Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress
Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quino...
Saved in:
Published in | Plants (Basel) Vol. 6; no. 4; p. 49 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
17.10.2017
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. |
---|---|
AbstractList | Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO₂ transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment-protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution.Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO₂ transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment-protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced PN via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. Quinoa ( Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO₂ transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced via interference with photosynthetic enzymes and degradation of pigment-protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. Quinoa ( Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased drought and salt stress in the future. We characterised the diffusive and metabolic limitations to photosynthesis in quinoa exposed to drought and salt stress in isolation and combination. Drought-induced pronounced stomatal and mesophyll limitations to CO 2 transport, but quinoa retained photosynthetic capacity and photosystem II (PSII) performance. Saline water (300 mmol NaCl-equivalent to 60% of the salinity of sea-water) supplied in identical volumes to the irrigation received by the control and drought treatments induced similar reductions in stomatal and mesophyll conductance, but also reduced carboxylation of ribulose-1,5-bisphosphate carboxylase/oxygenase, regeneration of ribulose-1,5-bisphosphate, increased non-photochemical dissipation of energy as heat and impaired PSII electron transport. This suggests that ion toxicity reduced P N via interference with photosynthetic enzymes and degradation of pigment–protein complexes within the thylakoid membranes. The results of this study demonstrate that the photosynthetic physiology of quinoa is resistant to the effects of drought, but quinoa may not be a suitable crop for areas subject to strong salt stress or irrigation with a concentration of saline water equivalent to a 300 mmol NaCl solution. |
Author | Haworth, Matthew Killi, Dilek |
AuthorAffiliation | 1 Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy 2 The National Research Council of Italy, Tree and Timber Institute (CNR-IVALSA), Presso Area di Ricerca CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; haworth@ivalsa.cnr.it |
AuthorAffiliation_xml | – name: 1 Department of Agrifood Production and Environmental Sciences (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144 Florence, Italy – name: 2 The National Research Council of Italy, Tree and Timber Institute (CNR-IVALSA), Presso Area di Ricerca CNR, Via Madonna del Piano 10, Sesto Fiorentino, 50019 Florence, Italy; haworth@ivalsa.cnr.it |
Author_xml | – sequence: 1 givenname: Dilek orcidid: 0000-0001-5462-3818 surname: Killi fullname: Killi, Dilek – sequence: 2 givenname: Matthew surname: Haworth fullname: Haworth, Matthew |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29039809$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkltrFDEUgINU7MU--ioDvviymtvk8iLIVmuholJ9NWQmZ3azzCbbJFPovzfbbaVbBEMgIfnOl5OTHKODEAMg9Irgd4xp_H4z2lCywBxjrp-hI0opm0nJ5cGj-SE6zXmFa1O1E_ECHVKNmVZYH6HfZ34YpuxvoLHBNV-h2C6Ovm_mMeSSrK_-psTm-zKWmG9DWUL2ufGh-TH5EG3jpuTDojlLcVosy53kyo6luSoJcn6Jng92zHB6P56gX58__Zx_mV1-O7-Yf7yc9S3hZQZOa4oBeq4w5cI5ytnQCYBWqo50QoKioCW3ArjusGJScGYHLBwTqtMdO0EXO6-LdmU2ya9tujXRenO3ENPC2FR8P4KhrneaYKJpJznvieaKCln1WiquiauuDzvXZurW4HoItQ7jnnR_J_ilWcQb08oWC9pWwdt7QYrXE-Ri1j73MNbHgjhlQxmVWteDyX9RoluKtcQMV_TNE3QVpxRqVSulVFspuaVeP07-b9YPL14BtgP6FHNOMJjeF1t83N7Fj4Zgs_1aZu9r1ajZk6gH8b_5P5qX0E4 |
CitedBy_id | crossref_primary_10_3390_agriculture14091606 crossref_primary_10_32615_ps_2019_180 crossref_primary_10_1038_s41598_024_76284_2 crossref_primary_10_1007_s42729_022_01004_6 crossref_primary_10_3390_insects12121105 crossref_primary_10_1007_s10725_022_00942_6 crossref_primary_10_3390_agriculture11111089 crossref_primary_10_3390_agriculture10120620 crossref_primary_10_3390_plants12234015 crossref_primary_10_3390_f13020324 crossref_primary_10_1111_plb_13270 crossref_primary_10_3390_plants7040076 crossref_primary_10_1080_15226514_2018_1452184 crossref_primary_10_3390_agronomy11051012 crossref_primary_10_3390_plants11070877 crossref_primary_10_3390_agronomy10010137 crossref_primary_10_3390_plants13060751 crossref_primary_10_2166_wcc_2018_152 crossref_primary_10_1111_ppl_13639 crossref_primary_10_1111_jac_12482 crossref_primary_10_3390_ijms23052759 crossref_primary_10_3390_cimb45070374 crossref_primary_10_3390_plants13152117 crossref_primary_10_3390_plants11070872 crossref_primary_10_3390_plants14020188 crossref_primary_10_3390_plants10081591 crossref_primary_10_3390_plants7030062 crossref_primary_10_21273_JASHS04996_20 crossref_primary_10_3390_agriculture12020190 crossref_primary_10_1016_j_plaphy_2022_03_003 crossref_primary_10_1016_j_envexpbot_2022_104976 crossref_primary_10_3390_agriculture13061198 crossref_primary_10_1111_aab_12922 crossref_primary_10_3390_agronomy12010096 crossref_primary_10_1016_j_scienta_2024_113506 crossref_primary_10_3390_plants7040106 crossref_primary_10_1186_s12898_020_00292_9 crossref_primary_10_1016_j_envexpbot_2022_105090 crossref_primary_10_3389_fpls_2023_1301445 crossref_primary_10_3390_agriculture14081418 crossref_primary_10_3389_fpls_2018_01224 crossref_primary_10_1371_journal_pone_0259214 crossref_primary_10_4081_ija_2022_2130 crossref_primary_10_3389_fpls_2023_1268014 crossref_primary_10_1007_s11120_024_01128_z crossref_primary_10_3390_plants10050927 crossref_primary_10_3390_ijms21041222 |
Cites_doi | 10.1016/S1161-0301(00)00055-1 10.1007/s11103-006-9111-1 10.1371/journal.pone.0148554 10.1081/FRI-120018874 10.1111/j.1365-3040.2007.01700.x 10.1007/BF00396077 10.1093/jxb/erm027 10.1046/j.1365-313X.2002.01359.x 10.1071/FP14132 10.1186/1477-5956-8-19 10.1071/FP16370 10.1080/14620316.2000.11511297 10.1055/s-2004-820867 10.1371/journal.pone.0109054 10.1007/s11099-016-0215-9 10.1093/aob/mcn125 10.1093/jxb/erj100 10.1046/j.0016-8025.2001.00808.x 10.1093/jxb/erq257 10.1016/j.bbabio.2004.11.006 10.1071/9780643103405 10.1093/aob/mcg199 10.1016/S0176-1617(00)80135-2 10.1016/S0304-4165(89)80016-9 10.1081/FRI-120018872 10.1016/S0176-1617(00)80071-1 10.1016/j.bbabio.2009.05.005 10.1093/jxb/ers382 10.1093/jxb/erq251 10.1016/j.plantsci.2016.05.002 10.1046/j.1365-3040.2003.00993.x 10.1111/j.1399-3054.1988.tb09205.x 10.1016/j.jplph.2004.11.008 10.1093/aobpla/plu047 10.1111/j.1365-3040.2005.01300.x 10.1046/j.1365-3040.2003.00994.x 10.1071/PP01119 10.1007/s11738-016-2113-y 10.1104/pp.83.4.1032 10.1016/j.jplph.2004.01.013 10.1104/pp.110.3.903 10.1111/j.1365-3040.2004.01140.x 10.1111/j.1399-3054.1992.tb01319.x 10.1081/FRI-120018883 10.1111/j.1439-037X.2011.00473.x 10.1016/j.jplph.2013.01.014 10.1016/S0168-9452(98)00174-5 10.1111/jac.12042 10.1007/978-1-4020-3218-9 10.4161/psb.20505 10.1046/j.1365-2435.1999.00364.x 10.1016/j.bpj.2012.05.004 10.1111/j.1399-3054.2011.01549.x 10.2136/sssabookser5.1.2ed 10.1021/bi026175y 10.1111/ppl.12490 10.1016/j.scienta.2009.05.019 10.1104/pp.90.4.1408 10.1111/pce.12115 10.1111/jac.12069 10.1104/pp.98.4.1429 10.1038/35000315 10.1111/j.1399-3054.1994.tb02211.x 10.1111/jac.12012 10.1080/03650340.2016.1144925 10.1073/pnas.0812797106 10.1002/jpln.200900052 |
ContentType | Journal Article |
Copyright | Copyright MDPI AG 2017 2017 by the authors. 2017 |
Copyright_xml | – notice: Copyright MDPI AG 2017 – notice: 2017 by the authors. 2017 |
DBID | AAYXX CITATION NPM 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants6040049 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection Biological Sciences Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed AGRICOLA Agricultural Science Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_2dcd910192b744c19482672e9978491d PMC5750625 29039809 10_3390_plants6040049 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV ADRAZ AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE IPNFZ KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RIG RPM NPM PQGLB 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c514t-ed9920eec480246dd243fb6ee578b1b67e82e974a6e49b0837643af06d368b9b3 |
IEDL.DBID | M48 |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:26:59 EDT 2025 Thu Aug 21 14:25:23 EDT 2025 Fri Jul 11 02:40:36 EDT 2025 Fri Jul 11 07:18:15 EDT 2025 Fri Jul 25 12:04:52 EDT 2025 Mon Jul 21 06:05:46 EDT 2025 Tue Jul 01 00:40:01 EDT 2025 Thu Apr 24 22:57:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | salinity stomatal conductance chlorophyll fluorescence food security mesophyll conductance novel food crops Chenopodium quinoa |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-ed9920eec480246dd243fb6ee578b1b67e82e974a6e49b0837643af06d368b9b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5462-3818 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/plants6040049 |
PMID | 29039809 |
PQID | 1988597070 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2dcd910192b744c19482672e9978491d pubmedcentral_primary_oai_pubmedcentral_nih_gov_5750625 proquest_miscellaneous_2327991941 proquest_miscellaneous_1952097030 proquest_journals_1988597070 pubmed_primary_29039809 crossref_citationtrail_10_3390_plants6040049 crossref_primary_10_3390_plants6040049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171017 |
PublicationDateYYYYMMDD | 2017-10-17 |
PublicationDate_xml | – month: 10 year: 2017 text: 20171017 day: 17 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2017 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Adams (ref_9) 2000; 303 Luo (ref_51) 2005; 162 Galmes (ref_64) 2005; 28 Centritto (ref_39) 2003; 26 Flexas (ref_3) 2016; 25 ref_55 ref_54 (ref_50) 1992; 86 Sobhanian (ref_48) 2010; 8 Genty (ref_11) 1989; 990 Flexas (ref_8) 2002; 29 Sade (ref_38) 2012; 7 Morales (ref_27) 2011; 3 ref_61 Tobita (ref_24) 2000; 157 Zhou (ref_13) 2007; 63 ref_68 Razzaghi (ref_15) 2015; 42 Shabala (ref_25) 2013; 170 Sun (ref_18) 2014; 200 Kok (ref_65) 1948; 13 Kirschbaum (ref_66) 1987; 83 ref_62 Cocozza (ref_28) 2013; 199 Tavakkoli (ref_57) 2010; 61 Fghire (ref_19) 2013; 3 Flexas (ref_71) 2007; 58 Olesen (ref_52) 2003; 42 Kalaji (ref_10) 2016; 38 Adachi (ref_72) 2013; 64 Hanba (ref_42) 1999; 13 Sharkey (ref_69) 1988; 73 Ouerghi (ref_23) 2000; 156 Flexas (ref_12) 2004; 6 Kawakami (ref_53) 2009; 106 Jacobsen (ref_37) 2009; 122 Bunce (ref_70) 2016; 54 Ethier (ref_31) 2004; 27 ref_36 Jacobsen (ref_5) 2003; 19 Munns (ref_20) 2002; 25 ref_30 Harley (ref_32) 1992; 98 Reddy (ref_40) 2004; 161 Becker (ref_6) 2017; 44 Jensen (ref_17) 2000; 13 Razzaghi (ref_14) 2011; 197 Jacobsen (ref_29) 2003; 19 Slabu (ref_49) 2009; 172 Biel (ref_33) 1998; 139 Flexas (ref_43) 2007; 30 Tezara (ref_34) 2003; 92 Loreto (ref_73) 2003; 26 Chaves (ref_2) 2009; 103 Schansker (ref_58) 2005; 1706 Ceppi (ref_59) 2012; 144 Laisk (ref_67) 1996; 110 Solomon (ref_44) 1994; 90 Killi (ref_35) 2017; 59 Wang (ref_46) 2000; 75 Seemann (ref_45) 1985; 164 Munns (ref_21) 2006; 57 (ref_60) 2009; 1787 ref_1 Bongi (ref_41) 1989; 90 Lavini (ref_7) 2014; 200 Sanchez (ref_16) 2003; 19 Loriaux (ref_63) 2013; 36 Talebnejad (ref_22) 2016; 62 Belgio (ref_56) 2012; 102 Seki (ref_47) 2002; 31 Hariadi (ref_26) 2010; 62 ref_4 |
References_xml | – volume: 13 start-page: 11 year: 2000 ident: ref_17 article-title: Leaf gas exchange and water relation characteristics of field quinoa (Chenopodium quinoa Willd.) during soil drying publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(00)00055-1 – volume: 63 start-page: 591 year: 2007 ident: ref_13 article-title: Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle publication-title: Plant Mol. Biol. doi: 10.1007/s11103-006-9111-1 – ident: ref_36 doi: 10.1371/journal.pone.0148554 – volume: 19 start-page: 111 year: 2003 ident: ref_16 article-title: Ecophysiological analysis of drought and salinity stress of quinoa (Chenopodium quinoa Willd.) publication-title: Food Rev Int. doi: 10.1081/FRI-120018874 – volume: 3 start-page: 62 year: 2013 ident: ref_19 article-title: Protective antioxidant enzyme activities are affected by drought in quinoa (Chenopodium quinoa Willd) publication-title: J. Biol. Agric. Healthc. – volume: 30 start-page: 1284 year: 2007 ident: ref_43 article-title: Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2007.01700.x – volume: 164 start-page: 151 year: 1985 ident: ref_45 article-title: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris L. publication-title: Planta doi: 10.1007/BF00396077 – volume: 58 start-page: 1533 year: 2007 ident: ref_71 article-title: Analysis of leakage in IRGA’s leaf chambers of open gas exchange systems: Quantification and its effects in photosynthesis parameterization publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm027 – ident: ref_1 – volume: 13 start-page: 1 year: 1948 ident: ref_65 article-title: A critical consideration of the quantum yield of Chlorella photosynthesis publication-title: Enzymologia – volume: 31 start-page: 279 year: 2002 ident: ref_47 article-title: Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray publication-title: Plant J. doi: 10.1046/j.1365-313X.2002.01359.x – volume: 42 start-page: 136 year: 2015 ident: ref_15 article-title: Ionic and photosynthetic homeostasis in quinoa challenged by salinity and Drought—Mechanisms of tolerance publication-title: Funct Plant Biol. doi: 10.1071/FP14132 – volume: 8 start-page: 19 year: 2010 ident: ref_48 article-title: Proteome analysis of soybean leaves, hypocotyls and roots under salt stress publication-title: Proteome Sci. doi: 10.1186/1477-5956-8-19 – volume: 44 start-page: 665 year: 2017 ident: ref_6 article-title: Combined effects of soil salinity and high temperature on photosynthesis and growth of quinoa plants (Chenopodium quinoa) publication-title: Funct. Plant Biol. doi: 10.1071/FP16370 – volume: 75 start-page: 623 year: 2000 ident: ref_46 article-title: Changes in chlorophyll, ribulose bisphosphate carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress publication-title: J. Hortic. Sci. Biotechnol. doi: 10.1080/14620316.2000.11511297 – volume: 6 start-page: 269 year: 2004 ident: ref_12 article-title: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants publication-title: Plant Biol. doi: 10.1055/s-2004-820867 – volume: 3 start-page: 219 year: 2011 ident: ref_27 article-title: Physiological responses of Chenopodium quinoa to salt stress publication-title: Int. J. Plant Physiol. Biochem. – ident: ref_4 – ident: ref_30 doi: 10.1371/journal.pone.0109054 – volume: 54 start-page: 484 year: 2016 ident: ref_70 article-title: Light dependence of carboxylation capacity for C-3 photosynthesis models publication-title: Photosynthetica doi: 10.1007/s11099-016-0215-9 – volume: 103 start-page: 551 year: 2009 ident: ref_2 article-title: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell publication-title: Ann. Bot. doi: 10.1093/aob/mcn125 – volume: 57 start-page: 1025 year: 2006 ident: ref_21 article-title: Approaches to increasing the salt tolerance of wheat and other cereals publication-title: J. Exp. Bot. doi: 10.1093/jxb/erj100 – volume: 25 start-page: 239 year: 2002 ident: ref_20 article-title: Comparative physiology of salt and water stress publication-title: Plant Cell Environ. doi: 10.1046/j.0016-8025.2001.00808.x – volume: 62 start-page: 185 year: 2010 ident: ref_26 article-title: Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq257 – volume: 1706 start-page: 250 year: 2005 ident: ref_58 article-title: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP publication-title: Biochim. Biophys. Acta (BBA) Bioenergy doi: 10.1016/j.bbabio.2004.11.006 – ident: ref_68 doi: 10.1071/9780643103405 – volume: 92 start-page: 757 year: 2003 ident: ref_34 article-title: Photosynthetic responses of the tropical spiny shrub Lycium nodosum (Solanaceae) to drought, soil salinity and saline spray publication-title: Ann. Bot. doi: 10.1093/aob/mcg199 – volume: 157 start-page: 54 year: 2000 ident: ref_24 article-title: Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance publication-title: J Plant Physiol. doi: 10.1016/S0176-1617(00)80135-2 – volume: 990 start-page: 87 year: 1989 ident: ref_11 article-title: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence publication-title: Biochim. Biophys. Acta (BBA) Gen. Subj. doi: 10.1016/S0304-4165(89)80016-9 – volume: 19 start-page: 99 year: 2003 ident: ref_29 article-title: The resistance of quinoa (Chenopodium quinoa Willd.) to adverse abiotic factors publication-title: Food Rev. Int. doi: 10.1081/FRI-120018872 – volume: 156 start-page: 335 year: 2000 ident: ref_23 article-title: Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(00)80071-1 – volume: 1787 start-page: 1151 year: 2009 ident: ref_60 article-title: Production of reactive oxygen species by photosystem II publication-title: Biochim. Biophys. Acta (BBA) Bioenergy doi: 10.1016/j.bbabio.2009.05.005 – volume: 64 start-page: 1061 year: 2013 ident: ref_72 article-title: The mesophyll anatomy enhancing CO2 diffusion is a key trait for improving rice photosynthesis publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers382 – volume: 61 start-page: 4449 year: 2010 ident: ref_57 article-title: High concentrations of Na+ and Cl− ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress publication-title: J. Exp. Bot. doi: 10.1093/jxb/erq251 – volume: 25 start-page: 155 year: 2016 ident: ref_3 article-title: Genetic improvement of leaf photosynthesis and intrinsic water use efficiency in C3 plants: Why so much little success? publication-title: Plant Sci. doi: 10.1016/j.plantsci.2016.05.002 – volume: 26 start-page: 585 year: 2003 ident: ref_39 article-title: The use of low [CO2] to estimate diffusional and non-diffusional limitations of photosynthetic capacity of salt-stressed olive saplings publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.00993.x – volume: 73 start-page: 147 year: 1988 ident: ref_69 article-title: Estimating the rate of photorespiration in leaves publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1988.tb09205.x – volume: 162 start-page: 1003 year: 2005 ident: ref_51 article-title: Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.11.008 – ident: ref_62 doi: 10.1093/aobpla/plu047 – volume: 28 start-page: 571 year: 2005 ident: ref_64 article-title: Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2005.01300.x – volume: 26 start-page: 595 year: 2003 ident: ref_73 article-title: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress publication-title: Plant Cell Environ. doi: 10.1046/j.1365-3040.2003.00994.x – volume: 29 start-page: 461 year: 2002 ident: ref_8 article-title: Effects of drought on photosynthesis in grapevines under field conditions: An evaluation of stomatal and mesophyll limitations publication-title: Funct. Plant Biol. doi: 10.1071/PP01119 – volume: 38 start-page: 1 year: 2016 ident: ref_10 article-title: Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-016-2113-y – volume: 83 start-page: 1032 year: 1987 ident: ref_66 article-title: Investigation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora publication-title: Plant Physiol. doi: 10.1104/pp.83.4.1032 – volume: 161 start-page: 1189 year: 2004 ident: ref_40 article-title: Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2004.01.013 – volume: 110 start-page: 903 year: 1996 ident: ref_67 article-title: Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence—Ribulose-1,5-bisphosphate carboxylase oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance publication-title: Plant Physiol. doi: 10.1104/pp.110.3.903 – volume: 27 start-page: 137 year: 2004 ident: ref_31 article-title: On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar–von Caemmerer–Berry leaf photosynthesis model publication-title: Plant Cell Environ. doi: 10.1111/j.1365-3040.2004.01140.x – volume: 86 start-page: 115 year: 1992 ident: ref_50 article-title: Effects of chloride and sodium on gas exchange parameters and water relations of Citrus plants publication-title: Physiol Plant. doi: 10.1111/j.1399-3054.1992.tb01319.x – volume: 19 start-page: 167 year: 2003 ident: ref_5 article-title: The worldwide potential for quinoa (Chenopodium quinoa Willd.) publication-title: Food Rev Int. doi: 10.1081/FRI-120018883 – volume: 197 start-page: 348 year: 2011 ident: ref_14 article-title: Water Relations and Transpiration of Quinoa (Chenopodium quinoa Willd.) Under Salinity and Soil Drying publication-title: J. Agron. Crop Sci. doi: 10.1111/j.1439-037X.2011.00473.x – volume: 170 start-page: 906 year: 2013 ident: ref_25 article-title: Genotypic difference in salinity tolerance in quinoa is determined by differential control of xylem Na+ loading and stomatal density publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2013.01.014 – volume: 139 start-page: 9 year: 1998 ident: ref_33 article-title: Effect of water and salt stresses on the growth, gas exchange and water relations in Argyranthemum coronopifolium plants publication-title: Plant Sci. doi: 10.1016/S0168-9452(98)00174-5 – volume: 200 start-page: 12 year: 2014 ident: ref_18 article-title: Sensitivity of two quinoa (Chenopodium quinoa Willd.) varieties to progressive drought stress publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12042 – ident: ref_55 doi: 10.1007/978-1-4020-3218-9 – volume: 7 start-page: 767 year: 2012 ident: ref_38 article-title: Risk-taking plants: Anisohydric behavior as a stress-resistance trait publication-title: Plant Signal. Behav. doi: 10.4161/psb.20505 – volume: 13 start-page: 632 year: 1999 ident: ref_42 article-title: The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests publication-title: Funct. Ecol. doi: 10.1046/j.1365-2435.1999.00364.x – volume: 102 start-page: 2761 year: 2012 ident: ref_56 article-title: Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime—Both the maximum and the nonphotochemically quenched publication-title: Biophys. J. doi: 10.1016/j.bpj.2012.05.004 – volume: 144 start-page: 277 year: 2012 ident: ref_59 article-title: The IP amplitude of the fluorescence rise OJIP is sensitive to changes in the photosystem I content of leaves: A study on plants exposed to magnesium and sulfate deficiencies, drought stress and salt stress publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.2011.01549.x – ident: ref_54 – ident: ref_61 doi: 10.2136/sssabookser5.1.2ed – volume: 42 start-page: 2025 year: 2003 ident: ref_52 article-title: The function of the chloride ion in photosynthetic oxygen evolution publication-title: Biochemistry doi: 10.1021/bi026175y – volume: 59 start-page: 130 year: 2017 ident: ref_35 article-title: Adaptation to high temperature mitigates the impact of water deficit during combined heat and drought stress in C3 sunflower and C4 maize varieties with contrasting drought tolerance publication-title: Physiol. Plant doi: 10.1111/ppl.12490 – volume: 122 start-page: 281 year: 2009 ident: ref_37 article-title: Does root-sourced ABA play a role for regulation of stomata under drought in quinoa (Chenopodium quinoa Willd.) publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2009.05.019 – volume: 90 start-page: 1408 year: 1989 ident: ref_41 article-title: Gas-exchange properties of salt-stressed olive (Olea europea L.) leaves publication-title: Plant Physiol. doi: 10.1104/pp.90.4.1408 – volume: 36 start-page: 1755 year: 2013 ident: ref_63 article-title: Closing in on maximum yield of chlorophyll fluorescence using a single multiphase flash of sub-saturating intensity publication-title: Plant Cell Environ. doi: 10.1111/pce.12115 – volume: 200 start-page: 344 year: 2014 ident: ref_7 article-title: Quinoa’s potential in the Mediterranean region publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12069 – volume: 98 start-page: 1429 year: 1992 ident: ref_32 article-title: Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2 publication-title: Plant Physiol. doi: 10.1104/pp.98.4.1429 – volume: 303 start-page: 371 year: 2000 ident: ref_9 article-title: Photosynthesis: Harvesting sunlight safely publication-title: Nature doi: 10.1038/35000315 – volume: 90 start-page: 198 year: 1994 ident: ref_44 article-title: Effects of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1994.tb02211.x – volume: 199 start-page: 229 year: 2013 ident: ref_28 article-title: Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoa Willd.) grown in a Mediterranean-type agroecosystem publication-title: J. Agron. Crop Sci. doi: 10.1111/jac.12012 – volume: 62 start-page: 1347 year: 2016 ident: ref_22 article-title: Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity publication-title: Arch. Agron. Soil Sci. doi: 10.1080/03650340.2016.1144925 – volume: 106 start-page: 8567 year: 2009 ident: ref_53 article-title: Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0812797106 – volume: 172 start-page: 644 year: 2009 ident: ref_49 article-title: Is salt stress of faba bean (Vicia faba) caused by Na+ or Cl− toxicity? publication-title: J. Plant Nutr. Soil Sci. doi: 10.1002/jpln.200900052 |
SSID | ssj0000800816 |
Score | 2.2765048 |
Snippet | Quinoa (Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to... Quinoa ( Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to experience increased... Quinoa ( Chenopodium quinoa Willd.) has been proposed as a hardy alternative to traditional grain crops in areas with warm-to-hot climates that are likely to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 49 |
SubjectTerms | Abiotic stress Carbon dioxide Carboxylation Chenopodium quinoa chlorophyll fluorescence Climate Conductance Drought electron transfer Electron transport energy Equivalence food security Grain Grain crops heat Hot climates Irrigation Mesophyll mesophyll conductance Metabolism novel food crops Oxygenase Photochemicals Photosynthesis Photosystem II Quinoa Regeneration Resistance ribulose 1,5-diphosphate Ribulose-1,5-bisphosphate ribulose-bisphosphate carboxylase Saline water salinity salt stress Salts seawater Sodium chloride Stomata stomatal conductance Stresses Thylakoid membranes thylakoids Toxicity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEA8iPXgptbXttrakID11cT9iPo61KlJQLFbw1CXJZHHLIyvdvIP_vZPs-nhbKl563cyGna_Mb9jJDCF7FoAzoXVe2xZyVoPJtWSx5X5pBVOlg3QX5uycn16x79cH12ujvmJN2NgeeBTcfgUWMKQhEDGCMYs5NwJiUTmF6Q_uBfH0xZi3lkz9nnCQLPnYVLPGvH7_dhHrSniyWTULQqlX_78A5t91kmuB5-QFeT4hRvp1_NJtsuH8S_LssEdUd_eK_Drq2nYZa9Cp9kDPXECtLjpL4yTONP8hDDT09OKmD_1w5xHvDd1AO09_LDvfazreU6RHaVxPSJtc6kWgl-kSyQ65Ojn--e00n2Ym5BahT8gdKFUVzlkmMfpygIrVreHOoWea0nDhJMpOMM0dUwbxl0BIotuCQ82lUaZ-TTZ9791bQg0_qECi5kALhnmHLhgw50xrpMQ3ICNfHoTY2KmheORr0WBiEWXezGSekc8r8tuxk8ZjhIdRIyui2AA7PUCzaCazaJ4yi4zsPuizmbxyaEolJTKCp1xGPq2W0Z_iTxLtXb-MNLEwKJ6Dj9MgChWIqxUrM_JmNJHV11aqqJUskAsxM54ZO_MV392kvt6InAtMR9_9D_7fk60qApBYeyN2yWb4s3QfED4F8zF5yj3h3Bl0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgy4EL4s3SgoyEOBE1D9ePE2JpqwqpVaFU6onIr7SRVvbSZA_99x073kAQ5ZpMIo_n4W_s8QxC77UxlDAps0o3JiOVUZnkJJTcLzQjorAm3oU5PqFH5-Trxd5F2nDrUlrlxidGR228DnvkuxAccwC_oKGfVr-y0DUqnK6mFhr30Ra4YM5naGtxcHL6fdxlCXiIF3QorllBfL-7Wob8Ehp1V0wWo1iz_19A8-98yT8WoMPH6FFCjvjzIOon6J51T9GDhQd0d_MM_dxvm2YdctGxdAYf2x6ku2w1Dh05Yx-IvsO9x6dXvvfdjQPc17Udbh3-tm6dl3i4r4j3Y9uePv7kTC57fBYvkzxH54cHP74cZal3QqYBAvWZNUKUubWacFiFqTElqRpFrQULVYWizPLSQiwhqSVCAQ5jAE1kk1NTUa6Eql6gmfPOvkJY0b3ScJCgkYyACGRODLFWNYpz-MLM0cfNJNY6FRYPfC1rCDDCnNeTOZ-jDyP5aqiocRfhIkhkJAqFsOMDf31ZJ7uqS6MNIB7AqYoRogtBIF5iwBpEx6BqMLidjTzrZJ1d_VuX5ujd-BrsKhyWSGf9OtCEBKHgD--mATTKAF8LUszRy0FFxtGWIq8Ez4ELNlGeCTvTN669ivW9AUHnEJa-_v_Qt9HDMkCMkF3DdtCsv17bNwCQevU2WcEtX_sUEg priority: 102 providerName: ProQuest |
Title | Diffusive and Metabolic Constraints to Photosynthesis in Quinoa during Drought and Salt Stress |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29039809 https://www.proquest.com/docview/1988597070 https://www.proquest.com/docview/1952097030 https://www.proquest.com/docview/2327991941 https://pubmed.ncbi.nlm.nih.gov/PMC5750625 https://doaj.org/article/2dcd910192b744c19482672e9978491d |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELag5cAFUZ4pZWUkxIlAHq4fB4RY2qpC2qpQVuqJyI4dGhQl7SYrdf99Z5zstgvthWsyjmLPTPx9u-NvCHmbW8uZ0DpM88KGLLUm1JKh5H6cC6ZiZ_1ZmMkRP5yyb6e7p9eSQsMCtrdSO-wnNZ1VHy4vFp8h4T8h4wTK_vG8wpIR7sNR3SebsCkJbGYwGZD-nwEYyZj3Kpv_jkJNYBWlSmJh4o0Nyuv43wY-_66hvLEpHTwmjwY0Sb_07t8i91z9hDwYN4D4Fk_Jr72yKOZYn051benEdeDxqswpdun0vSG6lnYNPT5ruqZd1IAF27KlZU2_z8u60bQ_w0j3fCufzj_kRFcdPfEHTJ6R6cH-z6-H4dBPIcwBFnWhs0olkXM5k7Azc2sTlhaGOwdZa2LDhZOJA36huWPKADYTAFd0EXGbcmmUSZ-Tjbqp3UtCDd9NrASvWi0YcBIdMcucM4WREkbYgLxfLmKWD2LjOK8qA9KBy5-tLX9A3q3Mz3uVjbsMx-iRlRGKY_sLzex3NuRaltjcAgoC7GoEY3msGHAoAVMDxgzhBy-3s_Rntgy4LFZSwkTgCxiQN6vbkGv4B4quXTNHGywawm_k3TaAUAVgbsXigLzoQ2T1tssQC4hYC5616azfqcszr_kNqDoCqrr93yNfkYcJIhIsxhE7ZKObzd1rwFOdGZHN8f7R8Y-R_z1i5PPmChj8JdI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKFgkuiDcLBYwEnIiaOK5jHxBi2VZb2l0V2ko9EfwKjbRKliYrtH-K38jYyQaCKLde44nlxzf2N_Z4BqGX2hhGEymDWGcmoLFRgeTUhdyPdEJFZI1_CzOdsckp_Xi2c7aBfq7fwji3yvWa6BdqU2p3Rr4NxjEH8gsIfbf4HrisUe52dZ1Co4HFgV39AJOters_hvl9Rcje7smHSdBmFQg0kIM6sEYIElqrKYf9iRlDaJwpZi1gV0WKJZYTCyxbMkuFAoaSwKYts5CZmHElVAz1XkObNGYhGaDN0e7s6HN3quP4F49YE8wzjkW4vZg7fxbmdUX0Nj-fI-BfxPZv_8w_Nry92-hWy1Tx-wZad9CGLe6i66MS2OTqHvoyzrNs6XzfsSwMntoa0DTPNXYZQH3eibrCdYmPzsu6rFYF8Mwqr3Be4E_LvCglbt5H4rFPE1T7So7lvMbH_vHKfXR6JaP6AA2KsrCPEFZshxgOiDEyoTDlMqSGWqsyxTn8YYbozXoQU90GMnf9mqdg0LgxT3tjPkSvO_FFE8HjMsGRm5FOyAXe9h_Ki29pq8cpMdoAwwJerBJKdSQo2GcJdA2scYA2NG5rPZ9puxpU6W_sDtGLrhj02F3OyMKWSyfjHJLc-nu5DLDfBPi8oNEQPWwg0rWWiDAWPIReJD3w9LrTLynycx9PHBh7CGbw4_83_Tm6MTmZHqaH-7ODJ-gmcfTGefYkW2hQXyztUyBntXrWagRGX69aCX8BbetQiw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZKihAviJtAASMBT6yyh-vjASFCGrWURoFSqU8svpauFO2G7kYof41fx9h7QBDlra_rWcvHN_Y39ngGoefaGEqYlEGiMxOQxKhAcuJC7keaERFZ49_CHM3o_gl5f7p7uoV-dm9hnFtltyb6hdqU2p2Rj8A45kB-AaGjrHWLmE-mb5bfA5dByt20duk0Gogc2vUPMN-q1wcTmOsXcTzd-_xuP2gzDAQaiEIdWCNEHFqrCYe9ihoTkyRT1FrAsYoUZZbHFhi3pJYIBWyFwQYus5CahHIlVAL1XkHbzFlFA7Q93pvNP_UnPI6L8Yg2gT2TRISj5cL5tlCvN2JjI_T5Av5Fcv_21fxj85veRDda1orfNjC7hbZscRtdHZfALNd30JdJnmUr5wePZWHwka0BWYtcY5cN1OegqCtcl3h-VtZltS6Ac1Z5hfMCf1zlRSlx81YST3zKoNpXciwXNT72D1nuopNLGdV7aFCUhX2AsKK7seGAHiMZgemXITHEWpUpzuEPM0SvukFMdRvU3PVrkYJx48Y83RjzIXrZiy-baB4XCY7djPRCLgi3_1Cef0tbnU5jow2wLeDIihGiI0HAVmPQNbDMAebQuJ1uPtN2ZajS3zgeomd9Mei0u6iRhS1XTsY5J7m1-GIZYMIMuL0g0RDdbyDStzYWYSJ4CL1gG-DZ6M5mSZGf-djiwN5DMIkf_r_pT9E1UL70w8Hs8BG6Hjum45x82A4a1Ocr-xh4Wq2etAqB0dfL1sFf4-FUwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diffusive+and+Metabolic+Constraints+to+Photosynthesis+in+Quinoa+during+Drought+and+Salt+Stress&rft.jtitle=Plants+%28Basel%29&rft.au=Killi%2C+Dilek&rft.au=Haworth%2C+Matthew&rft.date=2017-10-17&rft.pub=MDPI&rft.eissn=2223-7747&rft.volume=6&rft.issue=4&rft_id=info:doi/10.3390%2Fplants6040049&rft_id=info%3Apmid%2F29039809&rft.externalDocID=PMC5750625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |