Causal inference in economics and marketing
This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 113; no. 27; pp. 7310 - 7315 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
05.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. |
---|---|
AbstractList | This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal analysis is estimating the counterfactual—a prediction of what would have happened in the absence of the treatment. The powerful techniques used in machine learning may be useful for developing better estimates of the counterfactual, potentially improving causal inference. |
Author | Varian, Hal R. |
Author_xml | – sequence: 1 givenname: Hal R. surname: Varian fullname: Varian, Hal R. organization: Economics Team, Google, Inc., Mountain View, CA 94043 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27382144$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkM1Lw0AQxRep2A89e1J6FCR2NrvJ7l4EKX5BwYuel81mUlOT3ZpNBP97U1pbPc3A-82bxxuTgfMOCTmncENBsNnamXBDEwpcKErZERlRUDRKuYIBGQHEIpI85kMyDmEFACqRcEKGsWAyppyPyPXcdMFU09IV2KCz2G9TtN75urRhalw-rU3zgW3plqfkuDBVwLPdnJC3h_vX-VO0eHl8nt8tIptQ3kbWClAsT5mUPFEgslSKNMmAosokFsLkPabSzDBmWK5i4Enaw0ogjXOOnE3I7dZ33WU15hZd25hKr5uyj_KtvSn1f8WV73rpvzRXnCZAe4OrnUHjPzsMra7LYLGqjEPfBU0lxFywWLEenW1R2_gQGiz2byjoTcV6U7E-VNxfXP5Nt-d_O-2Biy2wCq1vDnrKBaQyYT-dD4H5 |
CitedBy_id | crossref_primary_10_1016_j_socscimed_2019_01_001 crossref_primary_10_1080_01621459_2020_1796393 crossref_primary_10_1080_15551393_2021_2021081 crossref_primary_10_1103_PhysRevPhysEducRes_17_020118 crossref_primary_10_1214_21_AOAS1493 crossref_primary_10_1016_j_jbi_2021_103940 crossref_primary_10_1103_PhysRevA_106_062425 crossref_primary_10_1007_s40822_021_00170_9 crossref_primary_10_1016_j_csda_2018_11_002 crossref_primary_10_1177_1042258718760841 crossref_primary_10_2139_ssrn_3867326 crossref_primary_10_1007_s10516_018_9377_3 crossref_primary_10_1016_j_ijpe_2023_108798 crossref_primary_10_1016_j_jbusvent_2019_02_001 crossref_primary_10_1080_0960085X_2020_1808540 crossref_primary_10_1111_hequ_12246 crossref_primary_10_2139_ssrn_3788349 crossref_primary_10_2139_ssrn_3003283 crossref_primary_10_1287_isre_2019_0897 crossref_primary_10_1371_journal_pone_0254012 crossref_primary_10_2139_ssrn_3441638 crossref_primary_10_1016_j_leaqua_2023_101695 crossref_primary_10_1002_aic_17986 crossref_primary_10_1007_s11002_022_09654_3 crossref_primary_10_2139_ssrn_3258697 crossref_primary_10_2139_ssrn_4315389 crossref_primary_10_3390_aerospace9050250 crossref_primary_10_1002_agr_21899 crossref_primary_10_1016_j_irfa_2023_102627 crossref_primary_10_1186_s12874_021_01383_x crossref_primary_10_1016_j_envsoft_2023_105929 crossref_primary_10_1086_724518 crossref_primary_10_1086_710606 crossref_primary_10_1214_19_STS713 crossref_primary_10_1016_j_resconrec_2023_106914 crossref_primary_10_1038_s43588_020_00005_8 crossref_primary_10_33818_ier_337657 crossref_primary_10_1007_s12564_023_09916_3 crossref_primary_10_1016_j_jebo_2021_11_024 crossref_primary_10_2139_ssrn_3736466 crossref_primary_10_1016_j_jeconom_2022_07_006 crossref_primary_10_1016_j_regsciurbeco_2021_103752 crossref_primary_10_1057_s41272_018_00177_z crossref_primary_10_1103_PhysRevPhysEducRes_19_020160 crossref_primary_10_1108_JIMA_05_2019_0113 crossref_primary_10_1016_j_eneco_2017_11_019 crossref_primary_10_1016_j_neunet_2021_09_003 crossref_primary_10_1016_j_eiar_2022_106929 crossref_primary_10_1016_j_jretconser_2022_103141 crossref_primary_10_1093_jeea_jvac007 crossref_primary_10_1186_s12874_023_02058_5 crossref_primary_10_1007_s10645_023_09418_y crossref_primary_10_3390_bdcc5020022 crossref_primary_10_1016_j_socscimed_2022_114879 crossref_primary_10_2139_ssrn_3372388 crossref_primary_10_1093_jn_nxab129 crossref_primary_10_1111_exsy_12502 crossref_primary_10_2139_ssrn_2888471 crossref_primary_10_1140_epjds_s13688_022_00361_7 crossref_primary_10_1002_mde_3905 crossref_primary_10_1007_s12571_021_01190_8 crossref_primary_10_1016_j_automatica_2019_01_022 crossref_primary_10_1016_j_ijpe_2021_108206 crossref_primary_10_1016_j_joi_2023_101436 crossref_primary_10_1017_S1049096523000732 crossref_primary_10_3390_math9212708 crossref_primary_10_2139_ssrn_3011533 crossref_primary_10_2478_bile_2019_0002 crossref_primary_10_1016_j_jpolmod_2022_08_004 crossref_primary_10_1080_23737484_2019_1694459 crossref_primary_10_1126_sciadv_1602232 crossref_primary_10_1016_j_jeem_2021_102589 crossref_primary_10_1109_ACCESS_2021_3064264 crossref_primary_10_1007_s00148_021_00857_y crossref_primary_10_1016_j_jeem_2023_102901 crossref_primary_10_1016_j_procs_2019_11_285 crossref_primary_10_2139_ssrn_3373705 crossref_primary_10_1021_acs_est_1c02204 crossref_primary_10_1109_TNNLS_2021_3118542 crossref_primary_10_1016_j_ejor_2021_05_045 crossref_primary_10_1016_j_spc_2022_06_027 crossref_primary_10_3389_fdata_2023_1128649 crossref_primary_10_1177_0022243720907578 crossref_primary_10_1145_3441452 crossref_primary_10_1016_j_jeem_2023_102884 crossref_primary_10_1002_ajpa_23862 crossref_primary_10_1016_j_jpolmod_2024_03_004 crossref_primary_10_1080_10696679_2020_1860683 crossref_primary_10_1139_er_2016_0109 crossref_primary_10_1016_j_scitotenv_2022_156088 crossref_primary_10_1109_TITS_2020_3029537 crossref_primary_10_1007_s40271_016_0201_0 crossref_primary_10_1057_s41270_021_00130_x crossref_primary_10_6339_24_JDS1118 crossref_primary_10_1073_pnas_1608845113 crossref_primary_10_2478_bile_2018_0004 |
Cites_doi | 10.1162/003355399556061 10.1017/CBO9780511803161 10.1198/jasa.2009.ap08746 10.1214/14-AOAS788 10.1007/978-1-4614-7138-7 10.1515/9781400829828 10.21236/ADA579021 10.1257/jep.25.2.133 10.1037/h0037350 10.1017/CBO9781139025751 10.3982/ECTA12423 |
ContentType | Journal Article |
Copyright | Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
Copyright_xml | – notice: Volumes 1–89 and 106–113, copyright as a collective work only; author(s) retains copyright to individual articles |
DBID | NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1073/pnas.1510479113 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Causal inference in economics and marketing |
EISSN | 1091-6490 |
EndPage | 7315 |
ExternalDocumentID | 10_1073_pnas_1510479113 27382144 26470685 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV ADULT AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DOOOF DU5 E3Z EBS EJD F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:24:28 EDT 2024 Fri Oct 25 01:30:31 EDT 2024 Fri Aug 23 01:52:22 EDT 2024 Sat Sep 28 08:18:30 EDT 2024 Thu Oct 31 14:05:06 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Keywords | marketing economics causal inference machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-cc7093d638845907b68765b01e9b8ef7ad51496ba33a3d92045663897e12d4e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: H.R.V. wrote the paper. Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved May 25, 2016 (received for review May 28, 2015) |
OpenAccessLink | https://www.pnas.org/content/pnas/113/27/7310.full.pdf |
PMID | 27382144 |
PQID | 1802473293 |
PQPubID | 23479 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4941501 proquest_miscellaneous_1802473293 crossref_primary_10_1073_pnas_1510479113 pubmed_primary_27382144 jstor_primary_26470685 |
PublicationCentury | 2000 |
PublicationDate | 2016-07-05 |
PublicationDateYYYYMMDD | 2016-07-05 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2016 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | 21595328 - J Econ Perspect. 2011 Spring;25(2):133-56 e_1_3_2_9_2 e_1_3_2_7_2 Narayanan S (e_1_3_2_14_2) 2014 e_1_3_2_19_2 Reiss PC (e_1_3_2_21_2) 2007 Angrist JD (e_1_3_2_8_2) 2014 Hartmann WR (e_1_3_2_17_2) 2014 e_1_3_2_1_2 Stephens-Davidowitz S (e_1_3_2_18_2) 2014 e_1_3_2_10_2 e_1_3_2_5_2 e_1_3_2_11_2 Sivaraman A (e_1_3_2_16_2) 2014 e_1_3_2_4_2 e_1_3_2_23_2 e_1_3_2_13_2 e_1_3_2_24_2 Neyman J (e_1_3_2_6_2) 1923; 5 Valletti T (e_1_3_2_12_2) 2014 Bakshy E (e_1_3_2_15_2) 2014 Box GEP (e_1_3_2_3_2) 2005 Panhans MT (e_1_3_2_22_2) 2015 Card D (e_1_3_2_2_2) 1999 Varian HR (e_1_3_2_20_2) 2014; 28 |
References_xml | – volume: 28 start-page: 3 year: 2014 ident: e_1_3_2_20_2 article-title: Big data: New tricks for econometrics publication-title: J Econ Lit contributor: fullname: Varian HR – ident: e_1_3_2_11_2 doi: 10.1162/003355399556061 – volume-title: Super Bowl Ads. Technical Report year: 2014 ident: e_1_3_2_17_2 contributor: fullname: Hartmann WR – ident: e_1_3_2_23_2 doi: 10.1017/CBO9780511803161 – start-page: 1801 volume-title: Handbook of Labor Economics year: 1999 ident: e_1_3_2_2_2 contributor: fullname: Card D – volume: 5 start-page: 465 year: 1923 ident: e_1_3_2_6_2 article-title: On the application of probability theory to agricultural experiments publication-title: Stat Sci contributor: fullname: Neyman J – ident: e_1_3_2_10_2 doi: 10.1198/jasa.2009.ap08746 – volume-title: Super Returns from the Super Bowl? year: 2014 ident: e_1_3_2_18_2 contributor: fullname: Stephens-Davidowitz S – ident: e_1_3_2_9_2 doi: 10.1214/14-AOAS788 – start-page: 479 volume-title: An experimental study of the learnability of congestion control, Proceedings of the 2014 ACM Conference on SIGCOMM year: 2014 ident: e_1_3_2_16_2 contributor: fullname: Sivaraman A – ident: e_1_3_2_1_2 doi: 10.1007/978-1-4614-7138-7 – ident: e_1_3_2_5_2 doi: 10.1515/9781400829828 – ident: e_1_3_2_24_2 doi: 10.21236/ADA579021 – volume-title: Position Effects in Search Advertising: A Regression Discontinuity Approach. Technical Report year: 2014 ident: e_1_3_2_14_2 contributor: fullname: Narayanan S – start-page: 283 volume-title: Designing and deploying online field experiments. Proceedings of the 23rd ACM Conference on the World Wide Web year: 2014 ident: e_1_3_2_15_2 contributor: fullname: Bakshy E – ident: e_1_3_2_13_2 doi: 10.1257/jep.25.2.133 – ident: e_1_3_2_7_2 doi: 10.1037/h0037350 – volume-title: Mastering ’Metrics: The Path from Cause to Effect year: 2014 ident: e_1_3_2_8_2 contributor: fullname: Angrist JD – volume-title: The Empirical Economists Toolkit: From Models to Methods. Technical Report year: 2015 ident: e_1_3_2_22_2 contributor: fullname: Panhans MT – volume-title: Statistics for Experimenters year: 2005 ident: e_1_3_2_3_2 contributor: fullname: Box GEP – ident: e_1_3_2_4_2 doi: 10.1017/CBO9781139025751 – ident: e_1_3_2_19_2 doi: 10.3982/ECTA12423 – volume-title: Speed 2.0. Evaluating Access to Universal Digital Highways. Technical Report year: 2014 ident: e_1_3_2_12_2 contributor: fullname: Valletti T – volume-title: Handbook of Econometrics year: 2007 ident: e_1_3_2_21_2 contributor: fullname: Reiss PC |
SSID | ssj0009580 |
Score | 2.5590641 |
Snippet | This is an elementary introduction to causal inference in economics written for readers familiar with machine learning methods. The critical step in any causal... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7310 |
SubjectTerms | Physical Sciences Sackler on Drawing Causal Inference from Big Data Social Sciences |
Title | Causal inference in economics and marketing |
URI | https://www.jstor.org/stable/26470685 https://www.ncbi.nlm.nih.gov/pubmed/27382144 https://search.proquest.com/docview/1802473293 https://pubmed.ncbi.nlm.nih.gov/PMC4941501 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFH5sO3kRp07rLyp4mEi3tkma5ijDMYSJBwe7lTRNceC6Ybf_35e2mU48eSv0BcrXl7wv5H1fAO6Ywq2J1JkXCyPJEdr3JKeZJ2SKBDZXeVjdnzJ9iSYz-jxn8xYwq4WpmvZVuhgUH8tBsXiveivXSzW0fWLD1-mICiw7fjBsQxsT1G7Rd067ca07CXH5pSG1fj6cDNeFLAdY4oytehCYK3SMMMWYhu1Vpbox8S_K-btz8kcpGh_BYcMh3cf6W7vQ0sUxdJtZWrr9xkr6_gQeRnJbYujCyvrwydWNFrl0ZZG5Syt7PoXZ-OltNPGa6xE8hSxn4ynFfUEynEAxZbjHTSNc2VjqB1qksc65zDBMRKkkRJJMGN_5yPATroMwo5qSHnSKVaHPwc2Zr7lkKqWcUiWEFDmJYplLSZFeBNyBvoUnWdcuGEl1es1JYkBNvkF1oFfBt4tDxsX9KGYO3Fo8E0xhcy4hC73a4uAYiQInSDwcOKvx_R7d_CAH-B7yuwBjj73_BrOmsslusuTi3yMv4QDpUVQ157Ir6Gw-t_oaKcgmvalS7gtQotgE |
link.rule.ids | 230,315,730,783,787,888,27937,27938,53805,53807 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH4CdoALjAFb2NgyiQMIJU1qO46PUzXUQVtxaBG3yHYcUW1NK9pe-PU8J3GhiAu7RfLzwflsv8_y-z4DnDKNRxNp8iAVVpIjTBRITvNASIUEttBFu3o_pT9IuiN6dcfuNoA5LUxVtK_VOCz_TcJyfF_VVs4muuXqxFo3_Q4VmHaiuLUJH3C9Rswd0ldeu2mtPGnjBkzb1Dn6cNKalXIeYpKzxupxbB_RsdIUaxu2lpfq0sS3SOfr2skXyehyD27dMOoalL_hcqFC_fjK4fHd4_wIuw099X_VzfuwYcpPsN9sAHP_rHGpPj-Ai45czjF07BSD-OWbRuY892WZ-xOnqD6E0eXvYacbNC8vBBoJ1CLQmkeC5Lg2U8rw-KwS3DSZimIjVGoKLnMME4mShEiSC2tpn1jqw03czqmh5Ai2ymlpvoBfsMhwybSinFIthBQFSVJZSEmRucTcgzP337NZbbCRVRfjnGQWrewZLQ-OKlxWcUjmeJSkzIOfDqgMV4e98pClmS6xc4ochBPkNB58roF77t0g7wFfg3QVYJ2311sQqMqBuwHm-L97_oDt7rDfy3p_BtdfYQdZWFLVALNvsLV4WJoTZDoL9b2a108wL_nz |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xSIgL-xLWIHEAoWy1HcdHVKjYxQEkxCWyHUdU0FDR9sLXM85SKOLELVLGB-fFnmf5zRuAQ6bxaCJN5iXCluQIE3qS08wTUiGBzXXeKvun3N7FF4_06ok9_Wj1VYr2ter6xVvPL7ovpbay39NBoxML7m_bVGDaCaOgn-XBNMwya5reHNTHfrtJVX3Swk2Ytmjj6sNJ0C_kwMdEZ83Vo8g20rHlKdY6bCI3VfLEv4jnb_3kj4TUWYTnZiqVDuXVHw2Vrz9_uTz-a65LsFDTVPe0ClmGKVOswHK9EQzco9qt-ngVTtpyNMDQblM5iE-uqcudB64sMrfXVFavwWPn_KF94dUdGDyNRGroac1DQTJcowlleIxWMW6eTIWRESoxOZcZholYSUIkyYS1to8tBeImamXUULIOM8V7YTbBzVlouGRaUU6pFkKKnMSJzKWkyGAi7sBR8-3TfmW0kZYX5JykFrH0GzEH1ktsxnFI6ngYJ8yBgwasFFeJvfqQhXkf4eAEuQgnyG0c2KjA-x5do-8An4B1HGAduCffIFilE3cNzta_R-7D3P1ZJ725vLvehnkkY3EpBWY7MDP8GJldJDxDtVf-2l8tWfxz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causal+inference+in+economics+and+marketing&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Varian%2C+Hal+R.&rft.date=2016-07-05&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=113&rft.issue=27&rft.spage=7310&rft.epage=7315&rft_id=info:doi/10.1073%2Fpnas.1510479113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_1510479113 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |