Rapid dynamics of electrophysiological connectome states are heritable
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognitio...
Saved in:
Published in | Harvard data science review Vol. 8; no. 4; pp. 1065 - 1088 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
MIT Press
10.12.2024
MIT Press Journals, The The MIT Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (
= 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing.
In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features. |
---|---|
AbstractList | Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing. Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing. Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (Author Summary: In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features. Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features. Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features. |
Author | Wilson, Sylia Hunt, Ruskin H. Sadaghiani, Sepideh Thomas, Kathleen M. Iacono, William G. Malone, Stephen M. Harper, Jeremy Jun, Suhnyoung Alderson, Thomas H. |
AuthorAffiliation | Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA |
AuthorAffiliation_xml | – name: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA – name: Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA – name: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA – name: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA – name: Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA |
Author_xml | – sequence: 1 givenname: Suhnyoung orcidid: 0000-0001-7849-0837 surname: Jun fullname: Jun, Suhnyoung email: suhnyoung.jun@gmail.com organization: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA – sequence: 2 givenname: Thomas H. orcidid: 0000-0002-0507-6763 surname: Alderson fullname: Alderson, Thomas H. organization: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA – sequence: 3 givenname: Stephen M. surname: Malone fullname: Malone, Stephen M. organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 4 givenname: Jeremy orcidid: 0000-0001-8994-6879 surname: Harper fullname: Harper, Jeremy organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 5 givenname: Ruskin H. surname: Hunt fullname: Hunt, Ruskin H. organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 6 givenname: Kathleen M. surname: Thomas fullname: Thomas, Kathleen M. organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 7 givenname: William G. orcidid: 0000-0002-3194-3090 surname: Iacono fullname: Iacono, William G. organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 8 givenname: Sylia surname: Wilson fullname: Wilson, Sylia organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA – sequence: 9 givenname: Sepideh orcidid: 0000-0001-8800-3959 surname: Sadaghiani fullname: Sadaghiani, Sepideh organization: Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39735507$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ksFvFCEUxiemxtbam2cziRcPrvKAgeFkTGO1SRMTo2fCMG922TCwAtuk_71sd2u2jZ4gH7_38fEeL5uTEAM2zWsgHwAE_RiwBG00IUzBs-aMckkXIDs4OdqfNhc5rwkhFCgQ3r9oTpmSrOuIPGuufpiNG9vxLpjZ2dzGqUWPtqS4Wd1lF31cOmt8a2MIVY4ztrmYgrk1CdsVJlfM4PFV83wyPuPFYT1vfl19-Xn5bXHz_ev15eebhe2Al4XtTQ9qUpL3lk8jExxRMUGkrbLl0EtUEkbVT6KHkQg2dNRSAcMIRk0M2Xlzvfcdo1nrTXKzSXc6GqfvhZiW2qTirEdtBJ04KJiYAE4GooZxIMh398iOGFm9Pu29NtthxtFiKMn4R6aPT4Jb6WW81bXzknPCqsO7g0OKv7eYi55dtui9CRi3WTPoCLBedF1F3z5B13GbQu3VPdV3QAWp1JvjSH-zPMyrAnQP2BRzTjhpWwdQXNwldF4D2aWj-vhf1KL3T4oefP-DH141u6OU_0T_AOOXxvQ |
CitedBy_id | crossref_primary_10_1162_netn_a_00390 crossref_primary_10_3390_brainsci14090901 |
Cites_doi | 10.1523/JNEUROSCI.0991-17.2017 10.1038/s41598-020-77336-z 10.1162/neco.1995.7.6.1129 10.1016/j.neuroimage.2015.03.071 10.1016/j.neuroimage.2022.119274 10.1073/pnas.1007841107 10.1002/gepi.1370120510 10.1016/j.neuroimage.2015.11.047 10.1375/twin.8.3.201 10.1093/cercor/bhaa391 10.1016/j.neuroimage.2012.03.048 10.1017/thg.2013.55 10.1016/S1388-2457(00)00553-8 10.1093/bib/3.2.119 10.1111/psyp.13038 10.1007/BF02294359 10.1111/j.1469-8986.2010.01061.x 10.1002/hbm.23362 10.1016/j.neuroimage.2019.05.060 10.1016/j.cub.2015.03.049 10.1002/hbm.20468 10.1162/netn_a_00172 10.3389/fpsyt.2016.00022 10.1162/netn_a_00042 10.1038/nn.4108 10.1016/j.tics.2012.10.007 10.3389/fnins.2019.00076 10.1162/netn_a_00114 10.1109/79.962275 10.1073/pnas.0913863107 10.1016/j.neuroimage.2016.05.070 10.1016/j.neuroimage.2015.07.048 10.1017/S0954579499002369 10.1007/s10548-017-0565-z 10.1126/science.281.5376.559 10.3389/fpsyg.2011.00204 10.1073/pnas.1420687112 10.1016/j.neuroimage.2006.01.021 10.1073/pnas.1705120114 10.4249/scholarpedia.7632 10.1016/j.neuroimage.2020.117674 10.1016/j.neuroimage.2017.08.055 10.1016/j.ijpsycho.2005.10.004 10.1109/ACCESS.2019.2931624 10.7554/eLife.20178 10.1023/A:1013345411774 10.1073/pnas.1112685108 10.1016/j.neuroimage.2010.06.041 10.1016/j.neuroimage.2009.10.003 10.1126/sciadv.add2870 10.1017/thg.2019.107 10.1016/j.neuroimage.2017.08.010 10.1016/j.neuroimage.2017.09.036 10.1016/j.neuroimage.2015.02.050 10.1038/s41467-021-22491-8 10.1016/j.neuroimage.2021.118850 10.1016/j.jneumeth.2003.10.009 10.1038/nn.3101 10.1016/j.neuroimage.2018.09.082 10.1016/j.tics.2016.09.004 10.1002/hbm.22140 10.7554/eLife.01867 10.1080/01621459.1993.10476408 10.1101/2020.05.05.079749 10.1002/hbm.20156 10.1016/j.biopsycho.2007.03.006 10.1016/j.neuroimage.2015.05.062 10.1162/netn_a_00390 10.1103/PhysRevE.74.036104 10.1016/j.neuroimage.2021.118331 10.1111/j.1469-8986.2005.00352.x 10.1023/A:1021637328512 10.1186/1475-925X-9-45 10.1016/j.neuroimage.2021.117864 10.1016/j.neuroimage.2013.12.066 10.1152/jn.00338.2011 10.1016/j.euroneuro.2015.01.001 10.3389/fnins.2018.00603 10.1038/6365 10.1016/j.neuroscience.2016.09.034 10.1016/j.neuroimage.2020.116998 10.1016/j.neuroimage.2016.12.061 10.1038/s41583-023-00675-z 10.3389/fnins.2014.00258 10.1155/2011/879716 10.1375/twin.12.5.489 10.2307/1130201 |
ContentType | Journal Article |
Copyright | 2024 Massachusetts Institute of Technology. Copyright MIT Press Journals, The 2024 2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology |
Copyright_xml | – notice: 2024 Massachusetts Institute of Technology. – notice: Copyright MIT Press Journals, The 2024 – notice: 2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- LK8 M7P P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1162/netn_a_00391 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Biological Sciences Biological Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2472-1751 2644-2353 |
EndPage | 1088 |
ExternalDocumentID | oai_doaj_org_article_a62f4191f36140b09bdb0e419c4750a7 PMC11674403 39735507 10_1162_netn_a_00391 netn_a_00391.pdf |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01 DA036216 – fundername: National Institute of Mental Health and Neurosciences grantid: 1R01MH116226 – fundername: National Institutes of Health grantid: R37 DA05147 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: P41 1S10OD017974-01 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: P41 EB027061 – fundername: NIDA NIH HHS grantid: R01 DA036216 – fundername: NIMH NIH HHS grantid: R01 MH116226 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIH HHS grantid: S10 OD017974 – fundername: NIDA NIH HHS grantid: R37 DA005147 – fundername: ; grantid: R01 DA036216 – fundername: ; grantid: P41 EB027061 – fundername: ; grantid: P41 1S10OD017974-01 – fundername: ; grantid: 1R01MH116226 – fundername: ; grantid: R37 DA05147 |
GroupedDBID | 53G AAFWJ ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU EBS GROUPED_DOAJ HCIFZ HYE JMNJE K7- M7P MCG MINIK M~E OK1 PGMZT PHGZM PHGZT PIMPY RMI RPM AAYXX CITATION EJD NPM 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ JQ2 LK8 P62 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO 7X8 5PM FRP |
ID | FETCH-LOGICAL-c514t-c8a819f9748c4fd364ee93607c819c4187e971d98f681d063b52c261bd1a9f3e3 |
IEDL.DBID | DOA |
ISSN | 2472-1751 |
IngestDate | Wed Aug 27 01:24:57 EDT 2025 Thu Aug 21 18:29:45 EDT 2025 Fri Jul 11 07:32:43 EDT 2025 Sat Aug 23 13:06:51 EDT 2025 Sun Jan 05 01:57:23 EST 2025 Thu Apr 24 23:02:39 EDT 2025 Tue Jul 01 03:20:40 EDT 2025 Tue May 06 12:10:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Electrophysiology Dynamic functional connectivity Heritability Hidden Markov modeling Twin study Variance component modeling |
Language | English |
License | 2024 Massachusetts Institute of Technology. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-c8a819f9748c4fd364ee93607c819c4187e971d98f681d063b52c261bd1a9f3e3 |
Notes | 2024 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: The authors have declared that no competing interests exist. Handling Editor: Olaf Sporns |
ORCID | 0000-0001-8994-6879 0000-0001-7849-0837 0000-0002-3194-3090 0000-0002-0507-6763 0000-0001-8800-3959 |
OpenAccessLink | https://doaj.org/article/a62f4191f36140b09bdb0e419c4750a7 |
PMID | 39735507 |
PQID | 3150851260 |
PQPubID | 6535871 |
PageCount | 24 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a62f4191f36140b09bdb0e419c4750a7 proquest_miscellaneous_3150138655 proquest_journals_3150851260 pubmed_primary_39735507 crossref_primary_10_1162_netn_a_00391 crossref_citationtrail_10_1162_netn_a_00391 mit_journals_10_1162_netn_a_00391 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11674403 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-10 |
PublicationDateYYYYMMDD | 2024-12-10 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA |
PublicationPlace_xml | – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA – name: United States – name: Cambridge – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu |
PublicationTitle | Harvard data science review |
PublicationTitleAlternate | Netw Neurosci |
PublicationYear | 2024 |
Publisher | MIT Press MIT Press Journals, The The MIT Press |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The – name: The MIT Press |
References | Rubinov (2024121918191723200_bib56) 2010; 52 Falconer (2024121918191723200_bib23) 1990 Tenke (2024121918191723200_bib74) 2001; 112 Hipp (2024121918191723200_bib30) 2015; 25 Quinn (2024121918191723200_bib52) 2018; 12 Wirsich (2024121918191723200_bib85) 2021; 231 Wirsich (2024121918191723200_bib86) 2017; 161 Coquelet (2024121918191723200_bib15) 2022; 247 Palva (2024121918191723200_bib48) 2011; 2 Sadaghiani (2024121918191723200_bib60) 2020; 4 Eichenbaum (2024121918191723200_bib22) 2021; 5 Schutte (2024121918191723200_bib63) 2013; 16 Goldman-Rakic (2024121918191723200_bib24) 1987; 58 Colclough (2024121918191723200_bib12) 2015; 117 Gschwind (2024121918191723200_bib28) 2015; 117 Gratton (2024121918191723200_bib27) 2018; 55 Kong (2024121918191723200_bib43) 2019; 7 Brookes (2024121918191723200_bib7) 2011; 108 Tadel (2024121918191723200_bib73) 2019; 13 Vidaurre (2024121918191723200_bib82) 2017; 114 Douw (2024121918191723200_bib21) 2016; 339 Sareen (2024121918191723200_bib62) 2021; 240 Cohen (2024121918191723200_bib11) 2018; 180 Posthuma (2024121918191723200_bib49) 2005; 26 Smit (2024121918191723200_bib70) 2005; 42 Yeo (2024121918191723200_bib88) 2011; 106 Van De Ville (2024121918191723200_bib80) 2010; 107 Baker (2024121918191723200_bib3) 2014; 3 Lehmann (2024121918191723200_bib44) 2009; 4 Posthuma (2024121918191723200_bib50) 2001; 31 Sinclair (2024121918191723200_bib67) 2015; 121 Klaassens (2024121918191723200_bib40) 2017; 38 Keyes (2024121918191723200_bib39) 2009; 12 Thompson (2024121918191723200_bib75) 2013; 34 Hipp (2024121918191723200_bib29) 2012; 15 Iacono (2024121918191723200_bib32) 1999; 11 Sadaghiani (2024121918191723200_bib58) 2017; 37 Colclough (2024121918191723200_bib14) 2016; 138 Karapanagiotidis (2024121918191723200_bib36) 2020; 10 Wilson (2024121918191723200_bib83) 2019; 22 Santarnecchi (2024121918191723200_bib61) 2017; 30 Sadaghiani (2024121918191723200_bib59) 2015; 112 Shine (2024121918191723200_bib65) 2018; 180 Rieger (2024121918191723200_bib53) 2016; 7 Bell (2024121918191723200_bib5) 1995; 7 Vanderhaeghen (2024121918191723200_bib79) 2023; 24 de Rojas (2024121918191723200_bib19) 2021; 12 Jun (2024121918191723200_bib34) 2024; 8 Sitnikova (2024121918191723200_bib68) 2020 Brookes (2024121918191723200_bib6) 2014; 91 Gould (2024121918191723200_bib25) 1999; 2 Chorlian (2024121918191723200_bib10) 2007; 75 Wirsich (2024121918191723200_bib84) 2020; 219 Brookes (2024121918191723200_bib8) 2012; 63 Gramfort (2024121918191723200_bib26) 2010; 9 Rousseeuw (2024121918191723200_bib55) 1993; 88 Akaike (2024121918191723200_bib1) 1987; 52 Lord (2024121918191723200_bib45) 2019; 199 Mognon (2024121918191723200_bib46) 2011; 48 Yashin (2024121918191723200_bib87) 1995; 12 Hunyadi (2024121918191723200_bib31) 2019; 185 Tadel (2024121918191723200_bib72) 2011; 2011 Tost (2024121918191723200_bib76) 2015; 18 Jun (2024121918191723200_bib33) 2022; 256 Keller (2024121918191723200_bib38) 2005; 8 van Beijsterveldt (2024121918191723200_bib77) 1998; 28 Klimesch (2024121918191723200_bib41) 2012; 16 Shine (2024121918191723200_bib66) 2018; 2 Catalano (2024121918191723200_bib9) 1998; 281 Smit (2024121918191723200_bib69) 2006; 61 Zalesky (2024121918191723200_bib89) 2010; 53 Smit (2024121918191723200_bib71) 2008; 29 Baillet (2024121918191723200_bib2) 2001; 18 Newman (2024121918191723200_bib47) 2006; 74 Sadaghiani (2024121918191723200_bib57) 2016; 20 Rijsdijk (2024121918191723200_bib54) 2002; 3 Colclough (2024121918191723200_bib13) 2017; 6 Sha (2024121918191723200_bib64) 2023; 9 de Pasquale (2024121918191723200_bib18) 2010; 107 Kochunov (2024121918191723200_bib42) 2015; 111 Preti (2024121918191723200_bib51) 2017; 160 van Beijsterveldt (2024121918191723200_bib78) 1996; 58 Deligianni (2024121918191723200_bib16) 2014; 8 Desikan (2024121918191723200_bib20) 2006; 31 Barber (2024121918191723200_bib4) 2021; 31 Delorme (2024121918191723200_bib17) 2004; 134 Kabbara (2024121918191723200_bib35) 2021; 227 Kautzky (2024121918191723200_bib37) 2015; 25 Vidaurre (2024121918191723200_bib81) 2016; 126 38293031 - bioRxiv. 2024 Jan 27:2024.01.15.575731. doi: 10.1101/2024.01.15.575731 |
References_xml | – volume: 37 start-page: 9657 issue: 40 year: 2017 ident: 2024121918191723200_bib58 article-title: Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control publication-title: Journal of Neuroscience doi: 10.1523/JNEUROSCI.0991-17.2017 – volume: 10 start-page: 21121 issue: 1 year: 2020 ident: 2024121918191723200_bib36 article-title: The psychological correlates of distinct neural states occurring during wakeful rest publication-title: Scientific Reports doi: 10.1038/s41598-020-77336-z – volume: 7 start-page: 1129 issue: 6 year: 1995 ident: 2024121918191723200_bib5 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation doi: 10.1162/neco.1995.7.6.1129 – volume: 117 start-page: 439 year: 2015 ident: 2024121918191723200_bib12 article-title: A symmetric multivariate leakage correction for MEG connectomes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.071 – volume: 256 start-page: 119274 year: 2022 ident: 2024121918191723200_bib33 article-title: Dynamic trajectories of connectome state transitions are heritable publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119274 – volume: 107 start-page: 18179 issue: 42 year: 2010 ident: 2024121918191723200_bib80 article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1007841107 – volume: 12 start-page: 529 issue: 5 year: 1995 ident: 2024121918191723200_bib87 article-title: Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins publication-title: Genetic Epidemiology doi: 10.1002/gepi.1370120510 – volume: 126 start-page: 81 year: 2016 ident: 2024121918191723200_bib81 article-title: Spectrally resolved fast transient brain states in electrophysiological data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.11.047 – volume: 8 start-page: 201 issue: 3 year: 2005 ident: 2024121918191723200_bib38 article-title: Quantifying and addressing parameter indeterminacy in the classical twin design publication-title: Twin Research and Human Genetics doi: 10.1375/twin.8.3.201 – volume: 31 start-page: 2834 issue: 6 year: 2021 ident: 2024121918191723200_bib4 article-title: Heritability of functional connectivity in resting state: Assessment of the dynamic mean, dynamic variance, and static connectivity across networks publication-title: Cerebral Cortex doi: 10.1093/cercor/bhaa391 – volume: 63 start-page: 910 issue: 2 year: 2012 ident: 2024121918191723200_bib8 article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.03.048 – volume: 16 start-page: 962 issue: 5 year: 2013 ident: 2024121918191723200_bib63 article-title: Heritability of resting state EEG functional connectivity patterns publication-title: Twin Research and Human Genetics doi: 10.1017/thg.2013.55 – volume: 112 start-page: 545 issue: 3 year: 2001 ident: 2024121918191723200_bib74 article-title: A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(00)00553-8 – volume: 3 start-page: 119 issue: 2 year: 2002 ident: 2024121918191723200_bib54 article-title: Analytic approaches to twin data using structural equation models publication-title: Briefings in Bioinformatics doi: 10.1093/bib/3.2.119 – volume: 55 start-page: e13038 issue: 3 year: 2018 ident: 2024121918191723200_bib27 article-title: Brain reflections: A circuit-based framework for understanding information processing and cognitive control publication-title: Psychophysiology doi: 10.1111/psyp.13038 – volume: 52 start-page: 317 issue: 3 year: 1987 ident: 2024121918191723200_bib1 article-title: Factor analysis and AIC publication-title: Psychometrika doi: 10.1007/BF02294359 – volume: 48 start-page: 229 issue: 2 year: 2011 ident: 2024121918191723200_bib46 article-title: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2010.01061.x – volume: 38 start-page: 308 issue: 1 year: 2017 ident: 2024121918191723200_bib40 article-title: Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation publication-title: Human Brain Mapping doi: 10.1002/hbm.23362 – volume: 199 start-page: 127 year: 2019 ident: 2024121918191723200_bib45 article-title: Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin publication-title: NeuroImage doi: 10.1016/j.neuroimage.2019.05.060 – volume: 25 start-page: 1368 issue: 10 year: 2015 ident: 2024121918191723200_bib30 article-title: BOLD fMRI correlation reflects frequency-specific neuronal correlation publication-title: Current Biology doi: 10.1016/j.cub.2015.03.049 – volume: 29 start-page: 1368 issue: 12 year: 2008 ident: 2024121918191723200_bib71 article-title: Heritability of “small-world” networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity publication-title: Human Brain Mapping doi: 10.1002/hbm.20468 – volume: 5 start-page: 145 issue: 1 year: 2021 ident: 2024121918191723200_bib22 article-title: Differential contributions of static and time-varying functional connectivity to human behavior publication-title: Network Neuroscience doi: 10.1162/netn_a_00172 – volume: 7 start-page: 22 year: 2016 ident: 2024121918191723200_bib53 article-title: 15 years of microstate research in schizophrenia—Where are we? A meta-analysis publication-title: Frontiers in Psychiatry doi: 10.3389/fpsyt.2016.00022 – volume: 2 start-page: 381 issue: 3 year: 2018 ident: 2024121918191723200_bib66 article-title: Catecholaminergic manipulation alters dynamic network topology across cognitive states publication-title: Network Neuroscience doi: 10.1162/netn_a_00042 – volume: 18 start-page: 1421 issue: 10 year: 2015 ident: 2024121918191723200_bib76 article-title: Environmental influence in the brain, human welfare and mental health publication-title: Nature Neuroscience doi: 10.1038/nn.4108 – volume: 16 start-page: 606 issue: 12 year: 2012 ident: 2024121918191723200_bib41 article-title: Alpha-band oscillations, attention, and controlled access to stored information publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2012.10.007 – volume: 13 start-page: 76 year: 2019 ident: 2024121918191723200_bib73 article-title: MEG/EEG group analysis with brainstorm publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2019.00076 – volume: 4 start-page: 1 issue: 1 year: 2020 ident: 2024121918191723200_bib60 article-title: Intrinsic connectome organization across temporal scales: New insights from cross-modal approaches publication-title: Network Neuroscience doi: 10.1162/netn_a_00114 – volume: 18 start-page: 14 issue: 6 year: 2001 ident: 2024121918191723200_bib2 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.962275 – volume: 107 start-page: 6040 issue: 13 year: 2010 ident: 2024121918191723200_bib18 article-title: Temporal dynamics of spontaneous MEG activity in brain networks publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0913863107 – volume: 138 start-page: 284 year: 2016 ident: 2024121918191723200_bib14 article-title: How reliable are MEG resting-state connectivity metrics? publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.05.070 – volume: 121 start-page: 243 year: 2015 ident: 2024121918191723200_bib67 article-title: Heritability of the network architecture of intrinsic brain functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.07.048 – volume: 11 start-page: 869 issue: 4 year: 1999 ident: 2024121918191723200_bib32 article-title: Behavioral disinhibition and the development of substance-use disorders: Findings from the Minnesota Twin Family Study publication-title: Development and Psychopathology doi: 10.1017/S0954579499002369 – volume: 30 start-page: 502 issue: 4 year: 2017 ident: 2024121918191723200_bib61 article-title: EEG microstate correlates of fluid intelligence and response to cognitive training publication-title: Brain Topography doi: 10.1007/s10548-017-0565-z – volume: 281 start-page: 559 issue: 5376 year: 1998 ident: 2024121918191723200_bib9 article-title: Activity-dependent cortical target selection by thalamic axons publication-title: Science doi: 10.1126/science.281.5376.559 – volume: 2 start-page: 204 year: 2011 ident: 2024121918191723200_bib48 article-title: Functional roles of alpha-band phase synchronization in local and large-scale cortical networks publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2011.00204 – volume: 112 start-page: 8463 issue: 27 year: 2015 ident: 2024121918191723200_bib59 article-title: Ongoing dynamics in large-scale functional connectivity predict perception publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1420687112 – volume: 31 start-page: 968 issue: 3 year: 2006 ident: 2024121918191723200_bib20 article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.01.021 – volume: 114 start-page: 12827 issue: 48 year: 2017 ident: 2024121918191723200_bib82 article-title: Brain network dynamics are hierarchically organized in time publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1705120114 – volume: 4 start-page: 7632 issue: 3 year: 2009 ident: 2024121918191723200_bib44 article-title: EEG microstates publication-title: Scholarpedia doi: 10.4249/scholarpedia.7632 – volume: 227 start-page: 117674 year: 2021 ident: 2024121918191723200_bib35 article-title: The dynamic modular fingerprints of the human brain at rest publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117674 – volume: 161 start-page: 251 year: 2017 ident: 2024121918191723200_bib86 article-title: Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.055 – volume: 61 start-page: 235 issue: 2 year: 2006 ident: 2024121918191723200_bib69 article-title: Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2005.10.004 – volume: 7 start-page: 121165 year: 2019 ident: 2024121918191723200_bib43 article-title: EEG fingerprints: Phase synchronization of EEG signals as biomarker for subject identification publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931624 – volume: 6 start-page: e20178 year: 2017 ident: 2024121918191723200_bib13 article-title: The heritability of multi-modal connectivity in human brain activity publication-title: eLife doi: 10.7554/eLife.20178 – volume: 31 start-page: 567 issue: 6 year: 2001 ident: 2024121918191723200_bib50 article-title: Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation publication-title: Behavior Genetics doi: 10.1023/A:1013345411774 – volume: 108 start-page: 16783 issue: 40 year: 2011 ident: 2024121918191723200_bib7 article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1112685108 – volume: 53 start-page: 1197 issue: 4 year: 2010 ident: 2024121918191723200_bib89 article-title: Network-based statistic: Identifying differences in brain networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 2024121918191723200_bib56 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 9 start-page: eadd2870 issue: 7 year: 2023 ident: 2024121918191723200_bib64 article-title: Genetic architecture of the white matter connectome of the human brain publication-title: Science Advances doi: 10.1126/sciadv.add2870 – volume: 22 start-page: 746 issue: 6 year: 2019 ident: 2024121918191723200_bib83 article-title: Minnesota center for twin and family research publication-title: Twin Research and Human Genetics doi: 10.1017/thg.2019.107 – volume: 180 start-page: 396 year: 2018 ident: 2024121918191723200_bib65 article-title: Principles of dynamic network reconfiguration across diverse brain states publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.010 – volume: 180 start-page: 515 year: 2018 ident: 2024121918191723200_bib11 article-title: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.09.036 – volume: 111 start-page: 300 year: 2015 ident: 2024121918191723200_bib42 article-title: Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.050 – volume-title: Introduction to quantitative genetics year: 1990 ident: 2024121918191723200_bib23 – volume: 12 start-page: 3417 issue: 1 year: 2021 ident: 2024121918191723200_bib19 article-title: Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores publication-title: Nature Communications doi: 10.1038/s41467-021-22491-8 – volume: 247 start-page: 118850 year: 2022 ident: 2024121918191723200_bib15 article-title: Microstates and power envelope hidden Markov modeling probe bursting brain activity at different timescales publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118850 – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 2024121918191723200_bib17 article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 15 start-page: 884 issue: 6 year: 2012 ident: 2024121918191723200_bib29 article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity publication-title: Nature Neuroscience doi: 10.1038/nn.3101 – volume: 185 start-page: 72 year: 2019 ident: 2024121918191723200_bib31 article-title: A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.09.082 – volume: 20 start-page: 805 issue: 11 year: 2016 ident: 2024121918191723200_bib57 article-title: Brain networks and α-oscillations: Structural and functional foundations of cognitive control publication-title: Trends in Cognitive Sciences doi: 10.1016/j.tics.2016.09.004 – volume: 34 start-page: 3280 issue: 12 year: 2013 ident: 2024121918191723200_bib75 article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually publication-title: Human Brain Mapping doi: 10.1002/hbm.22140 – volume: 3 start-page: e01867 year: 2014 ident: 2024121918191723200_bib3 article-title: Fast transient networks in spontaneous human brain activity publication-title: eLife doi: 10.7554/eLife.01867 – volume: 88 start-page: 1273 issue: 424 year: 1993 ident: 2024121918191723200_bib55 article-title: Alternatives to the median absolute deviation publication-title: Journal of the American Statistical Association doi: 10.1080/01621459.1993.10476408 – year: 2020 ident: 2024121918191723200_bib68 article-title: Spontaneous activity changes in large-scale cortical networks in older adults couple to distinct hemodynamic morphology publication-title: bioRxiv doi: 10.1101/2020.05.05.079749 – volume: 26 start-page: 191 issue: 3 year: 2005 ident: 2024121918191723200_bib49 article-title: Genetic components of functional connectivity in the brain: The heritability of synchronization likelihood publication-title: Human Brain Mapping doi: 10.1002/hbm.20156 – volume: 75 start-page: 260 issue: 3 year: 2007 ident: 2024121918191723200_bib10 article-title: Heritability of EEG coherence in a large sib-pair population publication-title: Biological Psychology doi: 10.1016/j.biopsycho.2007.03.006 – volume: 117 start-page: 449 year: 2015 ident: 2024121918191723200_bib28 article-title: Long-range dependencies make the difference—Comment on “A stochastic model for EEG microstate sequence analysis.” publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.062 – volume: 8 start-page: 1089 issue: 4 year: 2024 ident: 2024121918191723200_bib34 article-title: Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states publication-title: Network Neuroscience doi: 10.1162/netn_a_00390 – volume: 74 start-page: 036104 issue: 3 year: 2006 ident: 2024121918191723200_bib47 article-title: Finding community structure in networks using the eigenvectors of matrices publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics doi: 10.1103/PhysRevE.74.036104 – volume: 240 start-page: 118331 year: 2021 ident: 2024121918191723200_bib62 article-title: Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.118331 – volume: 42 start-page: 691 issue: 6 year: 2005 ident: 2024121918191723200_bib70 article-title: Heritability of background EEG across the power spectrum publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2005.00352.x – volume: 28 start-page: 443 issue: 6 year: 1998 ident: 2024121918191723200_bib77 article-title: Genetic and environmental influences on EEG coherence publication-title: Behavior Genetics doi: 10.1023/A:1021637328512 – volume: 9 start-page: 45 issue: 1 year: 2010 ident: 2024121918191723200_bib26 article-title: OpenMEEG: Opensource software for quasistatic bioelectromagnetics publication-title: BioMedical Engineering OnLine doi: 10.1186/1475-925X-9-45 – volume: 231 start-page: 117864 year: 2021 ident: 2024121918191723200_bib85 article-title: The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T publication-title: NeuroImage doi: 10.1016/j.neuroimage.2021.117864 – volume: 91 start-page: 282 year: 2014 ident: 2024121918191723200_bib6 article-title: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.12.066 – volume: 106 start-page: 1125 issue: 3 year: 2011 ident: 2024121918191723200_bib88 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: Journal of Neurophysiology doi: 10.1152/jn.00338.2011 – volume: 25 start-page: 441 issue: 4 year: 2015 ident: 2024121918191723200_bib37 article-title: The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression publication-title: European Neuropsychopharmacology doi: 10.1016/j.euroneuro.2015.01.001 – volume: 12 start-page: 603 year: 2018 ident: 2024121918191723200_bib52 article-title: Task-evoked dynamic network analysis through hidden Markov modeling publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2018.00603 – volume: 2 start-page: 260 issue: 3 year: 1999 ident: 2024121918191723200_bib25 article-title: Learning enhances adult neurogenesis in the hippocampal formation publication-title: Nature Neuroscience doi: 10.1038/6365 – volume: 58 start-page: 562 issue: 3 year: 1996 ident: 2024121918191723200_bib78 article-title: Heritability of human brain functioning as assessed by electroencephalography publication-title: American Journal of Human Genetics – volume: 339 start-page: 12 year: 2016 ident: 2024121918191723200_bib21 article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.09.034 – volume: 219 start-page: 116998 year: 2020 ident: 2024121918191723200_bib84 article-title: Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116998 – volume: 160 start-page: 41 year: 2017 ident: 2024121918191723200_bib51 article-title: The dynamic functional connectome: State-of-the-art and perspectives publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.061 – volume: 24 start-page: 213 issue: 4 year: 2023 ident: 2024121918191723200_bib79 article-title: Developmental mechanisms underlying the evolution of human cortical circuits publication-title: Nature Reviews Neuroscience doi: 10.1038/s41583-023-00675-z – volume: 8 start-page: 258 year: 2014 ident: 2024121918191723200_bib16 article-title: Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2014.00258 – volume: 2011 start-page: 879716 year: 2011 ident: 2024121918191723200_bib72 article-title: Brainstorm: A user-friendly application for MEG/EEG analysis publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2011/879716 – volume: 12 start-page: 489 issue: 5 year: 2009 ident: 2024121918191723200_bib39 article-title: The enrichment study of the Minnesota twin family study: Increasing the yield of twin families at high risk for externalizing psychopathology publication-title: Twin Research and Human Genetics doi: 10.1375/twin.12.5.489 – volume: 58 start-page: 601 issue: 3 year: 1987 ident: 2024121918191723200_bib24 article-title: Development of cortical circuitry and cognitive function publication-title: Child Development doi: 10.2307/1130201 – reference: 38293031 - bioRxiv. 2024 Jan 27:2024.01.15.575731. doi: 10.1101/2024.01.15.575731 |
SSID | ssj0002121048 ssj0002507470 |
Score | 2.290508 |
Snippet | Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional... |
SourceID | doaj pubmedcentral proquest pubmed crossref mit |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1065 |
SubjectTerms | Brain Cognition & reasoning Cognitive ability Dynamic functional connectivity Dynamics Electrophysiology Heritability Hidden Markov modeling Markov chains Multivariate analysis Neural networks Neurosciences Theta rhythms Time measurement Transition probabilities Twin study Twins Variance component modeling |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS90wFA5OX_YyNvyxbm5E0KdRTJs0TZ5kDi8iKCITfCtJmmwXZnt3b_3_PadNq3dMnwrtoW1ykpzvnJx8h5DDELRiwhvQAC9SYbM81aLmac6DYwBPWWkwNHB5Jc9vxcVdcRcDbquYVjmuif1CXbcOY-THHInLwTpJdrL4m2LVKNxdjSU03pAtWIIVOF9bp2dX1zdTlCVHfiyhxox3mR-Dw99UpuqZ0ddsUU_ZDxbmft79D23-mzT5zArN3pN3ET7S74O-P5AN32yT2Y1ZzGtaD8XlV7QNNFa36eMW4_JGHSa1uK6997Q_R7SiZukpHgDs8ADVDrmdnf38cZ7G-gipA5jTpU4ZsOcBPALlRKi5FN5rLlnp4LYTmSq9LrNaqyABlQIWsUXuwGOydWZ04J7vks2mbfxHQh0LhVNKGmQA5NZby-CqbaExQlSEhHwbe6pykTwca1j8qXonQubV835NyNEkvRhIM16QO8VOn2SQ6rq_0S5_VXHmVEbmQYBXGTggCWaZtrVlXmALAe2YMiEHoLIqTr3VCx_aHxX6JPg0ouAV02OYXbhlYhrfPgwyGZZFLRKyN-h_-ltAchzZ4BKi1kbGWnPWnzTz3z2DN25-CcH4p9f_6zN5mwOGwuyZjO2TzW754L8ABurs1zjQHwHXnwdu priority: 102 providerName: ProQuest |
Title | Rapid dynamics of electrophysiological connectome states are heritable |
URI | https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00391 https://www.ncbi.nlm.nih.gov/pubmed/39735507 https://www.proquest.com/docview/3150851260 https://www.proquest.com/docview/3150138655 https://pubmed.ncbi.nlm.nih.gov/PMC11674403 https://doaj.org/article/a62f4191f36140b09bdb0e419c4750a7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NJLm_TpPBYV2lMxkS1ZKx2bsttQSCihgdyMJEt0ofGGrHPtb8-MbG93S0MvvdhgDX6MRppv5NE3AO9jNJrLYLEHRJVLV5S5kY3ISxE9R3jKp5aWBs7O1eml_HpVXW2U-qKcsJ4euFfcsVVllBhURIGOhDtuXON4wCteorOzaR85-ryNYIrmYHTsiJP5mOmuymMM9Nva1okRfcsHJap-9CzXi-5vKPPPZMkN7zPfhWcDbGSf-tfdg0ehfQHPx5IMbBihL2F-YW8WDWv6OvMrtoxsKHSTljDGmY55ym_x3fI6sLSlaMXsbWC0F7CjvVSv4HI--_75NB9KJeQeEU-Xe23RtUcMDrSXsRFKhmCE4lOvSVOFngYzLRqjo0KAirDEVaXH4Mk1hTVRBPEadtplG94C8zxWXmtliQxQuOAcx7NxlaHFoipm8HFUXu0HHnEqZ_GzTvGEKutNVWfwYS190_NnPCB3Qv2wliHW63QBbaEebKH-ly1k8A57sR5G4eqBBx2OffxbUBArPkIfxfEW62YcaPT3xLZhedfLFFQhtcrgTW8S67dFUCeIGC4DvWUsW5-z3dIufiQyb_oPJiUX-_9DAQfwtETQRek2BT-Ene72LhwhaOrcBB7r-ZcJPDmZnX-7mKTRgsezX7N71dkX3Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXiltGAkekJRHdtJ7AOqeC1b-jigVuot2I4NK7XJspsK8af4jczk1S6i3HpaKRllE8-M5_N4_A0hr0LQiklvQAMijaVNeKxlKWIugmMAT1luMDVweJRNT-Tn0_R0jfwezsJgWeUwJ7YTdVk7zJHvCCQuh-iUsd35jxi7RuHu6tBCozOLff_rJyzZlm_2PoB-tzmffDx-P437rgKxA3DQxE4ZiIIBcLRyMpQik95rkbHcwWUnE5V7nSelViEDLAcR3KbcwTrDlonRQXgBz71FbkshNHqUmnwaczoc2bikGurrM75T-aYqTNHysK9EvrZBAMSz81nzL2z7d4nmlZg3uU_u9WCVvu2s6wFZ89VDMvli5rOSll0r-yWtA-176bRZkmEypQ5LaFxTn3vanlpaUrPwFI8bNnhc6xE5uZFxe0zWq7ryTwl1LKROqcwg36Cw3loGv9qmGvNRaYjI62GkCtdTlWPHjLOiXbJkvLg6rhHZHqXnHUXHNXLvcNBHGSTWbi_Ui29F76eFyXiQsIYNAnALs0zb0jIv8QsBW5k8Ii9BZUXv6Mtr_mhzUOil4KX9wiPG2-DLuEFjKl9fdDIJNmFNI_Kk0__4toAbBXLPRUStWMbK56zeqWbfW75w3GqTkomN_7_XC3Jnenx4UBzsHe0_I3c5oDes20nYJllvFhd-C9BXY5-3Jk_J15v2sT-4pEHi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+dynamics+of+electrophysiological+connectome+states+are+heritable&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Jun%2C+Suhnyoung&rft.au=Alderson%2C+Thomas+H.&rft.au=Malone%2C+Stephen+M.&rft.au=Harper%2C+Jeremy&rft.date=2024-12-10&rft.issn=2472-1751&rft.eissn=2472-1751&rft.volume=8&rft.issue=4&rft.spage=1065&rft.epage=1088&rft_id=info:doi/10.1162%2Fnetn_a_00391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_netn_a_00391 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon |