An accurate valvular heart disorders detection model based on a new dual symmetric tree pattern using stethoscope sounds

Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 146; p. 105599
Main Authors Barua, Prabal Datta, Karasu, Mehdi, Kobat, Mehmet Ali, Balık, Yunus, Kivrak, Tarık, Baygin, Mehmet, Dogan, Sengul, Demir, Fahrettin Burak, Tuncer, Turker, Tan, Ru-San, Acharya, U. Rajendra
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.07.2022
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis. A new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV. Our proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively. The presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost. •A large stethoscope sound dataset was collected with 10 categories.•New textural feature extractor (DSTP) was proposed.•We developed a new hand-modeled sound classification.•10-fold CV and LOSO CV have been used to get robust results.•Our model outperformed.
AbstractList Background and purposeValvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis.Materials and methodsA new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV.ResultsOur proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively.ConclusionsThe presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost.
Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis. A new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV. Our proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively. The presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost. •A large stethoscope sound dataset was collected with 10 categories.•New textural feature extractor (DSTP) was proposed.•We developed a new hand-modeled sound classification.•10-fold CV and LOSO CV have been used to get robust results.•Our model outperformed.
Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis. A new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV. Our proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively. The presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost.
Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis.BACKGROUND AND PURPOSEValvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis.A new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV.MATERIALS AND METHODSA new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV.Our proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively.RESULTSOur proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively.The presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost.CONCLUSIONSThe presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost.
AbstractBackground and purposeValvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not universally accessible. Manual cardiac auscultation is inadequate for screening VHD. Many machine learning models using heart sounds acquired with an electronic stethoscope may improve the accuracy of VHD diagnosis. We aimed to develop an accurate sound classification model for VHD diagnosis. Materials and methodsA new large stethoscope sound dataset containing 10,366 heart sounds divided into ten categories (nine VHD and one healthy) were prospectively collected. We developed a handcrafted learning model that comprised multilevel feature extraction based on a dual symmetric tree pattern (DSTP) and multilevel discrete wavelet transform (DWT), feature selection, and classification. The multilevel DWT was used to create subbands to extract features at both high and low levels. Then, iterative neighborhood component analysis was used to select the most discriminative 512 features from among the extracted features in the generated feature vector. In the classification phase, a support vector machine (SVM) was used with 10-fold cross-validation (CV) and leave-one-subject-out (LOSO) CV. ResultsOur proposed DSTP-based model attained 99.58% and 99.84% classification accuracies using SVM classifier with 10-fold CV and LOSO CV, respectively. ConclusionsThe presented DSTP-based classification model attained excellent multiclass classification performance on a large prospective heart sound dataset at a low computational cost.
ArticleNumber 105599
Author Kivrak, Tarık
Kobat, Mehmet Ali
Barua, Prabal Datta
Baygin, Mehmet
Karasu, Mehdi
Balık, Yunus
Tuncer, Turker
Demir, Fahrettin Burak
Acharya, U. Rajendra
Dogan, Sengul
Tan, Ru-San
Author_xml – sequence: 1
  givenname: Prabal Datta
  surname: Barua
  fullname: Barua, Prabal Datta
  email: prabal.barua@usq.edu.au
  organization: School of Business (Information System), University of Southern Queensland, Toowoomba, QLD, 4350, Australia
– sequence: 2
  givenname: Mehdi
  orcidid: 0000-0003-1713-3451
  surname: Karasu
  fullname: Karasu, Mehdi
  email: mehdikarasu@yahoo.com
  organization: Department of Cardiology, Divan Hospital, 44100, Malatya, Turkey
– sequence: 3
  givenname: Mehmet Ali
  surname: Kobat
  fullname: Kobat, Mehmet Ali
  email: mkobat@firat.edu.tr
  organization: Department of Cardiology, Firat University Hospital, Firat University, 23119, Elazig, Turkey
– sequence: 4
  givenname: Yunus
  surname: Balık
  fullname: Balık, Yunus
  email: drynsblk@gmail.com
  organization: Department of Cardiology, Firat University Hospital, Firat University, 23119, Elazig, Turkey
– sequence: 5
  givenname: Tarık
  surname: Kivrak
  fullname: Kivrak, Tarık
  email: tkivrak@firat.edu.tr
  organization: Department of Cardiology, Firat University Hospital, Firat University, 23119, Elazig, Turkey
– sequence: 6
  givenname: Mehmet
  surname: Baygin
  fullname: Baygin, Mehmet
  email: mehmetbaygin@ardahan.edu.tr
  organization: Department of Computer Engineering, College of Engineering, Ardahan University, Ardahan, Turkey
– sequence: 7
  givenname: Sengul
  surname: Dogan
  fullname: Dogan, Sengul
  email: sdogan@firat.edu.tr
  organization: Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
– sequence: 8
  givenname: Fahrettin Burak
  orcidid: 0000-0001-9095-5166
  surname: Demir
  fullname: Demir, Fahrettin Burak
  email: fdemir@bandirma.edu.tr
  organization: Department of Software Engineering, Faculty of Engineering and Natural Sciences, Bandirma Onyedi Eylul University, Bandirma, Turkey
– sequence: 9
  givenname: Turker
  surname: Tuncer
  fullname: Tuncer, Turker
  email: turkertuncer@firat.edu.tr
  organization: Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
– sequence: 10
  givenname: Ru-San
  surname: Tan
  fullname: Tan, Ru-San
  email: tanrsnhc@gmail.com
  organization: Department of Cardiology, National Heart Centre Singapore, Singapore
– sequence: 11
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  email: aru@np.edu.sg
  organization: Ngee Ann Polytechnic, Department of Electronics and Computer Engineering, 599489, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35609471$$D View this record in MEDLINE/PubMed
BookMark eNqVkkuLFDEUhYOMOA_9CxJw46bbJFWVqmzEmcEXDLhQ1-FWcstJW5W0Saq1_70pemxhQBhXIeG7h5Nz7jk58cEjIZSzNWdcvtqsTZi2vQsT2rVgQpTnplHqETnjXatWrKnqE3LGGGeruhPNKTlPacMYq1nFnpDTqpFM1S0_I78uPQVj5ggZ6Q7G3TxCpLcIMVPrUogWY6IWM5rsgqdTsDjSHhJaWq5APf6kdoaRpv00YY7O0BwR6RZyxujpnJz_RlPGfBuSCVukKczepqfk8QBjwmd35wX5-u7tl-sPq5tP7z9eX96sTMPrvBpA8qaWtussdIJJK2CoRTvYTtlmaCX0hinsBylrgLbp2mpQ9cCUEuWzVa-qC_LyoLuN4ceMKevJJYPjCB7DnLSQUjWMC9YV9MU9dBPm6Iu7QrUdV7JtF-r5HTX3JX69jW6CuNd_Mi1AdwBMDClFHI4IZ3qpT2_03_r0Up8-1FdGX98bNS7DEnyO4MaHCFwdBLBEunMYdTIOvUHrYmlQ2-D-w8VRxIzOOwPjd9xjOobCdRKa6c_Lmi1bJkrmleKiCLz5t8DDPPwGQ9Xomg
CitedBy_id crossref_primary_10_1016_j_cjcpc_2022_08_004
crossref_primary_10_1002_ima_22914
crossref_primary_10_1016_j_apacoust_2023_109583
crossref_primary_10_1111_exsy_13246
crossref_primary_10_1186_s12938_022_01032_4
crossref_primary_10_3390_bioengineering10010045
crossref_primary_10_3390_electronics11162520
crossref_primary_10_1007_s13246_023_01216_9
crossref_primary_10_1016_j_eswa_2023_120089
crossref_primary_10_1016_j_bspc_2023_105793
crossref_primary_10_1016_j_eswa_2023_122781
crossref_primary_10_1016_j_medengphy_2025_104302
Cites_doi 10.1016/j.jacc.2012.02.093
10.1109/ACCESS.2020.2992641
10.1161/CIRCULATIONAHA.113.007851
10.1016/S2214-109X(14)70310-9
10.1161/JAHA.119.015975
10.1016/j.cmpb.2020.105604
10.1016/j.ins.2021.06.022
10.1016/j.cmpb.2021.105940
10.1007/s10044-012-0288-4
10.1136/heartjnl-2014-307020
10.7196/SAMJnew.8102
10.1007/978-1-4615-5703-6_3
10.1016/j.neuroimage.2009.10.092
10.1038/s41569-021-00570-z
10.1007/s00357-008-9023-7
10.1016/j.apacoust.2020.107607
10.1016/j.knosys.2020.106547
10.1016/j.jacc.2017.07.732
10.1002/sec.1660
10.1186/s12938-015-0056-y
10.1016/j.neunet.2020.06.015
10.1016/S1473-3099(05)70267-X
10.1016/j.apacoust.2021.108589
10.1016/j.comcom.2020.08.011
10.1016/j.bspc.2021.102591
10.1016/j.smhl.2021.100194
10.1109/JTEHM.2019.2940900
10.1016/j.knosys.2016.01.040
10.3390/s22041521
10.1007/s13246-020-00851-w
10.1142/S0217984919503214
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105599
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105599
ExternalDocumentID 35609471
10_1016_j_compbiomed_2022_105599
S0010482522003912
1_s2_0_S0010482522003912
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c514t-fa61546d88da8206d2af427fd89d5f76abc09ebf664aa75873f94f09920043b93
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Thu Jul 10 22:27:16 EDT 2025
Wed Aug 13 05:54:13 EDT 2025
Mon Jul 21 05:52:59 EDT 2025
Thu Apr 24 23:05:23 EDT 2025
Tue Jul 01 03:28:50 EDT 2025
Fri Feb 23 02:39:38 EST 2024
Tue Feb 25 20:12:02 EST 2025
Tue Aug 26 20:14:31 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Stethoscope sound classification
Cardiologic disorders detection
Dual symmetric tree pattern
Machine learning
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-fa61546d88da8206d2af427fd89d5f76abc09ebf664aa75873f94f09920043b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9095-5166
0000-0003-1713-3451
PMID 35609471
PQID 2678196778
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2669501208
proquest_journals_2678196778
pubmed_primary_35609471
crossref_primary_10_1016_j_compbiomed_2022_105599
crossref_citationtrail_10_1016_j_compbiomed_2022_105599
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105599
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522003912
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105599
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Alkhodari, Fraiwan (bib26) 2021; 200
Acharya, Fujita, Sudarshan, Oh, Adam, Koh, Tan, Ghista, Martis, Chua (bib34) 2016; 99
Noman, Ting, Salleh, Ombao (bib19) 2019
Kaya, Ertuğrul (bib31) 2016; 9
Oh, Jahmunah, Ooi, Tan, Ciaccio, Yamakawa, Tanabe, Kobayashi, Acharya (bib23) 2020; 196
Catherine (bib1) 2013
Tuncer, Dogan, Acharya (bib36) 2021; 211
Arora, Leekha, Singh, Chana (bib21) 2019; 33
Tuncer, Dogan, Subasi (bib33) 2021; 68
Carapetis, Steer, Mulholland, Weber (bib6) 2005; 5
Rothenbühler, O'Sullivan, Stortecky, Stefanini, Spitzer, Estill, Shrestha, Keiser, Jüni, Pilgrim (bib7) 2014; 2
Bedeker, Lachman, Borkum, Hellenberg, Cupido (bib9) 2015; 105
Lindman, Arnold, Bagur, Clarke, Coylewright, Evans, Hung, Lauck, Peschin, Sachdev (bib11) 2020; 9
Vapnik (bib13) 1998
Esterman, Tamber-Rosenau, Chiu, Yantis (bib14) 2010; 50
Coffey, Roberts-Thomson, Brown, Carapetis, Chen, Enriquez-Sarano, Zühlke, Prendergast (bib3) 2021; 18
Tuncer (bib32) 2021; 172
Dweck, Boon, Newby (bib4) 2012; 60
Milani, Abas, De Silva, Nanayakkara (bib22) 2021; 21
Powers (bib28) 2020
Baygin, Tuncer, Dogan, Tan, Acharya (bib37) 2021; 575
Kobat, Dogan (bib25) 2021; 179
Tuncer, Dogan, Özyurt, Belhaouari, Bensmail (bib12) 2020; 8
Michelena, Prakash, Della Corte, Bissell, Anavekar, Mathieu, Bossé, Limongelli, Bossone, Benson (bib5) 2014; 129
Doherty, Kort, Mehran, Schoenhagen, Soman (bib8) 2017; 70
Alqudah, Alquran, Qasmieh (bib27) 2020; 9
Tasar, Yaman, Tuncer (bib35) 2022; 188
Coffey, Cairns, Iung (bib2) 2016; 102
Krishnan, Balasubramanian, Umapathy (bib18) 2020; 43
Tariq, Shah, Lee (bib20) 2022; 22
Deperlioglu, Kose, Gupta, Khanna, Sangaiah (bib16) 2020; 162
Li, Liu, Zhao, Kong, Dong, Liu, Hui (bib24) 2019; 2019
Ali, Zhu, Zhang, Liu (bib15) 2019; 7
Deng, Meng, Cao, Wang, Zhang, Fan (bib17) 2020; 130
Warrens (bib29) 2008; 25
Leng, Tan, Chai, Wang, Ghista, Zhong (bib10) 2015; 14
Houam, Hafiane, Boukrouche, Lespessailles, Jennane (bib30) 2014; 17
Acharya (10.1016/j.compbiomed.2022.105599_bib34) 2016; 99
Doherty (10.1016/j.compbiomed.2022.105599_bib8) 2017; 70
Rothenbühler (10.1016/j.compbiomed.2022.105599_bib7) 2014; 2
Warrens (10.1016/j.compbiomed.2022.105599_bib29) 2008; 25
Kobat (10.1016/j.compbiomed.2022.105599_bib25) 2021; 179
Milani (10.1016/j.compbiomed.2022.105599_bib22) 2021; 21
Tuncer (10.1016/j.compbiomed.2022.105599_bib33) 2021; 68
Vapnik (10.1016/j.compbiomed.2022.105599_bib13) 1998
Alkhodari (10.1016/j.compbiomed.2022.105599_bib26) 2021; 200
Deperlioglu (10.1016/j.compbiomed.2022.105599_bib16) 2020; 162
Lindman (10.1016/j.compbiomed.2022.105599_bib11) 2020; 9
Baygin (10.1016/j.compbiomed.2022.105599_bib37) 2021; 575
Coffey (10.1016/j.compbiomed.2022.105599_bib2) 2016; 102
Noman (10.1016/j.compbiomed.2022.105599_bib19) 2019
Kaya (10.1016/j.compbiomed.2022.105599_bib31) 2016; 9
Bedeker (10.1016/j.compbiomed.2022.105599_bib9) 2015; 105
Arora (10.1016/j.compbiomed.2022.105599_bib21) 2019; 33
Tasar (10.1016/j.compbiomed.2022.105599_bib35) 2022; 188
Powers (10.1016/j.compbiomed.2022.105599_bib28) 2020
Leng (10.1016/j.compbiomed.2022.105599_bib10) 2015; 14
Michelena (10.1016/j.compbiomed.2022.105599_bib5) 2014; 129
Tuncer (10.1016/j.compbiomed.2022.105599_bib36) 2021; 211
Esterman (10.1016/j.compbiomed.2022.105599_bib14) 2010; 50
Catherine (10.1016/j.compbiomed.2022.105599_bib1) 2013
Tuncer (10.1016/j.compbiomed.2022.105599_bib32) 2021; 172
Ali (10.1016/j.compbiomed.2022.105599_bib15) 2019; 7
Alqudah (10.1016/j.compbiomed.2022.105599_bib27) 2020; 9
Coffey (10.1016/j.compbiomed.2022.105599_bib3) 2021; 18
Krishnan (10.1016/j.compbiomed.2022.105599_bib18) 2020; 43
Carapetis (10.1016/j.compbiomed.2022.105599_bib6) 2005; 5
Tariq (10.1016/j.compbiomed.2022.105599_bib20) 2022; 22
Oh (10.1016/j.compbiomed.2022.105599_bib23) 2020; 196
Houam (10.1016/j.compbiomed.2022.105599_bib30) 2014; 17
Tuncer (10.1016/j.compbiomed.2022.105599_bib12) 2020; 8
Li (10.1016/j.compbiomed.2022.105599_bib24) 2019; 2019
Dweck (10.1016/j.compbiomed.2022.105599_bib4) 2012; 60
Deng (10.1016/j.compbiomed.2022.105599_bib17) 2020; 130
References_xml – volume: 2
  start-page: e717
  year: 2014
  end-page: e726
  ident: bib7
  article-title: Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents
  publication-title: Lancet Global Health
– volume: 60
  start-page: 1854
  year: 2012
  end-page: 1863
  ident: bib4
  article-title: Calcific aortic stenosis: a disease of the valve and the myocardium
  publication-title: J. Am. Coll. Cardiol.
– volume: 50
  start-page: 572
  year: 2010
  end-page: 576
  ident: bib14
  article-title: Avoiding non-independence in fMRI data analysis: leave one subject out
  publication-title: Neuroimage
– start-page: 1318
  year: 2019
  end-page: 1322
  ident: bib19
  article-title: Short-segment Heart Sound Classification Using an Ensemble of Deep Convolutional Neural Networks, ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 105
  start-page: 817
  year: 2015
  end-page: 822
  ident: bib9
  article-title: Impact of transthoracic echocardiography at district hospital level
  publication-title: S. Afr. Med. J.
– volume: 9
  year: 2020
  ident: bib11
  article-title: Priorities for patient‐centered research in valvular heart disease: a report from the national heart, lung, and blood institute working group
  publication-title: J. Am. Heart Assoc.
– volume: 130
  start-page: 22
  year: 2020
  end-page: 32
  ident: bib17
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Network.
– volume: 172
  year: 2021
  ident: bib32
  article-title: A new stable nonlinear textural feature extraction method based EEG signal classification method using substitution Box of the Hamsi hash function: hamsi pattern
  publication-title: Appl. Acoust.
– year: 2020
  ident: bib28
  article-title: Evaluation: from Precision, Recall and F-Measure to ROC, Informedness, Markedness and Correlation
– volume: 9
  start-page: 4680
  year: 2016
  end-page: 4690
  ident: bib31
  article-title: A novel feature extraction approach in SMS spam filtering for mobile communication: one‐dimensional ternary patterns
  publication-title: Secur. Commun. Network.
– start-page: 55
  year: 1998
  end-page: 85
  ident: bib13
  article-title: The support vector method of function estimation
  publication-title: Nonlin. Model. Spring.
– volume: 22
  start-page: 1521
  year: 2022
  ident: bib20
  article-title: Feature-based fusion using CNN for lung and heart sound classification
  publication-title: Sensors
– volume: 21
  year: 2021
  ident: bib22
  article-title: Abnormal heart sound classification using phonocardiography signals
  publication-title: Smart Health
– volume: 99
  start-page: 146
  year: 2016
  end-page: 156
  ident: bib34
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl. Base Syst.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib24
  article-title: Feature extraction and classification of heart sound using 1D convolutional neural networks
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 14
  start-page: 1
  year: 2015
  end-page: 37
  ident: bib10
  article-title: The electronic stethoscope
  publication-title: Biomed. Eng. Online
– volume: 17
  start-page: 179
  year: 2014
  end-page: 193
  ident: bib30
  article-title: One dimensional local binary pattern for bone texture characterization
  publication-title: Pattern Anal. Appl.
– year: 2013
  ident: bib1
  article-title: Valvular Heart Disease: A Companion to Braunwald's Heart Disease, 4e, Braunwald's Series
– volume: 162
  start-page: 31
  year: 2020
  end-page: 50
  ident: bib16
  article-title: Diagnosis of heart diseases by a secure internet of health things system based on autoencoder deep neural network
  publication-title: Comput. Commun.
– volume: 7
  start-page: 1
  year: 2019
  end-page: 10
  ident: bib15
  article-title: Automated detection of Parkinson's disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network
  publication-title: IEEE J. Translat. Eng. Health Med.
– volume: 70
  start-page: 1647
  year: 2017
  end-page: 1672
  ident: bib8
  article-title: ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2017 appropriate use criteria for multimodality imaging in valvular heart disease: a report of the American college of cardiology appropriate use criteria task force, American association for thoracic surgery, American heart association, american society of echocardiography, American society of nuclear cardiology, heart rhythm society, society for cardiovascular angiography and interventions, society of cardiovascular computed tomography, society for cardiovascular magnetic resonance, and society of thoracic surgeons
  publication-title: J. Am. Coll. Cardiol.
– volume: 8
  start-page: 84532
  year: 2020
  end-page: 84540
  ident: bib12
  article-title: Novel multi center and threshold ternary pattern based method for disease detection method using voice
  publication-title: IEEE Access
– volume: 196
  year: 2020
  ident: bib23
  article-title: Classification of heart sound signals using a novel deep WaveNet model
  publication-title: Comput. Methods Progr. Biomed.
– volume: 18
  start-page: 853
  year: 2021
  end-page: 864
  ident: bib3
  article-title: Global epidemiology of valvular heart disease
  publication-title: Nat. Rev. Cardiol.
– volume: 25
  start-page: 177
  year: 2008
  end-page: 183
  ident: bib29
  article-title: On the equivalence of Cohen's kappa and the Hubert-Arabie adjusted Rand index
  publication-title: J. Classif.
– volume: 129
  start-page: 2691
  year: 2014
  end-page: 2704
  ident: bib5
  article-title: Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon)
  publication-title: Circulation
– volume: 33
  year: 2019
  ident: bib21
  article-title: Heart sound classification using machine learning and phonocardiogram
  publication-title: Mod. Phys. Lett. B
– volume: 102
  start-page: 75
  year: 2016
  end-page: 85
  ident: bib2
  article-title: The modern epidemiology of heart valve disease
  publication-title: Heart
– volume: 43
  start-page: 505
  year: 2020
  end-page: 515
  ident: bib18
  article-title: Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network
  publication-title: Phys. Eng. Sci. Med.
– volume: 200
  year: 2021
  ident: bib26
  article-title: Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings
  publication-title: Comput. Methods Progr. Biomed.
– volume: 9
  start-page: 1
  year: 2020
  end-page: 16
  ident: bib27
  article-title: Classification of heart sound short records using bispectrum analysis approach images and deep learning
  publication-title: Network Modeling Analysis in Health Informatics and Bioinformatics
– volume: 575
  start-page: 323
  year: 2021
  end-page: 337
  ident: bib37
  article-title: Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records
  publication-title: Inf. Sci.
– volume: 211
  year: 2021
  ident: bib36
  article-title: Automated accurate speech emotion recognition system using twine shuffle pattern and iterative neighborhood component analysis techniques
  publication-title: Knowl. Base Syst.
– volume: 68
  year: 2021
  ident: bib33
  article-title: EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection
  publication-title: Biomed. Signal Process Control
– volume: 179
  year: 2021
  ident: bib25
  article-title: Novel three kernelled binary pattern feature extractor based automated PCG sound classification method
  publication-title: Appl. Acoust.
– volume: 5
  start-page: 685
  year: 2005
  end-page: 694
  ident: bib6
  article-title: The global burden of group A streptococcal diseases
  publication-title: Lancet Infect. Dis.
– volume: 188
  year: 2022
  ident: bib35
  article-title: Accurate respiratory sound classification model based on piccolo pattern
  publication-title: Appl. Acoust.
– volume: 60
  start-page: 1854
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105599_bib4
  article-title: Calcific aortic stenosis: a disease of the valve and the myocardium
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2012.02.093
– volume: 8
  start-page: 84532
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib12
  article-title: Novel multi center and threshold ternary pattern based method for disease detection method using voice
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2992641
– volume: 129
  start-page: 2691
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105599_bib5
  article-title: Bicuspid aortic valve: identifying knowledge gaps and rising to the challenge from the International Bicuspid Aortic Valve Consortium (BAVCon)
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.007851
– volume: 2
  start-page: e717
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105599_bib7
  article-title: Active surveillance for rheumatic heart disease in endemic regions: a systematic review and meta-analysis of prevalence among children and adolescents
  publication-title: Lancet Global Health
  doi: 10.1016/S2214-109X(14)70310-9
– volume: 9
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib11
  article-title: Priorities for patient‐centered research in valvular heart disease: a report from the national heart, lung, and blood institute working group
  publication-title: J. Am. Heart Assoc.
  doi: 10.1161/JAHA.119.015975
– volume: 196
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib23
  article-title: Classification of heart sound signals using a novel deep WaveNet model
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2020.105604
– volume: 575
  start-page: 323
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib37
  article-title: Automated arrhythmia detection with homeomorphically irreducible tree technique using more than 10,000 individual subject ECG records
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.06.022
– volume: 200
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib26
  article-title: Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings
  publication-title: Comput. Methods Progr. Biomed.
  doi: 10.1016/j.cmpb.2021.105940
– volume: 17
  start-page: 179
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105599_bib30
  article-title: One dimensional local binary pattern for bone texture characterization
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-012-0288-4
– volume: 102
  start-page: 75
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105599_bib2
  article-title: The modern epidemiology of heart valve disease
  publication-title: Heart
  doi: 10.1136/heartjnl-2014-307020
– volume: 105
  start-page: 817
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105599_bib9
  article-title: Impact of transthoracic echocardiography at district hospital level
  publication-title: S. Afr. Med. J.
  doi: 10.7196/SAMJnew.8102
– start-page: 55
  year: 1998
  ident: 10.1016/j.compbiomed.2022.105599_bib13
  article-title: The support vector method of function estimation
  publication-title: Nonlin. Model. Spring.
  doi: 10.1007/978-1-4615-5703-6_3
– volume: 50
  start-page: 572
  year: 2010
  ident: 10.1016/j.compbiomed.2022.105599_bib14
  article-title: Avoiding non-independence in fMRI data analysis: leave one subject out
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.092
– volume: 18
  start-page: 853
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib3
  article-title: Global epidemiology of valvular heart disease
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/s41569-021-00570-z
– volume: 25
  start-page: 177
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105599_bib29
  article-title: On the equivalence of Cohen's kappa and the Hubert-Arabie adjusted Rand index
  publication-title: J. Classif.
  doi: 10.1007/s00357-008-9023-7
– volume: 172
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib32
  article-title: A new stable nonlinear textural feature extraction method based EEG signal classification method using substitution Box of the Hamsi hash function: hamsi pattern
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107607
– volume: 179
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib25
  article-title: Novel three kernelled binary pattern feature extractor based automated PCG sound classification method
  publication-title: Appl. Acoust.
– volume: 211
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib36
  article-title: Automated accurate speech emotion recognition system using twine shuffle pattern and iterative neighborhood component analysis techniques
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2020.106547
– volume: 70
  start-page: 1647
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105599_bib8
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.07.732
– volume: 9
  start-page: 4680
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105599_bib31
  article-title: A novel feature extraction approach in SMS spam filtering for mobile communication: one‐dimensional ternary patterns
  publication-title: Secur. Commun. Network.
  doi: 10.1002/sec.1660
– volume: 14
  start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105599_bib10
  article-title: The electronic stethoscope
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-015-0056-y
– volume: 130
  start-page: 22
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib17
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2020.06.015
– volume: 5
  start-page: 685
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105599_bib6
  article-title: The global burden of group A streptococcal diseases
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(05)70267-X
– year: 2013
  ident: 10.1016/j.compbiomed.2022.105599_bib1
– volume: 188
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105599_bib35
  article-title: Accurate respiratory sound classification model based on piccolo pattern
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108589
– volume: 162
  start-page: 31
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib16
  article-title: Diagnosis of heart diseases by a secure internet of health things system based on autoencoder deep neural network
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.08.011
– start-page: 1318
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105599_bib19
– volume: 68
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib33
  article-title: EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection
  publication-title: Biomed. Signal Process Control
  doi: 10.1016/j.bspc.2021.102591
– volume: 21
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105599_bib22
  article-title: Abnormal heart sound classification using phonocardiography signals
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2021.100194
– volume: 7
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105599_bib15
  article-title: Automated detection of Parkinson's disease based on multiple types of sustained phonations using linear discriminant analysis and genetically optimized neural network
  publication-title: IEEE J. Translat. Eng. Health Med.
  doi: 10.1109/JTEHM.2019.2940900
– volume: 99
  start-page: 146
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105599_bib34
  article-title: Automated detection and localization of myocardial infarction using electrocardiogram: a comparative study of different leads
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2016.01.040
– volume: 9
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib27
  article-title: Classification of heart sound short records using bispectrum analysis approach images and deep learning
– volume: 22
  start-page: 1521
  year: 2022
  ident: 10.1016/j.compbiomed.2022.105599_bib20
  article-title: Feature-based fusion using CNN for lung and heart sound classification
  publication-title: Sensors
  doi: 10.3390/s22041521
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105599_bib24
  article-title: Feature extraction and classification of heart sound using 1D convolutional neural networks
  publication-title: EURASIP J. Appl. Signal Process.
– volume: 43
  start-page: 505
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib18
  article-title: Automated heart sound classification system from unsegmented phonocardiogram (PCG) using deep neural network
  publication-title: Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-020-00851-w
– volume: 33
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105599_bib21
  article-title: Heart sound classification using machine learning and phonocardiogram
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984919503214
– year: 2020
  ident: 10.1016/j.compbiomed.2022.105599_bib28
SSID ssj0004030
Score 2.40076
Snippet Valvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD diagnosis but is not...
AbstractBackground and purposeValvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD...
Background and purposeValvular heart disease (VHD) is an important cause of morbidity and mortality. Echocardiography is the reference standard for VHD...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105599
SubjectTerms Accuracy
Acoustics
Artificial intelligence
Cardiologic disorders detection
Cardiovascular disease
Classification
Computer applications
Coronary artery disease
Datasets
Deep learning
Diagnosis
Discrete Wavelet Transform
Dual symmetric tree pattern
Echocardiography
Feature extraction
Heart
Heart diseases
Internal Medicine
Iterative methods
Machine learning
Morbidity
Multilevel
Neural networks
Other
Sound
Stethoscope sound classification
Support vector machines
Wavelet transforms
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NaxQxFA-lB_EiWr9W2xLB69htPid4KsVSBD1Z6C1k8qEVO7s4s6IX_3bfSzJTpBUWPM5uHjMkLy-_R37v9wh5LbWTJrayQc3JRvjgm07w2LQsQXLQBSVDZlt8VOcX4v2lvNwhp1MtDNIqa-wvMT1H6_rLUZ3No_XVFdb4QioBCQ5jWeYc47AQGr38ze8bmodY8lKGAvEGR1c2T-F4IW27lLlDpsgYNr2VWQX2ziPqXxA0H0VnD8mDiiHpSfnMR2Qn9nvk3od6S_6Y_DzpqfN-gyoQFDzpB1JNKbauHmmoapsDDXHMNKye5m44FM-zQOHRUYDaFGu06PDr-hpbbnmKl9d0ncU4e4pk-c8U_GP8ssplLXTA7kzDE3Jx9u7T6XlTOyw0HoDS2CQHgEao0LbBoZB7YC4JplNoTZBJK9f5pYldUko4B5mF5smIBKAS9xbvDH9KdvtVH58TKrQGpwzOKMhQVMdR_9h3UfgkXeKeL4ieJtX6Kj-OXTC-2Yln9tXeLIfF5bBlORbkeLZcFwmOLWzMtG52KjGFoGjhnNjCVt9lG4e6uwd7bAdml_aWBy7I29nyLyfe8r37k4PZ-VUMwAQESa3bBXk1_w0hAO91XB9XGxyjjMQiaBjzrDjmPFEcEK0BAPLivz7tJbmPT4WmvE92x--beABgbOwO8277AxA9NCo
  priority: 102
  providerName: Elsevier
Title An accurate valvular heart disorders detection model based on a new dual symmetric tree pattern using stethoscope sounds
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522003912
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522003912
https://dx.doi.org/10.1016/j.compbiomed.2022.105599
https://www.ncbi.nlm.nih.gov/pubmed/35609471
https://www.proquest.com/docview/2678196778
https://www.proquest.com/docview/2669501208
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXYXQlxWfFNYamMxDXQOo4diwMqaEsBUSFgpd4sxx-LEJt2SYrgwm9nxnHSy4J6aVQ1k1SZsf0mfvOGkKeFNIXyZZGh5mTGrbNZxXOflSxAclA5UbjItliKxRl_typW6YVbk2iV_ZwYJ2q3tviO_DmDWRWiRcry5eYyw65RuLuaWmgckCOULkNKl1zJXV3kJO9KUGCu4ZAKJSZPx-9CynZX4g5ZImPY8LaICrBXLk__gp9xGZrfJMcJP9JZ5_Bb5Jqvb5PrH9IO-R3ya1ZTY-0WFSAoRNFPpJlSbFvdUpeUNhvqfBspWDWNnXAormWOwldDAWZTrM-ize-LC2y3ZSluXNNNFOKsKRLlzynERvt1HUtaaIOdmZq75Gx--uX1IkvdFTILIKnNggEww4UrS2dQxN0xEziTwZXKFUEKU9mJ8lUQghsDWYXMg-IBACWOq7xS-T1yWK9r_4BQLiUEpDNKQHYiqhy1j23luQ2FCbnNR0T2D1XbJD2OHTC-655j9k3v3KHRHbpzx4hMB8tNJ7-xh43q_ab78lKYEDWsEXvYyqtsfZNGdqOnumF6oj9HYSOIKcaiyD4bkReDZQIvHSjZ874nfYDp4Va7kB-RJ8PPMPxxT8fUfr3Fc4QqsAAazrnfBebwoHJAswrAx8P_X_wRuYH_pOMgn5DD9sfWPwak1VZjcvDsz3QcBxV8lvM3Y3I0e_t-sYTjq9Plx09_AeeTLjo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXxLsLBQYJjhFb24kTIYQqYNnSx4VW6s04foAQzS4kC_RP8RuZsZPdS0F76THazCbyvD7HM98w9ixXJq98mWfEOZlJ62xWS-GzkgfcHNSuyF2stjgqpifyw2l-usH-DL0wVFY5xMQYqN3M0jfyFxyjKlqLUuXr-feMpkbR6eowQiOZxb4__4VbtvbV3lvU73POJ--O30yzfqpAZhEcdFkwmMRl4crSGSIvd9wEyVVwZeXyoApT23Hl61AU0hhE00qESgYEUmRPoibyJQz5V6QQFXlUOXm_6sMci9TygrFN4tarrxxK9WRUIp5a6nFXyjkN2M0j4-yF6fBfcDemvclNdqPHq7CbDOwW2_DNbXb1sD-Rv8N-7zZgrF0Q4wSg1f6kslagMdkduJ7ZswXnu1jy1UCcvAOUOx3gpQGE9UD9YNCen53ReC8LdFAO80j82QAV5n8GtMXuyyy20EBLk6Dau-zkUtb9HttsZo3fYiCVQgdwpipwN1TUgriWbe2lDbkJwooRU8OiattTndPEjW96qGn7qlfq0KQOndQxYjtLyXmi-1hDphr0pod2VgzAGnPSGrLqIlnf9pGk1Tu65XqsP0YiJbQpziOpPx-xl0vJHiwlELTmc7cHA9PLR61cbMSeLn_GcENnSKbxswXdU1Q5NVzjPfeTYS4XSiB6rhDsPPj_nz9h16bHhwf6YO9o_yG7Tm-V6p-32Wb3Y-EfIcrr6sfRtYB9umxf_gsfNGWs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIlVcEN8sFBgkOEbddew4EUKooqxaChUSVNqbcfwBQjS7kCzQv8avY8ZOdi8F7aXHaDObyJ4ZP8dv3jD2VCojK1_KjDQnM2GdzWqR-6zkATcHtSuki2yLk-LwVLyZydkW-zPUwhCtcsiJMVG7uaVv5Hscsyp6i1LlXuhpEe8Ppi8X3zPqIEUnrUM7jeQix_78F27f2hdHBzjXzzifvv746jDrOwxkFoFClwWDC7ooXFk6Q0LmjpsguAqurJwMqjC1HVe-DkUhjEFkrfJQiYCginwrr0mICdP_FZXLCcWYmql1TeY4T-UvmOcEbsN6FlHilhFdPJXX4w6Vc2q2K6P67IVL47-gb1wCp9fZtR67wn5ythtsyzc32c67_nT-Fvu934CxdknqE4Ae_JMorkAtsztwvcpnC853kf7VQOzCA7SOOsBLAwjxgWrDoD0_O6NWXxbo0BwWUQS0ASLpfwb0y-7LPJbTQEtdodrb7PRSxv0O227mjb_HQCiFweBMVeDOqKhz0l22tRc2SBNym4-YGgZV2172nLpvfNMDv-2rXk-HpunQaTpGbLKyXCTpjw1sqmHe9FDaislY4_q0ga26yNa3fVZp9US3XI_1hyiqhD7FeRT45yP2fGXZA6cEiDZ87u7gYHr1qHW4jdiT1c-Yeug8yTR-vqR7ikpS8TXeczc55mqgckTSFQKf-___88dsB6NYvz06OX7ArtJLJSr0Ltvufiz9QwR8Xf0oRhawT5cdyn8BnRZp2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate+valvular+heart+disorders+detection+model+based+on+a+new+dual+symmetric+tree+pattern+using+stethoscope+sounds&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Barua%2C+Prabal+Datta&rft.au=Karasu%2C+Mehdi&rft.au=Kobat%2C+Mehmet+Ali&rft.au=Bal%C4%B1k%2C+Yunus&rft.date=2022-07-01&rft.issn=0010-4825&rft.volume=146&rft.spage=105599&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compbiomed_2022_105599
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif