Analysis of Flower Color Variation in Carnation (Dianthus caryophyllus L.) Cultivars Derived from Continuous Bud Mutations
Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid p...
Saved in:
Published in | Horticulture journal Vol. 88; no. 1; pp. 116 - 128 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Japanese Society for Horticultural Science
2019
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid pigments analysis showed that the flower color variation is produced by the difference in the quantitative ratios of pelargonidin-typed anthocyanin and chalcononaringenin 2′-O-glucoside (Ch2′G). Acyanic cultivars; ‘Poly Minami’, ‘Lemon Minami’ and ‘Vanilla Minami’ had Ch2′G showing a yellow coloration as a major flavonoid with different concentrations in the petals. Cyanic cultivars with pinkish petals; ‘Orange Minami’, ‘Minami’, ‘Passion Minami’ and ‘Feminine Minami’ had different ratios of 3,5-di-O-(β-glucopyranosyl) pelargonidin 6′′-O-4,6′′′-O-1-cyclic malate (Pg3,5cMdG), showing a pink coloration, and Ch2′G as major flavonoids in the petals. The variegated cultivar ‘Sakura Minami’, with deep pink sectors and flecks on pale pink petals, accumulated a small amount of Pg3,5cMdG. The red-flowered cultivar ‘Tommy Minami’ accumulated pelargonidin 3-O-malylglucoside (Pg3MG) showing a red coloration as a major anthocyanin in the petals. The gene expression analysis through flower-bud development showed that the ratios of Pg3,5cMdG and Ch2′G are produced by the difference in the expression levels of flavonoid biosynthesis-related genes; the dihydroflavonol 4-reducatse gene (DFR), the chalcononaringenin 2′-O-glucosyltransferase gene (CHGT2) and the chalcone isomerase gene (CHI2) and the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene (AA5GT) and an anthocyanin transportation-related gene; the glutathione S-transferase-like gene (GSTF2). This study revealed that the flower color variations in the “MINAMI series” are caused by genetic and metabolic changes associated with flavonoid biosynthesis and identified five candidate genes for flower color changes in the “MINAMI series”. |
---|---|
AbstractList | Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’, which is the origin of the “MINAMI series”, produced the eight cultivars with various petal colors through continuous bud mutations. Flavonoid pigments analysis showed that the flower color variation is produced by the difference in the quantitative ratios of pelargonidin-typed anthocyanin and chalcononaringenin 2′-O-glucoside (Ch2′G). Acyanic cultivars; ‘Poly Minami’, ‘Lemon Minami’ and ‘Vanilla Minami’ had Ch2′G showing a yellow coloration as a major flavonoid with different concentrations in the petals. Cyanic cultivars with pinkish petals; ‘Orange Minami’, ‘Minami’, ‘Passion Minami’ and ‘Feminine Minami’ had different ratios of 3,5-di-O-(β-glucopyranosyl) pelargonidin 6′′-O-4,6′′′-O-1-cyclic malate (Pg3,5cMdG), showing a pink coloration, and Ch2′G as major flavonoids in the petals. The variegated cultivar ‘Sakura Minami’, with deep pink sectors and flecks on pale pink petals, accumulated a small amount of Pg3,5cMdG. The red-flowered cultivar ‘Tommy Minami’ accumulated pelargonidin 3-O-malylglucoside (Pg3MG) showing a red coloration as a major anthocyanin in the petals. The gene expression analysis through flower-bud development showed that the ratios of Pg3,5cMdG and Ch2′G are produced by the difference in the expression levels of flavonoid biosynthesis-related genes; the dihydroflavonol 4-reducatse gene (DFR), the chalcononaringenin 2′-O-glucosyltransferase gene (CHGT2) and the chalcone isomerase gene (CHI2) and the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene (AA5GT) and an anthocyanin transportation-related gene; the glutathione S-transferase-like gene (GSTF2). This study revealed that the flower color variations in the “MINAMI series” are caused by genetic and metabolic changes associated with flavonoid biosynthesis and identified five candidate genes for flower color changes in the “MINAMI series”. |
Author | Narumi-Kawasaki, Takako Fukai, Seiichi Morimoto, Hayato Takamura, Takejiro |
Author_xml | – sequence: 1 fullname: Morimoto, Hayato organization: The United Graduate School of Agricultural Science, Ehime University – sequence: 2 fullname: Narumi-Kawasaki, Takako organization: The United Graduate School of Agricultural Science, Ehime University – sequence: 3 fullname: Takamura, Takejiro organization: The United Graduate School of Agricultural Science, Ehime University – sequence: 4 fullname: Fukai, Seiichi organization: The United Graduate School of Agricultural Science, Ehime University |
BookMark | eNp1kM1vGyEQxVGVSE2THHtH6qU9rAvs9zFZ100kR7k4vaJZPFtjEXCBdeT-9SVZy4dIvQAjfu-N3vtEzqyzSMhnzmaiZPn3jfNxO3tazTPG6g_kQvCmzRjn7Oz0ZuIjuQ5hyxjjRVWVubggf28smEPQgbqBLox7QU87Z5ynv8BriNpZqi3twNtp-DrXYONmDFSBP7jd5mBMGpazb7QbTdR78IHO0es9rung3XOys1Hb0SXqdlzThzG-OYUrcj6ACXh9vC_J0-LHqrvLlo8_77ubZaZKXsQM66oXqFrgosaK8Wpga-xbYNgPPYimLZumgLatyj7vC1UhVwJLWPc1a0U-FPkl-TL57rz7M2KIcuvGFMcEKUTeVrwWBU9UNlHKuxA8DnLn9XOKKDmTrw3Lt4ZlalimhhOfv-OVnoJFD9r8V9VNqm2I8BtPO8BHrQwe6aaR_PU4qk6_agNeos3_AVuOnfY |
CitedBy_id | crossref_primary_10_1111_pbi_13801 crossref_primary_10_3390_ijms24119499 crossref_primary_10_17660_ActaHortic_2019_1263_35 crossref_primary_10_1007_s40415_022_00805_4 crossref_primary_10_17660_ActaHortic_2019_1263_26 crossref_primary_10_1016_j_indcrop_2023_117606 crossref_primary_10_1016_j_plantsci_2020_110598 crossref_primary_10_17660_ActaHortic_2020_1283_1 crossref_primary_10_2503_hortj_UTD_271 crossref_primary_10_1007_s00425_024_04358_6 |
Cites_doi | 10.1016/j.scienta.2013.06.018 10.1016/S0033-7560(74)90294-4 10.1007/BF00222123 10.1016/S0031-9422(00)83769-3 10.1016/S0304-4238(99)00140-5 10.1007/s00438-013-0742-z 10.2503/jjshs.60.409 10.1007/BF00201630 10.1073/pnas.41.5.295 10.5511/plantbiotechnology.12.0120a 10.1007/BF00392549 10.1080/00221589.1992.11516297 10.1007/BF02670468 10.1105/tpc.110.077487 10.1104/pp.004820 10.21273/JASHS.116.6.1108 10.1270/jsbbs.63.435 10.1016/S0031-9422(00)86001-X 10.5511/plantbiotechnology.11.0106b 10.1007/BF00022074 10.21273/HORTSCI.15.5.605 10.1016/S0304-4238(03)00093-1 10.5511/plantbiotechnology.21.367 10.1007/BF00027309 10.1038/79025 10.1093/pcp/pcf065 10.1007/s00438-011-0655-7 10.1270/jsbbs.18029 10.1016/j.bbrc.2008.04.153 10.1111/pbr.12061 10.2503/jjshs.70.315 10.1016/S0304-4238(99)00040-0 10.1093/genetics/32.4.410 10.17660/ActaHortic.2018.1208.2 10.1016/S0304-4238(98)00177-0 10.1046/j.1365-313x.2001.00962.x 10.1016/S0031-9422(97)01051-0 10.1371/journal.pone.0113738 10.1016/j.scienta.2013.07.029 10.1016/S0031-9422(00)00263-6 10.2503/jjshs.44.161 10.1111/j.1469-8137.2011.03687.x |
ContentType | Journal Article |
Copyright | 2019 The Japanese Society for Horticultural Science (JSHS), All rights reserved. Copyright Japan Science and Technology Agency 2019 |
Copyright_xml | – notice: 2019 The Japanese Society for Horticultural Science (JSHS), All rights reserved. – notice: Copyright Japan Science and Technology Agency 2019 |
DBID | AAYXX CITATION |
DOI | 10.2503/hortj.UTD-007 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 2189-0110 |
EndPage | 128 |
ExternalDocumentID | 10_2503_hortj_UTD_007 article_hortj_88_1_88_UTD_007_article_char_en |
GroupedDBID | AENEX AFRAH ALMA_UNASSIGNED_HOLDINGS ECGQY FRP JSF JSH KQ8 OK1 RJT RZJ AAYXX CITATION |
ID | FETCH-LOGICAL-c514t-e76b2ec9a127e6016f0deb9a0ebfba2895884a9965b3b4c6e1c2e5adb70923f43 |
ISSN | 2189-0102 |
IngestDate | Mon Jun 30 04:55:03 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Tue Jul 01 03:09:23 EDT 2025 Wed Apr 05 09:01:22 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c514t-e76b2ec9a127e6016f0deb9a0ebfba2895884a9965b3b4c6e1c2e5adb70923f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/hortj/88/1/88_UTD-007/_article/-char/en |
PQID | 2239617241 |
PQPubID | 2006342 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2239617241 crossref_primary_10_2503_hortj_UTD_007 crossref_citationtrail_10_2503_hortj_UTD_007 jstage_primary_article_hortj_88_1_88_UTD_007_article_char_en |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019 2019-00-00 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Horticulture journal |
PublicationTitleAlternate | Hort. J. |
PublicationYear | 2019 |
Publisher | The Japanese Society for Horticultural Science Japan Science and Technology Agency |
Publisher_xml | – name: The Japanese Society for Horticultural Science – name: Japan Science and Technology Agency |
References | Sasaki, N., Y. Nishizaki, Y. Uchida, E. Wakamatsu, N. Umemoto, M. Momose, M. Okamura, H. Yoshida, M. Yamaguchi, M. Nakayama, Y. Ozeki and Y. Itoh. 2012. Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol. 29: 223–227. Abe, Y., M. Tera, N. Sasaki, M. Okamura, N. Umemoto, M. Momose, N. Kawahara, H. Kamakura, Y. Goda, K. Nagasawa and Y. Ozeki. 2008. Detection of 1-O-malylglucose: Pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. 373: 473–477. Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. M. Gerats. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13: 491–502. Bloor, S. J. 1998. A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49: 225–228. Momose, M., Y. Itoh, N. Umemoto, M. Nakayama and Y. Ozeki. 2013a. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element. Breeding Sci. 63: 435–440. Tanaka, Y., N. Sasaki and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749. Pereau-Leroy, P. 1974. Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat. Bot. 14: 109–116. Mehlquist, G. A. L. 1939. Inheritance in the carnation, Dianthus caryophyllus. I. Inheritance of flower color. Proc. Am. Soc. Hortic. Sci. 37: 1019–1021. Ohmiya, A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci. Hortic. 163: 10–19. Togami, J., H. Okuhara, N. Nakamura, K. Ishiguro, C. Hirose, M. Ochiai, Y. Fukui, M. Yamaguchi and Y. Tanaka. 2011. Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant Biotechnol. 28: 231–238. Ohmiya, A., K. Tanase, M. Hirashima, C. Yamamizo and M. Yagi. 2013. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breeding 132: 423–429. Brockington, S. F., R. H. Walker, B. J. Glover, P. S. Soltis and D. E. Soltis. 2011. Complex pigment evolution in the Caryophyllales. New Phytol. 190: 854–864. Shimada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata and S. Ayabe. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131: 941–951. Mato, M., T. Onozak, Y. Ozeki, D. Higeta, Y. Itoh, T. Hisamatsu, H. Yoshida and M. Shibata. 2001. Flavonoid biosynthesis in pink-flowered cultivars derived from ‘William Sim’ Carnation (Dianthus caryophyllus). J. Japan. Soc. Hort. Sci. 70: 315–319. Holley, W. D. and R. Baker. 1991. Carnation production II. Kendall-Hunt Publishing, Company. Dubuque. USA p. 21–29. Sasaki, N., Y. Matsuba, Y. Abe, M. Okamura, M. Momose, N. Umemoto, M. Nakayama, Y. Itoh and Y. Ozeki. 2013. Recent advances in understanding the anthocyanin modification steps in carnation flowers. Sci. Hortic. 163: 37–45. Gonnet, J. F. and H. Hieu. 1992. In situ micro-spectrophotometric and micro-spectrocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus). J. Hortic. Sci. 67: 663–676. Stich, K., T. Eidenberger, F. Wurst and G. Forkmann. 1992. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187: 103–108. Yoshida, H., Y. Itoh, Y. Ozeki, T. Iwashina and M. Yamaguchi. 2004. Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Sci. Hortic. 99: 175–186. Sagawa, Y. and G. A. L. Mehlquist. 1957. The mechanism responsible for some X-ray induced change in flower colour of the carnations, Dianthus caryophyllus. Amer. J. Bot. 44: 397–403. Moustafa, E. and E. Wong. 1967. Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6: 625–632. Terahara, N. and M. Yamaguchi. 1986. 1H NMR spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 25: 2906–2907. Morimoto, H., T. Narumi-Kawasaki, T. Takamura and S. Fukai. 2018. Petal color characteristics of carnation mutative cultivars MINAMI series. Acta Hort. 1208: 7–12. Geissman, T. A. and G. A. L. Mehlquist. 1947. Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32: 410–433. Itoh, Y., D. Higeta, A. Suzuki, H. Yoshida and Y. Ozeki. 2002. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plat Cell Physiol. 43: 578–585. Jez, J. M. and J. P. Noel. 2002. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277: 1361–1369. Johnson, R. T. 1980. Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15: 605–606. Nomura, Y., S. Morita, T. Harada and S. Satoh. 2012. Cloning, characterization and expression of carnation (Dianthus caryophyllus L.) ubiquitin genes and their use as a normalization standard for gene expression analysis in senescing petals. J. Japan. Soc. Hort. Sci. 81: 357–365. Nakayama, M., M. Koshioka, H. Yoshida, Y. Kan, Y. Fukui, A. Koike and M. Yamaguchi. 2000. Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55: 937–939. Spribille, R. and G. Forkmann. 1982. Chalcone synthesis and hydroxylation of flavonoids in 3′-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155: 176–182. Gatt, M. K., K. R. W. Hammett, K. R. Markham and B. G. Murray. 1998. Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci. Hortic. 77: 207–218. Dedio, J., H. Saedler and G. Forkmann. 1995. Molecular cloning of the flavanone 3β-hydroxylase gene (FHT) from carnation (Dianthus caryophyllus) and analysis of stable and unstable FHT mutants. Theor. Appl. Genet. 90: 611–617. Momose, M., M. Nakayama, Y. Itoh, N. Umemoto, T. Toguri and Y. Ozeki. 2013b. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol. Genet. Genomics 288: 175–184. Richter, A. and W. R. Singleton. 1955. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Natl. Acad. Sci. USA. 41: 295–300. Ogata, J., Y. Itoh, M. Ishida, H. Yoshida and Y. Ozeki. 2004. Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol. 21: 367–375. Maekawa, S. and N. Kawamura. 1977. Studies on the coloration of carnation flowers. VIII. The relationship between the color and pigment of intact flowers. Sci. Rept. Fac. Agr. Kobe Univ. 12: 161–166. Johnson, E. T., S. Ryu, H. Yi1, B. Shin, H. Cheong and G. Choi. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25: 325–333. Onozaki, T., M. Mato, M. Shibata and H. Ikeda. 1999. Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci. Hortic. 82: 103–111. Wasscher, J. 1956. The importance of sports in some florist’s flowers. Euphytica 5: 163–170. Miyajima, I., T. Maehara, T. Kage and K. Fujieda. 1991. Identification of the main agent causing yellow color of yellow-flowered cyclamen mutant. J. Japan. Soc. Hort. Sci. 60: 409–414. Miyahara, T., N. Sugishita, M. Ishida-Dei, E. Okamoto, T. Kouno, E. A. Cano, N. Sasaki, A. Watanabe, K. Tasaki, M. Nishihara and Y. Ozeki. 2018. Carnation I locus contains two chalcone isomerase genes involved in orange flower coloration. Breed. Sci. 68: 481–487. Ohmiya, A., H. Masami, K. Yagi, K. Tanase and C. Yamamizo. 2014. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One. 9(12): e113738. doi:10.1371/journal.pone.0113738. Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, Y. Yoshimoto, I. Hiroshi, H. Ikeda, H. Yoshida and M. Shibata. 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 84: 333–347. Mayak, S., T. Tirosh, J. E. Thompson and S. Ghosh. 1998. The fate of ribulose-1,5-bisphosphate carboxylase subunits during development of carnation petals. Plant Physiol. Biochem. 36: 835–841. Jez, J. M., M. E. Bowman, R. A. Dixon and J. P. Noel. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7: 786–791. Frey, L. and J. Janick. 1991. Organogenesis in carnation. J. Amer. Soc. Hort. Sci. 116: 1108–1112. Nishizaki, Y., Y. Matsuba, E. Okamoto, M. Okamura, Y. Ozeki and N. Sasaki. 2011. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol. Genet. Genomics 286: 383–394. Hackett, W. P. and J. M. Anderson. 1967. Aseptic multiplication and maintenance and differentiated carnation shoot tissue derived from shoot apices. Proc. Amer. Soc. Hort. Sci. 90: 365–369. Imai, Y. 1936. Sports of perpetual carnations. J. Coll. Agric. Tokyo Imperial Univ. 14: 1–11. Kay, Q. O. N., H. S. Daoud and C. H. Stirton. 1981. Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 83: 57–84. Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116. Matsuba, Y., N. Sasaki, M. Tera, M. Okamura, Y. Abe, E. Okamoto, H. Nakamura, H. Funabashi, M. Takatsu, M. Saito, H. Matsuoka, K. Nagasawa and Y. Ozeki. 2010. A novel glucosylation reaction on anthocyanins cata 44 45 46 48 49 K. Stich (47) 1992; 187 50 52 10 T. A. Geissman (9) 1947; 32 11 12 13 14 15 16 17 18 19 1 2 4 5 6 7 S. J. Bloor (3) 1998; 49 8 M. Nakayama (32) 2000; 55 20 21 22 24 25 26 27 28 29 J. Wasscher (51) 1956; 5 Y. Matsuba (23) 2010; 22 30 31 33 34 35 36 37 39 A. Ohmiya (38) 2013; 132 40 41 42 43 |
References_xml | – reference: Shimada, N., T. Aoki, S. Sato, Y. Nakamura, S. Tabata and S. Ayabe. 2003. A cluster of genes encodes the two types of chalcone isomerase involved in the biosynthesis of general flavonoids and legume-specific 5-deoxy(iso)flavonoids in Lotus japonicus. Plant Physiol. 131: 941–951. – reference: Mato, M., T. Onozaki, Y. Ozeki, D. Higeta, Y. Itoh, Y. Yoshimoto, I. Hiroshi, H. Ikeda, H. Yoshida and M. Shibata. 2000. Flavonoid biosynthesis in white-flowered Sim carnations (Dianthus caryophyllus). Sci. Hortic. 84: 333–347. – reference: Miyajima, I., T. Maehara, T. Kage and K. Fujieda. 1991. Identification of the main agent causing yellow color of yellow-flowered cyclamen mutant. J. Japan. Soc. Hort. Sci. 60: 409–414. – reference: Ohmiya, A. 2013. Qualitative and quantitative control of carotenoid accumulation in flower petals. Sci. Hortic. 163: 10–19. – reference: Mato, M., T. Onozak, Y. Ozeki, D. Higeta, Y. Itoh, T. Hisamatsu, H. Yoshida and M. Shibata. 2001. Flavonoid biosynthesis in pink-flowered cultivars derived from ‘William Sim’ Carnation (Dianthus caryophyllus). J. Japan. Soc. Hort. Sci. 70: 315–319. – reference: Morimoto, H., T. Narumi-Kawasaki, T. Takamura and S. Fukai. 2018. Petal color characteristics of carnation mutative cultivars MINAMI series. Acta Hort. 1208: 7–12. – reference: Ogata, J., Y. Itoh, M. Ishida, H. Yoshida and Y. Ozeki. 2004. Cloning and heterologous expression of cDNAs encoding flavonoid glucosyltransferases from Dianthus caryophyllus. Plant Biotechnol. 21: 367–375. – reference: Beld, M., C. Martin, H. Huits, A. R. Stuitje and A. G. M. Gerats. 1989. Flavonoid synthesis in Petunia hybrida: partial characterization of dihydroflavonol-4-reductase genes. Plant Mol. Biol. 13: 491–502. – reference: Brockington, S. F., R. H. Walker, B. J. Glover, P. S. Soltis and D. E. Soltis. 2011. Complex pigment evolution in the Caryophyllales. New Phytol. 190: 854–864. – reference: Moustafa, E. and E. Wong. 1967. Purification and properties of chalcone-flavanone isomerase from soya bean seed. Phytochemistry 6: 625–632. – reference: Stich, K., T. Eidenberger, F. Wurst and G. Forkmann. 1992. Enzymatic conversion of dihydroflavonols to flavan-3,4-diols using flower extracts of Dianthus caryophyllus L. (carnation). Planta 187: 103–108. – reference: Chang, S., J. Puryear and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11: 113–116. – reference: Itoh, Y., D. Higeta, A. Suzuki, H. Yoshida and Y. Ozeki. 2002. Excision of transposable elements from the chalcone isomerase and dihydroflavonol 4-reductase genes may contribute to the variegation of the yellow-flowered carnation (Dianthus caryophyllus). Plat Cell Physiol. 43: 578–585. – reference: Johnson, R. T. 1980. Gamma irradiation and in vitro induced separation of chimeral genotypes in carnation. HortScience 15: 605–606. – reference: Sasaki, N., Y. Matsuba, Y. Abe, M. Okamura, M. Momose, N. Umemoto, M. Nakayama, Y. Itoh and Y. Ozeki. 2013. Recent advances in understanding the anthocyanin modification steps in carnation flowers. Sci. Hortic. 163: 37–45. – reference: Tanaka, Y., N. Sasaki and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54: 733–749. – reference: Yoshida, H., Y. Itoh, Y. Ozeki, T. Iwashina and M. Yamaguchi. 2004. Variation in chalcononaringenin 2′-O-glucoside content in the petals of carnations (Dianthus caryophyllus) bearing yellow flowers. Sci. Hortic. 99: 175–186. – reference: Nishizaki, Y., Y. Matsuba, E. Okamoto, M. Okamura, Y. Ozeki and N. Sasaki. 2011. Structure of the acyl-glucose-dependent anthocyanin 5-O-glucosyltransferase gene in carnations and its disruption by transposable elements in some varieties. Mol. Genet. Genomics 286: 383–394. – reference: Momose, M., Y. Itoh, N. Umemoto, M. Nakayama and Y. Ozeki. 2013a. Reverted glutathione S-transferase-like genes that influence flower color intensity of carnation (Dianthus caryophyllus L.) originated from excision of a transposable element. Breeding Sci. 63: 435–440. – reference: Sagawa, Y. and G. A. L. Mehlquist. 1957. The mechanism responsible for some X-ray induced change in flower colour of the carnations, Dianthus caryophyllus. Amer. J. Bot. 44: 397–403. – reference: Wasscher, J. 1956. The importance of sports in some florist’s flowers. Euphytica 5: 163–170. – reference: Holley, W. D. and R. Baker. 1991. Carnation production II. Kendall-Hunt Publishing, Company. Dubuque. USA p. 21–29. – reference: Jez, J. M. and J. P. Noel. 2002. Reaction mechanism of chalcone isomerase. pH dependence, diffusion control, and product binding differences. J. Biol. Chem. 277: 1361–1369. – reference: Sasaki, N., Y. Nishizaki, Y. Uchida, E. Wakamatsu, N. Umemoto, M. Momose, M. Okamura, H. Yoshida, M. Yamaguchi, M. Nakayama, Y. Ozeki and Y. Itoh. 2012. Identification of the glutathione S-transferase gene responsible for flower color intensity in carnations. Plant Biotechnol. 29: 223–227. – reference: Jez, J. M., M. E. Bowman, R. A. Dixon and J. P. Noel. 2000. Structure and mechanism of the evolutionarily unique plant enzyme chalcone isomerase. Nat. Struct. Biol. 7: 786–791. – reference: Mehlquist, G. A. L. 1939. Inheritance in the carnation, Dianthus caryophyllus. I. Inheritance of flower color. Proc. Am. Soc. Hortic. Sci. 37: 1019–1021. – reference: Momose, M., M. Nakayama, Y. Itoh, N. Umemoto, T. Toguri and Y. Ozeki. 2013b. An active hAT transposable element causing bud mutation of carnation by insertion into the flavonoid 3′-hydroxylase gene. Mol. Genet. Genomics 288: 175–184. – reference: Ohmiya, A., K. Tanase, M. Hirashima, C. Yamamizo and M. Yagi. 2013. Analysis of carotenogenic gene expression in petals and leaves of carnation (Dianthus caryophyllus L.). Plant Breeding 132: 423–429. – reference: Frey, L. and J. Janick. 1991. Organogenesis in carnation. J. Amer. Soc. Hort. Sci. 116: 1108–1112. – reference: Gonnet, J. F. and H. Hieu. 1992. In situ micro-spectrophotometric and micro-spectrocolorimetric investigation of vacuolar pigments in flowers of cultivars of carnation (Dianthus caryophyllus). J. Hortic. Sci. 67: 663–676. – reference: Matsuba, Y., N. Sasaki, M. Tera, M. Okamura, Y. Abe, E. Okamoto, H. Nakamura, H. Funabashi, M. Takatsu, M. Saito, H. Matsuoka, K. Nagasawa and Y. Ozeki. 2010. A novel glucosylation reaction on anthocyanins catalyzed by acyl-glucose-dependent glucosyltransferase in the petals of carnation and delphinium. Plant Cell 22: 3374–3389. – reference: Terahara, N. and M. Yamaguchi. 1986. 1H NMR spectral analysis of the malylated anthocyanins from Dianthus. Phytochemistry 25: 2906–2907. – reference: Nakayama, M., M. Koshioka, H. Yoshida, Y. Kan, Y. Fukui, A. Koike and M. Yamaguchi. 2000. Cyclic malyl anthocyanins in Dianthus caryophyllus. Phytochemistry 55: 937–939. – reference: Miyahara, T., N. Sugishita, M. Ishida-Dei, E. Okamoto, T. Kouno, E. A. Cano, N. Sasaki, A. Watanabe, K. Tasaki, M. Nishihara and Y. Ozeki. 2018. Carnation I locus contains two chalcone isomerase genes involved in orange flower coloration. Breed. Sci. 68: 481–487. – reference: Imai, Y. 1936. Sports of perpetual carnations. J. Coll. Agric. Tokyo Imperial Univ. 14: 1–11. – reference: Maekawa, S. and N. Kawamura. 1977. Studies on the coloration of carnation flowers. VIII. The relationship between the color and pigment of intact flowers. Sci. Rept. Fac. Agr. Kobe Univ. 12: 161–166. – reference: Geissman, T. A. and G. A. L. Mehlquist. 1947. Inheritance in the carnation, Dianthus caryophyllus. IV. The chemistry of flower color variation, I. Genetics 32: 410–433. – reference: Hackett, W. P. and J. M. Anderson. 1967. Aseptic multiplication and maintenance and differentiated carnation shoot tissue derived from shoot apices. Proc. Amer. Soc. Hort. Sci. 90: 365–369. – reference: Richter, A. and W. R. Singleton. 1955. The effect of chronic gamma radiation on the production of somatic mutations in carnations. Proc. Natl. Acad. Sci. USA. 41: 295–300. – reference: Bloor, S. J. 1998. A macrocyclic anthocyanin from red/mauve carnation flowers. Phytochemistry 49: 225–228. – reference: Mayak, S., T. Tirosh, J. E. Thompson and S. Ghosh. 1998. The fate of ribulose-1,5-bisphosphate carboxylase subunits during development of carnation petals. Plant Physiol. Biochem. 36: 835–841. – reference: Onozaki, T., M. Mato, M. Shibata and H. Ikeda. 1999. Differences in flower color and pigment composition among white carnation (Dianthus caryophyllus L.) cultivars. Sci. Hortic. 82: 103–111. – reference: Gatt, M. K., K. R. W. Hammett, K. R. Markham and B. G. Murray. 1998. Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci. Hortic. 77: 207–218. – reference: Spribille, R. and G. Forkmann. 1982. Chalcone synthesis and hydroxylation of flavonoids in 3′-position with enzyme preparations from flowers of Dianthus caryophyllus L. (carnation). Planta 155: 176–182. – reference: Dedio, J., H. Saedler and G. Forkmann. 1995. Molecular cloning of the flavanone 3β-hydroxylase gene (FHT) from carnation (Dianthus caryophyllus) and analysis of stable and unstable FHT mutants. Theor. Appl. Genet. 90: 611–617. – reference: Kay, Q. O. N., H. S. Daoud and C. H. Stirton. 1981. Pigment distribution, light reflection and cell structure in petals. Bot. J. Linn. Soc. 83: 57–84. – reference: Ohmiya, A., H. Masami, K. Yagi, K. Tanase and C. Yamamizo. 2014. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One. 9(12): e113738. doi:10.1371/journal.pone.0113738. – reference: Abe, Y., M. Tera, N. Sasaki, M. Okamura, N. Umemoto, M. Momose, N. Kawahara, H. Kamakura, Y. Goda, K. Nagasawa and Y. Ozeki. 2008. Detection of 1-O-malylglucose: Pelargonidin 3-O-glucose-6′′-O-malyltransferase activity in carnation (Dianthus caryophyllus). Biochem. Biophys. Res. Commun. 373: 473–477. – reference: Togami, J., H. Okuhara, N. Nakamura, K. Ishiguro, C. Hirose, M. Ochiai, Y. Fukui, M. Yamaguchi and Y. Tanaka. 2011. Isolation of cDNAs encoding tetrahydroxychalcone 2′-glucosyltransferase activity from carnation, cyclamen, and catharanthus. Plant Biotechnol. 28: 231–238. – reference: Johnson, E. T., S. Ryu, H. Yi1, B. Shin, H. Cheong and G. Choi. 2001. Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant J. 25: 325–333. – reference: Pereau-Leroy, P. 1974. Genetic interaction between the tissues of carnation petals as periclinal chimeras. Radiat. Bot. 14: 109–116. – reference: Nomura, Y., S. Morita, T. Harada and S. Satoh. 2012. Cloning, characterization and expression of carnation (Dianthus caryophyllus L.) ubiquitin genes and their use as a normalization standard for gene expression analysis in senescing petals. J. Japan. Soc. Hort. Sci. 81: 357–365. – ident: 36 doi: 10.1016/j.scienta.2013.06.018 – ident: 40 doi: 10.1016/S0033-7560(74)90294-4 – ident: 6 doi: 10.1007/BF00222123 – ident: 49 doi: 10.1016/S0031-9422(00)83769-3 – ident: 22 doi: 10.1016/S0304-4238(99)00140-5 – ident: 29 doi: 10.1007/s00438-013-0742-z – ident: 12 – ident: 27 doi: 10.2503/jjshs.60.409 – volume: 187 start-page: 103 issn: 0032-0935 year: 1992 ident: 47 publication-title: Planta doi: 10.1007/BF00201630 – ident: 41 doi: 10.1073/pnas.41.5.295 – ident: 44 doi: 10.5511/plantbiotechnology.12.0120a – ident: 46 doi: 10.1007/BF00392549 – ident: 10 doi: 10.1080/00221589.1992.11516297 – ident: 5 doi: 10.1007/BF02670468 – volume: 22 start-page: 3374 issn: 1040-4651 year: 2010 ident: 23 publication-title: THE PLANT CELL ONLINE doi: 10.1105/tpc.110.077487 – ident: 45 doi: 10.1104/pp.004820 – ident: 7 doi: 10.21273/JASHS.116.6.1108 – ident: 28 doi: 10.1270/jsbbs.63.435 – ident: 34 – ident: 13 – ident: 31 doi: 10.1016/S0031-9422(00)86001-X – ident: 50 doi: 10.5511/plantbiotechnology.11.0106b – ident: 48 – volume: 5 start-page: 163 issn: 0014-2336 year: 1956 ident: 51 publication-title: Euphytica doi: 10.1007/BF00022074 – ident: 18 doi: 10.21273/HORTSCI.15.5.605 – ident: 52 doi: 10.1016/S0304-4238(03)00093-1 – ident: 35 doi: 10.5511/plantbiotechnology.21.367 – ident: 2 doi: 10.1007/BF00027309 – ident: 16 doi: 10.1038/79025 – ident: 14 doi: 10.1093/pcp/pcf065 – ident: 33 doi: 10.1007/s00438-011-0655-7 – ident: 26 doi: 10.1270/jsbbs.18029 – ident: 1 doi: 10.1016/j.bbrc.2008.04.153 – volume: 132 start-page: 423 issn: 0179-9541 year: 2013 ident: 38 publication-title: Plant Breeding doi: 10.1111/pbr.12061 – ident: 21 doi: 10.2503/jjshs.70.315 – ident: 39 doi: 10.1016/S0304-4238(99)00040-0 – ident: 24 – volume: 32 start-page: 410 issn: 0016-6731 year: 1947 ident: 9 publication-title: Genetics doi: 10.1093/genetics/32.4.410 – ident: 30 doi: 10.17660/ActaHortic.2018.1208.2 – ident: 8 doi: 10.1016/S0304-4238(98)00177-0 – ident: 42 – ident: 17 doi: 10.1046/j.1365-313x.2001.00962.x – ident: 11 – ident: 19 – volume: 49 start-page: 225 issn: 0031-9422 year: 1998 ident: 3 publication-title: Phytochemistry doi: 10.1016/S0031-9422(97)01051-0 – ident: 15 – ident: 37 doi: 10.1371/journal.pone.0113738 – ident: 43 doi: 10.1016/j.scienta.2013.07.029 – volume: 55 start-page: 937 issn: 0031-9422 year: 2000 ident: 32 publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)00263-6 – ident: 20 doi: 10.2503/jjshs.44.161 – ident: 25 – ident: 4 doi: 10.1111/j.1469-8137.2011.03687.x |
SSID | ssj0001466532 |
Score | 2.216059 |
Snippet | Bud-mutation carnation cultivars of the “MINAMI series” have a diversity of flower color in which the directions of bud sports are recorded. ‘Poly Minami’,... |
SourceID | proquest crossref jstage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 116 |
SubjectTerms | acyanic color Biosynthesis bud sports Chalcone isomerase Citrus fruits Color Coloration Cultivars cyanic color Dianthus caryophyllus flavonoid biosynthesis-related genes Flavonoids Gene expression Genes Glucosyltransferase Glutathione Glutathione transferase Lemons Malate Mutation Petals Pigments Transportation |
Title | Analysis of Flower Color Variation in Carnation (Dianthus caryophyllus L.) Cultivars Derived from Continuous Bud Mutations |
URI | https://www.jstage.jst.go.jp/article/hortj/88/1/88_UTD-007/_article/-char/en https://www.proquest.com/docview/2239617241 |
Volume | 88 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | The Horticulture Journal, 2019, Vol.88(1), pp.116-128 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfK4AEeEJ-iMJAfEAKNdEmWponEy9ioKrYhIVq0t8h2nDVt16AsAW1_Mn8Fd7bjphtIDF6sxrYiN_fL5Xen-yDkZT-QPJNe6CAdd4BSCydK08zhAibDFAhuhtnIR5_C0ST4eNw_7nR-tqKW6or3xMVv80r-RaowB3LFLNlrSNbeFCbgN8gXRpAwjH8l43ZFkeEC-52hI6Aot76CBcyaMMY9Zlx-yCb3AQ7VtFYlqc8LeMaLBVwcYraVKq-ZfwdLF7RQCVow1cknWMAqX9YYK_u-TreO6qrl5Zut0DYqyqaSR5Nutgo6LEoEhfLLjtg5WPrWC83K-jR3DtgPdsZ0D-0xm7O53YBXp7Vqh4QrcpaXdm1Yz3U77S8yz8U0b_swWjpS5b8BK8Bum2txqq0jm6oozTugdCMQEwzzcrUil-05EyVrlHsUXQGx1tSeF7Y--p7OUL_8PQF-iHUtpnCYWW8y3ndc3aL3UoluA4BE7UuiKPFwgP0JFoRuVjGNDlB7g9z0waTBbhsHn6OVPzAIw77qp2f_my4Ji2fYXjvBGoW6NQMr4uQqlVD8aHyP3DXyprv6GPdJRy4fkDu7J2UDiYfkosErLTKq8UoVXqnFK82X1OKVvm7QSttopYe9N9RilRqsUsQqXWGVAlapxeojMhl-GO-NHNP7wxFA4StHDkLuSxEzzx9ILBmUuankMXNBtXDmRzEmWDMw1vt8hwcilJ7wZZ-lfOCCyZIFO4_JxrJYyieEwhIPBnGcpYEfCI_zbBAJJvyUAXvPWNolb5vHmQhTGB_7sywSMJDx6Ru5Gnl2ySu7_ZuuCPOnje-0bOy2a-GkSzYbiSZG55wlQOZjtDkC7-n_3f0ZuY0vonYmbpKNqqzlc6DXFX-hcPkLAHDi8Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+Flower+Color+Variation+in+Carnation+%28Dianthus+caryophyllus+L.%29+Cultivars+Derived+from+Continuous+Bud+Mutations&rft.jtitle=The+Horticulture+Journal&rft.au=Morimoto%2C+Hayato&rft.au=Narumi-Kawasaki%2C+Takako&rft.au=Takamura%2C+Takejiro&rft.au=Fukai%2C+Seiichi&rft.date=2019&rft.pub=The+Japanese+Society+for+Horticultural+Science&rft.issn=2189-0102&rft.eissn=2189-0110&rft.volume=88&rft.issue=1&rft.spage=116&rft.epage=128&rft_id=info:doi/10.2503%2Fhortj.UTD-007&rft.externalDocID=article_hortj_88_1_88_UTD_007_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2189-0102&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2189-0102&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2189-0102&client=summon |