miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19
The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bio...
Saved in:
Published in | Biomedicines Vol. 8; no. 11; p. 462 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
MDPI
30.10.2020
MDPI AG |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches. |
---|---|
AbstractList | The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches. The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches.The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). Here, we focused on the study of microRNAs that specifically target TMPRSS2. Through a bioinformatic approach, we identified miR-98-5p as a suitable candidate. Since we and others have shown that endothelial cells play a pivotal role in the pathogenesis of the coronavirus disease 2019 (COVID-19), we mechanistically validated miR-98-5p as a regulator of TMPRSS2 transcription in two different human endothelial cell types, derived from the lung and from the umbilical vein. Taken together, our findings indicate that TMPRSS2 represents a valid target in COVID-19 treatment, which may be achieved by specific non-coding-RNA approaches. |
Author | Santulli, Gaetano Sardu, Celestino Gambardella, Jessica Matarese, Alessandro |
AuthorAffiliation | 5 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it 3 Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy 6 Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy 2 AORN “Antonio Cardarelli”, 80100 Naples, Italy 1 Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; alessandromatarese@yahoo.it (A.M.); jessica.gambardella@einsteinmed.org (J.G.) 4 Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA |
AuthorAffiliation_xml | – name: 5 Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; celestino.sardu@unicampania.it – name: 3 Department of Advanced Biomedical Science, “Federico II” University, and International Translational Research and Medical Education Consortium (ITME), 80131 Naples, Italy – name: 2 AORN “Antonio Cardarelli”, 80100 Naples, Italy – name: 4 Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA – name: 6 Department of Medical Sciences, International University of Health and Medical Sciences “S. Camillo”, 00131 Rome, Italy – name: 1 Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; alessandromatarese@yahoo.it (A.M.); jessica.gambardella@einsteinmed.org (J.G.) |
Author_xml | – sequence: 1 givenname: Alessandro surname: Matarese fullname: Matarese, Alessandro – sequence: 2 givenname: Jessica surname: Gambardella fullname: Gambardella, Jessica – sequence: 3 givenname: Celestino surname: Sardu fullname: Sardu, Celestino – sequence: 4 givenname: Gaetano orcidid: 0000-0001-7231-375X surname: Santulli fullname: Santulli, Gaetano |
BookMark | eNp9kU9v1DAQxS1UREvpJ-DiI5eA_yY2ByS0LHRFUdG2cEOW7Yy3rhJ7sbOIfnvSbpEoQvgyHs97P1lvnqKDlBMg9JySl5xr8srFPEIffUxQFaVEtOwROmKMdY0mUh_8cT9EJ7Vek_loyhUVT9Ah51RwIvkR-jbGdaMVXsNmN9gJKr789Hl9ccHw8ue2QK0xJxwTPt2NNuFl6vN0BUO0A17AMNTX-CPc4NW4HaK306ytOOSCF-dfV-8aqp-hx8EOFU7u6zH68n55uThtzs4_rBZvzxovqZia0EmtgTEeNFEQtHOKSx4cSNL1THgpLQdFu3DbBNX2OgjSeyYcYTIQxo_Ras_ts7022xJHW25MttHcPeSyMbZM0Q9gtHStV33XOtYKa5mDYJ0D3ipPuNJiZr3Zs7Y7N0fsIU3FDg-gDycpXplN_mG6VnPVyhnw4h5Q8vcd1MmMsfo5LZsg76phQnat4FrRWar3Ul9yrQWC8XG6y3Emx8FQYm63bf6x7dnL__L-_uL_XL8A4qqyJA |
CitedBy_id | crossref_primary_10_1007_s13300_022_01259_3 crossref_primary_10_1155_2022_1645366 crossref_primary_10_2147_JBM_S318940 crossref_primary_10_1007_s13300_024_01574_x crossref_primary_10_3892_ijmm_2021_5075 crossref_primary_10_1016_j_isci_2021_103672 crossref_primary_10_1016_j_intimp_2021_108145 crossref_primary_10_3390_ijms23158285 crossref_primary_10_4103_ijmr_ijmr_2605_21 crossref_primary_10_1016_j_sciaf_2023_e01627 crossref_primary_10_1186_s12931_023_02462_x crossref_primary_10_1007_s11010_022_04356_w crossref_primary_10_3390_ncrna8030029 crossref_primary_10_3390_biom15010075 crossref_primary_10_1016_j_intimp_2020_107204 crossref_primary_10_2147_IDR_S340314 crossref_primary_10_1089_dna_2021_1101 crossref_primary_10_3390_cells10071788 crossref_primary_10_1016_j_phrs_2023_106702 crossref_primary_10_1016_j_ijid_2022_07_019 crossref_primary_10_1002_wsbm_1621 crossref_primary_10_1002_rmv_2562 crossref_primary_10_1016_j_diabres_2022_109974 crossref_primary_10_3390_v13112182 crossref_primary_10_1016_j_ebiom_2022_103982 crossref_primary_10_1038_s41598_021_89605_6 crossref_primary_10_1016_j_lfs_2022_120761 crossref_primary_10_1016_j_semcancer_2021_01_003 crossref_primary_10_3389_fcvm_2022_868521 crossref_primary_10_20945_2359_3997000000527 crossref_primary_10_1038_s41401_022_00998_0 crossref_primary_10_3390_ijms22105131 crossref_primary_10_3390_ijms231810242 crossref_primary_10_31083_j_rcm2505161 crossref_primary_10_3390_cells11152279 crossref_primary_10_3390_biomedicines9091142 crossref_primary_10_1016_j_intimp_2022_109088 crossref_primary_10_1136_bmjopen_2021_051237 crossref_primary_10_1186_s12985_023_02152_6 crossref_primary_10_3390_biotech12040061 crossref_primary_10_1038_s41598_022_15898_w crossref_primary_10_2217_epi_2023_0179 crossref_primary_10_2147_JBM_S316014 crossref_primary_10_1016_j_biopha_2021_112247 crossref_primary_10_15275_rusomj_2022_0313 crossref_primary_10_2217_bmm_2021_0121 crossref_primary_10_1007_s10616_021_00493_0 crossref_primary_10_1016_j_ncrna_2024_08_007 crossref_primary_10_1111_imcb_12615 crossref_primary_10_3390_biomedicines9111546 crossref_primary_10_3389_fimmu_2024_1264856 crossref_primary_10_1080_13813455_2022_2086265 crossref_primary_10_3390_biomedicines11010014 crossref_primary_10_1016_j_gene_2023_147232 crossref_primary_10_3389_fcimb_2024_1407261 crossref_primary_10_1186_s42269_022_00955_1 crossref_primary_10_1016_j_isci_2023_106074 crossref_primary_10_1186_s12931_023_02413_6 crossref_primary_10_1038_s41392_023_01669_0 crossref_primary_10_3390_ijms25189977 crossref_primary_10_3389_fmed_2024_1430974 crossref_primary_10_3390_cells10071752 crossref_primary_10_7554_eLife_69314 crossref_primary_10_1080_15384101_2020_1867792 crossref_primary_10_1038_s41598_021_02534_2 crossref_primary_10_3390_antiox12020326 crossref_primary_10_1016_j_heliyon_2023_e13388 crossref_primary_10_1016_j_ncrna_2023_02_007 crossref_primary_10_1016_j_phrs_2022_106360 crossref_primary_10_3390_v15081647 crossref_primary_10_2147_IDR_S420182 crossref_primary_10_3390_ncrna7010009 crossref_primary_10_3390_ijms24065664 crossref_primary_10_7717_peerj_14570 crossref_primary_10_3389_fmed_2021_744141 crossref_primary_10_1016_j_semcdb_2023_02_006 crossref_primary_10_1124_jpet_122_001209 crossref_primary_10_1016_j_intimp_2021_108232 crossref_primary_10_1136_fmch_2023_002271 crossref_primary_10_1111_jch_14137 crossref_primary_10_1016_j_virusres_2021_198631 crossref_primary_10_1371_journal_pone_0275381 crossref_primary_10_1002_edm2_279 crossref_primary_10_3390_ijms22168663 crossref_primary_10_3390_cells10081900 crossref_primary_10_3389_fcvm_2021_798897 crossref_primary_10_3390_cells11121972 crossref_primary_10_1111_liv_16079 crossref_primary_10_3390_jpm12030386 crossref_primary_10_12998_wjcc_v10_i3_762 crossref_primary_10_2217_bmm_2022_0250 crossref_primary_10_3389_fendo_2022_896378 crossref_primary_10_1016_j_intimp_2021_108201 crossref_primary_10_3390_diagnostics13061091 crossref_primary_10_3390_biomedicines9080957 crossref_primary_10_3390_antiox9121227 crossref_primary_10_1016_j_ijbiomac_2022_09_105 crossref_primary_10_1016_j_diabres_2024_111926 crossref_primary_10_1002_med_22073 crossref_primary_10_2147_JIR_S350822 crossref_primary_10_3390_app11094281 crossref_primary_10_1186_s13287_024_03889_9 crossref_primary_10_18632_aging_203159 crossref_primary_10_3390_jcm11061564 crossref_primary_10_52711_0974_360X_2022_00073 |
Cites_doi | 10.1530/JOE-19-0471 10.1016/j.cell.2020.04.035 10.1056/NEJMoa2015432 10.1016/j.cell.2020.02.052 10.1038/ncomms4594 10.1210/clinem/dgaa538 10.1080/1061186X.2020.1797754 10.1016/j.ymthe.2017.03.031 10.1016/S0140-6736(20)30937-5 10.18632/aging.103415 10.20944/preprints202004.0204.v1 10.1038/s41586-020-2012-7 10.3390/jcm9092920 10.1136/bmj.m1966 10.1038/srep07425 10.1016/j.ejphar.2020.173545 10.1159/000481756 10.1093/cvr/cvaa195 10.1007/s00134-020-06237-6 10.1002/path.2357 10.1126/science.367.6485.1412 10.1093/cvr/cvaa230 10.4103/2229-3485.179431 10.1093/eurheartj/ehaa623 10.1016/j.devcel.2008.07.002 10.1038/nature02871 10.1161/CIRCRESAHA.111.247452 10.1007/s12041-020-01217-7 10.1016/j.bbrc.2015.09.058 10.1073/pnas.2002589117 10.3390/ijms21010201 10.1111/jcmm.13471 10.1007/978-3-319-22380-3_4 10.1016/j.cell.2012.02.005 10.1093/cvr/cvaa106 10.7554/eLife.61330 10.1002/jmv.26319 10.15252/emmm.201708046 10.1038/srep11427 10.1186/s12916-020-01673-z 10.1080/07391102.2020.1767690 10.1038/s41586-020-2575-3 10.1007/s00134-020-05985-9 10.1126/scitranslmed.aav9141 10.1016/j.mce.2014.05.024 10.3390/cells9041056 10.1111/apha.12416 10.1128/JVI.01815-18 10.1530/JOE-20-0260 10.1186/s13054-020-2833-7 10.1161/CIRCULATIONAHA.120.049465 10.1007/s10741-020-10016-2 10.1128/JVI.03677-13 10.1001/jama.2020.0757 10.1136/jclinpath-2020-206987 10.1016/j.virusres.2020.198169 10.1073/pnas.1513047112 10.1128/JVI.01542-10 10.1128/JVI.02232-10 10.1001/jama.2020.17378 10.1007/s00428-020-02881-x 10.1161/HYPERTENSIONAHA.120.15829 10.1056/NEJMe2002387 10.3892/etm.2017.4171 10.3892/mmr.2017.7168 10.1016/j.cell.2020.08.021 10.3390/cells9071621 10.1016/j.omtm.2020.05.013 10.1111/micc.12654 10.15252/embj.20105114 10.1177/0271678X19882264 10.3390/jcm9072096 10.1007/s12015-020-10010-z 10.1152/ajpheart.00331.2008 10.1002/jcp.25276 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3390/biomedicines8110462 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_95b6c8d76b264aa2befabbe368c03894 PMC7693865 10_3390_biomedicines8110462 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM 7X8 PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c514t-f7599e223f908ef9bb8353fbe507d24c55a3e817fd24cf86d9f40dc24b025f023 |
IEDL.DBID | DOA |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:13:26 EDT 2025 Thu Aug 21 13:33:28 EDT 2025 Sun Aug 24 04:13:22 EDT 2025 Tue Jul 01 03:16:49 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-f7599e223f908ef9bb8353fbe507d24c55a3e817fd24cf86d9f40dc24b025f023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0001-7231-375X |
OpenAccessLink | https://doaj.org/article/95b6c8d76b264aa2befabbe368c03894 |
PMID | 33143053 |
PQID | 2457643981 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_95b6c8d76b264aa2befabbe368c03894 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7693865 proquest_miscellaneous_2457643981 crossref_citationtrail_10_3390_biomedicines8110462 crossref_primary_10_3390_biomedicines8110462 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201030 |
PublicationDateYYYYMMDD | 2020-10-30 |
PublicationDate_xml | – month: 10 year: 2020 text: 20201030 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Biomedicines |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Khare (ref_62) 2020; 290 Young (ref_56) 2020; 247 ref_13 ref_10 Varga (ref_17) 2020; 395 Mendell (ref_31) 2012; 148 ref_53 Matsuyama (ref_9) 2020; 117 Santulli (ref_51) 2015; 112 Wronska (ref_38) 2015; 213 ref_16 ref_15 Sakai (ref_76) 2014; 88 Sluimer (ref_29) 2008; 215 Fox (ref_21) 2020; 142 Zhang (ref_8) 2020; 46 Senapati (ref_77) 2020; 99 ref_61 Li (ref_23) 2017; 43 Wang (ref_26) 2020; 2020 Chirinos (ref_30) 2020; 76 Omer (ref_5) 2020; 323 Ackermann (ref_18) 2020; 383 Bernstein (ref_55) 2020; 40 ref_69 Bosmuller (ref_19) 2020; 477 ref_22 ref_65 ref_20 Zhang (ref_25) 2018; 22 Hoffmann (ref_11) 2020; 585 Zhou (ref_6) 2020; 579 Christopher (ref_46) 2016; 7 Shi (ref_73) 2020; 24 Matsuyama (ref_67) 2010; 84 Creemers (ref_36) 2012; 110 Xie (ref_50) 2015; 5 Alabed (ref_70) 2020; 18 Widlansky (ref_42) 2018; 10 Glowacka (ref_68) 2011; 85 ref_79 ref_34 ref_78 ref_33 Chen (ref_54) 2017; 13 Libby (ref_14) 2020; 41 Bar (ref_37) 2020; 116 Kaur (ref_63) 2020; 887 Hoffmann (ref_12) 2020; 181 Santulli (ref_43) 2016; 231 Cao (ref_59) 2014; 393 ref_39 Ma (ref_58) 2020; 246 Kupferschmidt (ref_64) 2020; 367 Hampton (ref_75) 2020; 324 Morens (ref_3) 2020; 182 Li (ref_52) 2015; 467 Kruglikov (ref_57) 2020; 9 Lovren (ref_28) 2008; 295 Fauci (ref_1) 2020; 382 Ambros (ref_35) 2004; 431 ref_80 Santulli (ref_32) 2015; 887 Akhtar (ref_66) 2020; 28 ref_47 Asselta (ref_72) 2020; 12 ref_45 Lin (ref_24) 2017; 16 Zheng (ref_40) 2017; 25 Wang (ref_41) 2008; 15 Ziegler (ref_7) 2020; 181 Lukassen (ref_71) 2020; 39 ref_2 Paules (ref_4) 2020; 323 Zou (ref_27) 2014; 5 ref_48 Wang (ref_49) 2020; 7 Guzik (ref_60) 2020; 116 Yuan (ref_44) 2014; 4 Petrilli (ref_74) 2020; 369 |
References_xml | – volume: 246 start-page: 223 year: 2020 ident: ref_58 article-title: ACE2 modulates glucose homeostasis through GABA signaling during metabolic stress publication-title: J. Endocrinol. doi: 10.1530/JOE-19-0471 – volume: 181 start-page: 1016 year: 2020 ident: ref_7 article-title: SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 383 start-page: 120 year: 2020 ident: ref_18 article-title: Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2015432 – volume: 181 start-page: 271 year: 2020 ident: ref_12 article-title: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 5 start-page: 3594 year: 2014 ident: ref_27 article-title: Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections publication-title: Nat. Commun. doi: 10.1038/ncomms4594 – ident: ref_39 doi: 10.1210/clinem/dgaa538 – volume: 28 start-page: 683 year: 2020 ident: ref_66 article-title: Pharmacotherapy in COVID-19 patients: A review of ACE2-raising drugs and their clinical safety publication-title: J. Drug Target. doi: 10.1080/1061186X.2020.1797754 – volume: 25 start-page: 1279 year: 2017 ident: ref_40 article-title: Exosome-Mediated miR-155 Transfer from Smooth Muscle Cells to Endothelial Cells Induces Endothelial Injury and Promotes Atherosclerosis publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.031 – volume: 395 start-page: 1417 year: 2020 ident: ref_17 article-title: Endothelial cell infection and endotheliitis in COVID-19 publication-title: Lancet doi: 10.1016/S0140-6736(20)30937-5 – volume: 12 start-page: 10087 year: 2020 ident: ref_72 article-title: ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy publication-title: Aging doi: 10.18632/aging.103415 – ident: ref_13 doi: 10.20944/preprints202004.0204.v1 – volume: 579 start-page: 270 year: 2020 ident: ref_6 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – ident: ref_53 doi: 10.3390/jcm9092920 – volume: 369 start-page: m1966 year: 2020 ident: ref_74 article-title: Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study publication-title: BMJ doi: 10.1136/bmj.m1966 – volume: 4 start-page: 7425 year: 2014 ident: ref_44 article-title: Functional role of Calstabin2 in age-related cardiac alterations publication-title: Sci Rep doi: 10.1038/srep07425 – volume: 887 start-page: 173545 year: 2020 ident: ref_63 article-title: Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2 publication-title: Eur. J. Pharmacol. doi: 10.1016/j.ejphar.2020.173545 – volume: 43 start-page: 1152 year: 2017 ident: ref_23 article-title: A Human Long Non-Coding RNA ALT1 Controls the Cell Cycle of Vascular Endothelial Cells Via ACE2 and Cyclin D1 Pathway publication-title: Cell. Physiol. Biochem. doi: 10.1159/000481756 – volume: 2020 start-page: 4213541 year: 2020 ident: ref_26 article-title: Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell publication-title: Oxid. Med. Cell. Longev. – volume: 116 start-page: 1805 year: 2020 ident: ref_37 article-title: Non-coding RNAs: Update on mechanisms and therapeutic targets from the ESC Working Groups of Myocardial Function and Cellular Biology of the Heart publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa195 – volume: 7 start-page: 284 year: 2020 ident: ref_49 article-title: Cardiomyocyte-derived exosomal microRNA-92a mediates post-ischemic myofibroblast activation both in vitro and ex vivo publication-title: ESC Heart Fail. – ident: ref_20 doi: 10.1007/s00134-020-06237-6 – volume: 215 start-page: 273 year: 2008 ident: ref_29 article-title: Angiotensin-converting enzyme 2 (ACE2) expression and activity in human carotid atherosclerotic lesions publication-title: J. Pathol. doi: 10.1002/path.2357 – volume: 367 start-page: 1412 year: 2020 ident: ref_64 article-title: Race to find COVID-19 treatments accelerates publication-title: Science doi: 10.1126/science.367.6485.1412 – ident: ref_15 doi: 10.1093/cvr/cvaa230 – volume: 7 start-page: 68 year: 2016 ident: ref_46 article-title: MicroRNA therapeutics: Discovering novel targets and developing specific therapy publication-title: Perspect. Clin. Res. doi: 10.4103/2229-3485.179431 – volume: 41 start-page: 3038 year: 2020 ident: ref_14 article-title: COVID-19 is, in the end, an endothelial disease publication-title: Eur. Heart, J. doi: 10.1093/eurheartj/ehaa623 – volume: 15 start-page: 261 year: 2008 ident: ref_41 article-title: The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.07.002 – volume: 431 start-page: 350 year: 2004 ident: ref_35 article-title: The functions of animal microRNAs publication-title: Nature doi: 10.1038/nature02871 – volume: 110 start-page: 483 year: 2012 ident: ref_36 article-title: Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.247452 – volume: 99 start-page: 53 year: 2020 ident: ref_77 article-title: Assessment of risk conferred by coding and regulatory variations of TMPRSS2 and CD26 in susceptibility to SARS-CoV-2 infection in human publication-title: J. Genet. doi: 10.1007/s12041-020-01217-7 – volume: 467 start-page: 595 year: 2015 ident: ref_52 article-title: miR-98 protects endothelial cells against hypoxia/reoxygenation induced-apoptosis by targeting caspase-3 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.09.058 – volume: 117 start-page: 7001 year: 2020 ident: ref_9 article-title: Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.2002589117 – ident: ref_45 – ident: ref_48 doi: 10.3390/ijms21010201 – volume: 22 start-page: 1873 year: 2018 ident: ref_25 article-title: ACE2-EPC-EXs protect ageing ECs against hypoxia/reoxygenation-induced injury through the miR-18a/Nox2/ROS pathway publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.13471 – volume: 887 start-page: 53 year: 2015 ident: ref_32 article-title: microRNAs Distinctively Regulate Vascular Smooth Muscle and Endothelial Cells: Functional Implications in Angiogenesis, Atherosclerosis, and In-Stent Restenosis publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-3-319-22380-3_4 – volume: 148 start-page: 1172 year: 2012 ident: ref_31 article-title: MicroRNAs in stress signaling and human disease publication-title: Cell doi: 10.1016/j.cell.2012.02.005 – volume: 116 start-page: 1666 year: 2020 ident: ref_60 article-title: COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvaa106 – volume: 9 start-page: e61330 year: 2020 ident: ref_57 article-title: Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions publication-title: Elife doi: 10.7554/eLife.61330 – ident: ref_80 doi: 10.1002/jmv.26319 – volume: 10 start-page: e8046 year: 2018 ident: ref_42 article-title: miR-29 contributes to normal endothelial function and can restore it in cardiometabolic disorders publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201708046 – volume: 5 start-page: 11427 year: 2015 ident: ref_50 article-title: Mitochondrial oxidative stress promotes atrial fibrillation publication-title: Sci. Rep. doi: 10.1038/srep11427 – ident: ref_79 doi: 10.1186/s12916-020-01673-z – ident: ref_78 doi: 10.1080/07391102.2020.1767690 – volume: 585 start-page: 588 year: 2020 ident: ref_11 article-title: Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2 publication-title: Nature doi: 10.1038/s41586-020-2575-3 – volume: 46 start-page: 586 year: 2020 ident: ref_8 article-title: Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target publication-title: Intensive Care Med. doi: 10.1007/s00134-020-05985-9 – ident: ref_34 doi: 10.1126/scitranslmed.aav9141 – volume: 393 start-page: 30 year: 2014 ident: ref_59 article-title: The ACE2/Ang-(1-7)/Mas axis can inhibit hepatic insulin resistance publication-title: Mol. Cell. Endocrinol. doi: 10.1016/j.mce.2014.05.024 – ident: ref_33 doi: 10.3390/cells9041056 – volume: 213 start-page: 60 year: 2015 ident: ref_38 article-title: Application of microRNAs in diagnosis and treatment of cardiovascular disease publication-title: Acta Physiol. doi: 10.1111/apha.12416 – ident: ref_69 doi: 10.1128/JVI.01815-18 – volume: 247 start-page: R45 year: 2020 ident: ref_56 article-title: Endocrine aspects of ACE2 regulation: RAAS, steroid hormones and SARS-CoV-2 publication-title: J. Endocrinol. doi: 10.1530/JOE-20-0260 – volume: 24 start-page: 108 year: 2020 ident: ref_73 article-title: Host susceptibility to severe COVID-19 and establishment of a host risk score: Findings of 487 cases outside Wuhan publication-title: Crit. Care doi: 10.1186/s13054-020-2833-7 – volume: 142 start-page: 1123 year: 2020 ident: ref_21 article-title: Unexpected Features of Cardiac Pathology in COVID-19 Infection publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.049465 – ident: ref_65 doi: 10.1007/s10741-020-10016-2 – volume: 88 start-page: 5608 year: 2014 ident: ref_76 article-title: The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses publication-title: J. Virol. doi: 10.1128/JVI.03677-13 – volume: 323 start-page: 707 year: 2020 ident: ref_4 article-title: Coronavirus Infections-More Than Just the Common Cold publication-title: JAMA doi: 10.1001/jama.2020.0757 – ident: ref_10 doi: 10.1136/jclinpath-2020-206987 – volume: 290 start-page: 198169 year: 2020 ident: ref_62 article-title: Current approaches for target-specific drug discovery using natural compounds against SARS-CoV-2 infection publication-title: Virus Res. doi: 10.1016/j.virusres.2020.198169 – volume: 112 start-page: 11389 year: 2015 ident: ref_51 article-title: Mitochondrial calcium overload is a key determinant in heart failure publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1513047112 – volume: 84 start-page: 12658 year: 2010 ident: ref_67 article-title: Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2 publication-title: J. Virol. doi: 10.1128/JVI.01542-10 – volume: 85 start-page: 4122 year: 2011 ident: ref_68 article-title: Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response publication-title: J. Virol. doi: 10.1128/JVI.02232-10 – volume: 324 start-page: 1274 year: 2020 ident: ref_75 article-title: Insight on Sex-Based Immunity Differences, with COVID-19 Implications publication-title: JAMA doi: 10.1001/jama.2020.17378 – ident: ref_2 – volume: 477 start-page: 349 year: 2020 ident: ref_19 article-title: The evolution of pulmonary pathology in fatal COVID-19 disease: An autopsy study with clinical correlation publication-title: Virchows Arch. doi: 10.1007/s00428-020-02881-x – volume: 76 start-page: 1526 year: 2020 ident: ref_30 article-title: Clinical and Proteomic Correlates of Plasma ACE2 (Angiotensin-Converting Enzyme 2) in Human Heart Failure publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.120.15829 – volume: 382 start-page: 1268 year: 2020 ident: ref_1 article-title: COVID-19—Navigating the Uncharted publication-title: N. Engl. J. Med. doi: 10.1056/NEJMe2002387 – volume: 13 start-page: 1702 year: 2017 ident: ref_54 article-title: MicroRNA-98 rescues proliferation and alleviates ox-LDL-induced apoptosis in HUVECs by targeting LOX-1 publication-title: Exp. Ther. Med. doi: 10.3892/etm.2017.4171 – volume: 16 start-page: 4403 year: 2017 ident: ref_24 article-title: Role of the ACE2Ang(17)Mas axis in blood pressure regulation and its potential as an antihypertensive in functional foods (Review) publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2017.7168 – volume: 182 start-page: 1077 year: 2020 ident: ref_3 article-title: Emerging Pandemic Diseases: How We Got to COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.08.021 – ident: ref_47 doi: 10.3390/cells9071621 – volume: 18 start-page: 1 year: 2020 ident: ref_70 article-title: Airways Expression of SARS-CoV-2 Receptor, ACE2, and TMPRSS2 Is Lower in Children Than Adults and Increases with Smoking and COPD publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.05.013 – ident: ref_16 doi: 10.1111/micc.12654 – volume: 39 start-page: e105114 year: 2020 ident: ref_71 article-title: SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells publication-title: EMBO J. doi: 10.15252/embj.20105114 – volume: 40 start-page: 1953 year: 2020 ident: ref_55 article-title: miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model publication-title: J. Cereb. Blood Flow Metab. doi: 10.1177/0271678X19882264 – ident: ref_61 doi: 10.3390/jcm9072096 – volume: 323 start-page: 1767 year: 2020 ident: ref_5 article-title: The COVID-19 Pandemic in the US: A Clinical Update publication-title: JAMA – ident: ref_22 doi: 10.1007/s12015-020-10010-z – volume: 295 start-page: H1377 year: 2008 ident: ref_28 article-title: Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00331.2008 – volume: 231 start-page: 1638 year: 2016 ident: ref_43 article-title: MicroRNAs and Endothelial (Dys) Function publication-title: J. Cell. Physiol. doi: 10.1002/jcp.25276 |
SSID | ssj0000913814 |
Score | 2.4778705 |
Snippet | The two main co-factors needed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter human cells are angiotensin-converting enzyme 2... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 462 |
SubjectTerms | ACE2 coronavirus COVID-19 endothelium epigenetics HMVEC-L |
Title | miR-98 Regulates TMPRSS2 Expression in Human Endothelial Cells: Key Implications for COVID-19 |
URI | https://www.proquest.com/docview/2457643981 https://pubmed.ncbi.nlm.nih.gov/PMC7693865 https://doaj.org/article/95b6c8d76b264aa2befabbe368c03894 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA4yL3oQf-L8RQSPlq1p0iXedG44ZTq2KV6kJG2Cg1nFTdD_3vfaKi2IXjy2TUh4ee33veble4QcGUBpP-ahF8QGAhRrmp7SSqDcHQQgiQy4xtPI_evw4pZf3ov7UqkvzAnL5YFzwzWUMGEsk1ZoALq1ZsY6bYwNQhmjNlymBAqYVwqmsm-wwsF4LjMUQFzfyE-zZ7vVM-njziarQFGm2F-hmdUkyRLqdFfJSkEX6Wk-zTWyYNN1slwSEdwgD0-ToackHeZV5e2MjvuD4WjEaOe9yHJN6SSl2e962kkTPHM1BbejbTudzk7olf2gvVJiOQUeS9s3d71zz1eb5LbbGbcvvKJoghcD95l7riWUsgD6TjWldcoY4FiBMxaIX8J4LIQOrPRbDi-cDBPleDOJGTfAfhwg-Bappc-p3SZUhVoBlgmWKM2tMwal3AV01ChSZlSdsC_7RXGhKI6FLaYRRBZo9OgHo9fJ8Xenl1xQ4_fmZ7gw301RDTu7AT4SFT4S_eUjdXL4tawRvD24JaJT-_w2ixiHeAs4mfTrpFVZ78qI1Sfp5DHT4cYykjIUO_8xxV2yxDCSR1Rs7pHa_PXN7gPdmZsDsnjWuR4MDzIP_wSzVwK5 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=miR-98+Regulates+TMPRSS2+Expression+in+Human+Endothelial+Cells%3A+Key+Implications+for+COVID-19&rft.jtitle=Biomedicines&rft.au=Matarese%2C+Alessandro&rft.au=Gambardella%2C+Jessica&rft.au=Sardu%2C+Celestino&rft.au=Santulli%2C+Gaetano&rft.date=2020-10-30&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=8&rft.issue=11&rft.spage=462&rft_id=info:doi/10.3390%2Fbiomedicines8110462&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedicines8110462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |