miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19

The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bio...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 8; no. 11; p. 462
Main Authors Matarese, Alessandro, Gambardella, Jessica, Sardu, Celestino, Santulli, Gaetano
Format Journal Article
LanguageEnglish
Published MDPI 30.10.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
AbstractList The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.
Author Santulli, Gaetano
Sardu, Celestino
Gambardella, Jessica
Matarese, Alessandro
AuthorAffiliation 5 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it
3 Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
6 Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy
2 AORN “Antonio Cardarelli”, 80100 Naples, Italy
1 Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; alessandromatarese@yahoo.it (A.M.); jessica.gambardella@einsteinmed.org (J.G.)
4 Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
AuthorAffiliation_xml – name: 5 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it
– name: 3 Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy
– name: 2 AORN “Antonio Cardarelli”, 80100 Naples, Italy
– name: 4 Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA
– name: 6 Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy
– name: 1 Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; alessandromatarese@yahoo.it (A.M.); jessica.gambardella@einsteinmed.org (J.G.)
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Matarese
  fullname: Matarese, Alessandro
– sequence: 2
  givenname: Jessica
  surname: Gambardella
  fullname: Gambardella, Jessica
– sequence: 3
  givenname: Celestino
  surname: Sardu
  fullname: Sardu, Celestino
– sequence: 4
  givenname: Gaetano
  orcidid: 0000-0001-7231-375X
  surname: Santulli
  fullname: Santulli, Gaetano
BookMark eNp9kU9v1DAQxS1UREvpJ-DiI5eA_yY2ByS0LHRFUdG2cEOW7Yy3rhJ7sbOIfnvSbpEoQvgyHs97P1lvnqKDlBMg9JySl5xr8srFPEIffUxQFaVEtOwROmKMdY0mUh_8cT9EJ7Vek_loyhUVT9Ah51RwIvkR-jbGdaMVXsNmN9gJKr789Hl9ccHw8ue2QK0xJxwTPt2NNuFl6vN0BUO0A17AMNTX-CPc4NW4HaK306ytOOSCF-dfV-8aqp-hx8EOFU7u6zH68n55uThtzs4_rBZvzxovqZia0EmtgTEeNFEQtHOKSx4cSNL1THgpLQdFu3DbBNX2OgjSeyYcYTIQxo_Ras_ts7022xJHW25MttHcPeSyMbZM0Q9gtHStV33XOtYKa5mDYJ0D3ipPuNJiZr3Zs7Y7N0fsIU3FDg-gDycpXplN_mG6VnPVyhnw4h5Q8vcd1MmMsfo5LZsg76phQnat4FrRWar3Ul9yrQWC8XG6y3Emx8FQYm63bf6x7dnL__L-_uL_XL8A4qqyJA
CitedBy_id crossref_primary_10_1007_s13300_022_01259_3
crossref_primary_10_1155_2022_1645366
crossref_primary_10_2147_JBM_S318940
crossref_primary_10_1007_s13300_024_01574_x
crossref_primary_10_3892_ijmm_2021_5075
crossref_primary_10_1016_j_isci_2021_103672
crossref_primary_10_1016_j_intimp_2021_108145
crossref_primary_10_3390_ijms23158285
crossref_primary_10_4103_ijmr_ijmr_2605_21
crossref_primary_10_1016_j_sciaf_2023_e01627
crossref_primary_10_1186_s12931_023_02462_x
crossref_primary_10_1007_s11010_022_04356_w
crossref_primary_10_3390_ncrna8030029
crossref_primary_10_3390_biom15010075
crossref_primary_10_1016_j_intimp_2020_107204
crossref_primary_10_2147_IDR_S340314
crossref_primary_10_1089_dna_2021_1101
crossref_primary_10_3390_cells10071788
crossref_primary_10_1016_j_phrs_2023_106702
crossref_primary_10_1016_j_ijid_2022_07_019
crossref_primary_10_1002_wsbm_1621
crossref_primary_10_1002_rmv_2562
crossref_primary_10_1016_j_diabres_2022_109974
crossref_primary_10_3390_v13112182
crossref_primary_10_1016_j_ebiom_2022_103982
crossref_primary_10_1038_s41598_021_89605_6
crossref_primary_10_1016_j_lfs_2022_120761
crossref_primary_10_1016_j_semcancer_2021_01_003
crossref_primary_10_3389_fcvm_2022_868521
crossref_primary_10_20945_2359_3997000000527
crossref_primary_10_1038_s41401_022_00998_0
crossref_primary_10_3390_ijms22105131
crossref_primary_10_3390_ijms231810242
crossref_primary_10_31083_j_rcm2505161
crossref_primary_10_3390_cells11152279
crossref_primary_10_3390_biomedicines9091142
crossref_primary_10_1016_j_intimp_2022_109088
crossref_primary_10_1136_bmjopen_2021_051237
crossref_primary_10_1186_s12985_023_02152_6
crossref_primary_10_3390_biotech12040061
crossref_primary_10_1038_s41598_022_15898_w
crossref_primary_10_2217_epi_2023_0179
crossref_primary_10_2147_JBM_S316014
crossref_primary_10_1016_j_biopha_2021_112247
crossref_primary_10_15275_rusomj_2022_0313
crossref_primary_10_2217_bmm_2021_0121
crossref_primary_10_1007_s10616_021_00493_0
crossref_primary_10_1016_j_ncrna_2024_08_007
crossref_primary_10_1111_imcb_12615
crossref_primary_10_3390_biomedicines9111546
crossref_primary_10_3389_fimmu_2024_1264856
crossref_primary_10_1080_13813455_2022_2086265
crossref_primary_10_3390_biomedicines11010014
crossref_primary_10_1016_j_gene_2023_147232
crossref_primary_10_3389_fcimb_2024_1407261
crossref_primary_10_1186_s42269_022_00955_1
crossref_primary_10_1016_j_isci_2023_106074
crossref_primary_10_1186_s12931_023_02413_6
crossref_primary_10_1038_s41392_023_01669_0
crossref_primary_10_3390_ijms25189977
crossref_primary_10_3389_fmed_2024_1430974
crossref_primary_10_3390_cells10071752
crossref_primary_10_7554_eLife_69314
crossref_primary_10_1080_15384101_2020_1867792
crossref_primary_10_1038_s41598_021_02534_2
crossref_primary_10_3390_antiox12020326
crossref_primary_10_1016_j_heliyon_2023_e13388
crossref_primary_10_1016_j_ncrna_2023_02_007
crossref_primary_10_1016_j_phrs_2022_106360
crossref_primary_10_3390_v15081647
crossref_primary_10_2147_IDR_S420182
crossref_primary_10_3390_ncrna7010009
crossref_primary_10_3390_ijms24065664
crossref_primary_10_7717_peerj_14570
crossref_primary_10_3389_fmed_2021_744141
crossref_primary_10_1016_j_semcdb_2023_02_006
crossref_primary_10_1124_jpet_122_001209
crossref_primary_10_1016_j_intimp_2021_108232
crossref_primary_10_1136_fmch_2023_002271
crossref_primary_10_1111_jch_14137
crossref_primary_10_1016_j_virusres_2021_198631
crossref_primary_10_1371_journal_pone_0275381
crossref_primary_10_1002_edm2_279
crossref_primary_10_3390_ijms22168663
crossref_primary_10_3390_cells10081900
crossref_primary_10_3389_fcvm_2021_798897
crossref_primary_10_3390_cells11121972
crossref_primary_10_1111_liv_16079
crossref_primary_10_3390_jpm12030386
crossref_primary_10_12998_wjcc_v10_i3_762
crossref_primary_10_2217_bmm_2022_0250
crossref_primary_10_3389_fendo_2022_896378
crossref_primary_10_1016_j_intimp_2021_108201
crossref_primary_10_3390_diagnostics13061091
crossref_primary_10_3390_biomedicines9080957
crossref_primary_10_3390_antiox9121227
crossref_primary_10_1016_j_ijbiomac_2022_09_105
crossref_primary_10_1016_j_diabres_2024_111926
crossref_primary_10_1002_med_22073
crossref_primary_10_2147_JIR_S350822
crossref_primary_10_3390_app11094281
crossref_primary_10_1186_s13287_024_03889_9
crossref_primary_10_18632_aging_203159
crossref_primary_10_3390_jcm11061564
crossref_primary_10_52711_0974_360X_2022_00073
Cites_doi 10.1530/JOE-19-0471
10.1016/j.cell.2020.04.035
10.1056/NEJMoa2015432
10.1016/j.cell.2020.02.052
10.1038/ncomms4594
10.1210/clinem/dgaa538
10.1080/1061186X.2020.1797754
10.1016/j.ymthe.2017.03.031
10.1016/S0140-6736(20)30937-5
10.18632/aging.103415
10.20944/preprints202004.0204.v1
10.1038/s41586-020-2012-7
10.3390/jcm9092920
10.1136/bmj.m1966
10.1038/srep07425
10.1016/j.ejphar.2020.173545
10.1159/000481756
10.1093/cvr/cvaa195
10.1007/s00134-020-06237-6
10.1002/path.2357
10.1126/science.367.6485.1412
10.1093/cvr/cvaa230
10.4103/2229-3485.179431
10.1093/eurheartj/ehaa623
10.1016/j.devcel.2008.07.002
10.1038/nature02871
10.1161/CIRCRESAHA.111.247452
10.1007/s12041-020-01217-7
10.1016/j.bbrc.2015.09.058
10.1073/pnas.2002589117
10.3390/ijms21010201
10.1111/jcmm.13471
10.1007/978-3-319-22380-3_4
10.1016/j.cell.2012.02.005
10.1093/cvr/cvaa106
10.7554/eLife.61330
10.1002/jmv.26319
10.15252/emmm.201708046
10.1038/srep11427
10.1186/s12916-020-01673-z
10.1080/07391102.2020.1767690
10.1038/s41586-020-2575-3
10.1007/s00134-020-05985-9
10.1126/scitranslmed.aav9141
10.1016/j.mce.2014.05.024
10.3390/cells9041056
10.1111/apha.12416
10.1128/JVI.01815-18
10.1530/JOE-20-0260
10.1186/s13054-020-2833-7
10.1161/CIRCULATIONAHA.120.049465
10.1007/s10741-020-10016-2
10.1128/JVI.03677-13
10.1001/jama.2020.0757
10.1136/jclinpath-2020-206987
10.1016/j.virusres.2020.198169
10.1073/pnas.1513047112
10.1128/JVI.01542-10
10.1128/JVI.02232-10
10.1001/jama.2020.17378
10.1007/s00428-020-02881-x
10.1161/HYPERTENSIONAHA.120.15829
10.1056/NEJMe2002387
10.3892/etm.2017.4171
10.3892/mmr.2017.7168
10.1016/j.cell.2020.08.021
10.3390/cells9071621
10.1016/j.omtm.2020.05.013
10.1111/micc.12654
10.15252/embj.20105114
10.1177/0271678X19882264
10.3390/jcm9072096
10.1007/s12015-020-10010-z
10.1152/ajpheart.00331.2008
10.1002/jcp.25276
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3390/biomedicines8110462
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_95b6c8d76b264aa2befabbe368c03894
PMC7693865
10_3390_biomedicines8110462
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c514t-f7599e223f908ef9bb8353fbe507d24c55a3e817fd24cf86d9f40dc24b025f023
IEDL.DBID DOA
ISSN 2227-9059
IngestDate Wed Aug 27 01:13:26 EDT 2025
Thu Aug 21 13:33:28 EDT 2025
Sun Aug 24 04:13:22 EDT 2025
Tue Jul 01 03:16:49 EDT 2025
Thu Apr 24 22:56:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-f7599e223f908ef9bb8353fbe507d24c55a3e817fd24cf86d9f40dc24b025f023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ORCID 0000-0001-7231-375X
OpenAccessLink https://doaj.org/article/95b6c8d76b264aa2befabbe368c03894
PMID 33143053
PQID 2457643981
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_95b6c8d76b264aa2befabbe368c03894
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693865
proquest_miscellaneous_2457643981
crossref_citationtrail_10_3390_biomedicines8110462
crossref_primary_10_3390_biomedicines8110462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201030
PublicationDateYYYYMMDD 2020-10-30
PublicationDate_xml – month: 10
  year: 2020
  text: 20201030
  day: 30
PublicationDecade 2020
PublicationTitle Biomedicines
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Khare (ref_62) 2020; 290
Young (ref_56) 2020; 247
ref_13
ref_10
Varga (ref_17) 2020; 395
Mendell (ref_31) 2012; 148
ref_53
Matsuyama (ref_9) 2020; 117
Santulli (ref_51) 2015; 112
Wronska (ref_38) 2015; 213
ref_16
ref_15
Sakai (ref_76) 2014; 88
Sluimer (ref_29) 2008; 215
Fox (ref_21) 2020; 142
Zhang (ref_8) 2020; 46
Senapati (ref_77) 2020; 99
ref_61
Li (ref_23) 2017; 43
Wang (ref_26) 2020; 2020
Chirinos (ref_30) 2020; 76
Omer (ref_5) 2020; 323
Ackermann (ref_18) 2020; 383
Bernstein (ref_55) 2020; 40
ref_69
Bosmuller (ref_19) 2020; 477
ref_22
ref_65
ref_20
Zhang (ref_25) 2018; 22
Hoffmann (ref_11) 2020; 585
Zhou (ref_6) 2020; 579
Christopher (ref_46) 2016; 7
Shi (ref_73) 2020; 24
Matsuyama (ref_67) 2010; 84
Creemers (ref_36) 2012; 110
Xie (ref_50) 2015; 5
Alabed (ref_70) 2020; 18
Widlansky (ref_42) 2018; 10
Glowacka (ref_68) 2011; 85
ref_79
ref_34
ref_78
ref_33
Chen (ref_54) 2017; 13
Libby (ref_14) 2020; 41
Bar (ref_37) 2020; 116
Kaur (ref_63) 2020; 887
Hoffmann (ref_12) 2020; 181
Santulli (ref_43) 2016; 231
Cao (ref_59) 2014; 393
ref_39
Ma (ref_58) 2020; 246
Kupferschmidt (ref_64) 2020; 367
Hampton (ref_75) 2020; 324
Morens (ref_3) 2020; 182
Li (ref_52) 2015; 467
Kruglikov (ref_57) 2020; 9
Lovren (ref_28) 2008; 295
Fauci (ref_1) 2020; 382
Ambros (ref_35) 2004; 431
ref_80
Santulli (ref_32) 2015; 887
Akhtar (ref_66) 2020; 28
ref_47
Asselta (ref_72) 2020; 12
ref_45
Lin (ref_24) 2017; 16
Zheng (ref_40) 2017; 25
Wang (ref_41) 2008; 15
Ziegler (ref_7) 2020; 181
Lukassen (ref_71) 2020; 39
ref_2
Paules (ref_4) 2020; 323
Zou (ref_27) 2014; 5
ref_48
Wang (ref_49) 2020; 7
Guzik (ref_60) 2020; 116
Yuan (ref_44) 2014; 4
Petrilli (ref_74) 2020; 369
References_xml – volume: 246
  start-page: 223
  year: 2020
  ident: ref_58
  article-title: ACE2 modulates glucose homeostasis through GABA signaling during metabolic stress
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-19-0471
– volume: 181
  start-page: 1016
  year: 2020
  ident: ref_7
  article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
– volume: 383
  start-page: 120
  year: 2020
  ident: ref_18
  article-title: Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2015432
– volume: 181
  start-page: 271
  year: 2020
  ident: ref_12
  article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor
  publication-title: Cell
  doi: 10.1016/j.cell.2020.02.052
– volume: 5
  start-page: 3594
  year: 2014
  ident: ref_27
  article-title: Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4594
– ident: ref_39
  doi: 10.1210/clinem/dgaa538
– volume: 28
  start-page: 683
  year: 2020
  ident: ref_66
  article-title: Pharmacotherapy in COVID-19 patients: A review of ACE2-raising drugs and their clinical safety
  publication-title: J. Drug Target.
  doi: 10.1080/1061186X.2020.1797754
– volume: 25
  start-page: 1279
  year: 2017
  ident: ref_40
  article-title: Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.031
– volume: 395
  start-page: 1417
  year: 2020
  ident: ref_17
  article-title: Endothelial cell infection and endotheliitis in COVID-19
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30937-5
– volume: 12
  start-page: 10087
  year: 2020
  ident: ref_72
  article-title: ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy
  publication-title: Aging
  doi: 10.18632/aging.103415
– ident: ref_13
  doi: 10.20944/preprints202004.0204.v1
– volume: 579
  start-page: 270
  year: 2020
  ident: ref_6
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– ident: ref_53
  doi: 10.3390/jcm9092920
– volume: 369
  start-page: m1966
  year: 2020
  ident: ref_74
  article-title: Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.m1966
– volume: 4
  start-page: 7425
  year: 2014
  ident: ref_44
  article-title: Functional role of Calstabin2 in age-related cardiac alterations
  publication-title: Sci Rep
  doi: 10.1038/srep07425
– volume: 887
  start-page: 173545
  year: 2020
  ident: ref_63
  article-title: Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/j.ejphar.2020.173545
– volume: 43
  start-page: 1152
  year: 2017
  ident: ref_23
  article-title: A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway
  publication-title: Cell. Physiol. Biochem.
  doi: 10.1159/000481756
– volume: 2020
  start-page: 4213541
  year: 2020
  ident: ref_26
  article-title: Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell
  publication-title: Oxid. Med. Cell. Longev.
– volume: 116
  start-page: 1805
  year: 2020
  ident: ref_37
  article-title: Non-coding RNAs: Update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvaa195
– volume: 7
  start-page: 284
  year: 2020
  ident: ref_49
  article-title: Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro and ex vivo
  publication-title: ESC Heart Fail.
– ident: ref_20
  doi: 10.1007/s00134-020-06237-6
– volume: 215
  start-page: 273
  year: 2008
  ident: ref_29
  article-title: Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions
  publication-title: J. Pathol.
  doi: 10.1002/path.2357
– volume: 367
  start-page: 1412
  year: 2020
  ident: ref_64
  article-title: Race to find COVID-19 treatments accelerates
  publication-title: Science
  doi: 10.1126/science.367.6485.1412
– ident: ref_15
  doi: 10.1093/cvr/cvaa230
– volume: 7
  start-page: 68
  year: 2016
  ident: ref_46
  article-title: MicroRNA therapeutics: Discovering novel targets and developing specific therapy
  publication-title: Perspect. Clin. Res.
  doi: 10.4103/2229-3485.179431
– volume: 41
  start-page: 3038
  year: 2020
  ident: ref_14
  article-title: COVID-19 is, in the end, an endothelial disease
  publication-title: Eur. Heart, J.
  doi: 10.1093/eurheartj/ehaa623
– volume: 15
  start-page: 261
  year: 2008
  ident: ref_41
  article-title: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2008.07.002
– volume: 431
  start-page: 350
  year: 2004
  ident: ref_35
  article-title: The functions of animal microRNAs
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 110
  start-page: 483
  year: 2012
  ident: ref_36
  article-title: Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease?
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.247452
– volume: 99
  start-page: 53
  year: 2020
  ident: ref_77
  article-title: Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human
  publication-title: J. Genet.
  doi: 10.1007/s12041-020-01217-7
– volume: 467
  start-page: 595
  year: 2015
  ident: ref_52
  article-title: miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.09.058
– volume: 117
  start-page: 7001
  year: 2020
  ident: ref_9
  article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.2002589117
– ident: ref_45
– ident: ref_48
  doi: 10.3390/ijms21010201
– volume: 22
  start-page: 1873
  year: 2018
  ident: ref_25
  article-title: ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.13471
– volume: 887
  start-page: 53
  year: 2015
  ident: ref_32
  article-title: microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-3-319-22380-3_4
– volume: 148
  start-page: 1172
  year: 2012
  ident: ref_31
  article-title: MicroRNAs in stress signaling and human disease
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.005
– volume: 116
  start-page: 1666
  year: 2020
  ident: ref_60
  article-title: COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvaa106
– volume: 9
  start-page: e61330
  year: 2020
  ident: ref_57
  article-title: Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions
  publication-title: Elife
  doi: 10.7554/eLife.61330
– ident: ref_80
  doi: 10.1002/jmv.26319
– volume: 10
  start-page: e8046
  year: 2018
  ident: ref_42
  article-title: miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201708046
– volume: 5
  start-page: 11427
  year: 2015
  ident: ref_50
  article-title: Mitochondrial oxidative stress promotes atrial fibrillation
  publication-title: Sci. Rep.
  doi: 10.1038/srep11427
– ident: ref_79
  doi: 10.1186/s12916-020-01673-z
– ident: ref_78
  doi: 10.1080/07391102.2020.1767690
– volume: 585
  start-page: 588
  year: 2020
  ident: ref_11
  article-title: Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2
  publication-title: Nature
  doi: 10.1038/s41586-020-2575-3
– volume: 46
  start-page: 586
  year: 2020
  ident: ref_8
  article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target
  publication-title: Intensive Care Med.
  doi: 10.1007/s00134-020-05985-9
– ident: ref_34
  doi: 10.1126/scitranslmed.aav9141
– volume: 393
  start-page: 30
  year: 2014
  ident: ref_59
  article-title: The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/j.mce.2014.05.024
– ident: ref_33
  doi: 10.3390/cells9041056
– volume: 213
  start-page: 60
  year: 2015
  ident: ref_38
  article-title: Application of microRNAs in diagnosis and treatment of cardiovascular disease
  publication-title: Acta Physiol.
  doi: 10.1111/apha.12416
– ident: ref_69
  doi: 10.1128/JVI.01815-18
– volume: 247
  start-page: R45
  year: 2020
  ident: ref_56
  article-title: Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-20-0260
– volume: 24
  start-page: 108
  year: 2020
  ident: ref_73
  article-title: Host susceptibility to severe COVID-19 and establishment of a host risk score: Findings of 487 cases outside Wuhan
  publication-title: Crit. Care
  doi: 10.1186/s13054-020-2833-7
– volume: 142
  start-page: 1123
  year: 2020
  ident: ref_21
  article-title: Unexpected Features of Cardiac Pathology in COVID-19 Infection
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.049465
– ident: ref_65
  doi: 10.1007/s10741-020-10016-2
– volume: 88
  start-page: 5608
  year: 2014
  ident: ref_76
  article-title: The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses
  publication-title: J. Virol.
  doi: 10.1128/JVI.03677-13
– volume: 323
  start-page: 707
  year: 2020
  ident: ref_4
  article-title: Coronavirus Infections-More Than Just the Common Cold
  publication-title: JAMA
  doi: 10.1001/jama.2020.0757
– ident: ref_10
  doi: 10.1136/jclinpath-2020-206987
– volume: 290
  start-page: 198169
  year: 2020
  ident: ref_62
  article-title: Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2020.198169
– volume: 112
  start-page: 11389
  year: 2015
  ident: ref_51
  article-title: Mitochondrial calcium overload is a key determinant in heart failure
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1513047112
– volume: 84
  start-page: 12658
  year: 2010
  ident: ref_67
  article-title: Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2
  publication-title: J. Virol.
  doi: 10.1128/JVI.01542-10
– volume: 85
  start-page: 4122
  year: 2011
  ident: ref_68
  article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
  publication-title: J. Virol.
  doi: 10.1128/JVI.02232-10
– volume: 324
  start-page: 1274
  year: 2020
  ident: ref_75
  article-title: Insight on Sex-Based Immunity Differences, with COVID-19 Implications
  publication-title: JAMA
  doi: 10.1001/jama.2020.17378
– ident: ref_2
– volume: 477
  start-page: 349
  year: 2020
  ident: ref_19
  article-title: The evolution of pulmonary pathology in fatal COVID-19 disease: An autopsy study with clinical correlation
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-020-02881-x
– volume: 76
  start-page: 1526
  year: 2020
  ident: ref_30
  article-title: Clinical and Proteomic Correlates of Plasma ACE2 (Angiotensin-Converting Enzyme 2) in Human Heart Failure
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.120.15829
– volume: 382
  start-page: 1268
  year: 2020
  ident: ref_1
  article-title: COVID-19—Navigating the Uncharted
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMe2002387
– volume: 13
  start-page: 1702
  year: 2017
  ident: ref_54
  article-title: MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1
  publication-title: Exp. Ther. Med.
  doi: 10.3892/etm.2017.4171
– volume: 16
  start-page: 4403
  year: 2017
  ident: ref_24
  article-title: Role of the ACE2Ang(17)Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review)
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2017.7168
– volume: 182
  start-page: 1077
  year: 2020
  ident: ref_3
  article-title: Emerging Pandemic Diseases: How We Got to COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.021
– ident: ref_47
  doi: 10.3390/cells9071621
– volume: 18
  start-page: 1
  year: 2020
  ident: ref_70
  article-title: Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRSS2 Is Lower in Children Than Adults and Increases with Smoking and COPD
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.05.013
– ident: ref_16
  doi: 10.1111/micc.12654
– volume: 39
  start-page: e105114
  year: 2020
  ident: ref_71
  article-title: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells
  publication-title: EMBO J.
  doi: 10.15252/embj.20105114
– volume: 40
  start-page: 1953
  year: 2020
  ident: ref_55
  article-title: miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1177/0271678X19882264
– ident: ref_61
  doi: 10.3390/jcm9072096
– volume: 323
  start-page: 1767
  year: 2020
  ident: ref_5
  article-title: The COVID-19 Pandemic in the US: A Clinical Update
  publication-title: JAMA
– ident: ref_22
  doi: 10.1007/s12015-020-10010-z
– volume: 295
  start-page: H1377
  year: 2008
  ident: ref_28
  article-title: Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis
  publication-title: Am. J. Physiol. Heart Circ. Physiol.
  doi: 10.1152/ajpheart.00331.2008
– volume: 231
  start-page: 1638
  year: 2016
  ident: ref_43
  article-title: MicroRNAs and Endothelial (Dys) Function
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.25276
SSID ssj0000913814
Score 2.4778705
Snippet The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 462
SubjectTerms ACE2
coronavirus
COVID-19
endothelium
epigenetics
HMVEC-L
Title miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19
URI https://www.proquest.com/docview/2457643981
https://pubmed.ncbi.nlm.nih.gov/PMC7693865
https://doaj.org/article/95b6c8d76b264aa2befabbe368c03894
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yL3oQf-L8RQSPlq1p0iXedG44ZTq2KV6kJG2Cg1nFTdD_3vfaKi2IXjy2TUh4ee33veble4QcGUBpP-ahF8QGAhRrmp7SSqDcHQQgiQy4xtPI_evw4pZf3ov7UqkvzAnL5YFzwzWUMGEsk1ZoALq1ZsY6bYwNQhmjNlymBAqYVwqmsm-wwsF4LjMUQFzfyE-zZ7vVM-njziarQFGm2F-hmdUkyRLqdFfJSkEX6Wk-zTWyYNN1slwSEdwgD0-ToackHeZV5e2MjvuD4WjEaOe9yHJN6SSl2e962kkTPHM1BbejbTudzk7olf2gvVJiOQUeS9s3d71zz1eb5LbbGbcvvKJoghcD95l7riWUsgD6TjWldcoY4FiBMxaIX8J4LIQOrPRbDi-cDBPleDOJGTfAfhwg-Bappc-p3SZUhVoBlgmWKM2tMwal3AV01ChSZlSdsC_7RXGhKI6FLaYRRBZo9OgHo9fJ8Xenl1xQ4_fmZ7gw301RDTu7AT4SFT4S_eUjdXL4tawRvD24JaJT-_w2ixiHeAs4mfTrpFVZ78qI1Sfp5DHT4cYykjIUO_8xxV2yxDCSR1Rs7pHa_PXN7gPdmZsDsnjWuR4MDzIP_wSzVwK5
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-98+Regulates+TMPRSS2+Expression+in+Human+Endothelial+Cells%3A+Key+Implications+for+COVID-19&rft.jtitle=Biomedicines&rft.au=Matarese%2C+Alessandro&rft.au=Gambardella%2C+Jessica&rft.au=Sardu%2C+Celestino&rft.au=Santulli%2C+Gaetano&rft.date=2020-10-30&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=8&rft.issue=11&rft.spage=462&rft_id=info:doi/10.3390%2Fbiomedicines8110462&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedicines8110462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon