_1016_j_soilbio_2015_10_023 crossref_primary_10_1016_j_geoderma_2017_09_033 crossref_primary_10_1007_s11104_017_3423_6 crossref_primary_10_1007_s11104_025_07379_6 crossref_primary_10_3389_fpls_2022_878908 crossref_primary_10_1007_s11104_020_04624_y crossref_primary_10_1016_j_foreco_2022_120355 crossref_primary_10_3390_atmos13060851 crossref_primary_10_1007_s11104_021_04855_7 crossref_primary_10_1111_nph_14206 crossref_primary_10_1007_s11104_021_05191_6 crossref_primary_10_1016_j_foreco_2016_06_033 crossref_primary_10_1111_nph_18870 crossref_primary_10_1088_1748_9326_10_9_094020 crossref_primary_10_1111_1365_2745_12217 crossref_primary_10_1007_s11104_023_05908_9 crossref_primary_10_1007_s11104_023_06268_0 crossref_primary_10_1111_oik_01374 crossref_primary_10_1111_1365_2745_12211 crossref_primary_10_1007_s11104_022_05785_8 crossref_primary_10_1016_j_scitotenv_2023_165003 crossref_primary_10_1002_sae2_12048 crossref_primary_10_1016_j_agee_2015_12_026 crossref_primary_10_1016_j_apsoil_2020_103651 crossref_primary_10_1016_j_geoderma_2022_115744 crossref_primary_10_1016_j_catena_2022_106523 crossref_primary_10_1007_s10021_020_00570_z crossref_primary_10_1111_nph_18515 crossref_primary_10_1186_s13765_022_00758_y crossref_primary_10_1111_1365_2435_13208 crossref_primary_10_1590_1519_6984_264237 crossref_primary_10_1007_s11104_024_06487_z crossref_primary_10_1007_s10533_015_0080_9 crossref_primary_10_1016_j_scitotenv_2021_152317 crossref_primary_10_1016_j_envres_2023_115575 crossref_primary_10_1016_j_geoderma_2022_116160 crossref_primary_10_1016_j_agee_2022_108051 crossref_primary_10_1016_j_apsoil_2017_07_038 crossref_primary_10_1111_nph_18742 crossref_primary_10_5194_bg_21_3165_2024 crossref_primary_10_1007_s00442_024_05616_w crossref_primary_10_1111_nph_70001 crossref_primary_10_3390_rs13112223 crossref_primary_10_1111_1365_2745_13536 crossref_primary_10_1080_13416979_2020_1826622 crossref_primary_10_3389_fpls_2023_1077631 crossref_primary_10_3390_f13081207 crossref_primary_10_1007_s10021_022_00800_6 crossref_primary_10_1007_s10533_018_0513_3 crossref_primary_10_1111_nph_13619 crossref_primary_10_1016_j_geoderma_2016_05_019 crossref_primary_10_1111_oik_02457 crossref_primary_10_1016_j_agee_2017_10_007 crossref_primary_10_1016_j_scitotenv_2017_07_063 crossref_primary_10_1111_1365_2435_13338 crossref_primary_10_7717_peerj_3777 crossref_primary_10_7717_peerj_5710 crossref_primary_10_1016_j_foreco_2015_09_026 crossref_primary_10_1093_femsec_fiac025 crossref_primary_10_31857_S0032180X23600701 crossref_primary_10_1016_j_geoderma_2022_115883 crossref_primary_10_1016_j_agee_2020_107074 crossref_primary_10_1007_s00442_016_3702_6 crossref_primary_10_3389_ffgc_2021_686468 crossref_primary_10_1002_sae2_70022 crossref_primary_10_1002_ece3_3522 crossref_primary_10_1111_1365_2745_13688 crossref_primary_10_1016_j_scitotenv_2018_07_038 crossref_primary_10_1016_j_foreco_2023_120848 crossref_primary_10_1007_s00442_020_04756_z crossref_primary_10_1002_ecy_3348 crossref_primary_10_1111_1365_2745_12474 crossref_primary_10_1093_jpe_rtae025 crossref_primary_10_1016_j_pedobi_2017_06_005 crossref_primary_10_4236_ajcc_2024_132008 crossref_primary_10_1007_s11104_015_2762_4 crossref_primary_10_1093_aob_mcx175 crossref_primary_10_1007_s11104_022_05590_3 crossref_primary_10_1111_1365_2435_14327 crossref_primary_10_1007_s00374_025_01897_2 crossref_primary_10_1007_s12583_019_1017_3 crossref_primary_10_1111_nph_15454 crossref_primary_10_1111_nph_19490 crossref_primary_10_3390_land13111963 crossref_primary_10_1111_1365_2745_12228 crossref_primary_10_1007_s00442_017_3962_9 crossref_primary_10_1007_s10021_016_0031_x crossref_primary_10_1016_j_tplants_2017_01_005 crossref_primary_10_1007_s00468_015_1221_4 crossref_primary_10_1007_s10530_022_02736_3 crossref_primary_10_1007_s11104_021_05144_z crossref_primary_10_1016_j_foreco_2014_03_039 crossref_primary_10_1080_17480272_2024_2431168 crossref_primary_10_1093_aob_mcu113 crossref_primary_10_1021_acs_est_4c01172 crossref_primary_10_1111_1365_2435_14200 crossref_primary_10_1007_s11104_022_05675_z crossref_primary_10_1111_nph_14007 crossref_primary_10_1007_s11104_023_06208_y crossref_primary_10_1016_j_envexpbot_2014_09_009 crossref_primary_10_1186_s13021_020_00165_0 |
Cites_doi | 10.1890/03-0799 10.1086/284466 10.1139/x03-241 10.1111/j.1600‐0706.2012.00056.x 10.1023/A:1021201012950 10.1016/S0169-5347(97)01001-X 10.1111/j.1365-2745.2009.01615.x 10.1017/S1464793106007007 10.1111/j.1365-2435.2011.01913.x 10.2307/3543688 10.1111/j.1469-8137.2008.02438.x 10.1111/j.1365-2486.2008.01557.x 10.1111/j.1365-2745.2011.01943.x 10.5194/bg-9-565-2012 10.1111/j.1461-0248.2008.01219.x 10.1080/07352689.2010.483579 10.1080/00103620600767108 10.1046/j.1365-2745.1998.00268.x 10.1046/j.1365-2435.2002.00664.x 10.1111/j.1469-8137.2005.01349.x 10.1111/j.1461-0248.2010.01517.x 10.1007/s004420050201 10.1007/978-3-540-92706-8_8 10.1007/s11104-010-0415-1 10.1111/j.1365-2745.2008.01395.x 10.1016/S0378-1127(99)00062-6 10.1007/s00374-005-0006-0 10.2307/2261479 10.1046/j.1469-8137.2000.00681.x 10.1007/s13280-012-0304-3 10.1111/j.1654-1103.2004.tb02266.x 10.1890/04-1075 10.1007/s10533-010-9439-0 10.1111/j.1469-8137.2005.01428.x 10.1111/j.2006.0030-1299.15354.x 10.1016/S0006-3207(03)00235-0 10.1016/S0169-5347(00)88978-8 10.1126/science.1094875 10.1016/S0065-2504(08)60121-X 10.1111/j.1469-8137.2011.03952.x 10.1139/b91-281 10.2307/2963492 10.1111/j.1365-2486.2008.01672.x 10.1890/03-8002 10.1016/j.soilbio.2006.12.037 10.1007/s00442-009-1479-6 10.1016/j.foreco.2009.02.021 10.1093/jxb/50.330.29 10.1016/0169-5347(92)90126-V 10.1038/nature10386 10.1139/x99-132 10.1046/j.1365-2745.1998.00306.x 10.1093/aob/mcr297 10.1111/j.1469-8137.2010.03228.x 10.1016/0378-1127(93)90087-4 10.1007/s004420100740 10.1093/treephys/9.1-2.185 10.2307/2656636 10.1890/04-1254 10.1111/j.1365-2435.2007.01289.x 10.1007/BF00002935 10.1139/b96-084 10.1046/j.1365-2486.2002.00512.x 10.1007/s00442-006-0495-z |
ContentType | Journal Article |
Copyright | 2013 British Ecological Society 2013 The Authors. Journal of Ecology © 2013 British Ecological Society Copyright Blackwell Publishing Ltd. Jul 2013 |
Copyright_xml | – notice: 2013 British Ecological Society – notice: 2013 The Authors. Journal of Ecology © 2013 British Ecological Society – notice: Copyright Blackwell Publishing Ltd. Jul 2013 |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI ADTPV AOWAS |
DOI | 10.1111/1365-2745.12092 |
DatabaseName | CrossRef Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts SwePub SwePub Articles |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Ecology Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Botany |
EISSN | 1365-2745 |
EndPage | 952 |
ExternalDocumentID | oai_slubar_slu_se_52617 3009953801 10_1111_1365_2745_12092 JEC12092 42580325 |
Genre | article Feature |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29K 2AX 2WC 3-9 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHKG AAHQN AAISJ AAKGQ AAMMB AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABAWQ ABBHK ABCQN ABCUV ABEML ABJNI ABLJU ABPFR ABPLY ABPPZ ABPQH ABPVW ABSQW ABTLG ABXSQ ACAHQ ACCZN ACFBH ACGFO ACGFS ACGOD ACHIC ACHJO ACNCT ACPOU ACPRK ACSCC ACSTJ ACUBG ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADMHG ADOZA ADULT ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUPB AEUYR AEYWJ AFAZZ AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFXHP AFZJQ AGUYK AGXDD AGYGG AHBTC AHXOZ AIAGR AIDQK AIDYY AILXY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQVQM ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BY8 CBGCD CUYZI D-E D-F D-I DCZOG DEVKO DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAU EBS ECGQY EJD F00 F01 F04 F5P G-S G.N GODZA H.T H.X HGLYW HZI HZ~ IHE IPSME IX1 J0M JAAYA JAS JBMMH JBS JBZCM JEB JENOY JHFFW JKQEH JLEZI JLS JLXEF JPL JPM JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SA0 SUPJJ TN5 UB1 UPT V8K W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WXSBR WYISQ XG1 Y6R YF5 YQT YZZ ZCA ZZTAW ~02 ~IA ~KM ~WT 24P 42X 8WZ A6W AAHHS ABEFU ABTAH ABYAD ACCFJ ACTWD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE AS~ CAG COF DOOOF ESX FVMVE GTFYD HF~ HGD HQ2 HTVGU HVGLF JSODD MVM WHG WRC XIH YXE ZCG ZY4 AAYXX AGHNM CITATION 7QG 7SN 7SS 7ST 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 SOI ADTPV AOWAS |
ID | FETCH-LOGICAL-c5152-5dbb6984b9b81d177892fd2c1a7df6403b96b3143dfbe3f5a9f6f8ce9012ed243 |
IEDL.DBID | DR2 |
ISSN | 0022-0477 1365-2745 |
IngestDate | Thu Aug 21 06:58:17 EDT 2025 Fri Jul 11 09:07:37 EDT 2025 Fri Jul 25 10:52:43 EDT 2025 Tue Jul 01 03:13:36 EDT 2025 Thu Apr 24 22:50:11 EDT 2025 Wed Jan 22 17:01:50 EST 2025 Sun Aug 24 12:10:36 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5152-5dbb6984b9b81d177892fd2c1a7df6403b96b3143dfbe3f5a9f6f8ce9012ed243 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/1365-2745.12092 |
PQID | 1373234136 |
PQPubID | 37508 |
PageCount | 10 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_52617 proquest_miscellaneous_1399920055 proquest_journals_1373234136 crossref_primary_10_1111_1365_2745_12092 crossref_citationtrail_10_1111_1365_2745_12092 wiley_primary_10_1111_1365_2745_12092_JEC12092 jstor_primary_42580325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2013 |
PublicationDateYYYYMMDD | 2013-07-01 |
PublicationDate_xml | – month: 07 year: 2013 text: July 2013 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | The Journal of ecology |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing – name: Blackwell Publishing Ltd |
References | 2002; 16 2007; 39 2011; 478 2010; 13 1993; 60 2000; 87 1997; 111 2010; 101 2006; 37 1996; 74 1992; 15 1999; 123 1998; 86 1992; 7 2001 2000 2010; 29 2004; 34 1997; 12 1970; 21 1999; 50 2007; 21 2003; 164 1996; 66 2004; 85 2010a; 98 1999; 29 1995; 10 1986; 15 2002; 8 2009 2008; 14 2005; 42 2005; 86 2008; 11 2010; 162 2012b; 26 2008; 96 2006; 150 2004; 428 2006; 115 2001; 129 1991; 9 2004; 304 2009; 257 2012; 109 2006; 81 1986; 127 1991; 69 2000; 147 2005; 167 2004; 15 2010; 335 2012; 193 1996; 84 2008; 179 2013 2012a; 100 2004; 117 2012; 41 2010b; 186 2012; 9 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_64_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 Rosenberg M.S. (e_1_2_6_48_1) 2000 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_61_1 Grime J.P. (e_1_2_6_27_1) 2001 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_46_1 |
References_xml | – volume: 74 start-page: 659 year: 1996 end-page: 672 article-title: Maximum decomposition limits of forest litter types: a synthesis publication-title: Canadian Journal of Botany – volume: 150 start-page: 97 year: 2006 end-page: 107 article-title: Intrinsic effects of species on leaf litter and root decomposition: a comparison of temperate grasses from North and South America publication-title: Oecologia – volume: 478 start-page: 49 year: 2011 end-page: 56 article-title: Persistence of soil organic matter as an ecosystem property publication-title: Nature – volume: 115 start-page: 453 year: 2006 end-page: 462 article-title: Changes in the ratio of twig to foliage in litterfall with species composition, and consequences for decomposition across a long term chronosequence publication-title: Oikos – year: 2001 – volume: 37 start-page: 1859 year: 2006 end-page: 1875 article-title: Effects of litter and fine root composition on their decomposition in a Rhodic Paleustalf under different land uses publication-title: Communications in Soil Science and Plant Analysis – volume: 86 start-page: 320 year: 2005 end-page: 326 article-title: Litter quality and the temperature sensitivity of decomposition publication-title: Ecology – volume: 123 start-page: 231 year: 1999 end-page: 244 article-title: Litter production and leaf‐litter decomposition of selected tree species in tropical forests at Kodayar in the Western Ghats, India publication-title: Forest Ecology and Management – volume: 14 start-page: 2661 year: 2008 end-page: 2677 article-title: Global decomposition experiment shows soil animal impacts on decomposition are climate‐dependent publication-title: Global Change Biology – volume: 42 start-page: 119 year: 2005 end-page: 128 article-title: Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality publication-title: Biology and Fertility of Soils – volume: 98 start-page: 362 year: 2010a end-page: 373 article-title: Evidence of the ‘plant economics spectrum’ in a subarctic flora publication-title: Journal of Ecology – volume: 9 start-page: 565 year: 2012 end-page: 576 article-title: Plant‐driven variation in decomposition rates improves projections of global litter stock distribution publication-title: Biogeosciences – volume: 12 start-page: 139 year: 1997 end-page: 143 article-title: Competition for nitrogen between plants and soil microorganisms publication-title: Trends in Ecology & Evolution – volume: 50 start-page: 29 year: 1999 end-page: 37 article-title: Interspecific competition in natural plant communities: mechanisms, trade‐offs and plant‐soil feedbacks publication-title: Journal of Experimental Botany – year: 2013 article-title: Are functional traits and litter decomposability coordinated across leaves, twigs, and wood? A test using temperate rainforest tree species publication-title: Oikos – volume: 29 start-page: 204 year: 2010 end-page: 221 article-title: Fine root biomass, production, turnover rates, and nutrient contents in boreal forest ecosystems in relation to species, climate, fertility, and stand age: literature review and meta‐analyses publication-title: Critical Reviews in Plant Sciences – volume: 84 start-page: 573 year: 1996 end-page: 582 article-title: An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types publication-title: Journal of Ecology – volume: 117 start-page: 1 year: 2004 end-page: 10 article-title: Relative importance of coarse and fine woody debris for the diversity of wood‐inhabiting fungi in temperate broadleaf forests publication-title: Biological Conservation – volume: 7 start-page: 336 year: 1992 end-page: 339 article-title: Effects of plant species on nutrient cycling publication-title: Trends in Ecology & Evolution – volume: 60 start-page: 327 year: 1993 end-page: 344 article-title: Litter and fine root dynamics of a relict sacred grove forest at Cherrapunji in north‐eastern India publication-title: Forest Ecology and Management – volume: 34 start-page: 763 year: 2004 end-page: 777 article-title: Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: a synthesis publication-title: Canadian Journal of Forest Research – volume: 257 start-page: 2133 year: 2009 end-page: 2144 article-title: Litterfall and nutrient return in five tree species in a common garden experiment publication-title: Forest Ecology and Management – volume: 164 start-page: 157 year: 2003 end-page: 170 article-title: Litterfall and nutrient dynamics in a montane moist evergreen broad‐leaved forest in Ailao Mountains, SW China publication-title: Plant Ecology – volume: 87 start-page: 402 year: 2000 end-page: 411 article-title: Consequences of phenotypic plasticity vs. interspecific differences in leaf and root traits for acquisition of above‐ground and below‐ground resources publication-title: American Journal of Botany – volume: 85 start-page: 2630 year: 2004 end-page: 2637 article-title: Plant functional markers capture ecosystem properties during secondary succession publication-title: Ecology – volume: 41 start-page: 231 year: 2012 end-page: 245 article-title: Controls on coarse wood decay in temperate tree species: birth of the LOGLIFE experiment publication-title: Ambio – volume: 13 start-page: 1338 year: 2010 end-page: 1347 article-title: Decoupled leaf and stem economics in rain forest trees publication-title: Ecology Letters – volume: 179 start-page: 165 year: 2008 end-page: 175 article-title: High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community publication-title: New Phytologist – volume: 15 start-page: 295 year: 2004 end-page: 304 article-title: The plant traits that drive ecosystems: Evidence from three continents publication-title: Journal of Vegetation Science – volume: 193 start-page: 30 year: 2012 end-page: 50 article-title: Biomass allocation to leaves, stems and roots: meta‐analyses of interspecific variation and environmental control publication-title: New Phytologist – volume: 16 start-page: 545 year: 2002 end-page: 556 article-title: Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail publication-title: Functional Ecology – volume: 8 start-page: 736 year: 2002 end-page: 753 article-title: Estimating net primary productivity from grassland biomass dynamics measurements publication-title: Global Change Biology – volume: 162 start-page: 505 year: 2010 end-page: 513 article-title: Fine root decomposition rates do not mirror those of leaf litter among temperate tree species publication-title: Oecologia – volume: 39 start-page: 1428 year: 2007 end-page: 1436 article-title: Nitrogen transfer between decomposing leaves of different N status publication-title: Soil Biology and Biochemistry – volume: 21 start-page: 326 year: 1970 end-page: 329 article-title: Fluctuations in litter‐fall in a mixed deciduous woodland over a three‐year period 1966–68 publication-title: Oikos – volume: 109 start-page: 463 year: 2012 end-page: 472 article-title: Plant traits and decomposition: are the relationships for roots comparable to those for leaves? publication-title: Annals of Botany – volume: 21 start-page: 387 year: 2007 end-page: 393 article-title: Evolution on ecological time‐scales publication-title: Functional Ecology – volume: 101 start-page: 133 year: 2010 end-page: 149 article-title: Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? publication-title: Biogeochemistry – volume: 26 start-page: 56 year: 2012b end-page: 65 article-title: A plant economics spectrum of litter decomposability publication-title: Functional Ecology – volume: 147 start-page: 13 year: 2000 end-page: 31 article-title: Global patterns of root turnover for terrestrial ecosystems publication-title: New Phytologist – volume: 335 start-page: 289 year: 2010 end-page: 298 article-title: Correlation between leaf litter and fine root decomposition among subtropical tree species publication-title: Plant and Soil – volume: 9 start-page: 185 year: 1991 end-page: 207 article-title: Nutrient retranslocation in temperate conifers publication-title: Tree Physiology – volume: 29 start-page: 1592 year: 1999 end-page: 1603 article-title: The contribution of coarse woody debris to carbon, nitrogen, and phosphorus cycles in three Rocky Mountain coniferous forests publication-title: Canadian Journal of Forest Research – volume: 11 start-page: 1065 year: 2008 end-page: 1071 article-title: Plant species traits are the predominant control on litter decomposition rates within biomes worldwide publication-title: Ecology Letters – volume: 86 start-page: 12 year: 2005 end-page: 19 article-title: Environmental constraints on a global relationship among leaf and root traits of grasses publication-title: Ecology – volume: 86 start-page: 902 year: 1998 end-page: 910 article-title: Benefits of plant diversity to ecosystems: immediate, filter and founder effects publication-title: Journal of Ecology – year: 2000 – volume: 96 start-page: 884 year: 2008 end-page: 893 article-title: Functional identity is more important than diversity in influencing ecosystem processes in a temperate native grassland publication-title: Journal of Ecology – volume: 127 start-page: 48 year: 1986 end-page: 58 article-title: The nature of nutrient limitation in plant communities publication-title: The American Naturalist – volume: 69 start-page: 2242 year: 1991 end-page: 2250 article-title: Substrate control of litter decomposition in 4 Rocky‐Mountain coniferous forests publication-title: Canadian Journal of Botany – volume: 14 start-page: 1125 year: 2008 end-page: 1140 article-title: Scaling environmental change through the community‐level: a trait‐based response‐and‐effect framework for plants publication-title: Global Change Biology – volume: 129 start-page: 407 year: 2001 end-page: 419 article-title: Global patterns in root decomposition: comparisons of climate and litter quality effects publication-title: Oecologia – volume: 428 start-page: 821 year: 2004 end-page: 827 article-title: The worldwide leaf economics spectrum publication-title: Nature – start-page: 159 year: 2009 end-page: 190 – volume: 85 start-page: 591 year: 2004 end-page: 602 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology – volume: 186 start-page: 879 year: 2010b end-page: 889 article-title: Substantial nutrient resorption from leaves, stems and roots in a sub‐arctic flora: what is the link with other resource economics traits? publication-title: New Phytologist – volume: 66 start-page: 503 year: 1996 end-page: 522 article-title: Temperature and plant species control over litter decomposition in Alaskan tundra publication-title: Ecological Monographs – volume: 304 start-page: 1629 year: 2004 end-page: 1633 article-title: Ecological linkages between aboveground and belowground biota publication-title: Science – volume: 100 start-page: 619 year: 2012a end-page: 630 article-title: Multiple mechanisms for trait effects on litter decomposition: moving beyond home‐field advantage with a new hypothesis publication-title: Journal of Ecology – volume: 15 start-page: 133 year: 1986 end-page: 302 – volume: 86 start-page: 405 year: 1998 end-page: 420 article-title: Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems? publication-title: Journal of Ecology – volume: 15 start-page: 175 year: 1992 end-page: 190 article-title: Root turnover as determinant of the cycling of C, N, and P in a dry heathland ecosystem publication-title: Biogeochemistry – volume: 81 start-page: 259 year: 2006 end-page: 291 article-title: Bivariate line‐fitting methods for allometry publication-title: Biological Reviews – volume: 10 start-page: 63 year: 1995 end-page: 66 article-title: Litter decomposition, climate and litter quality publication-title: Trends in Ecology & Evolution – volume: 167 start-page: 493 year: 2005 end-page: 508 article-title: Linking leaf and root trait syndromes among 39 grassland and savannah species publication-title: New Phytologist – volume: 111 start-page: 1 year: 1997 end-page: 11 article-title: Root biomass allocation in the world's upland forests publication-title: Oecologia – ident: e_1_2_6_24_1 doi: 10.1890/03-0799 – ident: e_1_2_6_11_1 doi: 10.1086/284466 – ident: e_1_2_6_40_1 doi: 10.1139/x03-241 – ident: e_1_2_6_35_1 doi: 10.1111/j.1600‐0706.2012.00056.x – volume-title: Plant Strategies, Vegetation Processes, and Ecosystem Properties year: 2001 ident: e_1_2_6_27_1 – ident: e_1_2_6_42_1 doi: 10.1023/A:1021201012950 – ident: e_1_2_6_37_1 doi: 10.1016/S0169-5347(97)01001-X – ident: e_1_2_6_22_1 doi: 10.1111/j.1365-2745.2009.01615.x – ident: e_1_2_6_65_1 doi: 10.1017/S1464793106007007 – ident: e_1_2_6_21_1 doi: 10.1111/j.1365-2435.2011.01913.x – ident: e_1_2_6_57_1 doi: 10.2307/3543688 – ident: e_1_2_6_31_1 doi: 10.1111/j.1469-8137.2008.02438.x – ident: e_1_2_6_55_1 doi: 10.1111/j.1365-2486.2008.01557.x – ident: e_1_2_6_20_1 doi: 10.1111/j.1365-2745.2011.01943.x – ident: e_1_2_6_8_1 doi: 10.5194/bg-9-565-2012 – ident: e_1_2_6_14_1 doi: 10.1111/j.1461-0248.2008.01219.x – ident: e_1_2_6_67_1 doi: 10.1080/07352689.2010.483579 – ident: e_1_2_6_36_1 doi: 10.1080/00103620600767108 – ident: e_1_2_6_63_1 doi: 10.1046/j.1365-2745.1998.00268.x – ident: e_1_2_6_41_1 doi: 10.1046/j.1365-2435.2002.00664.x – ident: e_1_2_6_66_1 doi: 10.1111/j.1469-8137.2005.01349.x – ident: e_1_2_6_5_1 doi: 10.1111/j.1461-0248.2010.01517.x – ident: e_1_2_6_9_1 doi: 10.1007/s004420050201 – ident: e_1_2_6_29_1 doi: 10.1007/978-3-540-92706-8_8 – ident: e_1_2_6_62_1 doi: 10.1007/s11104-010-0415-1 – ident: e_1_2_6_43_1 doi: 10.1111/j.1365-2745.2008.01395.x – ident: e_1_2_6_56_1 doi: 10.1016/S0378-1127(99)00062-6 – ident: e_1_2_6_2_1 doi: 10.1007/s00374-005-0006-0 – ident: e_1_2_6_12_1 doi: 10.2307/2261479 – ident: e_1_2_6_25_1 doi: 10.1046/j.1469-8137.2000.00681.x – ident: e_1_2_6_13_1 doi: 10.1007/s13280-012-0304-3 – ident: e_1_2_6_18_1 doi: 10.1111/j.1654-1103.2004.tb02266.x – ident: e_1_2_6_16_1 doi: 10.1890/04-1075 – ident: e_1_2_6_47_1 doi: 10.1007/s10533-010-9439-0 – ident: e_1_2_6_59_1 doi: 10.1111/j.1469-8137.2005.01428.x – volume-title: MetaWin: Statistical Software for Meta‐Analysis year: 2000 ident: e_1_2_6_48_1 – ident: e_1_2_6_17_1 doi: 10.1111/j.2006.0030-1299.15354.x – ident: e_1_2_6_45_1 doi: 10.1016/S0006-3207(03)00235-0 – ident: e_1_2_6_15_1 doi: 10.1016/S0169-5347(00)88978-8 – ident: e_1_2_6_64_1 doi: 10.1126/science.1094875 – ident: e_1_2_6_30_1 doi: 10.1016/S0065-2504(08)60121-X – ident: e_1_2_6_46_1 doi: 10.1111/j.1469-8137.2011.03952.x – ident: e_1_2_6_58_1 doi: 10.1139/b91-281 – ident: e_1_2_6_33_1 doi: 10.2307/2963492 – ident: e_1_2_6_61_1 doi: 10.1111/j.1365-2486.2008.01672.x – ident: e_1_2_6_50_1 doi: 10.1890/03-8002 – ident: e_1_2_6_51_1 doi: 10.1016/j.soilbio.2006.12.037 – ident: e_1_2_6_34_1 doi: 10.1007/s00442-009-1479-6 – ident: e_1_2_6_28_1 doi: 10.1016/j.foreco.2009.02.021 – ident: e_1_2_6_3_1 doi: 10.1093/jxb/50.330.29 – ident: e_1_2_6_32_1 doi: 10.1016/0169-5347(92)90126-V – ident: e_1_2_6_52_1 doi: 10.1038/nature10386 – ident: e_1_2_6_39_1 doi: 10.1139/x99-132 – ident: e_1_2_6_26_1 doi: 10.1046/j.1365-2745.1998.00306.x – ident: e_1_2_6_7_1 doi: 10.1093/aob/mcr297 – ident: e_1_2_6_23_1 doi: 10.1111/j.1469-8137.2010.03228.x – ident: e_1_2_6_38_1 doi: 10.1016/0378-1127(93)90087-4 – ident: e_1_2_6_54_1 doi: 10.1007/s004420100740 – ident: e_1_2_6_44_1 doi: 10.1093/treephys/9.1-2.185 – ident: e_1_2_6_49_1 doi: 10.2307/2656636 – ident: e_1_2_6_19_1 doi: 10.1890/04-1254 – ident: e_1_2_6_10_1 doi: 10.1111/j.1365-2435.2007.01289.x – ident: e_1_2_6_4_1 doi: 10.1007/BF00002935 – ident: e_1_2_6_6_1 doi: 10.1139/b96-084 – ident: e_1_2_6_53_1 doi: 10.1046/j.1365-2486.2002.00512.x – ident: e_1_2_6_60_1 doi: 10.1007/s00442-006-0495-z |
SSID | ssj0006750 |
Score | 2.5723708 |
Snippet | 1. Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a... Summary Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a... Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf‐centred to a... Conceptual frameworks relating plant traits to ecosystem processes such as organic matter dynamics are progressively moving from a leaf-centred to a... |
SourceID | swepub proquest crossref wiley jstor |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 943 |
SubjectTerms | Community composition Decomposition decomposition rate (k) Ecosystems fine root Forest Science Forests Grasslands Human ecology leaf Leaf litter Leaves litter decomposability litter input Litter traits Meta-analysis Nutrient dynamics Nutrient release Organic matter Plant communities Plant ecology plant economics spectrum plant functional traits Plant litter Plant nutrition Plant roots Plant-soil (below-ground) interactions Plants plant–soil feedback response‐effect framework Roots Skogsvetenskap Soils Species Stems |
Title | Linking litter decomposition of above- and below-ground organs to plant-soil feedbacks worldwide |
URI | https://www.jstor.org/stable/42580325 https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1365-2745.12092 https://www.proquest.com/docview/1373234136 https://www.proquest.com/docview/1399920055 https://res.slu.se/id/publ/52617 |
Volume | 101 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9UwFA8yNvBFt-nw6hwRRHzp5d4k_cijzjvGUB_EgW-lJx8wLO1Y792YT_sTBP_D_SWek7TVOxARn5q2SZqPc5Jf0pPfYeylc0bn2rpEOpElRH-SgJv7RCtQQklZ6UAp9OFjdnyqTr6kgzUhnYWJ_BDjhhtpRhivScEr6H5T8v40lUqndPyTRmF8Quz57z79IpBCODwb-MJnKs97ch-y5bmTfm1eiqaJ66AzEomuY9gwCR09ZDAUP9qefJ2uljA13-4wO_5X_bbZgx6i8jdRpnbYPdfssq3otPJ6l22-bRFQYmBrERivrx8x_z56YOCI6bGfuHVkqd6bg_HWc5S0S3d7851XjeXg6vYKb-hACd4Gv1IdX7b8vMZuvr350bVnNfc4rQIRAPBA6np1Zt1jdnq0-Hx4nPQOHBKDMAkXuRYg04UCDQiL53leaOGtMPMqtz5TMwk6A4mIzXpw0qeV9pkvjEOMIpxFUdljG03buCeMpyYDnQLIwCAoLK6rrSkK5ZVKtRHphE2H7itNz25OTjbqcljlUHuW1J5laM8Jez0mOI_EHn-OuhfkYYyH41wxk_TR_UFAyl71O0ycS0HYIJuwF-NrVFr6E1M1rl1RHMTltJ-HWbyKgjVmTnzfXb2C6oIuZefKlFjzsYJBWv5W2PJkcRgCT_81wTN2XwRfH2SLvM82lhcr9xwR1xIOglL9BBY4IC0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQoaIXHoWKLQWMhBCXrHZj5-FjW7ZayrYH1Eq9WfFLqoiSqtlt1Z76E5D4h_0lzNhJ6FZCCHGKo9hObM_Y3zjjbwj5YK0WmTA2YjZOI6Q_iZQdu0hwxWPOWCE8pdDBYTo95vsnycmdszCBH6LfcEPN8PM1KjhuSN_R8vY4FU-GeP4TpuGHHOAGGmCfv_2mkAJAPOoYw0c8y1p6H_TmuVfB0soUnBOXYWegEl1GsX4Z2ntKdNeA4H3yfbiYq6G-vsft-H8tfEaetCiVbgexek4e2GqdrIa4lVfr5NFODZgSEqsTT3p99YK4WQjCQAHWw1BRY9FZvfUIo7WjIGwX9vbmBy0qQ5Ut60u4wTMlcOtDSzV0XtOzEkb69uZnU5-W1MHKqpADgHpe18tTY1-S473J0e40amM4RBqQEti5RqlU5FwJBch4nGW5iJ2J9bjIjEv5iCmRKgagzThlmUsK4VKXawswJbYGpGWDrFR1ZV8RmuhUiUQp5kkEYwOmtdF5zh3nidBxMiDDbvykbgnOMc5GKTtDB_tTYn9K358D8qkvcBa4Pf6cdcMLRJ8Pprp8xPClW52EyFb7GyicsRjhQTog7_vHoLf4M6aobL3APADNcUsPqvgYJKuvHCm_m3KhinO8yMbKBInzoYFeXP72sXJ_susTm_9a4B15PD06mMnZl8Ovr8la7EN_oGvyFlmZny_sGwBgc_XWa9gvHlQkTA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFA5SrXjjT7W4WjWCiDez7CaZzORS6y611iJiwbswmSRQOswsnV1LveojCL5hn8RzkpnRLYiIV5MwSSY_5yRfMiffIeSFc6XKlHUJd0wmSH-SGDf1iRJGMMF5oQKl0IdDuXck9r-kvTUh3oWJ_BDDgRtqRpivUcEX1v-m5N1tKpGO8fonzMLXhQQ8gbjo0y8GKcDDk54wfCKyrGP3QWOeKwWsLUzRNnEddUYm0XUQG1ah-R1i-vpH45OT8WppxuW3K9SO_9XAu-R2h1Hp6yhU98g1V2-Rzei18nyL3HjTAKKEwOYsUF6f3yf-ILpgoADqYaCodWiq3tmD0cZTELWv7vLiOy1qS42rmjOI4I0SiAbHUi1dNnRRwThfXvxom-OKelhXDTIA0MDqenZs3QNyNJ993t1LOg8OSQk4CXa51hipcmGUAVw8zbJcMW9ZOS0y66WYcKOk4QDZrDeO-7RQXvq8dABSmLMgK9tko25q95DQtJRGpcbwQCHILGysbZnnwguRqpKlIzLuh0-XHb05etmodL_Nwf7U2J869OeIvBoyLCKzx5-Tbgd5GNLBRJdPOH50pxcQ3el-C5kzzhAcyBF5PrwGrcVfMUXtmhWmAWCOB3pQxMsoWEPhSPjdVitTnOJDt06nSJsPDQzS8rfK6v3Zbgg8-tcMz8jNj2_n-uDd4fvH5BYLfj_QLnmHbCxPV-4JoK-leRr06yeKsiL7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linking+litter+decomposition+of+above-+and+below-ground+organs+to+plant-soil+feedbacks+worldwide&rft.jtitle=The+Journal+of+ecology&rft.au=Freschet%2C+Gregoire+T&rft.au=Cornwell%2C+William+K&rft.au=Wardle%2C+David+A&rft.au=Elumeeva%2C+Tatyana+G&rft.date=2013-07-01&rft.issn=0022-0477&rft.eissn=1365-2745&rft.volume=101&rft.issue=4&rft.spage=943&rft.epage=952&rft_id=info:doi/10.1111%2F1365-2745.12092&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0477&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0477&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0477&client=summon |