Induction of FoxP3 Pre-mRNA Alternative Splicing to Enhance the Suppressive Activity of Regulatory T Cells from Amyotrophic Lateral Sclerosis Patients
Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patient...
Saved in:
Published in | Biomedicines Vol. 12; no. 5; p. 1022 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases. |
---|---|
AbstractList | Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases. Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases.Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127low, CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases. Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127 , CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases. Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3 pre-mRNA is subject to alternative splicing, resulting in the translation of multiple splice variants. We have shown that Tregs from patients with amyotrophic lateral sclerosis (ALS) have reduced expression of full-length (FL) FoxP3, while other truncated splice variants are expressed predominantly. A correlation was observed between the reduced number of Tregs in the peripheral blood of ALS patients, reduced total FoxP3 mRNA, and reduced mRNA of its FL splice variant. Induction of FL FoxP3 was achieved using splice-switching oligonucleotides capable of base pairing with FoxP3 pre-mRNA and selectively modulating the inclusion of exons 2 and 7 in the mature mRNA. Selective expression of FL FoxP3 resulted in the induction of CD127[sup.low], CD152, and Helios-positive cells, while the cell markers CD4 and CD25 were not altered. Such Tregs had an increased proliferative activity and a higher frequency of cell divisions per day. The increased suppressive activity of Tregs with the induced FL FoxP3 splice variant was associated with the increased synthesis of the pro-apoptotic granzymes A and B, and perforin, IL-10, and IL-35, which are responsible for contact-independent suppression, and with the increased ability to suppress telomerase in target cells. The upregulation of Treg suppressive and proliferative activity using splice-switching oligonucleotides to induce the predominant expression of the FoxP3 FL variant is a promising approach for regenerative cell therapy in Treg-associated diseases. |
Audience | Academic |
Author | Zhdanov, Dmitry D. Blinova, Varvara G. Shishparenok, Anastasia N. Gladilina, Yulia A. Abramova, Anna A. Eliseeva, Daria D. |
Author_xml | – sequence: 1 givenname: Dmitry D. orcidid: 0000-0003-4753-7588 surname: Zhdanov fullname: Zhdanov, Dmitry D. – sequence: 2 givenname: Yulia A. surname: Gladilina fullname: Gladilina, Yulia A. – sequence: 3 givenname: Varvara G. orcidid: 0000-0002-3290-9839 surname: Blinova fullname: Blinova, Varvara G. – sequence: 4 givenname: Anna A. orcidid: 0000-0002-7960-1006 surname: Abramova fullname: Abramova, Anna A. – sequence: 5 givenname: Anastasia N. surname: Shishparenok fullname: Shishparenok, Anastasia N. – sequence: 6 givenname: Daria D. surname: Eliseeva fullname: Eliseeva, Daria D. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38790984$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kl1v0zAUhiM0xMbYP0DIEjfcdPgrbcxdVG2sUgXVNq6tU3-0rpI42M5E_wi_F2fd0JgmkotYR895ju28b4ujznemKN4TfM6YwJ_XzrdGO-U6EwnFJcGUvipOKKWzicClOHqyPi7OYtzh_AjCKsLfFMesmgksKn5S_F50elDJ-Q55iy79rxVDq2Am7fW3GtVNMqGD5O4MuumbcdwGJY8uui10yqC0zfWh74OJcWTqLLpzaT-qrs1maCD5sEe3aG6aJiIbfIvqdu9T8P3WKbSE7IcG3ajGBB9dRKs8zHQpviteW2iiOXv4nhY_Li9u51eT5fevi3m9nKiS8DSxTHDFdQWsElpzosspGEstmQpekoqXmInSlnTGplZo0MpqqDiAZmQNUwLstFgcvNrDTvbBtRD20oOT9wUfNhJCcnl_Ejgpwa6twmbNuTAVJYpaYStOjaBaZ9eng6sP_udgYpKtiyqfHDrjhygZnmKWd1LRjH58hu78kG-6GalScMzp7Am1gTzfdTZfHKhRKuuZKFmFOcOZOn-Byq82rVM5Ntbl-j8NHx6GD-scor-nfgxFBr4cAJV_SgzGSuUSjBnJZtdIguUYQvlSCHMzf9b86P9v2x9J_-Px |
CitedBy_id | crossref_primary_10_3390_cells13110959 |
Cites_doi | 10.1002/art.40737 10.3109/17482960802566824 10.3389/fimmu.2012.00051 10.1038/s41598-018-21861-5 10.1093/intimm/dxm014 10.1111/j.1365-2184.1995.tb00062.x 10.1016/j.neurobiolaging.2013.11.005 10.1111/imm.13208 10.1016/j.biochi.2020.04.009 10.1111/j.1365-2567.2007.02690.x 10.1016/j.cellimm.2021.104471 10.3390/cells13010077 10.1002/eji.200636435 10.1111/bjd.19380 10.1080/146608200300079536 10.1016/j.msard.2018.12.019 10.1016/j.molimm.2010.03.017 10.1093/nar/gkw533 10.3390/app11135776 10.1073/pnas.0509484103 10.1093/intimm/dxn044 10.1016/j.neubiorev.2021.06.027 10.1002/mus.26385 10.3389/fimmu.2016.00315 10.1038/ni.3288 10.1080/21678421.2020.1752246 10.1111/j.1365-2567.2012.03573.x 10.1016/j.biochi.2018.11.020 10.1001/jamaneurol.2018.0043 10.1155/2013/963748 10.1016/j.jaut.2019.05.017 10.1038/s41467-022-34526-9 10.1002/mus.26289 10.1002/eji.202149318 10.1089/nat.2021.0067 10.3390/ijms23031863 10.1074/jbc.272.18.11994 10.1186/1750-1326-8-31 10.1016/S1474-4422(18)30394-6 10.1016/j.bbrc.2018.12.186 10.1093/rheumatology/keq237 10.1016/S0022-510X(99)00210-5 10.18097/pbmc20226801055 10.1016/j.immuni.2009.04.014 10.1016/j.cellimm.2018.06.008 10.1016/j.autrev.2011.05.004 10.1016/j.clim.2022.108957 10.1097/MIB.0000000000001192 10.1182/blood-2016-07-727834 10.1126/sciadv.aaz0571 10.1111/cei.12116 10.1080/08916934.2016.1199020 10.1053/j.gastro.2009.01.049 10.1126/scitranslmed.abg6986 10.1126/sciimmunol.abo5407 10.1002/emmm.201201544 10.1186/1742-2094-9-112 10.1111/j.1600-065X.2011.01018.x 10.3389/fimmu.2020.581433 10.3389/fimmu.2022.1075813 10.1172/JCI82771 10.1186/s12974-018-1101-0 10.1016/j.coi.2016.07.004 10.1126/scitranslmed.aay6422 10.1016/j.ymthe.2020.05.020 10.4049/jimmunol.180.9.5916 10.1172/jci.insight.92865 10.1182/blood-2015-06-653667 10.1126/science.1079490 10.1155/2021/5574472 10.1038/s41590-018-0120-4 10.21037/tcr.2016.07.37 10.1126/science.7605428 10.1038/s41598-018-21477-9 10.1172/jci.insight.89530 10.1038/s41586-019-1805-z 10.3389/fimmu.2021.752394 10.1016/j.molimm.2018.07.017 10.1016/j.intimp.2011.05.018 10.1126/science.aan4665 10.3390/ijms18020271 10.4049/jimmunol.178.4.2579 10.1111/j.1749-6632.2012.06840.x 10.1172/JCI139991 10.1002/jcp.29401 10.1007/s00401-018-1933-9 10.1007/978-1-4419-1599-3_4 10.1093/brain/awr351 10.1007/s10753-016-0470-8 10.1126/scitranslmed.aad4134 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/biomedicines12051022 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-9059 |
ExternalDocumentID | oai_doaj_org_article_a415afbfc0eb449e821c2f9f842e92dd A795380430 38790984 10_3390_biomedicines12051022 |
Genre | Journal Article |
GeographicLocations | Germany Russia United States--US |
GeographicLocations_xml | – name: Russia – name: Germany – name: United States--US |
GrantInformation_xml | – fundername: Russian Science Foundation grantid: 23-24-00326 |
GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PROAC RPM NPM PMFND ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c514t-f394c4d8a389dd41d56aef2f1694518450395f52736f9dadcfda84aad31ba61a3 |
IEDL.DBID | DOA |
ISSN | 2227-9059 |
IngestDate | Wed Aug 27 01:31:45 EDT 2025 Fri Jul 11 11:05:20 EDT 2025 Fri Jul 25 11:59:25 EDT 2025 Tue Jun 17 22:13:30 EDT 2025 Tue Jun 10 21:08:29 EDT 2025 Thu Jan 02 22:34:42 EST 2025 Thu Apr 24 23:00:58 EDT 2025 Tue Jul 01 01:44:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | regulatory T cells splicing-switching oligonucleotides alternative splicing FoxP3 amyotrophic lateral sclerosis suppressive activity |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-f394c4d8a389dd41d56aef2f1694518450395f52736f9dadcfda84aad31ba61a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3290-9839 0000-0002-7960-1006 0000-0003-4753-7588 |
OpenAccessLink | https://doaj.org/article/a415afbfc0eb449e821c2f9f842e92dd |
PMID | 38790984 |
PQID | 3059404272 |
PQPubID | 2032426 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a415afbfc0eb449e821c2f9f842e92dd proquest_miscellaneous_3060373682 proquest_journals_3059404272 gale_infotracmisc_A795380430 gale_infotracacademiconefile_A795380430 pubmed_primary_38790984 crossref_citationtrail_10_3390_biomedicines12051022 crossref_primary_10_3390_biomedicines12051022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Biomedicines |
PublicationTitleAlternate | Biomedicines |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Blinova (ref_39) 2022; 68 Ghobadinezhad (ref_46) 2022; 13 Tao (ref_20) 2017; 40 Chen (ref_84) 2011; 11 Elinav (ref_63) 2009; 136 Haseda (ref_6) 2013; 173 Havens (ref_78) 2016; 44 Hirai (ref_71) 2021; 131 Mercer (ref_21) 2009; 665 Yoon (ref_65) 2017; 129 Zhdanov (ref_34) 2019; 509 Seitz (ref_27) 2022; 237 Kornberg (ref_61) 2018; 360 Goodwin (ref_74) 2020; 6 Du (ref_26) 2022; 7 Munitic (ref_11) 2021; 127 Tripathi (ref_69) 2018; 8 Rudensky (ref_23) 2011; 241 Valencia (ref_5) 2007; 178 ref_60 Hartgring (ref_8) 2010; 49 Zhdanov (ref_37) 2017; 82 Beers (ref_15) 2017; 2 Staats (ref_55) 2013; 8 Brunstein (ref_50) 2016; 127 Lynn (ref_70) 2019; 576 Gavin (ref_92) 2006; 103 Fan (ref_87) 2012; 136 Delgoffe (ref_54) 2009; 30 Giovannelli (ref_51) 2020; 21 Lam (ref_86) 2022; 52 Zhdanov (ref_43) 2018; 101 ref_29 Pierini (ref_67) 2017; 2 Honaker (ref_73) 2020; 12 Tenspolde (ref_62) 2019; 103 Fransson (ref_64) 2012; 9 Mukhatayev (ref_66) 2020; 11 Allan (ref_93) 2007; 19 Miyara (ref_4) 2011; 10 Buc (ref_47) 2013; 2013 Brooks (ref_32) 2000; 1 Roche (ref_30) 2012; 135 Voskens (ref_45) 2017; 23 Charbonnier (ref_77) 2015; 16 Lyon (ref_13) 2019; 59 Thiruppathi (ref_7) 2012; 1274 Klein (ref_88) 2016; 7 Lifshitz (ref_35) 2016; 49 Schmidt (ref_90) 2012; 3 Blinova (ref_25) 2021; 11 Chougnet (ref_85) 2016; 5 Bonelli (ref_3) 2008; 20 Ozay (ref_76) 2020; 28 Sherley (ref_36) 1995; 28 Liang (ref_89) 2008; 180 Pauli (ref_49) 2019; 71 Karam (ref_59) 2013; 20 Lui (ref_94) 2020; 161 Zhang (ref_72) 2021; 13 Vallarola (ref_56) 2018; 15 Yazdani (ref_17) 2022; 13 Sato (ref_24) 2021; 12 Lu (ref_18) 2017; 17 Hori (ref_22) 2003; 299 Cedarbaum (ref_31) 1999; 169 Kim (ref_41) 1994; 266 Wilk (ref_75) 2022; 371 Henkel (ref_16) 2013; 5 Zhdanov (ref_42) 2018; 331 ref_80 Hoff (ref_82) 2010; 47 Baker (ref_33) 1997; 272 Beers (ref_12) 2019; 18 Li (ref_1) 2019; 28 Logroscino (ref_10) 2009; 10 Wang (ref_91) 2007; 37 Sambucci (ref_28) 2018; 8 Rajabinejad (ref_52) 2020; 235 Yu (ref_83) 2021; 2021 MacDonald (ref_68) 2016; 126 Zhdanov (ref_81) 2020; 174 Venken (ref_2) 2008; 123 Beers (ref_53) 2018; 75 Sergeeva (ref_79) 2022; 32 Zhdanov (ref_40) 2017; 11 Hafler (ref_9) 2018; 19 McCauley (ref_14) 2019; 137 Nussbaum (ref_48) 2021; 184 Pesenacker (ref_19) 2016; 43 Camu (ref_58) 2014; 35 Paganoni (ref_57) 2019; 59 Zhdanov (ref_38) 2019; 157 Bluestone (ref_44) 2015; 7 |
References_xml | – volume: 71 start-page: 431 year: 2019 ident: ref_49 article-title: Adoptive Treg Cell Therapy in a Patient with Systemic Lupus Erythematosus publication-title: Arthritis Rheumatol. doi: 10.1002/art.40737 – volume: 10 start-page: 310 year: 2009 ident: ref_10 article-title: Prognostic Factors in ALS: A Critical Review publication-title: Amyotroph. Lateral Scler. doi: 10.3109/17482960802566824 – volume: 3 start-page: 51 year: 2012 ident: ref_90 article-title: Molecular Mechanisms of Treg-Mediated T Cell Suppression publication-title: Front. Immunol. doi: 10.3389/fimmu.2012.00051 – volume: 8 start-page: 3674 year: 2018 ident: ref_28 article-title: FoxP3 Isoforms and PD-1 Expression by T Regulatory Cells in Multiple Sclerosis publication-title: Sci. Rep. doi: 10.1038/s41598-018-21861-5 – volume: 19 start-page: 345 year: 2007 ident: ref_93 article-title: Activation-Induced FOXP3 in Human T Effector Cells Does Not Suppress Proliferation or Cytokine Production publication-title: Int. Immunol. doi: 10.1093/intimm/dxm014 – volume: 28 start-page: 137 year: 1995 ident: ref_36 article-title: A Quantitative Method for the Analysis of Mammalian Cell Proliferation in Culture in Terms of Dividing and Non-Dividing Cells publication-title: Cell Prolif. doi: 10.1111/j.1365-2184.1995.tb00062.x – volume: 35 start-page: 1198 year: 2014 ident: ref_58 article-title: Vitamin D Confers Protection to Motoneurons and Is a Prognostic Factor of Amyotrophic Lateral Sclerosis publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.11.005 – volume: 161 start-page: 4 year: 2020 ident: ref_94 article-title: Tissue Regulatory T Cells publication-title: Immunology doi: 10.1111/imm.13208 – volume: 174 start-page: 34 year: 2020 ident: ref_81 article-title: Inhibition of Nuclease Activity by a Splice-Switching Oligonucleotide Targeting Deoxyribonuclease 1 MRNA Prevents Apoptosis Progression and Prolong Viability of Normal Human CD4(+) T-Lymphocytes publication-title: Biochimie doi: 10.1016/j.biochi.2020.04.009 – volume: 123 start-page: 79 year: 2008 ident: ref_2 article-title: Compromised CD4+ CD25(High) Regulatory T-Cell Function in Patients with Relapsing-Remitting Multiple Sclerosis Is Correlated with a Reduced Frequency of FOXP3-Positive Cells and Reduced FOXP3 Expression at the Single-Cell Level publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02690.x – volume: 371 start-page: 104471 year: 2022 ident: ref_75 article-title: CRISPR/Cas9-Mediated Demethylation of FOXP3-TSDR toward Treg-Characteristic Programming of Jurkat T Cells publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2021.104471 – volume: 82 start-page: 894 year: 2017 ident: ref_37 article-title: Intracellular Localization of Apoptotic Endonuclease EndoG and Splice-Variants of Telomerase Catalytic Subunit HTERT publication-title: Biochemistry – ident: ref_29 doi: 10.3390/cells13010077 – volume: 37 start-page: 129 year: 2007 ident: ref_91 article-title: Transient Expression of FOXP3 in Human Activated Nonregulatory CD4+ T Cells publication-title: Eur. J. Immunol. doi: 10.1002/eji.200636435 – volume: 184 start-page: 14 year: 2021 ident: ref_48 article-title: Role of Regulatory T Cells in Psoriasis Pathogenesis and Treatment publication-title: Br. J. Dermatol. doi: 10.1111/bjd.19380 – volume: 1 start-page: 293 year: 2000 ident: ref_32 article-title: El Escorial Revisited: Revised Criteria for the Diagnosis of Amyotrophic Lateral Sclerosis publication-title: Amyotroph. Lateral Scler. Other Mot. Neuron doi: 10.1080/146608200300079536 – volume: 28 start-page: 75 year: 2019 ident: ref_1 article-title: The Proportion of Peripheral Regulatory T Cells in Patients with Multiple Sclerosis: A Meta-Analysis publication-title: Mult. Scler. Relat. Disord. doi: 10.1016/j.msard.2018.12.019 – volume: 47 start-page: 1875 year: 2010 ident: ref_82 article-title: CTLA-4 (CD152) Inhibits T Cell Function by Activating the Ubiquitin Ligase Itch publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2010.03.017 – volume: 44 start-page: 6549 year: 2016 ident: ref_78 article-title: Splice-Switching Antisense Oligonucleotides as Therapeutic Drugs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw533 – volume: 11 start-page: 154 year: 2021 ident: ref_25 article-title: Phenotypical and Functional Characteristics of Human Regulatory T Cells during Ex Vivo Maturation from CD4+ T Lymphocytes publication-title: Appl. Sci. doi: 10.3390/app11135776 – volume: 103 start-page: 6659 year: 2006 ident: ref_92 article-title: Single-Cell Analysis of Normal and FOXP3-Mutant Human T Cells: FOXP3 Expression without Regulatory T Cell Development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0509484103 – volume: 20 start-page: 861 year: 2008 ident: ref_3 article-title: Quantitative and Qualitative Deficiencies of Regulatory T Cells in Patients with Systemic Lupus Erythematosus (SLE) publication-title: Int. Immunol. doi: 10.1093/intimm/dxn044 – volume: 127 start-page: 958 year: 2021 ident: ref_11 article-title: Interplay between Immunity and Amyotrophic Lateral Sclerosis: Clinical Impact publication-title: Neurosci. Biobehav. Rev. doi: 10.1016/j.neubiorev.2021.06.027 – volume: 59 start-page: 303 year: 2019 ident: ref_57 article-title: A Pilot Trial of RNS60 in Amyotrophic Lateral Sclerosis publication-title: Muscle Nerve doi: 10.1002/mus.26385 – volume: 7 start-page: 315 year: 2016 ident: ref_88 article-title: Cyclic AMP Represents a Crucial Component of Treg Cell-Mediated Immune Regulation publication-title: Front. Immunol. doi: 10.3389/fimmu.2016.00315 – volume: 16 start-page: 1162 year: 2015 ident: ref_77 article-title: Control of Peripheral Tolerance by Regulatory T Cell–Intrinsic Notch Signaling publication-title: Nat. Immunol. doi: 10.1038/ni.3288 – volume: 21 start-page: 435 year: 2020 ident: ref_51 article-title: The Involvement of Regulatory T Cells in Amyotrophic Lateral Sclerosis and Their Therapeutic Potential publication-title: Amyotroph. Lateral Scler. Front. Degener. doi: 10.1080/21678421.2020.1752246 – volume: 136 start-page: 218 year: 2012 ident: ref_87 article-title: Comparative Study of Regulatory T Cells Expanded Ex Vivo from Cord Blood and Adult Peripheral Blood publication-title: Immunology doi: 10.1111/j.1365-2567.2012.03573.x – volume: 157 start-page: 158 year: 2019 ident: ref_38 article-title: Endonuclease G Modulates the Alternative Splicing of Deoxyribonuclease 1 MRNA in Human CD4+ T Lymphocytes and Prevents the Progression of Apoptosis publication-title: Biochimie doi: 10.1016/j.biochi.2018.11.020 – volume: 75 start-page: 656 year: 2018 ident: ref_53 article-title: The Role of Regulatory T Lymphocytes in Amyotrophic Lateral Sclerosis publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2018.0043 – volume: 2013 start-page: 963748 year: 2013 ident: ref_47 article-title: Role of Regulatory T Cells in Pathogenesis and Biological Therapy of Multiple Sclerosis publication-title: Mediat. Inflamm. doi: 10.1155/2013/963748 – volume: 103 start-page: 102289 year: 2019 ident: ref_62 article-title: Regulatory T Cells Engineered with a Novel Insulin-Specific Chimeric Antigen Receptor as a Candidate Immunotherapy for Type 1 Diabetes publication-title: J. Autoimmun. doi: 10.1016/j.jaut.2019.05.017 – volume: 13 start-page: 6733 year: 2022 ident: ref_17 article-title: T Cell Responses at Diagnosis of Amyotrophic Lateral Sclerosis Predict Disease Progression publication-title: Nat. Commun. doi: 10.1038/s41467-022-34526-9 – volume: 59 start-page: 10 year: 2019 ident: ref_13 article-title: Inflammation, Immunity, and Amyotrophic Lateral Sclerosis: I. Etiology and Pathology publication-title: Muscle Nerve doi: 10.1002/mus.26289 – volume: 52 start-page: 75 year: 2022 ident: ref_86 article-title: Helios Is a Marker, Not a Driver, of Human Treg Stability publication-title: Eur. J. Immunol. doi: 10.1002/eji.202149318 – volume: 32 start-page: 123 year: 2022 ident: ref_79 article-title: Modulation of RNA Splicing by Oligonucleotides: Mechanisms of Action and Therapeutic Implications publication-title: Nucleic Acid Ther. doi: 10.1089/nat.2021.0067 – ident: ref_80 doi: 10.3390/ijms23031863 – volume: 272 start-page: 11994 year: 1997 ident: ref_33 article-title: 2′-O-(2-Methoxy)Ethyl-Modified Anti-Intercellular Adhesion Molecule 1 (ICAM-1) Oligonucleotides Selectively Increase the ICAM-1 MRNA Level and Inhibit Formation of the ICAM-1 Translation Initiation Complex in Human Umbilical Vein Endothelial Cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.18.11994 – volume: 8 start-page: 31 year: 2013 ident: ref_55 article-title: Rapamycin Increases Survival in ALS Mice Lacking Mature Lymphocytes publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-8-31 – volume: 18 start-page: 211 year: 2019 ident: ref_12 article-title: Immune Dysregulation in Amyotrophic Lateral Sclerosis: Mechanisms and Emerging Therapies publication-title: Lancet. Neurol. doi: 10.1016/S1474-4422(18)30394-6 – volume: 509 start-page: 790 year: 2019 ident: ref_34 article-title: Inhibition of Telomerase Activity by Splice-Switching Oligonucleotides Targeting the MRNA of the Telomerase Catalytic Subunit Affects Proliferation of Human CD4+ T Lymphocytes publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2018.12.186 – volume: 49 start-page: 2084 year: 2010 ident: ref_8 article-title: Numbers of CD25+Foxp3+ T Cells That Lack the IL-7 Receptor Are Increased Intra-Articularly and Have Impaired Suppressive Function in RA Patients publication-title: Rheumatology doi: 10.1093/rheumatology/keq237 – volume: 169 start-page: 13 year: 1999 ident: ref_31 article-title: The ALSFRS-R: A Revised ALS Functional Rating Scale That Incorporates Assessments of Respiratory Function. BDNF ALS Study Group (Phase III) publication-title: J. Neurol. Sci. doi: 10.1016/S0022-510X(99)00210-5 – volume: 68 start-page: 55 year: 2022 ident: ref_39 article-title: [Increased suppressor activity of transformed ex vivo regulatory T-cells in comparison with unstimulated cells of the same donor] publication-title: Biomeditsinskaia Khimiia doi: 10.18097/pbmc20226801055 – volume: 30 start-page: 832 year: 2009 ident: ref_54 article-title: The MTOR Kinase Differentially Regulates Effector and Regulatory T Cell Lineage Commitment publication-title: Immunity doi: 10.1016/j.immuni.2009.04.014 – volume: 331 start-page: 146 year: 2018 ident: ref_42 article-title: Murine Regulatory T Cells Induce Death of Effector T, B, and NK Lymphocytes through a Contact-Independent Mechanism Involving Telomerase Suppression and Telomere-Associated Senescence publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2018.06.008 – volume: 10 start-page: 744 year: 2011 ident: ref_4 article-title: Human FoxP3+ Regulatory T Cells in Systemic Autoimmune Diseases publication-title: Autoimmun. Rev. doi: 10.1016/j.autrev.2011.05.004 – volume: 11 start-page: 154 year: 2017 ident: ref_40 article-title: Apoptotic Endonuclease EndoG Regulates Alternative Splicing of Human Telomerase Catalytic Subunit HTERT publication-title: Biochem. (Mosc.) Suppl. Ser. B Biomed. Chem. – volume: 237 start-page: 108957 year: 2022 ident: ref_27 article-title: The FOXP3 Full-Length Isoform Controls the Lineage-Stability of CD4(+)FOXP3(+) Regulatory T Cells publication-title: Clin. Immunol. doi: 10.1016/j.clim.2022.108957 – volume: 23 start-page: 1348 year: 2017 ident: ref_45 article-title: Characterization and Expansion of Autologous GMP-Ready Regulatory T Cells for TREG-Based Cell Therapy in Patients with Ulcerative Colitis publication-title: Inflamm. Bowel Dis. doi: 10.1097/MIB.0000000000001192 – volume: 129 start-page: 238 year: 2017 ident: ref_65 article-title: FVIII-Specific Human Chimeric Antigen Receptor T-Regulatory Cells Suppress T- and B-Cell Responses to FVIII publication-title: Blood doi: 10.1182/blood-2016-07-727834 – volume: 6 start-page: eaaz0571 year: 2020 ident: ref_74 article-title: CRISPR-Based Gene Editing Enables FOXP3 Gene Repair in IPEX Patient Cells publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz0571 – volume: 173 start-page: 207 year: 2013 ident: ref_6 article-title: CD4+ CD45RA−FoxP3high Activated Regulatory T Cells Are Functionally Impaired and Related to Residual Insulin-Secreting Capacity in Patients with Type 1 Diabetes publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.12116 – volume: 49 start-page: 388 year: 2016 ident: ref_35 article-title: Ex Vivo Expanded Regulatory T Cells CD4 + CD25 + FoxP3 + CD127 Low Develop Strong Immunosuppressive Activity in Patients with Remitting-Relapsing Multiple Sclerosis publication-title: Autoimmunity doi: 10.1080/08916934.2016.1199020 – volume: 136 start-page: 1721 year: 2009 ident: ref_63 article-title: Amelioration of Colitis by Genetically Engineered Murine Regulatory T Cells Redirected by Antigen-Specific Chimeric Receptor publication-title: Gastroenterology doi: 10.1053/j.gastro.2009.01.049 – volume: 13 start-page: eabg6986 year: 2021 ident: ref_72 article-title: A Human Orthogonal IL-2 and IL-2Rβ System Enhances CAR T Cell Expansion and Antitumor Activity in a Murine Model of Leukemia publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abg6986 – volume: 7 start-page: eabo5407 year: 2022 ident: ref_26 article-title: FOXP3 Exon 2 Controls T(Reg) Stability and Autoimmunity publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abo5407 – volume: 5 start-page: 64 year: 2013 ident: ref_16 article-title: Regulatory T-Lymphocytes Mediate Amyotrophic Lateral Sclerosis Progression and Survival publication-title: EMBO Mol. Med. doi: 10.1002/emmm.201201544 – volume: 9 start-page: 112 year: 2012 ident: ref_64 article-title: CAR/FoxP3-Engineered T Regulatory Cells Target the CNS and Suppress EAE upon Intranasal Delivery publication-title: J. Neuroinflamm. doi: 10.1186/1742-2094-9-112 – volume: 241 start-page: 260 year: 2011 ident: ref_23 article-title: Regulatory T Cells and Foxp3 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2011.01018.x – volume: 11 start-page: 581433 year: 2020 ident: ref_66 article-title: Antigen Specificity Enhances Disease Control by Tregs in Vitiligo publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.581433 – volume: 13 start-page: 1075813 year: 2022 ident: ref_46 article-title: The Emerging Role of Regulatory Cell-Based Therapy in Autoimmune Disease publication-title: Front. Immunol. doi: 10.3389/fimmu.2022.1075813 – volume: 126 start-page: 1413 year: 2016 ident: ref_68 article-title: Alloantigen-Specific Regulatory T Cells Generated with a Chimeric Antigen Receptor publication-title: J. Clin. Investig. doi: 10.1172/JCI82771 – volume: 15 start-page: 65 year: 2018 ident: ref_56 article-title: RNS60 Exerts Therapeutic Effects in the SOD1 ALS Mouse Model through Protective Glia and Peripheral Nerve Rescue publication-title: J. Neuroinflamm. doi: 10.1186/s12974-018-1101-0 – volume: 43 start-page: 16 year: 2016 ident: ref_19 article-title: The Role of FOXP3 in Autoimmunity publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2016.07.004 – volume: 12 start-page: eaay6422 year: 2020 ident: ref_73 article-title: Gene Editing to Induce FOXP3 Expression in Human CD4+ T Cells Leads to a Stable Regulatory Phenotype and Function publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aay6422 – volume: 28 start-page: 1987 year: 2020 ident: ref_76 article-title: Cell-Penetrating Anti-Protein Kinase C Theta Antibodies Act Intracellularly to Generate Stable, Highly Suppressive Regulatory T Cells publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2020.05.020 – volume: 180 start-page: 5916 year: 2008 ident: ref_89 article-title: Regulatory T Cells Inhibit Dendritic Cells by Lymphocyte Activation Gene-3 Engagement of MHC Class II publication-title: J. Immunol. doi: 10.4049/jimmunol.180.9.5916 – volume: 2 start-page: e92865 year: 2017 ident: ref_67 article-title: T Cells Expressing Chimeric Antigen Receptor Promote Immune Tolerance publication-title: JCI Insight doi: 10.1172/jci.insight.92865 – volume: 127 start-page: 1044 year: 2016 ident: ref_50 article-title: Umbilical Cord Blood-Derived T Regulatory Cells to Prevent GVHD: Kinetics, Toxicity Profile, and Clinical Effect publication-title: Blood doi: 10.1182/blood-2015-06-653667 – volume: 17 start-page: 703 year: 2017 ident: ref_18 article-title: The Regulation of Immune Tolerance by FOXP3. Nature reviews publication-title: Immunology – volume: 299 start-page: 1057 year: 2003 ident: ref_22 article-title: Control of Regulatory T Cell Development by the Transcription Factor Foxp3 publication-title: Science doi: 10.1126/science.1079490 – volume: 2021 start-page: 5574472 year: 2021 ident: ref_83 article-title: Coexpression of Helios in Foxp3(+) Regulatory T Cells and Its Role in Human Disease publication-title: Dis. Markers doi: 10.1155/2021/5574472 – volume: 19 start-page: 665 year: 2018 ident: ref_9 article-title: Regulatory T Cells in Autoimmune Disease publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0120-4 – volume: 5 start-page: S338 year: 2016 ident: ref_85 article-title: Helios-Controller of Treg Stability and Function publication-title: Transl. Cancer Res. doi: 10.21037/tcr.2016.07.37 – volume: 266 start-page: 2011 year: 1994 ident: ref_41 article-title: Specific Association of Human Telomerase Activity with Immortal Cells and Cancer publication-title: Science doi: 10.1126/science.7605428 – volume: 8 start-page: 3310 year: 2018 ident: ref_69 article-title: C-Jun N-Terminal Kinase 1 Defective CD4+CD25+FoxP3+ Cells Prolong Islet Allograft Survival in Diabetic Mice publication-title: Sci. Rep. doi: 10.1038/s41598-018-21477-9 – volume: 2 start-page: e89530 year: 2017 ident: ref_15 article-title: ALS Patients’ Regulatory T Lymphocytes Are Dysfunctional, and Correlate with Disease Progression Rate and Severity publication-title: JCI Insight doi: 10.1172/jci.insight.89530 – volume: 576 start-page: 293 year: 2019 ident: ref_70 article-title: C-Jun Overexpression in CAR T Cells Induces Exhaustion Resistance publication-title: Nature doi: 10.1038/s41586-019-1805-z – volume: 12 start-page: 752394 year: 2021 ident: ref_24 article-title: Co-Expression of FOXP3FL and FOXP3Δ2 Isoforms Is Required for Optimal Treg-Like Cell Phenotypes and Suppressive Function publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.752394 – volume: 101 start-page: 229 year: 2018 ident: ref_43 article-title: Contact-Independent Suppressive Activity of Regulatory T Cells Is Associated with Telomerase Inhibition, Telomere Shortening and Target Lymphocyte Apoptosis publication-title: Mol. Immunol. doi: 10.1016/j.molimm.2018.07.017 – volume: 11 start-page: 1489 year: 2011 ident: ref_84 article-title: Resolving the Identity Myth: Key Markers of Functional CD4+FoxP3+ Regulatory T Cells publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2011.05.018 – volume: 360 start-page: 449 year: 2018 ident: ref_61 article-title: Dimethyl Fumarate Targets GAPDH and Aerobic Glycolysis to Modulate Immunity publication-title: Science doi: 10.1126/science.aan4665 – ident: ref_60 doi: 10.3390/ijms18020271 – volume: 178 start-page: 2579 year: 2007 ident: ref_5 article-title: Deficient CD4+CD25high T Regulatory Cell Function in Patients with Active Systemic Lupus Erythematosus publication-title: J. Immunol. doi: 10.4049/jimmunol.178.4.2579 – volume: 1274 start-page: 68 year: 2012 ident: ref_7 article-title: Functional Defect in Regulatory T Cells in Myasthenia Gravis publication-title: Ann. N. Y. Acad. Sci. doi: 10.1111/j.1749-6632.2012.06840.x – volume: 131 start-page: e139991 year: 2021 ident: ref_71 article-title: Selective Expansion of Regulatory T Cells Using an Orthogonal IL-2/IL-2 Receptor System Facilitates Transplantation Tolerance publication-title: J. Clin. Investig. doi: 10.1172/JCI139991 – volume: 235 start-page: 5030 year: 2020 ident: ref_52 article-title: Regulatory T Cells for Amyotrophic Lateral Sclerosis/Motor Neuron Disease: A Clinical and Preclinical Systematic Review publication-title: J. Cell. Physiol. doi: 10.1002/jcp.29401 – volume: 137 start-page: 715 year: 2019 ident: ref_14 article-title: Inflammation in ALS/FTD Pathogenesis publication-title: Acta Neuropathol. doi: 10.1007/s00401-018-1933-9 – volume: 665 start-page: 47 year: 2009 ident: ref_21 article-title: The Biology of FoxP3: A Key Player in Immune Suppression during Infections, Autoimmune Diseases and Cancer publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-1-4419-1599-3_4 – volume: 20 start-page: 1550 year: 2013 ident: ref_59 article-title: Vitamin D Deficiency and Its Supplementation in Patients with Amyotrophic Lateral Sclerosis publication-title: J. Clin. Neurosci. J. Neurosurg. Soc. Australas. – volume: 135 start-page: 847 year: 2012 ident: ref_30 article-title: A Proposed Staging System for Amyotrophic Lateral Sclerosis publication-title: Brain J. Neurol. doi: 10.1093/brain/awr351 – volume: 40 start-page: 328 year: 2017 ident: ref_20 article-title: Foxp3, Regulatory T Cell, and Autoimmune Diseases publication-title: Inflammation doi: 10.1007/s10753-016-0470-8 – volume: 7 start-page: 315ra189 year: 2015 ident: ref_44 article-title: Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aad4134 |
SSID | ssj0000913814 |
Score | 2.2691755 |
Snippet | Forkhead box protein 3 (FoxP3) is a key transcription factor responsible for the development, maturation, and function of regulatory T cells (Tregs). The FoxP3... |
SourceID | doaj proquest gale pubmed crossref |
SourceType | Open Website Aggregation Database Index Database Enrichment Source |
StartPage | 1022 |
SubjectTerms | Alternative splicing Amyotrophic lateral sclerosis Antibodies Apoptosis Autoimmune diseases CD25 antigen CD4 antigen Cell therapy CTLA-4 protein Development and progression Disease Endopeptidases Ethylenediaminetetraacetic acid Exons Flow cytometry Forkhead protein FoxP3 Foxp3 protein Gene expression Immunoregulation Lymphocytes Lymphocytes T Medical prognosis Messenger RNA Oligonucleotides Perforin Peripheral blood Proteins regulatory T cells Serine proteinase splicing-switching oligonucleotides suppressive activity T cells Telomerase Transcription factors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELZge4ED4k2gICMhcYqa2I7XPqG02qpCsFptW6m3yPGDVko3y2aL1D_C72Um8S4sILjG48j2jMefH_MNIe9gG2tELbMUoPY4FbUGP6iCSK3zRklXGB0wdvjzVJ6ci48XxUU8cOvis8qNT-wdtWstnpEfcCQWwcQQ7MPya4pZo_B2NabQuEv2wAUrNSJ7h5PpbL49ZUHWS5WLIWaOw_7-YIhq72-tu5yhSTK2syb11P1_OujfYGe__Bw_JA8ibqTloOhH5I5fPCb3f2ETfEK-YxqOPkyBtoHCsjLjdLby6fV8WtKyiSd_3zw9xTtrqELXLZ0sLlHvFHAgxQyf_bNYkCntkFYCfzUf8tW3q1t6Ro9803QUo1JoeX3brlft8vLK0k8GQ5kbegqtg05edXQ2MLZ2T8n58eTs6CSNaRdSC-hpnQauhRVOGcAyzoncFdL4wEIutShgQ1hkXBcBidtk0M44G5xRwhjH89rI3PBnZLRoF_4FobIOIeSFD1AOuEzXsjB5rcE4rJPci4TwzcBXNnKSY2qMpoK9Caqr-pu6EpJuay0HTo7_yB-iTreyyKjdf2hXX6o4QSsDSMaEOtjM10Jor1huWdDQcuY1cy4h79EiKpz30ERrYvgCdBQZtKpyrGHtQAa1hOzvSMJ8tbvFG5uqor_oqp_WnZC322KsiW_gFr69QRmZcRh0BTLPB1vcdomrsc60Ei___fNX5B4DUDY82Nwno_Xqxr8GULWu38SZ8wP-pyU_ priority: 102 providerName: ProQuest |
Title | Induction of FoxP3 Pre-mRNA Alternative Splicing to Enhance the Suppressive Activity of Regulatory T Cells from Amyotrophic Lateral Sclerosis Patients |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38790984 https://www.proquest.com/docview/3059404272 https://www.proquest.com/docview/3060373682 https://doaj.org/article/a415afbfc0eb449e821c2f9f842e92dd |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlvbSH0nc3TYMKhZ5MbEvWWkcnbAilXZZNArkJPUnAscPaKeSP5PdmxnKW3baQS6_r0SJpRjPf2JpvCPkGaazmRqQJQO1pwo0EP1gGnljndSlcoWXA2uFfc3Fyzn9cFBcbrb7wTlikB44bd6Ahwuhggk294Vz6Ms9sHmQoee5l7hx6X4h5G8nU4INlBqGIx1o5Bnn9QaxmH75Wd1mOppjnW7FooOz_2zH_ATeHsHP8mrwa8SKt4jzfkGe-eUtebrAIviP32H5jKE-gbaAQThaMLlY-uV7OK1rV4xu_356e4rdqGEL7ls6aS9Q3BfxHsbPncB0WZCob20ngXy1jn_p2dUfP6JGv645iNQqtru_aftXeXF5Z-lNjCXNNT2F2sMirji4iU2v3npwfz86OTpKx3UJiATX1SWCSW-5KDRjGOZ65Qmgf8pAJyQtIBIuUySIgYZsI0mlng9Ml19qxzGiRafaB7DRt4z8RKkwIISs8aEkDHpNGFDozEozCOsE8nxD2uPHKjlzk2BKjVpCToLrUv9Q1Icl61E3k4nhC_hB1upZFJu3hB7AvNdqXesq-JuQ7WoTC8w5TtHosW4CFInOWqqYSYgYyp03I3pYknFO7_fjRptToJzrFkC4H253AZL-uH-NIvPvW-PYWZUTKYNNLkPkYbXG9JFZOZSpLvvs_lvqZvMgBssXrnHtkp1_d-i8AuXqzT54fzuaL5f5wyh4AqeIvPQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKegAOiDeBAkYCcVp11_Y66wNC25IqpWkUpa3U2-L1o62UZkM2BeWP8DP4jczsbgIBBKde12PLXo9nxo_5PkJewzZWi1yGAYTanUDkCuxg4kVgrNOJtLFWHnOHDweydyI-nsanG-T7MhcGn1UubWJlqG1h8Ix8myOwCBJDsPfTzwGyRuHt6pJCo1aLA7f4Clu28t3-B5jfN4ztdY93e0HDKhAYCA7mgedKGGETDa7aWhHZWGrnmY-kEjHsd-KQq9gjLpn0ymprvNWJ0NryKNcy0hzavUE2BZcha5HNne5gOFqd6iDKZhKJOkePcxVu11n01S15GTFcAoyt-cCKKuBPh_BbmFu5u7275E4Tp9K0Vqx7ZMNN7pPbv6AXPiDfkPajSoughafgxoacDmcuuBwNUpqOm5PGL44e4R05VKHzgnYn56hnFOJOioyi1TNckElNTWOBTY3cGZKKFbMFPaa7bjwuKWbB0PRyUcxnxfT8wtC-xtTpMT2C3sEgL0o6rBFiy4fk5Fom5BFpTYqJe0KozL33Uew8lEMcqHIZ6yhXoIzGSu5Em_Dlj89Mg4GOVBzjDPZCOF3Z36arTYJVrWmNAfIf-R2c05UsInhXH4rZWdYYhExD5KR97k3ociGUS1hkmFfQc-YUs7ZN3qJGZGhnoItGN-kSMFBE7MrSjgJfhYhtbbK1Jgn2wawXL3Uqa-xTmf1cTW3yalWMNfHN3cQVVygjQw4_PQGZx7UurobEk44KVSKe_rvxl-Rm7_iwn_X3BwfPyC0GAWH9WHSLtOazK_ccArp5_qJZRZR8uu6F-wOaeGKw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BqdhOABcacwwEggnqImtuPGDwhlW6uNjarqNmlvwfFlm9Q1pelA_RE-hq_jnCQtFBA87TU-tuycu30uhLwGN1aLXIYBmNrdQOQK5GDiRWCs04m0sVYec4c_DuTeifhwGp9ukO_LXBgMq1zKxEpQ28LgHXmHY2ERbAzBOr4Jixju9t9PPwfYQQpfWpftNGoSOXCLr-C-le_2dwHXbxjr94539oKmw0BgwFCYB54rYYRNNKhta0VkY6mdZz6SSsTg-8QhV7HHGmXSK6ut8VYnQmvLo1zLSHNY9wbZ7KJX1CKb273BcLS64cGKm0kk6nw9zlXYqTPqqxfzMmLIDoyt6cOqbcCfyuE3k7dSff275E5js9K0JrJ7ZMNN7pPbv1QyfEC-YQuQKkWCFp6CShtyOpy54HI0SGk6bm4dvzh6hO_lMIXOC9qbnCPNUbBBKXYXrUJyASY1dUsLXGrkzrDBWDFb0GO648bjkmJGDE0vF8V8VkzPLww91JhGPaZHsDs45EVJh3W12PIhObkWhDwirUkxcU8Ilbn3Poqdh3GwCVUuYx3lCgjTWMmdaBO-_PGZaeqhY1uOcQZ-EaIr-xu62iRYzZrW9UD-A7-NOF3BYjXv6kMxO8sa4ZBpsKK0z70JXS6EcgmLDPMKds6cYta2yVukiAxlDmzR6CZ1Ag6K1buytKtAb2H1tjbZWoMEWWHWh5c0lTWyqsx-clabvFoN40yMv5u44gphZMjhpycA87imxdWReNJVoUrE038v_pLcBIbNDvcHB8_ILQa2YR03ukVa89mVew623Tx_0TARJZ-um29_AOhfZuU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induction+of+FoxP3+Pre-mRNA+Alternative+Splicing+to+Enhance+the+Suppressive+Activity+of+Regulatory+T+Cells+from+Amyotrophic+Lateral+Sclerosis+Patients&rft.jtitle=Biomedicines&rft.au=Zhdanov%2C+Dmitry+D&rft.au=Gladilina%2C+Yulia+A&rft.au=Blinova%2C+Varvara+G&rft.au=Abramova%2C+Anna+A&rft.date=2024-05-01&rft.issn=2227-9059&rft.volume=12&rft.issue=5&rft_id=info:doi/10.3390%2Fbiomedicines12051022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |