Causal inference in economics and marketing

This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 113; no. 27; pp. 7310 - 7315
Main Author Varian, Hal R.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 05.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
AbstractList This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference.
Author Varian, Hal R.
Author_xml – sequence: 1
  givenname: Hal R.
  surname: Varian
  fullname: Varian, Hal R.
  organization: Economics Team, Google, Inc., Mountain View, CA 94043
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27382144$$D View this record in MEDLINE/PubMed
BookMark eNpVkM1Lw0AQxRep2A89e1J6FCR2NrvJ7l4EKX5BwYuel81mUlOT3ZpNBP97U1pbPc3A-82bxxuTgfMOCTmncENBsNnamXBDEwpcKErZERlRUDRKuYIBGQHEIpI85kMyDmEFACqRcEKGsWAyppyPyPXcdMFU09IV2KCz2G9TtN75urRhalw-rU3zgW3plqfkuDBVwLPdnJC3h_vX-VO0eHl8nt8tIptQ3kbWClAsT5mUPFEgslSKNMmAosokFsLkPabSzDBmWK5i4Enaw0ogjXOOnE3I7dZ33WU15hZd25hKr5uyj_KtvSn1f8WV73rpvzRXnCZAe4OrnUHjPzsMra7LYLGqjEPfBU0lxFywWLEenW1R2_gQGiz2byjoTcV6U7E-VNxfXP5Nt-d_O-2Biy2wCq1vDnrKBaQyYT-dD4H5
CitedBy_id crossref_primary_10_1016_j_socscimed_2019_01_001
crossref_primary_10_1080_01621459_2020_1796393
crossref_primary_10_1080_15551393_2021_2021081
crossref_primary_10_1103_PhysRevPhysEducRes_17_020118
crossref_primary_10_1214_21_AOAS1493
crossref_primary_10_1016_j_jbi_2021_103940
crossref_primary_10_1103_PhysRevA_106_062425
crossref_primary_10_1007_s40822_021_00170_9
crossref_primary_10_1016_j_csda_2018_11_002
crossref_primary_10_1177_1042258718760841
crossref_primary_10_2139_ssrn_3867326
crossref_primary_10_1007_s10516_018_9377_3
crossref_primary_10_1016_j_ijpe_2023_108798
crossref_primary_10_1016_j_jbusvent_2019_02_001
crossref_primary_10_1080_0960085X_2020_1808540
crossref_primary_10_1111_hequ_12246
crossref_primary_10_2139_ssrn_3788349
crossref_primary_10_2139_ssrn_3003283
crossref_primary_10_1287_isre_2019_0897
crossref_primary_10_1371_journal_pone_0254012
crossref_primary_10_2139_ssrn_3441638
crossref_primary_10_1016_j_leaqua_2023_101695
crossref_primary_10_1002_aic_17986
crossref_primary_10_1007_s11002_022_09654_3
crossref_primary_10_2139_ssrn_3258697
crossref_primary_10_2139_ssrn_4315389
crossref_primary_10_3390_aerospace9050250
crossref_primary_10_1002_agr_21899
crossref_primary_10_1016_j_irfa_2023_102627
crossref_primary_10_1186_s12874_021_01383_x
crossref_primary_10_1016_j_envsoft_2023_105929
crossref_primary_10_1086_724518
crossref_primary_10_1086_710606
crossref_primary_10_1214_19_STS713
crossref_primary_10_1016_j_resconrec_2023_106914
crossref_primary_10_1038_s43588_020_00005_8
crossref_primary_10_33818_ier_337657
crossref_primary_10_1007_s12564_023_09916_3
crossref_primary_10_1016_j_jebo_2021_11_024
crossref_primary_10_2139_ssrn_3736466
crossref_primary_10_1016_j_jeconom_2022_07_006
crossref_primary_10_1016_j_regsciurbeco_2021_103752
crossref_primary_10_1057_s41272_018_00177_z
crossref_primary_10_1103_PhysRevPhysEducRes_19_020160
crossref_primary_10_1108_JIMA_05_2019_0113
crossref_primary_10_1016_j_eneco_2017_11_019
crossref_primary_10_1016_j_neunet_2021_09_003
crossref_primary_10_1016_j_eiar_2022_106929
crossref_primary_10_1016_j_jretconser_2022_103141
crossref_primary_10_1093_jeea_jvac007
crossref_primary_10_1186_s12874_023_02058_5
crossref_primary_10_1007_s10645_023_09418_y
crossref_primary_10_3390_bdcc5020022
crossref_primary_10_1016_j_socscimed_2022_114879
crossref_primary_10_2139_ssrn_3372388
crossref_primary_10_1093_jn_nxab129
crossref_primary_10_1111_exsy_12502
crossref_primary_10_2139_ssrn_2888471
crossref_primary_10_1140_epjds_s13688_022_00361_7
crossref_primary_10_1002_mde_3905
crossref_primary_10_1007_s12571_021_01190_8
crossref_primary_10_1016_j_automatica_2019_01_022
crossref_primary_10_1016_j_ijpe_2021_108206
crossref_primary_10_1016_j_joi_2023_101436
crossref_primary_10_1017_S1049096523000732
crossref_primary_10_3390_math9212708
crossref_primary_10_2139_ssrn_3011533
crossref_primary_10_2478_bile_2019_0002
crossref_primary_10_1016_j_jpolmod_2022_08_004
crossref_primary_10_1080_23737484_2019_1694459
crossref_primary_10_1126_sciadv_1602232
crossref_primary_10_1016_j_jeem_2021_102589
crossref_primary_10_1109_ACCESS_2021_3064264
crossref_primary_10_1007_s00148_021_00857_y
crossref_primary_10_1016_j_jeem_2023_102901
crossref_primary_10_1016_j_procs_2019_11_285
crossref_primary_10_2139_ssrn_3373705
crossref_primary_10_1021_acs_est_1c02204
crossref_primary_10_1109_TNNLS_2021_3118542
crossref_primary_10_1016_j_ejor_2021_05_045
crossref_primary_10_1016_j_spc_2022_06_027
crossref_primary_10_3389_fdata_2023_1128649
crossref_primary_10_1177_0022243720907578
crossref_primary_10_1145_3441452
crossref_primary_10_1016_j_jeem_2023_102884
crossref_primary_10_1002_ajpa_23862
crossref_primary_10_1016_j_jpolmod_2024_03_004
crossref_primary_10_1080_10696679_2020_1860683
crossref_primary_10_1139_er_2016_0109
crossref_primary_10_1016_j_scitotenv_2022_156088
crossref_primary_10_1109_TITS_2020_3029537
crossref_primary_10_1007_s40271_016_0201_0
crossref_primary_10_1057_s41270_021_00130_x
crossref_primary_10_6339_24_JDS1118
crossref_primary_10_1073_pnas_1608845113
crossref_primary_10_2478_bile_2018_0004
Cites_doi 10.1162/003355399556061
10.1017/CBO9780511803161
10.1198/jasa.2009.ap08746
10.1214/14-AOAS788
10.1007/978-1-4614-7138-7
10.1515/9781400829828
10.21236/ADA579021
10.1257/jep.25.2.133
10.1037/h0037350
10.1017/CBO9781139025751
10.3982/ECTA12423
ContentType Journal Article
Copyright Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright_xml – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1073/pnas.1510479113
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Causal inference in economics and marketing
EISSN 1091-6490
EndPage 7315
ExternalDocumentID 10_1073_pnas_1510479113
27382144
26470685
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:24:28 EDT 2024
Fri Oct 25 01:30:31 EDT 2024
Fri Aug 23 01:52:22 EDT 2024
Sat Sep 28 08:18:30 EDT 2024
Thu Oct 31 14:05:06 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Keywords marketing
economics
causal inference
machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: H.R.V. wrote the paper.
Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved May 25, 2016 (received for review May 28, 2015)
OpenAccessLink https://www.pnas.org/content/pnas/113/27/7310.full.pdf
PMID 27382144
PQID 1802473293
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501
proquest_miscellaneous_1802473293
crossref_primary_10_1073_pnas_1510479113
pubmed_primary_27382144
jstor_primary_26470685
PublicationCentury 2000
PublicationDate 2016-07-05
PublicationDateYYYYMMDD 2016-07-05
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-05
  day: 05
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2016
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References 21595328 - J Econ Perspect. 2011 Spring;25(2):133-56
e_1_3_2_9_2
e_1_3_2_7_2
Narayanan S (e_1_3_2_14_2) 2014
e_1_3_2_19_2
Reiss PC (e_1_3_2_21_2) 2007
Angrist JD (e_1_3_2_8_2) 2014
Hartmann WR (e_1_3_2_17_2) 2014
e_1_3_2_1_2
Stephens-Davidowitz S (e_1_3_2_18_2) 2014
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
Sivaraman A (e_1_3_2_16_2) 2014
e_1_3_2_4_2
e_1_3_2_23_2
e_1_3_2_13_2
e_1_3_2_24_2
Neyman J (e_1_3_2_6_2) 1923; 5
Valletti T (e_1_3_2_12_2) 2014
Bakshy E (e_1_3_2_15_2) 2014
Box GEP (e_1_3_2_3_2) 2005
Panhans MT (e_1_3_2_22_2) 2015
Card D (e_1_3_2_2_2) 1999
Varian HR (e_1_3_2_20_2) 2014; 28
References_xml – volume: 28
  start-page: 3
  year: 2014
  ident: e_1_3_2_20_2
  article-title: Big data: New tricks for econometrics
  publication-title: J Econ Lit
  contributor:
    fullname: Varian HR
– ident: e_1_3_2_11_2
  doi: 10.1162/003355399556061
– volume-title: Super Bowl Ads. Technical Report
  year: 2014
  ident: e_1_3_2_17_2
  contributor:
    fullname: Hartmann WR
– ident: e_1_3_2_23_2
  doi: 10.1017/CBO9780511803161
– start-page: 1801
  volume-title: Handbook of Labor Economics
  year: 1999
  ident: e_1_3_2_2_2
  contributor:
    fullname: Card D
– volume: 5
  start-page: 465
  year: 1923
  ident: e_1_3_2_6_2
  article-title: On the application of probability theory to agricultural experiments
  publication-title: Stat Sci
  contributor:
    fullname: Neyman J
– ident: e_1_3_2_10_2
  doi: 10.1198/jasa.2009.ap08746
– volume-title: Super Returns from the Super Bowl?
  year: 2014
  ident: e_1_3_2_18_2
  contributor:
    fullname: Stephens-Davidowitz S
– ident: e_1_3_2_9_2
  doi: 10.1214/14-AOAS788
– start-page: 479
  volume-title: An experimental study of the learnability of congestion control, Proceedings of the 2014 ACM Conference on SIGCOMM
  year: 2014
  ident: e_1_3_2_16_2
  contributor:
    fullname: Sivaraman A
– ident: e_1_3_2_1_2
  doi: 10.1007/978-1-4614-7138-7
– ident: e_1_3_2_5_2
  doi: 10.1515/9781400829828
– ident: e_1_3_2_24_2
  doi: 10.21236/ADA579021
– volume-title: Position Effects in Search Advertising: A Regression Discontinuity Approach. Technical Report
  year: 2014
  ident: e_1_3_2_14_2
  contributor:
    fullname: Narayanan S
– start-page: 283
  volume-title: Designing and deploying online field experiments. Proceedings of the 23rd ACM Conference on the World Wide Web
  year: 2014
  ident: e_1_3_2_15_2
  contributor:
    fullname: Bakshy E
– ident: e_1_3_2_13_2
  doi: 10.1257/jep.25.2.133
– ident: e_1_3_2_7_2
  doi: 10.1037/h0037350
– volume-title: Mastering ’Metrics: The Path from Cause to Effect
  year: 2014
  ident: e_1_3_2_8_2
  contributor:
    fullname: Angrist JD
– volume-title: The Empirical Economists Toolkit: From Models to Methods. Technical Report
  year: 2015
  ident: e_1_3_2_22_2
  contributor:
    fullname: Panhans MT
– volume-title: Statistics for Experimenters
  year: 2005
  ident: e_1_3_2_3_2
  contributor:
    fullname: Box GEP
– ident: e_1_3_2_4_2
  doi: 10.1017/CBO9781139025751
– ident: e_1_3_2_19_2
  doi: 10.3982/ECTA12423
– volume-title: Speed 2.0. Evaluating Access to Universal Digital Highways. Technical Report
  year: 2014
  ident: e_1_3_2_12_2
  contributor:
    fullname: Valletti T
– volume-title: Handbook of Econometrics
  year: 2007
  ident: e_1_3_2_21_2
  contributor:
    fullname: Reiss PC
SSID ssj0009580
Score 2.5590641
Snippet This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7310
SubjectTerms Physical Sciences
Sackler on Drawing Causal Inference from Big Data
Social Sciences
Title Causal inference in economics and marketing
URI https://www.jstor.org/stable/26470685
https://www.ncbi.nlm.nih.gov/pubmed/27382144
https://search.proquest.com/docview/1802473293
https://pubmed.ncbi.nlm.nih.gov/PMC4941501
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sO3kRp07rLyp4mEi3tkma5ijDMYSJBwe7lTRNceC6Ybf_35e2mU48eSv0BcrXl7wv5H1fAO6Ywq2J1JkXCyPJEdr3JKeZJ2SKBDZXeVjdnzJ9iSYz-jxn8xYwq4WpmvZVuhgUH8tBsXiveivXSzW0fWLD1-mICiw7fjBsQxsT1G7Rd067ca07CXH5pSG1fj6cDNeFLAdY4oytehCYK3SMMMWYhu1Vpbox8S_K-btz8kcpGh_BYcMh3cf6W7vQ0sUxdJtZWrr9xkr6_gQeRnJbYujCyvrwydWNFrl0ZZG5Syt7PoXZ-OltNPGa6xE8hSxn4ynFfUEynEAxZbjHTSNc2VjqB1qksc65zDBMRKkkRJJMGN_5yPATroMwo5qSHnSKVaHPwc2Zr7lkKqWcUiWEFDmJYplLSZFeBNyBvoUnWdcuGEl1es1JYkBNvkF1oFfBt4tDxsX9KGYO3Fo8E0xhcy4hC73a4uAYiQInSDwcOKvx_R7d_CAH-B7yuwBjj73_BrOmsslusuTi3yMv4QDpUVQ157Ir6Gw-t_oaKcgmvalS7gtQotgE
link.rule.ids 230,315,730,783,787,888,27937,27938,53805,53807
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH4CdoALjAFb2NgyiQMIJU1qO46PUzXUQVtxaBG3yHYcUW1NK9pe-PU8J3GhiAu7RfLzwflsv8_y-z4DnDKNRxNp8iAVVpIjTBRITvNASIUEttBFu3o_pT9IuiN6dcfuNoA5LUxVtK_VOCz_TcJyfF_VVs4muuXqxFo3_Q4VmHaiuLUJH3C9Rswd0ldeu2mtPGnjBkzb1Dn6cNKalXIeYpKzxupxbB_RsdIUaxu2lpfq0sS3SOfr2skXyehyD27dMOoalL_hcqFC_fjK4fHd4_wIuw099X_VzfuwYcpPsN9sAHP_rHGpPj-Ai45czjF07BSD-OWbRuY892WZ-xOnqD6E0eXvYacbNC8vBBoJ1CLQmkeC5Lg2U8rw-KwS3DSZimIjVGoKLnMME4mShEiSC2tpn1jqw03czqmh5Ai2ymlpvoBfsMhwybSinFIthBQFSVJZSEmRucTcgzP337NZbbCRVRfjnGQWrewZLQ-OKlxWcUjmeJSkzIOfDqgMV4e98pClmS6xc4ochBPkNB58roF77t0g7wFfg3QVYJ2311sQqMqBuwHm-L97_oDt7rDfy3p_BtdfYQdZWFLVALNvsLV4WJoTZDoL9b2a108wL_nz
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSIgL-xLWIHEAoWy1HcdHVKjYxQEkxCWyHUdU0FDR9sLXM85SKOLELVLGB-fFnmf5zRuAQ6bxaCJN5iXCluQIE3qS08wTUiGBzXXeKvun3N7FF4_06ok9_Wj1VYr2ter6xVvPL7ovpbay39NBoxML7m_bVGDaCaOgn-XBNMwya5reHNTHfrtJVX3Swk2Ytmjj6sNJ0C_kwMdEZ83Vo8g20rHlKdY6bCI3VfLEv4jnb_3kj4TUWYTnZiqVDuXVHw2Vrz9_uTz-a65LsFDTVPe0ClmGKVOswHK9EQzco9qt-ngVTtpyNMDQblM5iE-uqcudB64sMrfXVFavwWPn_KF94dUdGDyNRGroac1DQTJcowlleIxWMW6eTIWRESoxOZcZholYSUIkyYS1to8tBeImamXUULIOM8V7YTbBzVlouGRaUU6pFkKKnMSJzKWkyGAi7sBR8-3TfmW0kZYX5JykFrH0GzEH1ktsxnFI6ngYJ8yBgwasFFeJvfqQhXkf4eAEuQgnyG0c2KjA-x5do-8An4B1HGAduCffIFilE3cNzta_R-7D3P1ZJ725vLvehnkkY3EpBWY7MDP8GJldJDxDtVf-2l8tWfxz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+inference+in+economics+and+marketing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Varian%2C+Hal+R.&rft.date=2016-07-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=27&rft.spage=7310&rft.epage=7315&rft_id=info:doi/10.1073%2Fpnas.1510479113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1510479113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon