Exploring the Molecular Structure of Imidazolium-Silica-Based Nanoparticle Networks by Combining Solid-State NMR Spectroscopy and First-Principles Calculations

A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded....

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 20; no. 46; pp. 15188 - 15196
Main Authors Neouze, Marie-Alexandra, Kronstein, Martin, Litschauer, Marco, Puchberger, Michael, Coelho, Cristina, Bonhomme, Christian, Gervais, Christel, Tielens, Frederik
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 10.11.2014
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. Sourcing luminescence: Imidazolium–silica‐based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium–silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown.
AbstractList Abstract A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11 B and 31 P HETCOR CP MAS experiments were recorded. Calculated 19 F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.
A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19FNMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π-π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.
A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. (11)B and (31)P HETCOR CP MAS experiments were recorded. Calculated (19)F NMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π-π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.
A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. super(11)B and super(31)P HETCOR CP MAS experiments were recorded. Calculated super(19)FNMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible pi - pi stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. Sourcing luminescence: Imidazolium-silica-based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium-silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown.
A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. B-11 and P-31 HETCOR CP MAS experiments were recorded. Calculated (FNMR)-F-19 spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible - stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.
A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. Sourcing luminescence: Imidazolium–silica‐based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium–silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown.
Author Kronstein, Martin
Puchberger, Michael
Gervais, Christel
Neouze, Marie-Alexandra
Bonhomme, Christian
Litschauer, Marco
Coelho, Cristina
Tielens, Frederik
Author_xml – sequence: 1
  givenname: Marie-Alexandra
  surname: Neouze
  fullname: Neouze, Marie-Alexandra
  email: marie-alexandra.neouze@polytechnique.edu
  organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria)
– sequence: 2
  givenname: Martin
  surname: Kronstein
  fullname: Kronstein, Martin
  organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria)
– sequence: 3
  givenname: Marco
  surname: Litschauer
  fullname: Litschauer, Marco
  organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria)
– sequence: 4
  givenname: Michael
  surname: Puchberger
  fullname: Puchberger, Michael
  organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria)
– sequence: 5
  givenname: Cristina
  surname: Coelho
  fullname: Coelho, Cristina
  organization: Sorbonne Universités, UPMC Univ Paris 06, IMPC FR CNRS 2482, Collège de France, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05 (France)
– sequence: 6
  givenname: Christian
  surname: Bonhomme
  fullname: Bonhomme, Christian
  organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)
– sequence: 7
  givenname: Christel
  surname: Gervais
  fullname: Gervais, Christel
  organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)
– sequence: 8
  givenname: Frederik
  surname: Tielens
  fullname: Tielens, Frederik
  email: frederik.tielens@upmc.fr
  organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25241702$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01275058$$DView record in HAL
BookMark eNqF0kFv0zAYBuAIDbFucOWILHGBQ4rtxHZ83KpundQWRAc7Wo7jUm9OnNkOW_kz_FUSZVSIy06WrOd99dn6TpKjxjU6Sd4iOEUQ4k9qp-sphiiHGcvgi2SCCEZpxig5SiaQ5yylJOPHyUkItxBCTrPsVXKMCc4Rg3iS_J4_ttZ50_wAcafBylmtOis92ETfqdh5DdwWXNWmkr-cNV2dbow1SqbnMugKrGXjWumjUVaDtY4Pzt8FUO7BzNWlaYbaTR-r0k2UsRerr2DTahW9C8q1eyCbClwYH2L6pZ9BmdbqAGbSDjNE45rwOnm5lTboN0_nafLtYn49W6TLz5dXs7NlqggiMM0VQgjLsoJEFZphzFhBVKm3JS04JJBWSiupCFTltuIUw7zKc8w1L5imVY6z0-Tj2LuTVrTe1NLvhZNGLM6WYriDCDMCSfET9fbDaFvv7jsdoqhNUNpa2WjXBYFYQRGnlMDnaQ8zRCkvevr-P3rrOt_0jx5UkRHIMenVdFSq_8Lg9fYwLIJi2AgxbIQ4bEQfePdU25W1rg787wr0gI_gwVi9f6ZOzBbz1b_l6Zg1IerHQ1b6O0FZxoi4WV-KxTm-wTz_Lq6zP4v70_w
CODEN CEUJED
CitedBy_id crossref_primary_10_1021_acscatal_9b02460
crossref_primary_10_1021_acs_inorgchem_7b00355
crossref_primary_10_1039_C6CP05460A
crossref_primary_10_1039_C8DT03241F
crossref_primary_10_1107_S2052252517006042
crossref_primary_10_1021_acsanm_2c03597
crossref_primary_10_1039_C6DT02454H
crossref_primary_10_1021_acs_jpca_8b04369
crossref_primary_10_1021_acs_jpcc_9b04137
crossref_primary_10_1039_C5DT04028K
crossref_primary_10_1021_acs_jpcc_7b05045
Cites_doi 10.1021/ja00170a016
10.1039/c1cp21253b
10.1039/b924666e
10.1103/PhysRevLett.78.1396
10.1080/13642818108221906
10.1002/zaac.201200260
10.1016/0022-3093(90)90184-N
10.1007/s00706-008-0916-2
10.1021/jp109273d
10.1021/jp900179f
10.1039/c0jm00616e
10.1021/jp0513925
10.1063/1.346142
10.1021/jp9036815
10.1088/0953-8984/21/39/395502
10.1002/chem.201203560
10.1021/jp312195a
10.1021/ja025896h
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.63.245101
10.1021/la4012923
10.1021/jp1012279
10.1021/ja201002r
10.1021/jp3103035
10.1103/PhysRevB.47.558
10.1002/mrc.984
10.1039/B915050A
10.1002/chem.201302806
10.1021/jp902818m
10.1007/s10853-013-7542-z
10.1039/c3cp50430a
10.1023/A:1015640221833
10.1002/mrc.1360
10.1021/jp209680r
10.1103/PhysRevB.59.1758
10.1021/cr300108a
10.1039/b806501b
10.1002/ejic.201200581
10.1016/j.cattod.2011.08.026
10.1103/PhysRevB.50.17953
10.1063/1.433213
10.1002/9783527621194
10.1002/chem.201400392
10.1103/PhysRevLett.48.1425
10.1021/ja052463g
10.1021/ic200961a
10.1103/PhysRevB.49.14251
10.1021/cm8001173
10.1103/PhysRevB.43.1993
10.1039/c3cp54672a
10.1021/nl802075j
10.1021/ja405088c
ContentType Journal Article
Copyright 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
1XC
DOI 10.1002/chem.201403730
DatabaseName Istex
PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle PubMed
CrossRef
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList CrossRef
Materials Research Database
MEDLINE - Academic
PubMed
Materials Research Database


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage 15196
ExternalDocumentID oai_HAL_hal_01275058v1
3476570641
10_1002_chem_201403730
25241702
CHEM201403730
ark_67375_WNG_HB2W294V_T
Genre article
Journal Article
GrantInformation_xml – fundername: PHC Amadeus 2012
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABDBF
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
K9.
7X8
.GJ
186
1XC
31~
6TJ
9M8
ABEML
ACSCC
AGCDD
AI.
ASPBG
AVWKF
AZFZN
BZBRT
FEDTE
HF~
HVGLF
H~9
MVM
PALCI
RIWAO
RJQFR
SAMSI
UQL
VH1
WSR
Y6R
ZGI
ID FETCH-LOGICAL-c5150-4c1112abd05c8e7227785cbefb6890506dcecac50cbfd96204d4429e987e6d423
IEDL.DBID DR2
ISSN 0947-6539
IngestDate Tue Oct 15 15:47:56 EDT 2024
Fri Aug 16 05:58:59 EDT 2024
Fri Aug 16 08:16:19 EDT 2024
Thu Oct 10 18:22:37 EDT 2024
Fri Aug 23 02:37:04 EDT 2024
Sat Sep 28 08:15:42 EDT 2024
Sat Aug 24 01:00:13 EDT 2024
Wed Jan 17 05:01:15 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords density functional calculations
luminescence
nanoparticles
surface chemistry
NMR spectroscopy
Language English
License 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5150-4c1112abd05c8e7227785cbefb6890506dcecac50cbfd96204d4429e987e6d423
Notes istex:2FC95AADF67DD3D96C35927B89D442E663269609
ark:/67375/WNG-HB2W294V-T
PHC Amadeus 2012
ArticleID:CHEM201403730
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-2308-9661
0000-0002-0733-9686
0000-0001-7450-1738
0000-0003-0802-6961
0000-0002-6760-6176
PMID 25241702
PQID 1618350925
PQPubID 986340
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_01275058v1
proquest_miscellaneous_1786196650
proquest_miscellaneous_1619316698
proquest_journals_1618350925
crossref_primary_10_1002_chem_201403730
pubmed_primary_25241702
wiley_primary_10_1002_chem_201403730_CHEM201403730
istex_primary_ark_67375_WNG_HB2W294V_T
PublicationCentury 2000
PublicationDate November 10, 2014
PublicationDateYYYYMMDD 2014-11-10
PublicationDate_xml – month: 11
  year: 2014
  text: November 10, 2014
  day: 10
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAlternate Chem. Eur. J
PublicationYear 2014
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Wiley-VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
– name: Wiley-VCH Verlag
References J. Handzlik, R. Grybos, F. Tielens, J. Phys. Chem. C 2013, 117, 8138-8149
M. Litschauer, H. Peterlik, M. A. Neouze, J. Phys. Chem. C 2009, 113, 6547-6552.
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21.
F. H. Liu, W. Z. Chen, X. Z. You, J. Chem. Crystallogr. 2002, 32, 27-31.
F. Tielens, M. Calatayud, Catal. Today 2011, 177, 1-2
M. A. Neouze, J. Mater. Chem. 2010, 20, 9593-9607.
M. O. Sinnokrot, E. F. Valeev, C. D. Sherrill, J. Am. Chem. Soc. 2002, 124, 10887-10893.
A. Wojtaszek, I. Sobczak, M. Ziolek, F. Tielens, J. Phys. Chem. C 2009, 113, 13855-13859
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868.
A. Wojtaszek, I. Sobczak, M. Ziolek, F. Tielens, J. Phys. Chem. C 2010, 114, 9002-9007
P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, 2ednd edWiley-VCH, Weinheim, 2008.
I. Tranca, M. Smerieri, L. Vattuone, D. Costa, L. Savio, F. Tielens, Langmuir 2013, 29, 7876-7884
D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. O. Durand, B. Bujoli, Z. H. Gan, G. Hoatson, Magn. Res. Chem. 2002, 40, 70-76.
J. Roeser, M. Kronstein, M. Litschauer, A. Thomas, M. A. Neouze, Eur. J. Inorg. Chem. 2012, 5305-5311.
M. Kronstein, K. Kriechbaum, J. Akbarzadeh, H. Peterlik, M. A. Neouze, Phys. Chem. Chem. Phys. 2013, 15, 12717-12723.
G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251-14269.
M. Reinholdt, J. Croissant, L. Di Carlo, D. Granier, P. Gaveau, S. Begu, J. M. Devoisselle, P. H. Mutin, M. E. Smith, C. Bonhomme, C. Gervais, A. van der Lee, D. Laurencin, Inorg. Chem. 2011, 50, 7802-7810
M. A. Neouze, J. Mater. Sci. 2013, 48, 7321-7349
S. H. Garofalini, J. Non-Cryst. Solids 1990, 120, 1-12
N. Folliet, C. Gervais, D. Costa, G. Laurent, F. Babonneau, L. Stievano, J. F. Lambert, F. Tielens, J. Phys. Chem. C 2013, 117, 4104-4114
G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758-1775.
J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396-1396
C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525-5534.
M. Kronstein, J. Akbarzadeh, C. Drechsel, H. Peterlik, M.-A. Neouze, Chem. Eur. J. 2014, 20, 10763.
D. Costa, A. Tougerti, F. Tielens, C. Gervais, L. Stievano, J. F. Lambert, Phys. Chem. Chem. Phys. 2008, 10, 6360-6368.
M. Litschauer, M. A. Neouze, Monatsh. Chem. 2008, 139, 1151-1156.
L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 1982, 48, 1425-1428.
D. Esposito, S. Kirchhecker, M. Antonietti, Chem. Eur. J. 2013, 19, 15097-15100
M. Czakler, M. Litschauer, K. Fottinger, H. Peterlik, M. A. Neouze, J. Phys. Chem. C 2010, 114, 21342-21347.
M. M. Islam, D. Costa, M. Calatayud, F. Tielens, J. Phys. Chem. C 2009, 113, 10740-10746.
C. Gervais, R. Dupree, K. J. Pike, C. Bonhomme, M. Profeta, C. J. Pickard, F. Mauri, J. Phys. Chem. A 2005, 109, 6960-6969
C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733-5779.
H. Ibrahim, N. A. Koorbanally, D. Ramjugernath, M. D. Bala, V. O. Nyamori, Z. Anorg. Allg. Chem. 2012, 638, 2304-2309.
N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993-2006.
L. V. Woodcock, C. A. Angell, P. Cheeseman, J. Chem. Phys. 1976, 65, 1565-1577
N. Folliet, C. Roiland, S. Begu, A. Aubert, T. Mineva, A. Goursot, K. Selvaraj, L. Duma, F. Tielens, F. Mauri, G. Laurent, C. Bonhomme, C. Gervais, F. Babonneau, T. Azais, J. Am. Chem. Soc. 2011, 133, 16815-16827.
A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 2011, 13, 18539-18550.
H. Guesmi, F. Tielens, J. Phys. Chem. C 2012, 116, 994-1001.
A. Rojas, O. Arteaga, B. Kahr, M. A. Camblor, J. Am. Chem. Soc. 2013, 135, 11975-11984.
D. D. Lovingood, G. F. Strouse, Nano Lett. 2008, 8, 3394-3397
B. P. Feuston, S. H. Garofalini, J. Appl. Phys. 1990, 68, 4830-4836
F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, D. Costa, Chem. Mater. 2008, 20, 3336-3344.
C. Gervais, M. Profeta, V. Lafond, C. Bonhomme, T. Azais, H. Mutin, C. J. Pickard, F. Mauri, F. Babonneau, Magn. Res. Chem. 2004, 42, 445-452
S. K. Mitra, M. Amini, D. Fincham, R. W. Hockney, Philos. Mag. B 1981, 43, 365-372.
D. Costa, F. Tielens, L. Stievano, J. F. Lambert in Theory and Applications of Computational Chemistry, 2008; Book Series: AIP Conference Proceedings, Vol. 1102, Shanghai, PR China, 2009, pp. 251-256.
G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558-561
J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, J. Am. Chem. Soc. 2005, 127, 15791-15800
R. P. Matthews, T. Welton, P. A. Hunt, Phys. Chem. Chem. Phys. 2014, 16, 3238-3253.
S. Sene, M. Reinholdt, G. Renaudin, D. Berthomieu, C. M. Zicovich-Wilson, C. Gervais, P. Gaveau, C. Bonhomme, Y. Filinchuk, M. E. Smith, J. M. Nedelec, S. Begu, P. H. Mutin, D. Laurencin, Chem. Eur. J. 2013, 19, 880-891.
M. Litschauer, M. Puchberger, H. Peterlik, M. A. Neouze, J. Mater. Chem. 2010, 20, 1269-1276.
P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979
C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63.
J. D. Kubicki, A. C. Lasaga, Am. Mineral. 1988, 73, 941-955
J. M. Griffin, A. J. Miller, A. J. Berry, S. Wimperis, S. E. Ashbrook, Phys. Chem. Chem. Phys. 2010, 12, 2989-2998
1976; 65
2010; 12
2013; 29
1993; 47
2004; 42
2013; 48
2009; 21
2012
2002; 32
2008
2009; 113
2008; 8
2008; 10
1994; 49
2011; 13
1988; 73
1981; 43
2011; 177
2011; 133
2001; 63
1990; 120
2014; 20
1996; 77
2013; 19
2010; 20
1982; 48
2013; 15
2012; 112
1990; 68
1991; 43
2002; 40
2010; 114
2002; 124
1999; 59
2005; 127
2013; 117
1997; 78
2011; 50
2014; 16
2005; 109
2013; 135
2008; 139
2008; 20
1990; 112
1994; 50
2012; 116
2012; 638
e_1_2_6_51_2
e_1_2_6_53_2
e_1_2_6_30_2
e_1_2_6_19_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_59_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_55_2
e_1_2_6_15_2
e_1_2_6_36_2
e_1_2_6_57_2
e_1_2_6_62_2
e_1_2_6_64_2
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_60_2
Costa D. (e_1_2_6_44_2) 2008
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_3_2
e_1_2_6_5_2
e_1_2_6_24_2
e_1_2_6_47_2
e_1_2_6_22_2
e_1_2_6_1_2
e_1_2_6_28_2
e_1_2_6_43_2
e_1_2_6_26_2
e_1_2_6_45_2
e_1_2_6_50_2
e_1_2_6_52_2
e_1_2_6_31_2
e_1_2_6_18_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_58_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_54_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_56_2
e_1_2_6_61_2
e_1_2_6_63_2
e_1_2_6_42_2
e_1_2_6_40_2
e_1_2_6_8_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_6_2
Kubicki J. D. (e_1_2_6_49_2) 1988; 73
e_1_2_6_23_2
e_1_2_6_48_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_65_2
e_1_2_6_27_2
e_1_2_6_25_2
e_1_2_6_46_2
References_xml – volume: 113
  start-page: 10740
  year: 2009
  end-page: 10746
  publication-title: J. Phys. Chem. C
– volume: 13
  start-page: 18539
  year: 2011
  end-page: 18550
  publication-title: Phys. Chem. Chem. Phys.
– volume: 73
  start-page: 941
  year: 1988
  end-page: 955
  publication-title: Am. Mineral.
– volume: 65
  start-page: 1565
  year: 1976
  end-page: 1577
  publication-title: J. Chem. Phys.
– volume: 112
  start-page: 5733
  year: 2012
  end-page: 5779
  publication-title: Chem. Rev.
– volume: 29
  start-page: 7876
  year: 2013
  end-page: 7884
  publication-title: Langmuir
– volume: 19
  start-page: 880
  year: 2013
  end-page: 891
  publication-title: Chem. Eur. J.
– volume: 63
  year: 2001
  publication-title: Phys. Rev. B
– volume: 177
  start-page: 1
  year: 2011
  end-page: 2
  publication-title: Catal. Today
– volume: 20
  start-page: 1269
  year: 2010
  end-page: 1276
  publication-title: J. Mater. Chem.
– volume: 120
  start-page: 1
  year: 1990
  end-page: 12
  publication-title: J. Non‐Cryst. Solids
– volume: 112
  start-page: 5525
  year: 1990
  end-page: 5534
  publication-title: J. Am. Chem. Soc.
– volume: 49
  start-page: 14251
  year: 1994
  end-page: 14269
  publication-title: Phys. Rev. B
– volume: 21
  year: 2009
  publication-title: J. Phys. Condens. Matter
– volume: 40
  start-page: 70
  year: 2002
  end-page: 76
  publication-title: Magn. Res. Chem.
– volume: 8
  start-page: 3394
  year: 2008
  end-page: 3397
  publication-title: Nano Lett.
– volume: 20
  start-page: 3336
  year: 2008
  end-page: 3344
  publication-title: Chem. Mater.
– start-page: 5305
  year: 2012
  end-page: 5311
  publication-title: Eur. J. Inorg. Chem.
– volume: 135
  start-page: 11975
  year: 2013
  end-page: 11984
  publication-title: J. Am. Chem. Soc.
– year: 2008
– volume: 43
  start-page: 365
  year: 1981
  end-page: 372
  publication-title: Philos. Mag. B
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  publication-title: Phys. Rev. B
– volume: 113
  start-page: 13855
  year: 2009
  end-page: 13859
  publication-title: J. Phys. Chem. C
– volume: 116
  start-page: 994
  year: 2012
  end-page: 1001
  publication-title: J. Phys. Chem. C
– volume: 68
  start-page: 4830
  year: 1990
  end-page: 4836
  publication-title: J. Appl. Phys.
– volume: 127
  start-page: 15791
  year: 2005
  end-page: 15800
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 21342
  year: 2010
  end-page: 21347
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 9002
  year: 2010
  end-page: 9007
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 6360
  year: 2008
  end-page: 6368
  publication-title: Phys. Chem. Chem. Phys.
– volume: 78
  start-page: 1396
  year: 1997
  end-page: 1396
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 7321
  year: 2013
  end-page: 7349
  publication-title: J. Mater. Sci.
– volume: 19
  start-page: 15097
  year: 2013
  end-page: 15100
  publication-title: Chem. Eur. J.
– start-page: 251
  year: 2008
  end-page: 256
– volume: 638
  start-page: 2304
  year: 2012
  end-page: 2309
  publication-title: Z. Anorg. Allg. Chem.
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  publication-title: Phys. Rev. B
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  publication-title: Phys. Rev. Lett.
– volume: 48
  start-page: 1425
  year: 1982
  end-page: 1428
  publication-title: Phys. Rev. Lett.
– volume: 117
  start-page: 8138
  year: 2013
  end-page: 8149
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 2989
  year: 2010
  end-page: 2998
  publication-title: Phys. Chem. Chem. Phys.
– volume: 117
  start-page: 4104
  year: 2013
  end-page: 4114
  publication-title: J. Phys. Chem. C
– volume: 32
  start-page: 27
  year: 2002
  end-page: 31
  publication-title: J. Chem. Crystallogr.
– volume: 42
  start-page: 445
  year: 2004
  end-page: 452
  publication-title: Magn. Res. Chem.
– volume: 113
  start-page: 6547
  year: 2009
  end-page: 6552
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 12717
  year: 2013
  end-page: 12723
  publication-title: Phys. Chem. Chem. Phys.
– volume: 43
  start-page: 1993
  year: 1991
  end-page: 2006
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 9593
  year: 2010
  end-page: 9607
  publication-title: J. Mater. Chem.
– volume: 124
  start-page: 10887
  year: 2002
  end-page: 10893
  publication-title: J. Am. Chem. Soc.
– volume: 109
  start-page: 6960
  year: 2005
  end-page: 6969
  publication-title: J. Phys. Chem. A
– volume: 139
  start-page: 1151
  year: 2008
  end-page: 1156
  publication-title: Monatsh. Chem.
– volume: 16
  start-page: 3238
  year: 2014
  end-page: 3253
  publication-title: Phys. Chem. Chem. Phys.
– volume: 50
  start-page: 7802
  year: 2011
  end-page: 7810
  publication-title: Inorg. Chem.
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 10763
  year: 2014
  publication-title: Chem. Eur. J.
– volume: 133
  start-page: 16815
  year: 2011
  end-page: 16827
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_6_58_2
– start-page: 251
  volume-title: Theory and Applications of Computational Chemistry,
  year: 2008
  ident: e_1_2_6_44_2
  contributor:
    fullname: Costa D.
– ident: e_1_2_6_2_2
– ident: e_1_2_6_57_2
  doi: 10.1021/ja00170a016
– ident: e_1_2_6_64_2
  doi: 10.1039/c1cp21253b
– ident: e_1_2_6_63_2
  doi: 10.1039/b924666e
– ident: e_1_2_6_24_2
  doi: 10.1103/PhysRevLett.78.1396
– ident: e_1_2_6_50_2
  doi: 10.1080/13642818108221906
– ident: e_1_2_6_41_2
  doi: 10.1002/zaac.201200260
– ident: e_1_2_6_47_2
  doi: 10.1016/0022-3093(90)90184-N
– ident: e_1_2_6_51_2
  doi: 10.1007/s00706-008-0916-2
– ident: e_1_2_6_5_2
  doi: 10.1021/jp109273d
– ident: e_1_2_6_60_2
  doi: 10.1021/jp900179f
– ident: e_1_2_6_56_2
  doi: 10.1039/c0jm00616e
– ident: e_1_2_6_38_2
  doi: 10.1021/jp0513925
– ident: e_1_2_6_46_2
  doi: 10.1063/1.346142
– ident: e_1_2_6_27_2
  doi: 10.1021/jp9036815
– ident: e_1_2_6_32_2
  doi: 10.1088/0953-8984/21/39/395502
– ident: e_1_2_6_40_2
  doi: 10.1002/chem.201203560
– ident: e_1_2_6_9_2
  doi: 10.1021/jp312195a
– ident: e_1_2_6_65_2
  doi: 10.1021/ja025896h
– ident: e_1_2_6_25_2
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_6_35_2
  doi: 10.1103/PhysRevB.63.245101
– ident: e_1_2_6_7_2
  doi: 10.1021/la4012923
– ident: e_1_2_6_11_2
  doi: 10.1021/jp1012279
– ident: e_1_2_6_12_2
  doi: 10.1021/ja201002r
– ident: e_1_2_6_8_2
  doi: 10.1021/jp3103035
– ident: e_1_2_6_21_2
  doi: 10.1103/PhysRevB.47.558
– ident: e_1_2_6_36_2
– ident: e_1_2_6_19_2
  doi: 10.1002/mrc.984
– ident: e_1_2_6_17_2
  doi: 10.1039/B915050A
– ident: e_1_2_6_59_2
  doi: 10.1002/chem.201302806
– ident: e_1_2_6_42_2
  doi: 10.1021/jp902818m
– ident: e_1_2_6_3_2
  doi: 10.1007/s10853-013-7542-z
– ident: e_1_2_6_4_2
  doi: 10.1039/c3cp50430a
– ident: e_1_2_6_16_2
  doi: 10.1023/A:1015640221833
– ident: e_1_2_6_37_2
  doi: 10.1002/mrc.1360
– ident: e_1_2_6_43_2
  doi: 10.1021/jp209680r
– ident: e_1_2_6_6_2
– ident: e_1_2_6_31_2
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_6_13_2
  doi: 10.1021/cr300108a
– ident: e_1_2_6_15_2
  doi: 10.1039/b806501b
– volume: 73
  start-page: 941
  year: 1988
  ident: e_1_2_6_49_2
  publication-title: Am. Mineral.
  contributor:
    fullname: Kubicki J. D.
– ident: e_1_2_6_1_2
  doi: 10.1002/ejic.201200581
– ident: e_1_2_6_10_2
  doi: 10.1016/j.cattod.2011.08.026
– ident: e_1_2_6_20_2
– ident: e_1_2_6_62_2
– ident: e_1_2_6_30_2
  doi: 10.1103/PhysRevB.50.17953
– ident: e_1_2_6_48_2
  doi: 10.1063/1.433213
– ident: e_1_2_6_26_2
– ident: e_1_2_6_52_2
  doi: 10.1002/9783527621194
– ident: e_1_2_6_23_2
– ident: e_1_2_6_18_2
  doi: 10.1002/chem.201400392
– ident: e_1_2_6_45_2
– ident: e_1_2_6_34_2
  doi: 10.1103/PhysRevLett.48.1425
– ident: e_1_2_6_55_2
  doi: 10.1021/ja052463g
– ident: e_1_2_6_39_2
  doi: 10.1021/ic200961a
– ident: e_1_2_6_22_2
  doi: 10.1103/PhysRevB.49.14251
– ident: e_1_2_6_53_2
– ident: e_1_2_6_29_2
– ident: e_1_2_6_28_2
  doi: 10.1021/cm8001173
– ident: e_1_2_6_33_2
  doi: 10.1103/PhysRevB.43.1993
– ident: e_1_2_6_61_2
  doi: 10.1039/c3cp54672a
– ident: e_1_2_6_54_2
  doi: 10.1021/nl802075j
– ident: e_1_2_6_14_2
  doi: 10.1021/ja405088c
SSID ssj0009633
Score 2.2565806
Snippet A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using...
A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using...
Abstract A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by...
SourceID hal
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 15188
SubjectTerms Chemical Sciences
Chemistry
Density
density functional calculations
Inns
luminescence
Material chemistry
Mathematical models
Molecular structure
Nanoparticles
Nanostructure
Networks
NMR
NMR spectroscopy
Nuclear magnetic resonance
Principles
Sourcing
surface chemistry
Title Exploring the Molecular Structure of Imidazolium-Silica-Based Nanoparticle Networks by Combining Solid-State NMR Spectroscopy and First-Principles Calculations
URI https://api.istex.fr/ark:/67375/WNG-HB2W294V-T/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201403730
https://www.ncbi.nlm.nih.gov/pubmed/25241702
https://www.proquest.com/docview/1618350925
https://search.proquest.com/docview/1619316698
https://search.proquest.com/docview/1786196650
https://hal.science/hal-01275058
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLGDDmxIoyCAEq7QeTxw7y3bEMCA6Qp2Wdmf5FTFqm6k6HUS76icg8RH8V7-Ee51JyiAEEuzyuFZi-_j6JL4-l5AXMneslNKl4BW7aeZ4SI2SWWq61gjpLO5vxGiLYT7Yyd7tib2fdvHX-hDtDzccGdFf4wA3drp2KRoKdcKd5Kg3BygFJ4xqesiKti71owBddS75TKaowdqoNjK-tlh8YVa6-gljIq9hM3_5HfFc5LFxIurfIqapQh1_sr86O7Gr7uwXdcf_qeNtcnPOUul6Das75Eqo7pLrvSY53D3yvY3do8Ag6WaTZJeOoh7t7DjQSUnfHo69OZscjGeHF-ffRmP8QXhx_nUDZk5Pwa_DB3v9BDqso9Gn1J5ScFE2pq2gIyjqoUBkxHS4uUVHRzFrD-6lOaWm8rQ_BvoKJh-aRYMp7ZkDN09KNr1Pdvqvt3uDdJ7zIXXArBigBZwvN9Yz4VSQnEuphLOhtLkqmGC5d8EZJ5izpS9QTN9nMKWGQsmQe-CGD8hSNanCQ0KNz3xg0rou-Bxvi6JUWQZfVyIIZTpMJeRV0-f6qJb20LWIM9fY8Lpt-IQ8B0i0RqjIPVh_r_EaiwL5Qn3uJORlRExrZo73MWpOCr07fKMHG3yXF9lHvZ2QlQZSeu4wphrzFnSBvHGRkGftbehUXL8xVZjMok3R7eR5of5gIxVY5cC7E7Jcw7V9IS6ArknGE8Ij6P5Sa42iHO3Zo38p9JjcwOM0hk2ukCWAYHgCJO7EPo0D9Qd-V0Jn
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbYdjFu-P8JDDAIwVU2143j5HIrlA7aCq0d253lv4hqWzutK2K72iMg8RC8156Ec5wmUxECCS6THCux853jL87xdwh5KVPLCiltDFGxGSeW-1hnMol102ghrcH9jZht0U87u8n7fVFlE-JemFIfol5wQ88I8RodHBekN65UQ6FTuJUcBecApktkBXxeoG--2blSkAJ8ldXkExmjCmul28j4xmL7hXlp6TNmRa7gQH_9HfVcZLJhKmrfJKbqRJmBcrA-OzXr9vwXfcf_6uUtcmNOVOlmiazb5Jof3yGrrao-3F3yo07fo0Aiaa-qs0sHQZJ2duLppKDbRyOnzyeHo9nR5cX3wQjXCC8vvm3B5OkohHb4Zi_vQPtlQvqUmjMKUcqEyhV0AE0dNAikmPZ7O3RwHAr34HaaM6rHjrZHwGDB5GP132BKW_rQzuuSTe-R3fbbYasTz8s-xBbIFQPAQPzl2jgmbOYl51JmwhpfmDTLmWCps95qK5g1hctRT98lMKv6PJM-dUAP75Pl8WTsHxKqXeI8k8Y2Iew4k-dFliTwgSW8yHSDZRF5Xb10dVyqe6hSx5krHHhVD3xEXgAmaiMU5e5sdhWeY0EjX2RfGhF5FSBTm-mTA0yck0Lt9d-pzhbf43nySQ0jslZhSs1jxlRh6YIm8DcuIvK8vgwvFX_h6LGfzIJN3mykaZ79wUZmYJUC9Y7IgxKv9QNxAYxNMh4RHlD3l14r1OWojx79S6NnZLUz7HVVd7v_4TG5jufjkEW5RpYBjv4JcLpT8zR47U-KMkaH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoKwEb3o9AAYMQrNJ6nDh2lu2UYQrtqOr0tbP8ihi1zYw6HUS76icg8RH8V7-Ea2eSMgiBBMs410psH18fJ9fnIvSaZ4YUnJsYvGISp4a6WAmexirRinGj_flGH23Ry7q76YcDdvDTKf5KH6L54OZnRvDXfoKPbLF8JRoKbfInyb3eHKB0Di2kWUL99mtt-0pACuBVJZNPeexFWGvZRkKXZ-vPLEtzn3xQ5ILv5y-_Y56zRDasRJ3bSNVtqAJQDpcmp3rJnP8i7_g_jbyDbk1pKl6pcHUXXXPlPXSjXWeHu4--N8F7GCgk3qyz7OJ-EKSdnDg8LPD68cCq8-HRYHJ8efGtP_BfCC8vvq7C0mkxOHbYsVdPwL0qHH2M9RkGH6VD3grch6oWKgRKjHub27g_Cml7_GGaM6xKizsD4K9gslX_NRjjtjoy06xk4wdot_Nup92Np0kfYgPUigBcwPtSpS1hRjhOKeeCGe0KnYmcMJJZ44wyjBhd2Nyr6dsU1lSXC-4yC-TwIZovh6V7jLCyqXWEa5OA07E6zwuRprC9Yo4J1SIiQm_rMZejSttDVirOVPqOl03HR-gVQKIx8pLc3ZUN6ctIUMhn4nMrQm8CYhozdXLow-Y4k_u997K7Svdpnu7JnQgt1pCSU48xlj5xQQLsjbIIvWxuw6D6HziqdMNJsMmTVpbl4g82XIBVBsQ7Qo8quDYvRBnwNU5ohGgA3V9aLb0qR3P15F8qvUDXt9Y6cmO99_EpuumL4xBCuYjmAY3uGRC6U_08zNkfhKhFNg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+molecular+structure+of+imidazolium-silica-based+nanoparticle+networks+by+combining+solid-state+NMR+spectroscopy+and+first-principles+calculations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Neouze%2C+Marie-Alexandra&rft.au=Kronstein%2C+Martin&rft.au=Litschauer%2C+Marco&rft.au=Puchberger%2C+Michael&rft.date=2014-11-10&rft.eissn=1521-3765&rft.volume=20&rft.issue=46&rft.spage=15188&rft.epage=15196&rft_id=info:doi/10.1002%2Fchem.201403730&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon