Exploring the Molecular Structure of Imidazolium-Silica-Based Nanoparticle Networks by Combining Solid-State NMR Spectroscopy and First-Principles Calculations
A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded....
Saved in:
Published in | Chemistry : a European journal Vol. 20; no. 46; pp. 15188 - 15196 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
10.11.2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain.
Sourcing luminescence: Imidazolium–silica‐based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium–silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown. |
---|---|
AbstractList | Abstract
A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations.
11
B and
31
P HETCOR CP MAS experiments were recorded. Calculated
19
F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19FNMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π-π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. (11)B and (31)P HETCOR CP MAS experiments were recorded. Calculated (19)F NMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π-π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. super(11)B and super(31)P HETCOR CP MAS experiments were recorded. Calculated super(19)FNMR spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible pi - pi stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. Sourcing luminescence: Imidazolium-silica-based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium-silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown. A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small-angle X-ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. B-11 and P-31 HETCOR CP MAS experiments were recorded. Calculated (FNMR)-F-19 spectroscopy results, combined with the calculated anion-imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible - stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using small‐angle X‐ray scattering (SAXS), NMR spectroscopy, and theoretical ab initio calculations. 11B and 31P HETCOR CP MAS experiments were recorded. Calculated 19F NMR spectroscopy results, combined with the calculated anion–imidazolium (IM) distances, predicted the IM chain density in the INN, which was also confirmed from thermogravimetric analysis/mass spectrometry results. The presence of water molecules trapped between the nanoparticles is also suggested. First considerations on possible π–π stacking between the IM rings are presented. The predicted electronic properties confirm the photoluminescence emissions in the correct spectral domain. Sourcing luminescence: Imidazolium–silica‐based nanoparticle networks (INNs) have been synthesized and characterized (see picture). A molecular model for the imidazolium–silica network is presented and described. The presence of water near the silica surface and its influence on the position of the counteranions in the INN has been shown. |
Author | Kronstein, Martin Puchberger, Michael Gervais, Christel Neouze, Marie-Alexandra Bonhomme, Christian Litschauer, Marco Coelho, Cristina Tielens, Frederik |
Author_xml | – sequence: 1 givenname: Marie-Alexandra surname: Neouze fullname: Neouze, Marie-Alexandra email: marie-alexandra.neouze@polytechnique.edu organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria) – sequence: 2 givenname: Martin surname: Kronstein fullname: Kronstein, Martin organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria) – sequence: 3 givenname: Marco surname: Litschauer fullname: Litschauer, Marco organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria) – sequence: 4 givenname: Michael surname: Puchberger fullname: Puchberger, Michael organization: Vienna University of Technology, Institute of Materials Chemistry, 1060 Vienna (Austria) – sequence: 5 givenname: Cristina surname: Coelho fullname: Coelho, Cristina organization: Sorbonne Universités, UPMC Univ Paris 06, IMPC FR CNRS 2482, Collège de France, 11 place Marcelin Berthelot, 75231 Paris, Cedex 05 (France) – sequence: 6 givenname: Christian surname: Bonhomme fullname: Bonhomme, Christian organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France) – sequence: 7 givenname: Christel surname: Gervais fullname: Gervais, Christel organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France) – sequence: 8 givenname: Frederik surname: Tielens fullname: Tielens, Frederik email: frederik.tielens@upmc.fr organization: Sorbonne Universités, UPMC Univ Paris 06, UMR 7574, Laboratoire Chimie de la Matière Condensée, Collège de France, 11 place Marcelin Berthelot, 75231 Paris Cedex 05 (France) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25241702$$D View this record in MEDLINE/PubMed https://hal.science/hal-01275058$$DView record in HAL |
BookMark | eNqF0kFv0zAYBuAIDbFucOWILHGBQ4rtxHZ83KpundQWRAc7Wo7jUm9OnNkOW_kz_FUSZVSIy06WrOd99dn6TpKjxjU6Sd4iOEUQ4k9qp-sphiiHGcvgi2SCCEZpxig5SiaQ5yylJOPHyUkItxBCTrPsVXKMCc4Rg3iS_J4_ttZ50_wAcafBylmtOis92ETfqdh5DdwWXNWmkr-cNV2dbow1SqbnMugKrGXjWumjUVaDtY4Pzt8FUO7BzNWlaYbaTR-r0k2UsRerr2DTahW9C8q1eyCbClwYH2L6pZ9BmdbqAGbSDjNE45rwOnm5lTboN0_nafLtYn49W6TLz5dXs7NlqggiMM0VQgjLsoJEFZphzFhBVKm3JS04JJBWSiupCFTltuIUw7zKc8w1L5imVY6z0-Tj2LuTVrTe1NLvhZNGLM6WYriDCDMCSfET9fbDaFvv7jsdoqhNUNpa2WjXBYFYQRGnlMDnaQ8zRCkvevr-P3rrOt_0jx5UkRHIMenVdFSq_8Lg9fYwLIJi2AgxbIQ4bEQfePdU25W1rg787wr0gI_gwVi9f6ZOzBbz1b_l6Zg1IerHQ1b6O0FZxoi4WV-KxTm-wTz_Lq6zP4v70_w |
CODEN | CEUJED |
CitedBy_id | crossref_primary_10_1021_acscatal_9b02460 crossref_primary_10_1021_acs_inorgchem_7b00355 crossref_primary_10_1039_C6CP05460A crossref_primary_10_1039_C8DT03241F crossref_primary_10_1107_S2052252517006042 crossref_primary_10_1021_acsanm_2c03597 crossref_primary_10_1039_C6DT02454H crossref_primary_10_1021_acs_jpca_8b04369 crossref_primary_10_1021_acs_jpcc_9b04137 crossref_primary_10_1039_C5DT04028K crossref_primary_10_1021_acs_jpcc_7b05045 |
Cites_doi | 10.1021/ja00170a016 10.1039/c1cp21253b 10.1039/b924666e 10.1103/PhysRevLett.78.1396 10.1080/13642818108221906 10.1002/zaac.201200260 10.1016/0022-3093(90)90184-N 10.1007/s00706-008-0916-2 10.1021/jp109273d 10.1021/jp900179f 10.1039/c0jm00616e 10.1021/jp0513925 10.1063/1.346142 10.1021/jp9036815 10.1088/0953-8984/21/39/395502 10.1002/chem.201203560 10.1021/jp312195a 10.1021/ja025896h 10.1103/PhysRevLett.77.3865 10.1103/PhysRevB.63.245101 10.1021/la4012923 10.1021/jp1012279 10.1021/ja201002r 10.1021/jp3103035 10.1103/PhysRevB.47.558 10.1002/mrc.984 10.1039/B915050A 10.1002/chem.201302806 10.1021/jp902818m 10.1007/s10853-013-7542-z 10.1039/c3cp50430a 10.1023/A:1015640221833 10.1002/mrc.1360 10.1021/jp209680r 10.1103/PhysRevB.59.1758 10.1021/cr300108a 10.1039/b806501b 10.1002/ejic.201200581 10.1016/j.cattod.2011.08.026 10.1103/PhysRevB.50.17953 10.1063/1.433213 10.1002/9783527621194 10.1002/chem.201400392 10.1103/PhysRevLett.48.1425 10.1021/ja052463g 10.1021/ic200961a 10.1103/PhysRevB.49.14251 10.1021/cm8001173 10.1103/PhysRevB.43.1993 10.1039/c3cp54672a 10.1021/nl802075j 10.1021/ja405088c |
ContentType | Journal Article |
Copyright | 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 1XC |
DOI | 10.1002/chem.201403730 |
DatabaseName | Istex PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | PubMed CrossRef Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef Materials Research Database MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3765 |
EndPage | 15196 |
ExternalDocumentID | oai_HAL_hal_01275058v1 3476570641 10_1002_chem_201403730 25241702 CHEM201403730 ark_67375_WNG_HB2W294V_T |
Genre | article Journal Article |
GrantInformation_xml | – fundername: PHC Amadeus 2012 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6J9 702 77Q 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABDBF ABHUG ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBD EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RGC RNS ROL RWI RX1 RYL SUPJJ TN5 TWZ UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YZZ ZZTAW ~IA ~WT AITYG HGLYW OIG NPM AAYXX CITATION 7SR 8BQ 8FD JG9 K9. 7X8 .GJ 186 1XC 31~ 6TJ 9M8 ABEML ACSCC AGCDD AI. ASPBG AVWKF AZFZN BZBRT FEDTE HF~ HVGLF H~9 MVM PALCI RIWAO RJQFR SAMSI UQL VH1 WSR Y6R ZGI |
ID | FETCH-LOGICAL-c5150-4c1112abd05c8e7227785cbefb6890506dcecac50cbfd96204d4429e987e6d423 |
IEDL.DBID | DR2 |
ISSN | 0947-6539 |
IngestDate | Tue Oct 15 15:47:56 EDT 2024 Fri Aug 16 05:58:59 EDT 2024 Fri Aug 16 08:16:19 EDT 2024 Thu Oct 10 18:22:37 EDT 2024 Fri Aug 23 02:37:04 EDT 2024 Sat Sep 28 08:15:42 EDT 2024 Sat Aug 24 01:00:13 EDT 2024 Wed Jan 17 05:01:15 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | density functional calculations luminescence nanoparticles surface chemistry NMR spectroscopy |
Language | English |
License | 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5150-4c1112abd05c8e7227785cbefb6890506dcecac50cbfd96204d4429e987e6d423 |
Notes | istex:2FC95AADF67DD3D96C35927B89D442E663269609 ark:/67375/WNG-HB2W294V-T PHC Amadeus 2012 ArticleID:CHEM201403730 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0009-0002-2308-9661 0000-0002-0733-9686 0000-0001-7450-1738 0000-0003-0802-6961 0000-0002-6760-6176 |
PMID | 25241702 |
PQID | 1618350925 |
PQPubID | 986340 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_01275058v1 proquest_miscellaneous_1786196650 proquest_miscellaneous_1619316698 proquest_journals_1618350925 crossref_primary_10_1002_chem_201403730 pubmed_primary_25241702 wiley_primary_10_1002_chem_201403730_CHEM201403730 istex_primary_ark_67375_WNG_HB2W294V_T |
PublicationCentury | 2000 |
PublicationDate | November 10, 2014 |
PublicationDateYYYYMMDD | 2014-11-10 |
PublicationDate_xml | – month: 11 year: 2014 text: November 10, 2014 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationSubtitle | A European Journal |
PublicationTitle | Chemistry : a European journal |
PublicationTitleAlternate | Chem. Eur. J |
PublicationYear | 2014 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | J. Handzlik, R. Grybos, F. Tielens, J. Phys. Chem. C 2013, 117, 8138-8149 M. Litschauer, H. Peterlik, M. A. Neouze, J. Phys. Chem. C 2009, 113, 6547-6552. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari and R. M. Wentzcovitch, J. Phys. Condens. Matter 2009, 21. F. H. Liu, W. Z. Chen, X. Z. You, J. Chem. Crystallogr. 2002, 32, 27-31. F. Tielens, M. Calatayud, Catal. Today 2011, 177, 1-2 M. A. Neouze, J. Mater. Chem. 2010, 20, 9593-9607. M. O. Sinnokrot, E. F. Valeev, C. D. Sherrill, J. Am. Chem. Soc. 2002, 124, 10887-10893. A. Wojtaszek, I. Sobczak, M. Ziolek, F. Tielens, J. Phys. Chem. C 2009, 113, 13855-13859 J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865-3868. A. Wojtaszek, I. Sobczak, M. Ziolek, F. Tielens, J. Phys. Chem. C 2010, 114, 9002-9007 P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, 2ednd edWiley-VCH, Weinheim, 2008. I. Tranca, M. Smerieri, L. Vattuone, D. Costa, L. Savio, F. Tielens, Langmuir 2013, 29, 7876-7884 D. Massiot, F. Fayon, M. Capron, I. King, S. Le Calve, B. Alonso, J. O. Durand, B. Bujoli, Z. H. Gan, G. Hoatson, Magn. Res. Chem. 2002, 40, 70-76. J. Roeser, M. Kronstein, M. Litschauer, A. Thomas, M. A. Neouze, Eur. J. Inorg. Chem. 2012, 5305-5311. M. Kronstein, K. Kriechbaum, J. Akbarzadeh, H. Peterlik, M. A. Neouze, Phys. Chem. Chem. Phys. 2013, 15, 12717-12723. G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 14251-14269. M. Reinholdt, J. Croissant, L. Di Carlo, D. Granier, P. Gaveau, S. Begu, J. M. Devoisselle, P. H. Mutin, M. E. Smith, C. Bonhomme, C. Gervais, A. van der Lee, D. Laurencin, Inorg. Chem. 2011, 50, 7802-7810 M. A. Neouze, J. Mater. Sci. 2013, 48, 7321-7349 S. H. Garofalini, J. Non-Cryst. Solids 1990, 120, 1-12 N. Folliet, C. Gervais, D. Costa, G. Laurent, F. Babonneau, L. Stievano, J. F. Lambert, F. Tielens, J. Phys. Chem. C 2013, 117, 4104-4114 G. Kresse, D. Joubert, Phys. Rev. B 1999, 59, 1758-1775. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1997, 78, 1396-1396 C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525-5534. M. Kronstein, J. Akbarzadeh, C. Drechsel, H. Peterlik, M.-A. Neouze, Chem. Eur. J. 2014, 20, 10763. D. Costa, A. Tougerti, F. Tielens, C. Gervais, L. Stievano, J. F. Lambert, Phys. Chem. Chem. Phys. 2008, 10, 6360-6368. M. Litschauer, M. A. Neouze, Monatsh. Chem. 2008, 139, 1151-1156. L. Kleinman, D. M. Bylander, Phys. Rev. Lett. 1982, 48, 1425-1428. D. Esposito, S. Kirchhecker, M. Antonietti, Chem. Eur. J. 2013, 19, 15097-15100 M. Czakler, M. Litschauer, K. Fottinger, H. Peterlik, M. A. Neouze, J. Phys. Chem. C 2010, 114, 21342-21347. M. M. Islam, D. Costa, M. Calatayud, F. Tielens, J. Phys. Chem. C 2009, 113, 10740-10746. C. Gervais, R. Dupree, K. J. Pike, C. Bonhomme, M. Profeta, C. J. Pickard, F. Mauri, J. Phys. Chem. A 2005, 109, 6960-6969 C. Bonhomme, C. Gervais, F. Babonneau, C. Coelho, F. Pourpoint, T. Azais, S. E. Ashbrook, J. M. Griffin, J. R. Yates, F. Mauri, C. J. Pickard, Chem. Rev. 2012, 112, 5733-5779. H. Ibrahim, N. A. Koorbanally, D. Ramjugernath, M. D. Bala, V. O. Nyamori, Z. Anorg. Allg. Chem. 2012, 638, 2304-2309. N. Troullier, J. L. Martins, Phys. Rev. B 1991, 43, 1993-2006. L. V. Woodcock, C. A. Angell, P. Cheeseman, J. Chem. Phys. 1976, 65, 1565-1577 N. Folliet, C. Roiland, S. Begu, A. Aubert, T. Mineva, A. Goursot, K. Selvaraj, L. Duma, F. Tielens, F. Mauri, G. Laurent, C. Bonhomme, C. Gervais, F. Babonneau, T. Azais, J. Am. Chem. Soc. 2011, 133, 16815-16827. A. Sadoc, M. Body, C. Legein, M. Biswal, F. Fayon, X. Rocquefelte, F. Boucher, Phys. Chem. Chem. Phys. 2011, 13, 18539-18550. H. Guesmi, F. Tielens, J. Phys. Chem. C 2012, 116, 994-1001. A. Rojas, O. Arteaga, B. Kahr, M. A. Camblor, J. Am. Chem. Soc. 2013, 135, 11975-11984. D. D. Lovingood, G. F. Strouse, Nano Lett. 2008, 8, 3394-3397 B. P. Feuston, S. H. Garofalini, J. Appl. Phys. 1990, 68, 4830-4836 F. Tielens, C. Gervais, J. F. Lambert, F. Mauri, D. Costa, Chem. Mater. 2008, 20, 3336-3344. C. Gervais, M. Profeta, V. Lafond, C. Bonhomme, T. Azais, H. Mutin, C. J. Pickard, F. Mauri, F. Babonneau, Magn. Res. Chem. 2004, 42, 445-452 S. K. Mitra, M. Amini, D. Fincham, R. W. Hockney, Philos. Mag. B 1981, 43, 365-372. D. Costa, F. Tielens, L. Stievano, J. F. Lambert in Theory and Applications of Computational Chemistry, 2008; Book Series: AIP Conference Proceedings, Vol. 1102, Shanghai, PR China, 2009, pp. 251-256. G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558-561 J. A. Gerbec, D. Magana, A. Washington, G. F. Strouse, J. Am. Chem. Soc. 2005, 127, 15791-15800 R. P. Matthews, T. Welton, P. A. Hunt, Phys. Chem. Chem. Phys. 2014, 16, 3238-3253. S. Sene, M. Reinholdt, G. Renaudin, D. Berthomieu, C. M. Zicovich-Wilson, C. Gervais, P. Gaveau, C. Bonhomme, Y. Filinchuk, M. E. Smith, J. M. Nedelec, S. Begu, P. H. Mutin, D. Laurencin, Chem. Eur. J. 2013, 19, 880-891. M. Litschauer, M. Puchberger, H. Peterlik, M. A. Neouze, J. Mater. Chem. 2010, 20, 1269-1276. P. E. Blöchl, Phys. Rev. B 1994, 50, 17953-17979 C. J. Pickard, F. Mauri, Phys. Rev. B 2001, 63. J. D. Kubicki, A. C. Lasaga, Am. Mineral. 1988, 73, 941-955 J. M. Griffin, A. J. Miller, A. J. Berry, S. Wimperis, S. E. Ashbrook, Phys. Chem. Chem. Phys. 2010, 12, 2989-2998 1976; 65 2010; 12 2013; 29 1993; 47 2004; 42 2013; 48 2009; 21 2012 2002; 32 2008 2009; 113 2008; 8 2008; 10 1994; 49 2011; 13 1988; 73 1981; 43 2011; 177 2011; 133 2001; 63 1990; 120 2014; 20 1996; 77 2013; 19 2010; 20 1982; 48 2013; 15 2012; 112 1990; 68 1991; 43 2002; 40 2010; 114 2002; 124 1999; 59 2005; 127 2013; 117 1997; 78 2011; 50 2014; 16 2005; 109 2013; 135 2008; 139 2008; 20 1990; 112 1994; 50 2012; 116 2012; 638 e_1_2_6_51_2 e_1_2_6_53_2 e_1_2_6_30_2 e_1_2_6_19_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_59_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_55_2 e_1_2_6_15_2 e_1_2_6_36_2 e_1_2_6_57_2 e_1_2_6_62_2 e_1_2_6_64_2 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_60_2 Costa D. (e_1_2_6_44_2) 2008 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_3_2 e_1_2_6_5_2 e_1_2_6_24_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_1_2 e_1_2_6_28_2 e_1_2_6_43_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_61_2 e_1_2_6_63_2 e_1_2_6_42_2 e_1_2_6_40_2 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 Kubicki J. D. (e_1_2_6_49_2) 1988; 73 e_1_2_6_23_2 e_1_2_6_48_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_65_2 e_1_2_6_27_2 e_1_2_6_25_2 e_1_2_6_46_2 |
References_xml | – volume: 113 start-page: 10740 year: 2009 end-page: 10746 publication-title: J. Phys. Chem. C – volume: 13 start-page: 18539 year: 2011 end-page: 18550 publication-title: Phys. Chem. Chem. Phys. – volume: 73 start-page: 941 year: 1988 end-page: 955 publication-title: Am. Mineral. – volume: 65 start-page: 1565 year: 1976 end-page: 1577 publication-title: J. Chem. Phys. – volume: 112 start-page: 5733 year: 2012 end-page: 5779 publication-title: Chem. Rev. – volume: 29 start-page: 7876 year: 2013 end-page: 7884 publication-title: Langmuir – volume: 19 start-page: 880 year: 2013 end-page: 891 publication-title: Chem. Eur. J. – volume: 63 year: 2001 publication-title: Phys. Rev. B – volume: 177 start-page: 1 year: 2011 end-page: 2 publication-title: Catal. Today – volume: 20 start-page: 1269 year: 2010 end-page: 1276 publication-title: J. Mater. Chem. – volume: 120 start-page: 1 year: 1990 end-page: 12 publication-title: J. Non‐Cryst. Solids – volume: 112 start-page: 5525 year: 1990 end-page: 5534 publication-title: J. Am. Chem. Soc. – volume: 49 start-page: 14251 year: 1994 end-page: 14269 publication-title: Phys. Rev. B – volume: 21 year: 2009 publication-title: J. Phys. Condens. Matter – volume: 40 start-page: 70 year: 2002 end-page: 76 publication-title: Magn. Res. Chem. – volume: 8 start-page: 3394 year: 2008 end-page: 3397 publication-title: Nano Lett. – volume: 20 start-page: 3336 year: 2008 end-page: 3344 publication-title: Chem. Mater. – start-page: 5305 year: 2012 end-page: 5311 publication-title: Eur. J. Inorg. Chem. – volume: 135 start-page: 11975 year: 2013 end-page: 11984 publication-title: J. Am. Chem. Soc. – year: 2008 – volume: 43 start-page: 365 year: 1981 end-page: 372 publication-title: Philos. Mag. B – volume: 50 start-page: 17953 year: 1994 end-page: 17979 publication-title: Phys. Rev. B – volume: 113 start-page: 13855 year: 2009 end-page: 13859 publication-title: J. Phys. Chem. C – volume: 116 start-page: 994 year: 2012 end-page: 1001 publication-title: J. Phys. Chem. C – volume: 68 start-page: 4830 year: 1990 end-page: 4836 publication-title: J. Appl. Phys. – volume: 127 start-page: 15791 year: 2005 end-page: 15800 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 21342 year: 2010 end-page: 21347 publication-title: J. Phys. Chem. C – volume: 114 start-page: 9002 year: 2010 end-page: 9007 publication-title: J. Phys. Chem. C – volume: 10 start-page: 6360 year: 2008 end-page: 6368 publication-title: Phys. Chem. Chem. Phys. – volume: 78 start-page: 1396 year: 1997 end-page: 1396 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 7321 year: 2013 end-page: 7349 publication-title: J. Mater. Sci. – volume: 19 start-page: 15097 year: 2013 end-page: 15100 publication-title: Chem. Eur. J. – start-page: 251 year: 2008 end-page: 256 – volume: 638 start-page: 2304 year: 2012 end-page: 2309 publication-title: Z. Anorg. Allg. Chem. – volume: 59 start-page: 1758 year: 1999 end-page: 1775 publication-title: Phys. Rev. B – volume: 77 start-page: 3865 year: 1996 end-page: 3868 publication-title: Phys. Rev. Lett. – volume: 48 start-page: 1425 year: 1982 end-page: 1428 publication-title: Phys. Rev. Lett. – volume: 117 start-page: 8138 year: 2013 end-page: 8149 publication-title: J. Phys. Chem. C – volume: 12 start-page: 2989 year: 2010 end-page: 2998 publication-title: Phys. Chem. Chem. Phys. – volume: 117 start-page: 4104 year: 2013 end-page: 4114 publication-title: J. Phys. Chem. C – volume: 32 start-page: 27 year: 2002 end-page: 31 publication-title: J. Chem. Crystallogr. – volume: 42 start-page: 445 year: 2004 end-page: 452 publication-title: Magn. Res. Chem. – volume: 113 start-page: 6547 year: 2009 end-page: 6552 publication-title: J. Phys. Chem. C – volume: 15 start-page: 12717 year: 2013 end-page: 12723 publication-title: Phys. Chem. Chem. Phys. – volume: 43 start-page: 1993 year: 1991 end-page: 2006 publication-title: Phys. Rev. B – volume: 20 start-page: 9593 year: 2010 end-page: 9607 publication-title: J. Mater. Chem. – volume: 124 start-page: 10887 year: 2002 end-page: 10893 publication-title: J. Am. Chem. Soc. – volume: 109 start-page: 6960 year: 2005 end-page: 6969 publication-title: J. Phys. Chem. A – volume: 139 start-page: 1151 year: 2008 end-page: 1156 publication-title: Monatsh. Chem. – volume: 16 start-page: 3238 year: 2014 end-page: 3253 publication-title: Phys. Chem. Chem. Phys. – volume: 50 start-page: 7802 year: 2011 end-page: 7810 publication-title: Inorg. Chem. – volume: 47 start-page: 558 year: 1993 end-page: 561 publication-title: Phys. Rev. B – volume: 20 start-page: 10763 year: 2014 publication-title: Chem. Eur. J. – volume: 133 start-page: 16815 year: 2011 end-page: 16827 publication-title: J. Am. Chem. Soc. – ident: e_1_2_6_58_2 – start-page: 251 volume-title: Theory and Applications of Computational Chemistry, year: 2008 ident: e_1_2_6_44_2 contributor: fullname: Costa D. – ident: e_1_2_6_2_2 – ident: e_1_2_6_57_2 doi: 10.1021/ja00170a016 – ident: e_1_2_6_64_2 doi: 10.1039/c1cp21253b – ident: e_1_2_6_63_2 doi: 10.1039/b924666e – ident: e_1_2_6_24_2 doi: 10.1103/PhysRevLett.78.1396 – ident: e_1_2_6_50_2 doi: 10.1080/13642818108221906 – ident: e_1_2_6_41_2 doi: 10.1002/zaac.201200260 – ident: e_1_2_6_47_2 doi: 10.1016/0022-3093(90)90184-N – ident: e_1_2_6_51_2 doi: 10.1007/s00706-008-0916-2 – ident: e_1_2_6_5_2 doi: 10.1021/jp109273d – ident: e_1_2_6_60_2 doi: 10.1021/jp900179f – ident: e_1_2_6_56_2 doi: 10.1039/c0jm00616e – ident: e_1_2_6_38_2 doi: 10.1021/jp0513925 – ident: e_1_2_6_46_2 doi: 10.1063/1.346142 – ident: e_1_2_6_27_2 doi: 10.1021/jp9036815 – ident: e_1_2_6_32_2 doi: 10.1088/0953-8984/21/39/395502 – ident: e_1_2_6_40_2 doi: 10.1002/chem.201203560 – ident: e_1_2_6_9_2 doi: 10.1021/jp312195a – ident: e_1_2_6_65_2 doi: 10.1021/ja025896h – ident: e_1_2_6_25_2 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_6_35_2 doi: 10.1103/PhysRevB.63.245101 – ident: e_1_2_6_7_2 doi: 10.1021/la4012923 – ident: e_1_2_6_11_2 doi: 10.1021/jp1012279 – ident: e_1_2_6_12_2 doi: 10.1021/ja201002r – ident: e_1_2_6_8_2 doi: 10.1021/jp3103035 – ident: e_1_2_6_21_2 doi: 10.1103/PhysRevB.47.558 – ident: e_1_2_6_36_2 – ident: e_1_2_6_19_2 doi: 10.1002/mrc.984 – ident: e_1_2_6_17_2 doi: 10.1039/B915050A – ident: e_1_2_6_59_2 doi: 10.1002/chem.201302806 – ident: e_1_2_6_42_2 doi: 10.1021/jp902818m – ident: e_1_2_6_3_2 doi: 10.1007/s10853-013-7542-z – ident: e_1_2_6_4_2 doi: 10.1039/c3cp50430a – ident: e_1_2_6_16_2 doi: 10.1023/A:1015640221833 – ident: e_1_2_6_37_2 doi: 10.1002/mrc.1360 – ident: e_1_2_6_43_2 doi: 10.1021/jp209680r – ident: e_1_2_6_6_2 – ident: e_1_2_6_31_2 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_6_13_2 doi: 10.1021/cr300108a – ident: e_1_2_6_15_2 doi: 10.1039/b806501b – volume: 73 start-page: 941 year: 1988 ident: e_1_2_6_49_2 publication-title: Am. Mineral. contributor: fullname: Kubicki J. D. – ident: e_1_2_6_1_2 doi: 10.1002/ejic.201200581 – ident: e_1_2_6_10_2 doi: 10.1016/j.cattod.2011.08.026 – ident: e_1_2_6_20_2 – ident: e_1_2_6_62_2 – ident: e_1_2_6_30_2 doi: 10.1103/PhysRevB.50.17953 – ident: e_1_2_6_48_2 doi: 10.1063/1.433213 – ident: e_1_2_6_26_2 – ident: e_1_2_6_52_2 doi: 10.1002/9783527621194 – ident: e_1_2_6_23_2 – ident: e_1_2_6_18_2 doi: 10.1002/chem.201400392 – ident: e_1_2_6_45_2 – ident: e_1_2_6_34_2 doi: 10.1103/PhysRevLett.48.1425 – ident: e_1_2_6_55_2 doi: 10.1021/ja052463g – ident: e_1_2_6_39_2 doi: 10.1021/ic200961a – ident: e_1_2_6_22_2 doi: 10.1103/PhysRevB.49.14251 – ident: e_1_2_6_53_2 – ident: e_1_2_6_29_2 – ident: e_1_2_6_28_2 doi: 10.1021/cm8001173 – ident: e_1_2_6_33_2 doi: 10.1103/PhysRevB.43.1993 – ident: e_1_2_6_61_2 doi: 10.1039/c3cp54672a – ident: e_1_2_6_54_2 doi: 10.1021/nl802075j – ident: e_1_2_6_14_2 doi: 10.1021/ja405088c |
SSID | ssj0009633 |
Score | 2.2565806 |
Snippet | A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using... A DFT-based molecular model for imidazolium-silica-based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by using... Abstract A DFT‐based molecular model for imidazolium–silica‐based nanoparticle networks (INNs) is presented. The INNs were synthesized and characterized by... |
SourceID | hal proquest crossref pubmed wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15188 |
SubjectTerms | Chemical Sciences Chemistry Density density functional calculations Inns luminescence Material chemistry Mathematical models Molecular structure Nanoparticles Nanostructure Networks NMR NMR spectroscopy Nuclear magnetic resonance Principles Sourcing surface chemistry |
Title | Exploring the Molecular Structure of Imidazolium-Silica-Based Nanoparticle Networks by Combining Solid-State NMR Spectroscopy and First-Principles Calculations |
URI | https://api.istex.fr/ark:/67375/WNG-HB2W294V-T/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.201403730 https://www.ncbi.nlm.nih.gov/pubmed/25241702 https://www.proquest.com/docview/1618350925 https://search.proquest.com/docview/1619316698 https://search.proquest.com/docview/1786196650 https://hal.science/hal-01275058 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLWgLGDDmxIoyCAEq7QeTxw7y3bEMCA6Qp2Wdmf5FTFqm6k6HUS76icg8RH8V7-Ee51JyiAEEuzyuFZi-_j6JL4-l5AXMneslNKl4BW7aeZ4SI2SWWq61gjpLO5vxGiLYT7Yyd7tib2fdvHX-hDtDzccGdFf4wA3drp2KRoKdcKd5Kg3BygFJ4xqesiKti71owBddS75TKaowdqoNjK-tlh8YVa6-gljIq9hM3_5HfFc5LFxIurfIqapQh1_sr86O7Gr7uwXdcf_qeNtcnPOUul6Das75Eqo7pLrvSY53D3yvY3do8Ag6WaTZJeOoh7t7DjQSUnfHo69OZscjGeHF-ffRmP8QXhx_nUDZk5Pwa_DB3v9BDqso9Gn1J5ScFE2pq2gIyjqoUBkxHS4uUVHRzFrD-6lOaWm8rQ_BvoKJh-aRYMp7ZkDN09KNr1Pdvqvt3uDdJ7zIXXArBigBZwvN9Yz4VSQnEuphLOhtLkqmGC5d8EZJ5izpS9QTN9nMKWGQsmQe-CGD8hSNanCQ0KNz3xg0rou-Bxvi6JUWQZfVyIIZTpMJeRV0-f6qJb20LWIM9fY8Lpt-IQ8B0i0RqjIPVh_r_EaiwL5Qn3uJORlRExrZo73MWpOCr07fKMHG3yXF9lHvZ2QlQZSeu4wphrzFnSBvHGRkGftbehUXL8xVZjMok3R7eR5of5gIxVY5cC7E7Jcw7V9IS6ArknGE8Ij6P5Sa42iHO3Zo38p9JjcwOM0hk2ukCWAYHgCJO7EPo0D9Qd-V0Jn |
link.rule.ids | 230,315,786,790,891,1382,27955,27956,46327,46751 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dbtMwFLbYdjFu-P8JDDAIwVU2143j5HIrlA7aCq0d253lv4hqWzutK2K72iMg8RC8156Ec5wmUxECCS6THCux853jL87xdwh5KVPLCiltDFGxGSeW-1hnMol102ghrcH9jZht0U87u8n7fVFlE-JemFIfol5wQ88I8RodHBekN65UQ6FTuJUcBecApktkBXxeoG--2blSkAJ8ldXkExmjCmul28j4xmL7hXlp6TNmRa7gQH_9HfVcZLJhKmrfJKbqRJmBcrA-OzXr9vwXfcf_6uUtcmNOVOlmiazb5Jof3yGrrao-3F3yo07fo0Aiaa-qs0sHQZJ2duLppKDbRyOnzyeHo9nR5cX3wQjXCC8vvm3B5OkohHb4Zi_vQPtlQvqUmjMKUcqEyhV0AE0dNAikmPZ7O3RwHAr34HaaM6rHjrZHwGDB5GP132BKW_rQzuuSTe-R3fbbYasTz8s-xBbIFQPAQPzl2jgmbOYl51JmwhpfmDTLmWCps95qK5g1hctRT98lMKv6PJM-dUAP75Pl8WTsHxKqXeI8k8Y2Iew4k-dFliTwgSW8yHSDZRF5Xb10dVyqe6hSx5krHHhVD3xEXgAmaiMU5e5sdhWeY0EjX2RfGhF5FSBTm-mTA0yck0Lt9d-pzhbf43nySQ0jslZhSs1jxlRh6YIm8DcuIvK8vgwvFX_h6LGfzIJN3mykaZ79wUZmYJUC9Y7IgxKv9QNxAYxNMh4RHlD3l14r1OWojx79S6NnZLUz7HVVd7v_4TG5jufjkEW5RpYBjv4JcLpT8zR47U-KMkaH |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFLVoKwEb3o9AAYMQrNJ6nDh2lu2UYQrtqOr0tbP8ihi1zYw6HUS76icg8RH8V7-Ea2eSMgiBBMs410psH18fJ9fnIvSaZ4YUnJsYvGISp4a6WAmexirRinGj_flGH23Ry7q76YcDdvDTKf5KH6L54OZnRvDXfoKPbLF8JRoKbfInyb3eHKB0Di2kWUL99mtt-0pACuBVJZNPeexFWGvZRkKXZ-vPLEtzn3xQ5ILv5y-_Y56zRDasRJ3bSNVtqAJQDpcmp3rJnP8i7_g_jbyDbk1pKl6pcHUXXXPlPXSjXWeHu4--N8F7GCgk3qyz7OJ-EKSdnDg8LPD68cCq8-HRYHJ8efGtP_BfCC8vvq7C0mkxOHbYsVdPwL0qHH2M9RkGH6VD3grch6oWKgRKjHub27g_Cml7_GGaM6xKizsD4K9gslX_NRjjtjoy06xk4wdot_Nup92Np0kfYgPUigBcwPtSpS1hRjhOKeeCGe0KnYmcMJJZ44wyjBhd2Nyr6dsU1lSXC-4yC-TwIZovh6V7jLCyqXWEa5OA07E6zwuRprC9Yo4J1SIiQm_rMZejSttDVirOVPqOl03HR-gVQKIx8pLc3ZUN6ctIUMhn4nMrQm8CYhozdXLow-Y4k_u997K7Svdpnu7JnQgt1pCSU48xlj5xQQLsjbIIvWxuw6D6HziqdMNJsMmTVpbl4g82XIBVBsQ7Qo8quDYvRBnwNU5ohGgA3V9aLb0qR3P15F8qvUDXt9Y6cmO99_EpuumL4xBCuYjmAY3uGRC6U_08zNkfhKhFNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+molecular+structure+of+imidazolium-silica-based+nanoparticle+networks+by+combining+solid-state+NMR+spectroscopy+and+first-principles+calculations&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Neouze%2C+Marie-Alexandra&rft.au=Kronstein%2C+Martin&rft.au=Litschauer%2C+Marco&rft.au=Puchberger%2C+Michael&rft.date=2014-11-10&rft.eissn=1521-3765&rft.volume=20&rft.issue=46&rft.spage=15188&rft.epage=15196&rft_id=info:doi/10.1002%2Fchem.201403730&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon |