Analysis of Flower Color Variation in Carnation (Dianthus caryophyllus L.) Cultivars Derived from Continuous Bud Mutations

Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid p...

Full description

Saved in:
Bibliographic Details
Published inHorticulture journal Vol. 88; no. 1; pp. 116 - 128
Main Authors Morimoto, Hayato, Narumi-Kawasaki, Takako, Takamura, Takejiro, Fukai, Seiichi
Format Journal Article
LanguageEnglish
Published Tokyo The Japanese Society for Horticultural Science 2019
Japan Science and Technology Agency
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid pigments analysis showed that the flower color variation is produced by the difference in the quantitative ratios of pelargonidin-typed anthocyanin and chalcononaringenin 2′-O-glucoside (Ch2′G). Acyanic cultivars; ‘Poly Minami’, ‘Lemon Minami’ and ‘Vanilla Minami’ had Ch2′G showing a yellow coloration as a major flavonoid with different concentrations in the petals. Cyanic cultivars with pinkish petals; ‘Orange Minami’, ‘Minami’, ‘Passion Minami’ and ‘Feminine Minami’ had different ratios of 3,5-di-O-(β-glucopyranosyl) pelargonidin 6′′-O-4,6′′′-O-1-cyclic malate (Pg3,5cMdG), showing a pink coloration, and Ch2′G as major flavonoids in the petals. The variegated cultivar ‘Sakura Minami’, with deep pink sectors and flecks on pale pink petals, accumulated a small amount of Pg3,5cMdG. The red-flowered cultivar ‘Tommy Minami’ accumulated pelargonidin 3-O-malylglucoside (Pg3MG) showing a red coloration as a major anthocyanin in the petals. The gene expression analysis through flower-bud development showed that the ratios of Pg3,5cMdG and Ch2′G are produced by the difference in the expression levels of flavonoid biosynthesis-related genes; the dihydroflavonol 4-reducatse gene (DFR), the chalcononaringenin 2′-O-glucosyltransferase gene (CHGT2) and the chalcone isomerase gene (CHI2) and the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene (AA5GT) and an anthocyanin transportation-related gene; the glutathione S-transferase-like gene (GSTF2). This study revealed that the flower color variations in the “MINAMI series” are caused by genetic and metabolic changes associated with flavonoid biosynthesis and identified five candidate genes for flower color changes in the “MINAMI series”.
AbstractList Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid pigments analysis showed that the flower color variation is produced by the difference in the quantitative ratios of pelargonidin-typed anthocyanin and chalcononaringenin 2′-O-glucoside (Ch2′G). Acyanic cultivars; ‘Poly Minami’, ‘Lemon Minami’ and ‘Vanilla Minami’ had Ch2′G showing a yellow coloration as a major flavonoid with different concentrations in the petals. Cyanic cultivars with pinkish petals; ‘Orange Minami’, ‘Minami’, ‘Passion Minami’ and ‘Feminine Minami’ had different ratios of 3,5-di-O-(β-glucopyranosyl) pelargonidin 6′′-O-4,6′′′-O-1-cyclic malate (Pg3,5cMdG), showing a pink coloration, and Ch2′G as major flavonoids in the petals. The variegated cultivar ‘Sakura Minami’, with deep pink sectors and flecks on pale pink petals, accumulated a small amount of Pg3,5cMdG. The red-flowered cultivar ‘Tommy Minami’ accumulated pelargonidin 3-O-malylglucoside (Pg3MG) showing a red coloration as a major anthocyanin in the petals. The gene expression analysis through flower-bud development showed that the ratios of Pg3,5cMdG and Ch2′G are produced by the difference in the expression levels of flavonoid biosynthesis-related genes; the dihydroflavonol 4-reducatse gene (DFR), the chalcononaringenin 2′-O-glucosyltransferase gene (CHGT2) and the chalcone isomerase gene (CHI2) and the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene (AA5GT) and an anthocyanin transportation-related gene; the glutathione S-transferase-like gene (GSTF2). This study revealed that the flower color variations in the “MINAMI series” are caused by genetic and metabolic changes associated with flavonoid biosynthesis and identified five candidate genes for flower color changes in the “MINAMI series”.
Author Narumi-Kawasaki, Takako
Fukai, Seiichi
Morimoto, Hayato
Takamura, Takejiro
Author_xml – sequence: 1
  fullname: Morimoto, Hayato
  organization: The United Graduate School of Agricultural Science, Ehime University
– sequence: 2
  fullname: Narumi-Kawasaki, Takako
  organization: The United Graduate School of Agricultural Science, Ehime University
– sequence: 3
  fullname: Takamura, Takejiro
  organization: The United Graduate School of Agricultural Science, Ehime University
– sequence: 4
  fullname: Fukai, Seiichi
  organization: The United Graduate School of Agricultural Science, Ehime University
BookMark eNp1kM1vGyEQxVGVSE2THHtH6qU9rAvs9zFZ100kR7k4vaJZPFtjEXCBdeT-9SVZy4dIvQAjfu-N3vtEzqyzSMhnzmaiZPn3jfNxO3tazTPG6g_kQvCmzRjn7Oz0ZuIjuQ5hyxjjRVWVubggf28smEPQgbqBLox7QU87Z5ynv8BriNpZqi3twNtp-DrXYONmDFSBP7jd5mBMGpazb7QbTdR78IHO0es9rung3XOys1Hb0SXqdlzThzG-OYUrcj6ACXh9vC_J0-LHqrvLlo8_77ubZaZKXsQM66oXqFrgosaK8Wpga-xbYNgPPYimLZumgLatyj7vC1UhVwJLWPc1a0U-FPkl-TL57rz7M2KIcuvGFMcEKUTeVrwWBU9UNlHKuxA8DnLn9XOKKDmTrw3Lt4ZlalimhhOfv-OVnoJFD9r8V9VNqm2I8BtPO8BHrQwe6aaR_PU4qk6_agNeos3_AVuOnfY
CitedBy_id crossref_primary_10_1111_pbi_13801
crossref_primary_10_3390_ijms24119499
crossref_primary_10_17660_ActaHortic_2019_1263_35
crossref_primary_10_1007_s40415_022_00805_4
crossref_primary_10_17660_ActaHortic_2019_1263_26
crossref_primary_10_1016_j_indcrop_2023_117606
crossref_primary_10_1016_j_plantsci_2020_110598
crossref_primary_10_17660_ActaHortic_2020_1283_1
crossref_primary_10_2503_hortj_UTD_271
crossref_primary_10_1007_s00425_024_04358_6
Cites_doi 10.1016/j.scienta.2013.06.018
10.1016/S0033-7560(74)90294-4
10.1007/BF00222123
10.1016/S0031-9422(00)83769-3
10.1016/S0304-4238(99)00140-5
10.1007/s00438-013-0742-z
10.2503/jjshs.60.409
10.1007/BF00201630
10.1073/pnas.41.5.295
10.5511/plantbiotechnology.12.0120a
10.1007/BF00392549
10.1080/00221589.1992.11516297
10.1007/BF02670468
10.1105/tpc.110.077487
10.1104/pp.004820
10.21273/JASHS.116.6.1108
10.1270/jsbbs.63.435
10.1016/S0031-9422(00)86001-X
10.5511/plantbiotechnology.11.0106b
10.1007/BF00022074
10.21273/HORTSCI.15.5.605
10.1016/S0304-4238(03)00093-1
10.5511/plantbiotechnology.21.367
10.1007/BF00027309
10.1038/79025
10.1093/pcp/pcf065
10.1007/s00438-011-0655-7
10.1270/jsbbs.18029
10.1016/j.bbrc.2008.04.153
10.1111/pbr.12061
10.2503/jjshs.70.315
10.1016/S0304-4238(99)00040-0
10.1093/genetics/32.4.410
10.17660/ActaHortic.2018.1208.2
10.1016/S0304-4238(98)00177-0
10.1046/j.1365-313x.2001.00962.x
10.1016/S0031-9422(97)01051-0
10.1371/journal.pone.0113738
10.1016/j.scienta.2013.07.029
10.1016/S0031-9422(00)00263-6
10.2503/jjshs.44.161
10.1111/j.1469-8137.2011.03687.x
ContentType Journal Article
Copyright 2019 The Japanese Society for Horticultural Science (JSHS), All rights reserved.
Copyright Japan Science and Technology Agency 2019
Copyright_xml – notice: 2019 The Japanese Society for Horticultural Science (JSHS), All rights reserved.
– notice: Copyright Japan Science and Technology Agency 2019
DBID AAYXX
CITATION
DOI 10.2503/hortj.UTD-007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2189-0110
EndPage 128
ExternalDocumentID 10_2503_hortj_UTD_007
article_hortj_88_1_88_UTD_007_article_char_en
GroupedDBID AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ECGQY
FRP
JSF
JSH
KQ8
OK1
RJT
RZJ
AAYXX
CITATION
ID FETCH-LOGICAL-c514t-e76b2ec9a127e6016f0deb9a0ebfba2895884a9965b3b4c6e1c2e5adb70923f43
ISSN 2189-0102
IngestDate Mon Jun 30 04:55:03 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Tue Jul 01 03:09:23 EDT 2025
Wed Apr 05 09:01:22 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c514t-e76b2ec9a127e6016f0deb9a0ebfba2895884a9965b3b4c6e1c2e5adb70923f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/hortj/88/1/88_UTD-007/_article/-char/en
PQID 2239617241
PQPubID 2006342
PageCount 13
ParticipantIDs proquest_journals_2239617241
crossref_primary_10_2503_hortj_UTD_007
crossref_citationtrail_10_2503_hortj_UTD_007
jstage_primary_article_hortj_88_1_88_UTD_007_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019
2019-00-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Horticulture journal
PublicationTitleAlternate Hort. J.
PublicationYear 2019
Publisher The Japanese Society for Horticultural Science
Japan Science and Technology Agency
Publisher_xml – name: The Japanese Society for Horticultural Science
– name: Japan Science and Technology Agency
References Sasaki, N., Y. Nishizaki, Y. Uchida, E. Wakamatsu, N. Umemoto, M. Momose, M. Okamura, H. Yoshida, M. Yamaguchi, M. Nakayama, Y. Ozeki and Y. Itoh. 2012. Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol. 29: 223–227.
Abe, Y., M. Tera, N. Sasaki, M. Okamura, N. Umemoto, M. Momose, N. Kawahara, H. Kamakura, Y. Goda, K. Nagasawa and Y. Ozeki. 2008. Detection of 1-O-malylglucose: Pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. 373: 473–477.
Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. M. Gerats. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13: 491–502.
Bloor, S. J. 1998. A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49: 225–228.
Momose, M., Y. Itoh, N. Umemoto, M. Nakayama and Y. Ozeki. 2013a. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element. Breeding Sci. 63: 435–440.
Tanaka, Y., N. Sasaki and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749.
Pereau-Leroy, P. 1974. Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat. Bot. 14: 109–116.
Mehlquist, G. A. L. 1939. Inheritance in the carnation, Dianthus caryophyllus. I. Inheritance of flower color. Proc. Am. Soc. Hortic. Sci. 37: 1019–1021.
Ohmiya, A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci. Hortic. 163: 10–19.
Togami, J., H. Okuhara, N. Nakamura, K. Ishiguro, C. Hirose, M. Ochiai, Y. Fukui, M. Yamaguchi and Y. Tanaka. 2011. Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant Biotechnol. 28: 231–238.
Ohmiya, A., K. Tanase, M. Hirashima, C. Yamamizo and M. Yagi. 2013. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breeding 132: 423–429.
Brockington, S. F., R. H. Walker, B. J. Glover, P. S. Soltis and D. E. Soltis. 2011. Complex pigment evolution in the Caryophyllales. New Phytol. 190: 854–864.
Shimada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata and S. Ayabe. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131: 941–951.
Mato, M., T. Onozak, Y. Ozeki, D. Higeta, Y. Itoh, T. Hisamatsu, H. Yoshida and M. Shibata. 2001. Flavonoid biosynthesis in pink-flowered cultivars derived from ‘William Sim’ Carnation (Dianthus caryophyllus). J. Japan. Soc. Hort. Sci. 70: 315–319.
Holley, W. D. and R. Baker. 1991. Carnation production II. Kendall-Hunt Publishing, Company. Dubuque. USA p. 21–29.
Sasaki, N., Y. Matsuba, Y. Abe, M. Okamura, M. Momose, N. Umemoto, M. Nakayama, Y. Itoh and Y. Ozeki. 2013. Recent advances in understanding the anthocyanin modification steps in carnation flowers. Sci. Hortic. 163: 37–45.
Gonnet, J. F. and H. Hieu. 1992. In situ micro-spectrophotometric and micro-spectrocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus). J. Hortic. Sci. 67: 663–676.
Stich, K., T. Eidenberger, F. Wurst and G. Forkmann. 1992. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187: 103–108.
Yoshida, H., Y. Itoh, Y. Ozeki, T. Iwashina and M. Yamaguchi. 2004. Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Sci. Hortic. 99: 175–186.
Sagawa, Y. and G. A. L. Mehlquist. 1957. The mechanism responsible for some X-ray induced change in flower colour of the carnations, Dianthus caryophyllus. Amer. J. Bot. 44: 397–403.
Moustafa, E. and E. Wong. 1967. Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6: 625–632.
Terahara, N. and M. Yamaguchi. 1986. 1H NMR spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 25: 2906–2907.
Morimoto, H., T. Narumi-Kawasaki, T. Takamura and S. Fukai. 2018. Petal color characteristics of carnation mutative cultivars MINAMI series. Acta Hort. 1208: 7–12.
Geissman, T. A. and G. A. L. Mehlquist. 1947. Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32: 410–433.
Itoh, Y., D. Higeta, A. Suzuki, H. Yoshida and Y. Ozeki. 2002. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plat Cell Physiol. 43: 578–585.
Jez, J. M. and J. P. Noel. 2002. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277: 1361–1369.
Johnson, R. T. 1980. Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15: 605–606.
Nomura, Y., S. Morita, T. Harada and S. Satoh. 2012. Cloning, characterization and expression of carnation (Dianthus caryophyllus L.) ubiquitin genes and their use as a normalization standard for gene expression analysis in senescing petals. J. Japan. Soc. Hort. Sci. 81: 357–365.
Nakayama, M., M. Koshioka, H. Yoshida, Y. Kan, Y. Fukui, A. Koike and M. Yamaguchi. 2000. Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55: 937–939.
Spribille, R. and G. Forkmann. 1982. Chalcone synthesis and hydroxylation of flavonoids in 3′-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155: 176–182.
Gatt, M. K., K. R. W. Hammett, K. R. Markham and B. G. Murray. 1998. Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci. Hortic. 77: 207–218.
Dedio, J., H. Saedler and G. Forkmann. 1995. Molecular cloning of the flavanone 3β-hydroxylase gene (FHT) from carnation (Dianthus caryophyllus) and analysis of stable and unstable FHT mutants. Theor. Appl. Genet. 90: 611–617.
Momose, M., M. Nakayama, Y. Itoh, N. Umemoto, T. Toguri and Y. Ozeki. 2013b. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol. Genet. Genomics 288: 175–184.
Richter, A. and W. R. Singleton. 1955. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Natl. Acad. Sci. USA. 41: 295–300.
Ogata, J., Y. Itoh, M. Ishida, H. Yoshida and Y. Ozeki. 2004. Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol. 21: 367–375.
Maekawa, S. and N. Kawamura. 1977. Studies on the coloration of carnation flowers. VIII. The relationship between the color and pigment of intact flowers. Sci. Rept. Fac. Agr. Kobe Univ. 12: 161–166.
Johnson, E. T., S. Ryu, H. Yi1, B. Shin, H. Cheong and G. Choi. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25: 325–333.
Onozaki, T., M. Mato, M. Shibata and H. Ikeda. 1999. Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci. Hortic. 82: 103–111.
Wasscher, J. 1956. The importance of sports in some florist’s flowers. Euphytica 5: 163–170.
Miyajima, I., T. Maehara, T. Kage and K. Fujieda. 1991. Identification of the main agent causing yellow color of yellow-flowered cyclamen mutant. J. Japan. Soc. Hort. Sci. 60: 409–414.
Miyahara, T., N. Sugishita, M. Ishida-Dei, E. Okamoto, T. Kouno, E. A. Cano, N. Sasaki, A. Watanabe, K. Tasaki, M. Nishihara and Y. Ozeki. 2018. Carnation I locus contains two chalcone isomerase genes involved in orange flower coloration. Breed. Sci. 68: 481–487.
Ohmiya, A., H. Masami, K. Yagi, K. Tanase and C. Yamamizo. 2014. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One. 9(12): e113738. doi:10.1371/journal.pone.0113738.
Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, Y. Yoshimoto, I. Hiroshi, H. Ikeda, H. Yoshida and M. Shibata. 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 84: 333–347.
Mayak, S., T. Tirosh, J. E. Thompson and S. Ghosh. 1998. The fate of ribulose-1,5-bisphosphate carboxylase subunits during development of carnation petals. Plant Physiol. Biochem. 36: 835–841.
Jez, J. M., M. E. Bowman, R. A. Dixon and J. P. Noel. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7: 786–791.
Frey, L. and J. Janick. 1991. Organogenesis in carnation. J. Amer. Soc. Hort. Sci. 116: 1108–1112.
Nishizaki, Y., Y. Matsuba, E. Okamoto, M. Okamura, Y. Ozeki and N. Sasaki. 2011. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol. Genet. Genomics 286: 383–394.
Hackett, W. P. and J. M. Anderson. 1967. Aseptic multiplication and maintenance and differentiated carnation shoot tissue derived from shoot apices. Proc. Amer. Soc. Hort. Sci. 90: 365–369.
Imai, Y. 1936. Sports of perpetual carnations. J. Coll. Agric. Tokyo Imperial Univ. 14: 1–11.
Kay, Q. O. N., H. S. Daoud and C. H. Stirton. 1981. Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 83: 57–84.
Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116.
Matsuba, Y., N. Sasaki, M. Tera, M. Okamura, Y. Abe, E. Okamoto, H. Nakamura, H. Funabashi, M. Takatsu, M. Saito, H. Matsuoka, K. Nagasawa and Y. Ozeki. 2010. A novel glucosylation reaction on anthocyanins cata
44
45
46
48
49
K. Stich (47) 1992; 187
50
52
10
T. A. Geissman (9) 1947; 32
11
12
13
14
15
16
17
18
19
1
2
4
5
6
7
S. J. Bloor (3) 1998; 49
8
M. Nakayama (32) 2000; 55
20
21
22
24
25
26
27
28
29
J. Wasscher (51) 1956; 5
Y. Matsuba (23) 2010; 22
30
31
33
34
35
36
37
39
A. Ohmiya (38) 2013; 132
40
41
42
43
References_xml – reference: Shimada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata and S. Ayabe. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131: 941–951.
– reference: Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, Y. Yoshimoto, I. Hiroshi, H. Ikeda, H. Yoshida and M. Shibata. 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 84: 333–347.
– reference: Miyajima, I., T. Maehara, T. Kage and K. Fujieda. 1991. Identification of the main agent causing yellow color of yellow-flowered cyclamen mutant. J. Japan. Soc. Hort. Sci. 60: 409–414.
– reference: Ohmiya, A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci. Hortic. 163: 10–19.
– reference: Mato, M., T. Onozak, Y. Ozeki, D. Higeta, Y. Itoh, T. Hisamatsu, H. Yoshida and M. Shibata. 2001. Flavonoid biosynthesis in pink-flowered cultivars derived from ‘William Sim’ Carnation (Dianthus caryophyllus). J. Japan. Soc. Hort. Sci. 70: 315–319.
– reference: Morimoto, H., T. Narumi-Kawasaki, T. Takamura and S. Fukai. 2018. Petal color characteristics of carnation mutative cultivars MINAMI series. Acta Hort. 1208: 7–12.
– reference: Ogata, J., Y. Itoh, M. Ishida, H. Yoshida and Y. Ozeki. 2004. Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol. 21: 367–375.
– reference: Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. M. Gerats. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13: 491–502.
– reference: Brockington, S. F., R. H. Walker, B. J. Glover, P. S. Soltis and D. E. Soltis. 2011. Complex pigment evolution in the Caryophyllales. New Phytol. 190: 854–864.
– reference: Moustafa, E. and E. Wong. 1967. Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6: 625–632.
– reference: Stich, K., T. Eidenberger, F. Wurst and G. Forkmann. 1992. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187: 103–108.
– reference: Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116.
– reference: Itoh, Y., D. Higeta, A. Suzuki, H. Yoshida and Y. Ozeki. 2002. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plat Cell Physiol. 43: 578–585.
– reference: Johnson, R. T. 1980. Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15: 605–606.
– reference: Sasaki, N., Y. Matsuba, Y. Abe, M. Okamura, M. Momose, N. Umemoto, M. Nakayama, Y. Itoh and Y. Ozeki. 2013. Recent advances in understanding the anthocyanin modification steps in carnation flowers. Sci. Hortic. 163: 37–45.
– reference: Tanaka, Y., N. Sasaki and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749.
– reference: Yoshida, H., Y. Itoh, Y. Ozeki, T. Iwashina and M. Yamaguchi. 2004. Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Sci. Hortic. 99: 175–186.
– reference: Nishizaki, Y., Y. Matsuba, E. Okamoto, M. Okamura, Y. Ozeki and N. Sasaki. 2011. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol. Genet. Genomics 286: 383–394.
– reference: Momose, M., Y. Itoh, N. Umemoto, M. Nakayama and Y. Ozeki. 2013a. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element. Breeding Sci. 63: 435–440.
– reference: Sagawa, Y. and G. A. L. Mehlquist. 1957. The mechanism responsible for some X-ray induced change in flower colour of the carnations, Dianthus caryophyllus. Amer. J. Bot. 44: 397–403.
– reference: Wasscher, J. 1956. The importance of sports in some florist’s flowers. Euphytica 5: 163–170.
– reference: Holley, W. D. and R. Baker. 1991. Carnation production II. Kendall-Hunt Publishing, Company. Dubuque. USA p. 21–29.
– reference: Jez, J. M. and J. P. Noel. 2002. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277: 1361–1369.
– reference: Sasaki, N., Y. Nishizaki, Y. Uchida, E. Wakamatsu, N. Umemoto, M. Momose, M. Okamura, H. Yoshida, M. Yamaguchi, M. Nakayama, Y. Ozeki and Y. Itoh. 2012. Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol. 29: 223–227.
– reference: Jez, J. M., M. E. Bowman, R. A. Dixon and J. P. Noel. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7: 786–791.
– reference: Mehlquist, G. A. L. 1939. Inheritance in the carnation, Dianthus caryophyllus. I. Inheritance of flower color. Proc. Am. Soc. Hortic. Sci. 37: 1019–1021.
– reference: Momose, M., M. Nakayama, Y. Itoh, N. Umemoto, T. Toguri and Y. Ozeki. 2013b. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol. Genet. Genomics 288: 175–184.
– reference: Ohmiya, A., K. Tanase, M. Hirashima, C. Yamamizo and M. Yagi. 2013. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breeding 132: 423–429.
– reference: Frey, L. and J. Janick. 1991. Organogenesis in carnation. J. Amer. Soc. Hort. Sci. 116: 1108–1112.
– reference: Gonnet, J. F. and H. Hieu. 1992. In situ micro-spectrophotometric and micro-spectrocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus). J. Hortic. Sci. 67: 663–676.
– reference: Matsuba, Y., N. Sasaki, M. Tera, M. Okamura, Y. Abe, E. Okamoto, H. Nakamura, H. Funabashi, M. Takatsu, M. Saito, H. Matsuoka, K. Nagasawa and Y. Ozeki. 2010. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22: 3374–3389.
– reference: Terahara, N. and M. Yamaguchi. 1986. 1H NMR spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 25: 2906–2907.
– reference: Nakayama, M., M. Koshioka, H. Yoshida, Y. Kan, Y. Fukui, A. Koike and M. Yamaguchi. 2000. Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55: 937–939.
– reference: Miyahara, T., N. Sugishita, M. Ishida-Dei, E. Okamoto, T. Kouno, E. A. Cano, N. Sasaki, A. Watanabe, K. Tasaki, M. Nishihara and Y. Ozeki. 2018. Carnation I locus contains two chalcone isomerase genes involved in orange flower coloration. Breed. Sci. 68: 481–487.
– reference: Imai, Y. 1936. Sports of perpetual carnations. J. Coll. Agric. Tokyo Imperial Univ. 14: 1–11.
– reference: Maekawa, S. and N. Kawamura. 1977. Studies on the coloration of carnation flowers. VIII. The relationship between the color and pigment of intact flowers. Sci. Rept. Fac. Agr. Kobe Univ. 12: 161–166.
– reference: Geissman, T. A. and G. A. L. Mehlquist. 1947. Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32: 410–433.
– reference: Hackett, W. P. and J. M. Anderson. 1967. Aseptic multiplication and maintenance and differentiated carnation shoot tissue derived from shoot apices. Proc. Amer. Soc. Hort. Sci. 90: 365–369.
– reference: Richter, A. and W. R. Singleton. 1955. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Natl. Acad. Sci. USA. 41: 295–300.
– reference: Bloor, S. J. 1998. A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49: 225–228.
– reference: Mayak, S., T. Tirosh, J. E. Thompson and S. Ghosh. 1998. The fate of ribulose-1,5-bisphosphate carboxylase subunits during development of carnation petals. Plant Physiol. Biochem. 36: 835–841.
– reference: Onozaki, T., M. Mato, M. Shibata and H. Ikeda. 1999. Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci. Hortic. 82: 103–111.
– reference: Gatt, M. K., K. R. W. Hammett, K. R. Markham and B. G. Murray. 1998. Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci. Hortic. 77: 207–218.
– reference: Spribille, R. and G. Forkmann. 1982. Chalcone synthesis and hydroxylation of flavonoids in 3′-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155: 176–182.
– reference: Dedio, J., H. Saedler and G. Forkmann. 1995. Molecular cloning of the flavanone 3β-hydroxylase gene (FHT) from carnation (Dianthus caryophyllus) and analysis of stable and unstable FHT mutants. Theor. Appl. Genet. 90: 611–617.
– reference: Kay, Q. O. N., H. S. Daoud and C. H. Stirton. 1981. Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 83: 57–84.
– reference: Ohmiya, A., H. Masami, K. Yagi, K. Tanase and C. Yamamizo. 2014. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One. 9(12): e113738. doi:10.1371/journal.pone.0113738.
– reference: Abe, Y., M. Tera, N. Sasaki, M. Okamura, N. Umemoto, M. Momose, N. Kawahara, H. Kamakura, Y. Goda, K. Nagasawa and Y. Ozeki. 2008. Detection of 1-O-malylglucose: Pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. 373: 473–477.
– reference: Togami, J., H. Okuhara, N. Nakamura, K. Ishiguro, C. Hirose, M. Ochiai, Y. Fukui, M. Yamaguchi and Y. Tanaka. 2011. Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant Biotechnol. 28: 231–238.
– reference: Johnson, E. T., S. Ryu, H. Yi1, B. Shin, H. Cheong and G. Choi. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25: 325–333.
– reference: Pereau-Leroy, P. 1974. Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat. Bot. 14: 109–116.
– reference: Nomura, Y., S. Morita, T. Harada and S. Satoh. 2012. Cloning, characterization and expression of carnation (Dianthus caryophyllus L.) ubiquitin genes and their use as a normalization standard for gene expression analysis in senescing petals. J. Japan. Soc. Hort. Sci. 81: 357–365.
– ident: 36
  doi: 10.1016/j.scienta.2013.06.018
– ident: 40
  doi: 10.1016/S0033-7560(74)90294-4
– ident: 6
  doi: 10.1007/BF00222123
– ident: 49
  doi: 10.1016/S0031-9422(00)83769-3
– ident: 22
  doi: 10.1016/S0304-4238(99)00140-5
– ident: 29
  doi: 10.1007/s00438-013-0742-z
– ident: 12
– ident: 27
  doi: 10.2503/jjshs.60.409
– volume: 187
  start-page: 103
  issn: 0032-0935
  year: 1992
  ident: 47
  publication-title: Planta
  doi: 10.1007/BF00201630
– ident: 41
  doi: 10.1073/pnas.41.5.295
– ident: 44
  doi: 10.5511/plantbiotechnology.12.0120a
– ident: 46
  doi: 10.1007/BF00392549
– ident: 10
  doi: 10.1080/00221589.1992.11516297
– ident: 5
  doi: 10.1007/BF02670468
– volume: 22
  start-page: 3374
  issn: 1040-4651
  year: 2010
  ident: 23
  publication-title: THE PLANT CELL ONLINE
  doi: 10.1105/tpc.110.077487
– ident: 45
  doi: 10.1104/pp.004820
– ident: 7
  doi: 10.21273/JASHS.116.6.1108
– ident: 28
  doi: 10.1270/jsbbs.63.435
– ident: 34
– ident: 13
– ident: 31
  doi: 10.1016/S0031-9422(00)86001-X
– ident: 50
  doi: 10.5511/plantbiotechnology.11.0106b
– ident: 48
– volume: 5
  start-page: 163
  issn: 0014-2336
  year: 1956
  ident: 51
  publication-title: Euphytica
  doi: 10.1007/BF00022074
– ident: 18
  doi: 10.21273/HORTSCI.15.5.605
– ident: 52
  doi: 10.1016/S0304-4238(03)00093-1
– ident: 35
  doi: 10.5511/plantbiotechnology.21.367
– ident: 2
  doi: 10.1007/BF00027309
– ident: 16
  doi: 10.1038/79025
– ident: 14
  doi: 10.1093/pcp/pcf065
– ident: 33
  doi: 10.1007/s00438-011-0655-7
– ident: 26
  doi: 10.1270/jsbbs.18029
– ident: 1
  doi: 10.1016/j.bbrc.2008.04.153
– volume: 132
  start-page: 423
  issn: 0179-9541
  year: 2013
  ident: 38
  publication-title: Plant Breeding
  doi: 10.1111/pbr.12061
– ident: 21
  doi: 10.2503/jjshs.70.315
– ident: 39
  doi: 10.1016/S0304-4238(99)00040-0
– ident: 24
– volume: 32
  start-page: 410
  issn: 0016-6731
  year: 1947
  ident: 9
  publication-title: Genetics
  doi: 10.1093/genetics/32.4.410
– ident: 30
  doi: 10.17660/ActaHortic.2018.1208.2
– ident: 8
  doi: 10.1016/S0304-4238(98)00177-0
– ident: 42
– ident: 17
  doi: 10.1046/j.1365-313x.2001.00962.x
– ident: 11
– ident: 19
– volume: 49
  start-page: 225
  issn: 0031-9422
  year: 1998
  ident: 3
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(97)01051-0
– ident: 15
– ident: 37
  doi: 10.1371/journal.pone.0113738
– ident: 43
  doi: 10.1016/j.scienta.2013.07.029
– volume: 55
  start-page: 937
  issn: 0031-9422
  year: 2000
  ident: 32
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)00263-6
– ident: 20
  doi: 10.2503/jjshs.44.161
– ident: 25
– ident: 4
  doi: 10.1111/j.1469-8137.2011.03687.x
SSID ssj0001466532
Score 2.216059
Snippet Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’,...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116
SubjectTerms acyanic color
Biosynthesis
bud sports
Chalcone isomerase
Citrus fruits
Color
Coloration
Cultivars
cyanic color
Dianthus caryophyllus
flavonoid biosynthesis-related genes
Flavonoids
Gene expression
Genes
Glucosyltransferase
Glutathione
Glutathione transferase
Lemons
Malate
Mutation
Petals
Pigments
Transportation
Title Analysis of Flower Color Variation in Carnation (Dianthus caryophyllus L.) Cultivars Derived from Continuous Bud Mutations
URI https://www.jstage.jst.go.jp/article/hortj/88/1/88_UTD-007/_article/-char/en
https://www.proquest.com/docview/2239617241
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX The Horticulture Journal, 2019, Vol.88(1), pp.116-128
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfK4AEeEJ-iMJAfEAKNdEmWponEy9ioKrYhIVq0t8h2nDVt16AsAW1_Mn8Fd7bjphtIDF6sxrYiN_fL5Xen-yDkZT-QPJNe6CAdd4BSCydK08zhAibDFAhuhtnIR5_C0ST4eNw_7nR-tqKW6or3xMVv80r-RaowB3LFLNlrSNbeFCbgN8gXRpAwjH8l43ZFkeEC-52hI6Aot76CBcyaMMY9Zlx-yCb3AQ7VtFYlqc8LeMaLBVwcYraVKq-ZfwdLF7RQCVow1cknWMAqX9YYK_u-TreO6qrl5Zut0DYqyqaSR5Nutgo6LEoEhfLLjtg5WPrWC83K-jR3DtgPdsZ0D-0xm7O53YBXp7Vqh4QrcpaXdm1Yz3U77S8yz8U0b_swWjpS5b8BK8Bum2txqq0jm6oozTugdCMQEwzzcrUil-05EyVrlHsUXQGx1tSeF7Y--p7OUL_8PQF-iHUtpnCYWW8y3ndc3aL3UoluA4BE7UuiKPFwgP0JFoRuVjGNDlB7g9z0waTBbhsHn6OVPzAIw77qp2f_my4Ji2fYXjvBGoW6NQMr4uQqlVD8aHyP3DXyprv6GPdJRy4fkDu7J2UDiYfkosErLTKq8UoVXqnFK82X1OKVvm7QSttopYe9N9RilRqsUsQqXWGVAlapxeojMhl-GO-NHNP7wxFA4StHDkLuSxEzzx9ILBmUuankMXNBtXDmRzEmWDMw1vt8hwcilJ7wZZ-lfOCCyZIFO4_JxrJYyieEwhIPBnGcpYEfCI_zbBAJJvyUAXvPWNolb5vHmQhTGB_7sywSMJDx6Ru5Gnl2ySu7_ZuuCPOnje-0bOy2a-GkSzYbiSZG55wlQOZjtDkC7-n_3f0ZuY0vonYmbpKNqqzlc6DXFX-hcPkLAHDi8Q
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Flower+Color+Variation+in+Carnation+%28Dianthus+caryophyllus+L.%29+Cultivars+Derived+from+Continuous+Bud+Mutations&rft.jtitle=The+Horticulture+Journal&rft.au=Morimoto%2C+Hayato&rft.au=Narumi-Kawasaki%2C+Takako&rft.au=Takamura%2C+Takejiro&rft.au=Fukai%2C+Seiichi&rft.date=2019&rft.pub=The+Japanese+Society+for+Horticultural+Science&rft.issn=2189-0102&rft.eissn=2189-0110&rft.volume=88&rft.issue=1&rft.spage=116&rft.epage=128&rft_id=info:doi/10.2503%2Fhortj.UTD-007&rft.externalDocID=article_hortj_88_1_88_UTD_007_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-0102&client=summon