Rapid dynamics of electrophysiological connectome states are heritable

Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognitio...

Full description

Saved in:
Bibliographic Details
Published inHarvard data science review Vol. 8; no. 4; pp. 1065 - 1088
Main Authors Jun, Suhnyoung, Alderson, Thomas H., Malone, Stephen M., Harper, Jeremy, Hunt, Ruskin H., Thomas, Kathleen M., Iacono, William G., Wilson, Sylia, Sadaghiani, Sepideh
Format Journal Article
LanguageEnglish
Published 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA MIT Press 10.12.2024
MIT Press Journals, The
The MIT Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features.
AbstractList Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60-500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states' Modularity and connectivity pattern. We conclude that genetic effects shape individuals' connectome dynamics at rapid timescales, specifically states' overall occurrence and sequencing.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (Author Summary: In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state (N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing.
Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional implications. While infraslow (<0.1 Hz) connectome dynamics have been extensively studied with fMRI, rapid dynamics highly relevant for cognition are poorly understood. Here, we asked whether rapid electrophysiological connectome dynamics constitute subject-specific brain traits and to what extent they are under genetic influence. Using source-localized EEG connectomes during resting state ( N = 928, 473 females), we quantified the heritability of multivariate (multistate) features describing temporal or spatial characteristics of connectome dynamics. States switched rapidly every ∼60–500 ms. Temporal features were heritable, particularly Fractional Occupancy (in theta, alpha, beta, and gamma bands) and Transition Probability (in theta, alpha, and gamma bands), representing the duration spent in each state and the frequency of state switches, respectively. Genetic effects explained a substantial proportion of the phenotypic variance of these features: Fractional Occupancy in beta (44.3%) and gamma (39.8%) bands and Transition Probability in theta (38.4%), alpha (63.3%), beta (22.6%), and gamma (40%) bands. However, we found no evidence for the heritability of dynamic spatial features, specifically states’ Modularity and connectivity pattern. We conclude that genetic effects shape individuals’ connectome dynamics at rapid timescales, specifically states’ overall occurrence and sequencing. In this study, we investigate the genetic influence on rapid electrophysiological connectome dynamics. Using hidden Markov model on source-localized EEG data at rest, we obtained measures describing temporal trajectories and time-varying spatial characteristics of connectome states. Applying two heritability assessment methods to these multivariate, time-varying connectome dynamics features, we discovered that the duration (Fractional Occupancy) and frequency of state switches (Transition Probability) were heritable, particularly in theta, alpha, beta, and gamma bands. However, no genetic influence was observed on spatial features.
Author Wilson, Sylia
Hunt, Ruskin H.
Sadaghiani, Sepideh
Thomas, Kathleen M.
Iacono, William G.
Malone, Stephen M.
Harper, Jeremy
Jun, Suhnyoung
Alderson, Thomas H.
AuthorAffiliation Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
AuthorAffiliation_xml – name: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
– name: Department of Psychology, University of Illinois Urbana-Champaign, Champaign, IL, USA
– name: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
– name: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
– name: Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
Author_xml – sequence: 1
  givenname: Suhnyoung
  orcidid: 0000-0001-7849-0837
  surname: Jun
  fullname: Jun, Suhnyoung
  email: suhnyoung.jun@gmail.com
  organization: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
– sequence: 2
  givenname: Thomas H.
  orcidid: 0000-0002-0507-6763
  surname: Alderson
  fullname: Alderson, Thomas H.
  organization: Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Champaign, IL, USA
– sequence: 3
  givenname: Stephen M.
  surname: Malone
  fullname: Malone, Stephen M.
  organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 4
  givenname: Jeremy
  orcidid: 0000-0001-8994-6879
  surname: Harper
  fullname: Harper, Jeremy
  organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 5
  givenname: Ruskin H.
  surname: Hunt
  fullname: Hunt, Ruskin H.
  organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 6
  givenname: Kathleen M.
  surname: Thomas
  fullname: Thomas, Kathleen M.
  organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 7
  givenname: William G.
  orcidid: 0000-0002-3194-3090
  surname: Iacono
  fullname: Iacono, William G.
  organization: Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 8
  givenname: Sylia
  surname: Wilson
  fullname: Wilson, Sylia
  organization: Institute of Child Development, University of Minnesota Twin Cities, Minneapolis, MN, USA
– sequence: 9
  givenname: Sepideh
  orcidid: 0000-0001-8800-3959
  surname: Sadaghiani
  fullname: Sadaghiani, Sepideh
  organization: Neuroscience Program, University of Illinois Urbana-Champaign, Champaign, IL, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39735507$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFvFCEUxiemxtbam2cziRcPrvKAgeFkTGO1SRMTo2fCMG922TCwAtuk_71sd2u2jZ4gH7_38fEeL5uTEAM2zWsgHwAE_RiwBG00IUzBs-aMckkXIDs4OdqfNhc5rwkhFCgQ3r9oTpmSrOuIPGuufpiNG9vxLpjZ2dzGqUWPtqS4Wd1lF31cOmt8a2MIVY4ztrmYgrk1CdsVJlfM4PFV83wyPuPFYT1vfl19-Xn5bXHz_ev15eebhe2Al4XtTQ9qUpL3lk8jExxRMUGkrbLl0EtUEkbVT6KHkQg2dNRSAcMIRk0M2Xlzvfcdo1nrTXKzSXc6GqfvhZiW2qTirEdtBJ04KJiYAE4GooZxIMh398iOGFm9Pu29NtthxtFiKMn4R6aPT4Jb6WW81bXzknPCqsO7g0OKv7eYi55dtui9CRi3WTPoCLBedF1F3z5B13GbQu3VPdV3QAWp1JvjSH-zPMyrAnQP2BRzTjhpWwdQXNwldF4D2aWj-vhf1KL3T4oefP-DH141u6OU_0T_AOOXxvQ
CitedBy_id crossref_primary_10_1162_netn_a_00390
crossref_primary_10_3390_brainsci14090901
Cites_doi 10.1523/JNEUROSCI.0991-17.2017
10.1038/s41598-020-77336-z
10.1162/neco.1995.7.6.1129
10.1016/j.neuroimage.2015.03.071
10.1016/j.neuroimage.2022.119274
10.1073/pnas.1007841107
10.1002/gepi.1370120510
10.1016/j.neuroimage.2015.11.047
10.1375/twin.8.3.201
10.1093/cercor/bhaa391
10.1016/j.neuroimage.2012.03.048
10.1017/thg.2013.55
10.1016/S1388-2457(00)00553-8
10.1093/bib/3.2.119
10.1111/psyp.13038
10.1007/BF02294359
10.1111/j.1469-8986.2010.01061.x
10.1002/hbm.23362
10.1016/j.neuroimage.2019.05.060
10.1016/j.cub.2015.03.049
10.1002/hbm.20468
10.1162/netn_a_00172
10.3389/fpsyt.2016.00022
10.1162/netn_a_00042
10.1038/nn.4108
10.1016/j.tics.2012.10.007
10.3389/fnins.2019.00076
10.1162/netn_a_00114
10.1109/79.962275
10.1073/pnas.0913863107
10.1016/j.neuroimage.2016.05.070
10.1016/j.neuroimage.2015.07.048
10.1017/S0954579499002369
10.1007/s10548-017-0565-z
10.1126/science.281.5376.559
10.3389/fpsyg.2011.00204
10.1073/pnas.1420687112
10.1016/j.neuroimage.2006.01.021
10.1073/pnas.1705120114
10.4249/scholarpedia.7632
10.1016/j.neuroimage.2020.117674
10.1016/j.neuroimage.2017.08.055
10.1016/j.ijpsycho.2005.10.004
10.1109/ACCESS.2019.2931624
10.7554/eLife.20178
10.1023/A:1013345411774
10.1073/pnas.1112685108
10.1016/j.neuroimage.2010.06.041
10.1016/j.neuroimage.2009.10.003
10.1126/sciadv.add2870
10.1017/thg.2019.107
10.1016/j.neuroimage.2017.08.010
10.1016/j.neuroimage.2017.09.036
10.1016/j.neuroimage.2015.02.050
10.1038/s41467-021-22491-8
10.1016/j.neuroimage.2021.118850
10.1016/j.jneumeth.2003.10.009
10.1038/nn.3101
10.1016/j.neuroimage.2018.09.082
10.1016/j.tics.2016.09.004
10.1002/hbm.22140
10.7554/eLife.01867
10.1080/01621459.1993.10476408
10.1101/2020.05.05.079749
10.1002/hbm.20156
10.1016/j.biopsycho.2007.03.006
10.1016/j.neuroimage.2015.05.062
10.1162/netn_a_00390
10.1103/PhysRevE.74.036104
10.1016/j.neuroimage.2021.118331
10.1111/j.1469-8986.2005.00352.x
10.1023/A:1021637328512
10.1186/1475-925X-9-45
10.1016/j.neuroimage.2021.117864
10.1016/j.neuroimage.2013.12.066
10.1152/jn.00338.2011
10.1016/j.euroneuro.2015.01.001
10.3389/fnins.2018.00603
10.1038/6365
10.1016/j.neuroscience.2016.09.034
10.1016/j.neuroimage.2020.116998
10.1016/j.neuroimage.2016.12.061
10.1038/s41583-023-00675-z
10.3389/fnins.2014.00258
10.1155/2011/879716
10.1375/twin.12.5.489
10.2307/1130201
ContentType Journal Article
Copyright 2024 Massachusetts Institute of Technology.
Copyright MIT Press Journals, The 2024
2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology
Copyright_xml – notice: 2024 Massachusetts Institute of Technology.
– notice: Copyright MIT Press Journals, The 2024
– notice: 2024 Massachusetts Institute of Technology 2024 Massachusetts Institute of Technology
DBID AAYXX
CITATION
NPM
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
LK8
M7P
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1162/netn_a_00391
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Biological Sciences
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2472-1751
2644-2353
EndPage 1088
ExternalDocumentID oai_doaj_org_article_a62f4191f36140b09bdb0e419c4750a7
PMC11674403
39735507
10_1162_netn_a_00391
netn_a_00391.pdf
Genre Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 DA036216
– fundername: National Institute of Mental Health and Neurosciences
  grantid: 1R01MH116226
– fundername: National Institutes of Health
  grantid: R37 DA05147
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: P41 1S10OD017974-01
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: P41 EB027061
– fundername: NIDA NIH HHS
  grantid: R01 DA036216
– fundername: NIMH NIH HHS
  grantid: R01 MH116226
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIH HHS
  grantid: S10 OD017974
– fundername: NIDA NIH HHS
  grantid: R37 DA005147
– fundername: ;
  grantid: R01 DA036216
– fundername: ;
  grantid: P41 EB027061
– fundername: ;
  grantid: P41 1S10OD017974-01
– fundername: ;
  grantid: 1R01MH116226
– fundername: ;
  grantid: R37 DA05147
GroupedDBID 53G
AAFWJ
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
HYE
JMNJE
K7-
M7P
MCG
MINIK
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
RMI
RPM
AAYXX
CITATION
EJD
NPM
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
LK8
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
7X8
5PM
FRP
ID FETCH-LOGICAL-c514t-c8a819f9748c4fd364ee93607c819c4187e971d98f681d063b52c261bd1a9f3e3
IEDL.DBID DOA
ISSN 2472-1751
IngestDate Wed Aug 27 01:24:57 EDT 2025
Thu Aug 21 18:29:45 EDT 2025
Fri Jul 11 07:32:43 EDT 2025
Sat Aug 23 13:06:51 EDT 2025
Sun Jan 05 01:57:23 EST 2025
Thu Apr 24 23:02:39 EDT 2025
Tue Jul 01 03:20:40 EDT 2025
Tue May 06 12:10:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Electrophysiology
Dynamic functional connectivity
Heritability
Hidden Markov modeling
Twin study
Variance component modeling
Language English
License 2024 Massachusetts Institute of Technology.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a full description of the license, please visit https://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-c8a819f9748c4fd364ee93607c819c4187e971d98f681d063b52c261bd1a9f3e3
Notes 2024
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Handling Editor: Olaf Sporns
ORCID 0000-0001-8994-6879
0000-0001-7849-0837
0000-0002-3194-3090
0000-0002-0507-6763
0000-0001-8800-3959
OpenAccessLink https://doaj.org/article/a62f4191f36140b09bdb0e419c4750a7
PMID 39735507
PQID 3150851260
PQPubID 6535871
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_a62f4191f36140b09bdb0e419c4750a7
proquest_miscellaneous_3150138655
proquest_journals_3150851260
pubmed_primary_39735507
crossref_primary_10_1162_netn_a_00391
crossref_citationtrail_10_1162_netn_a_00391
mit_journals_10_1162_netn_a_00391
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11674403
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-10
PublicationDateYYYYMMDD 2024-12-10
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-10
  day: 10
PublicationDecade 2020
PublicationPlace 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
PublicationPlace_xml – name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA
– name: United States
– name: Cambridge
– name: 255 Main Street, 9th Floor, Cambridge, Massachusetts 02142, USA journals-info@mit.edu
PublicationTitle Harvard data science review
PublicationTitleAlternate Netw Neurosci
PublicationYear 2024
Publisher MIT Press
MIT Press Journals, The
The MIT Press
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
– name: The MIT Press
References Rubinov (2024121918191723200_bib56) 2010; 52
Falconer (2024121918191723200_bib23) 1990
Tenke (2024121918191723200_bib74) 2001; 112
Hipp (2024121918191723200_bib30) 2015; 25
Quinn (2024121918191723200_bib52) 2018; 12
Wirsich (2024121918191723200_bib85) 2021; 231
Wirsich (2024121918191723200_bib86) 2017; 161
Coquelet (2024121918191723200_bib15) 2022; 247
Palva (2024121918191723200_bib48) 2011; 2
Sadaghiani (2024121918191723200_bib60) 2020; 4
Eichenbaum (2024121918191723200_bib22) 2021; 5
Schutte (2024121918191723200_bib63) 2013; 16
Goldman-Rakic (2024121918191723200_bib24) 1987; 58
Colclough (2024121918191723200_bib12) 2015; 117
Gschwind (2024121918191723200_bib28) 2015; 117
Gratton (2024121918191723200_bib27) 2018; 55
Kong (2024121918191723200_bib43) 2019; 7
Brookes (2024121918191723200_bib7) 2011; 108
Tadel (2024121918191723200_bib73) 2019; 13
Vidaurre (2024121918191723200_bib82) 2017; 114
Douw (2024121918191723200_bib21) 2016; 339
Sareen (2024121918191723200_bib62) 2021; 240
Cohen (2024121918191723200_bib11) 2018; 180
Posthuma (2024121918191723200_bib49) 2005; 26
Smit (2024121918191723200_bib70) 2005; 42
Yeo (2024121918191723200_bib88) 2011; 106
Van De Ville (2024121918191723200_bib80) 2010; 107
Baker (2024121918191723200_bib3) 2014; 3
Lehmann (2024121918191723200_bib44) 2009; 4
Posthuma (2024121918191723200_bib50) 2001; 31
Sinclair (2024121918191723200_bib67) 2015; 121
Klaassens (2024121918191723200_bib40) 2017; 38
Keyes (2024121918191723200_bib39) 2009; 12
Thompson (2024121918191723200_bib75) 2013; 34
Hipp (2024121918191723200_bib29) 2012; 15
Iacono (2024121918191723200_bib32) 1999; 11
Sadaghiani (2024121918191723200_bib58) 2017; 37
Colclough (2024121918191723200_bib14) 2016; 138
Karapanagiotidis (2024121918191723200_bib36) 2020; 10
Wilson (2024121918191723200_bib83) 2019; 22
Santarnecchi (2024121918191723200_bib61) 2017; 30
Sadaghiani (2024121918191723200_bib59) 2015; 112
Shine (2024121918191723200_bib65) 2018; 180
Rieger (2024121918191723200_bib53) 2016; 7
Bell (2024121918191723200_bib5) 1995; 7
Vanderhaeghen (2024121918191723200_bib79) 2023; 24
de Rojas (2024121918191723200_bib19) 2021; 12
Jun (2024121918191723200_bib34) 2024; 8
Sitnikova (2024121918191723200_bib68) 2020
Brookes (2024121918191723200_bib6) 2014; 91
Gould (2024121918191723200_bib25) 1999; 2
Chorlian (2024121918191723200_bib10) 2007; 75
Wirsich (2024121918191723200_bib84) 2020; 219
Brookes (2024121918191723200_bib8) 2012; 63
Gramfort (2024121918191723200_bib26) 2010; 9
Rousseeuw (2024121918191723200_bib55) 1993; 88
Akaike (2024121918191723200_bib1) 1987; 52
Lord (2024121918191723200_bib45) 2019; 199
Mognon (2024121918191723200_bib46) 2011; 48
Yashin (2024121918191723200_bib87) 1995; 12
Hunyadi (2024121918191723200_bib31) 2019; 185
Tadel (2024121918191723200_bib72) 2011; 2011
Tost (2024121918191723200_bib76) 2015; 18
Jun (2024121918191723200_bib33) 2022; 256
Keller (2024121918191723200_bib38) 2005; 8
van Beijsterveldt (2024121918191723200_bib77) 1998; 28
Klimesch (2024121918191723200_bib41) 2012; 16
Shine (2024121918191723200_bib66) 2018; 2
Catalano (2024121918191723200_bib9) 1998; 281
Smit (2024121918191723200_bib69) 2006; 61
Zalesky (2024121918191723200_bib89) 2010; 53
Smit (2024121918191723200_bib71) 2008; 29
Baillet (2024121918191723200_bib2) 2001; 18
Newman (2024121918191723200_bib47) 2006; 74
Sadaghiani (2024121918191723200_bib57) 2016; 20
Rijsdijk (2024121918191723200_bib54) 2002; 3
Colclough (2024121918191723200_bib13) 2017; 6
Sha (2024121918191723200_bib64) 2023; 9
de Pasquale (2024121918191723200_bib18) 2010; 107
Kochunov (2024121918191723200_bib42) 2015; 111
Preti (2024121918191723200_bib51) 2017; 160
van Beijsterveldt (2024121918191723200_bib78) 1996; 58
Deligianni (2024121918191723200_bib16) 2014; 8
Desikan (2024121918191723200_bib20) 2006; 31
Barber (2024121918191723200_bib4) 2021; 31
Delorme (2024121918191723200_bib17) 2004; 134
Kabbara (2024121918191723200_bib35) 2021; 227
Kautzky (2024121918191723200_bib37) 2015; 25
Vidaurre (2024121918191723200_bib81) 2016; 126
38293031 - bioRxiv. 2024 Jan 27:2024.01.15.575731. doi: 10.1101/2024.01.15.575731
References_xml – volume: 37
  start-page: 9657
  issue: 40
  year: 2017
  ident: 2024121918191723200_bib58
  article-title: Overdominant effect of a CHRNA4 polymorphism on cingulo-opercular network activity and cognitive control
  publication-title: Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.0991-17.2017
– volume: 10
  start-page: 21121
  issue: 1
  year: 2020
  ident: 2024121918191723200_bib36
  article-title: The psychological correlates of distinct neural states occurring during wakeful rest
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-77336-z
– volume: 7
  start-page: 1129
  issue: 6
  year: 1995
  ident: 2024121918191723200_bib5
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.6.1129
– volume: 117
  start-page: 439
  year: 2015
  ident: 2024121918191723200_bib12
  article-title: A symmetric multivariate leakage correction for MEG connectomes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.071
– volume: 256
  start-page: 119274
  year: 2022
  ident: 2024121918191723200_bib33
  article-title: Dynamic trajectories of connectome state transitions are heritable
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119274
– volume: 107
  start-page: 18179
  issue: 42
  year: 2010
  ident: 2024121918191723200_bib80
  article-title: EEG microstate sequences in healthy humans at rest reveal scale-free dynamics
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1007841107
– volume: 12
  start-page: 529
  issue: 5
  year: 1995
  ident: 2024121918191723200_bib87
  article-title: Genetic analysis of durations: Correlated frailty model applied to survival of Danish twins
  publication-title: Genetic Epidemiology
  doi: 10.1002/gepi.1370120510
– volume: 126
  start-page: 81
  year: 2016
  ident: 2024121918191723200_bib81
  article-title: Spectrally resolved fast transient brain states in electrophysiological data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.11.047
– volume: 8
  start-page: 201
  issue: 3
  year: 2005
  ident: 2024121918191723200_bib38
  article-title: Quantifying and addressing parameter indeterminacy in the classical twin design
  publication-title: Twin Research and Human Genetics
  doi: 10.1375/twin.8.3.201
– volume: 31
  start-page: 2834
  issue: 6
  year: 2021
  ident: 2024121918191723200_bib4
  article-title: Heritability of functional connectivity in resting state: Assessment of the dynamic mean, dynamic variance, and static connectivity across networks
  publication-title: Cerebral Cortex
  doi: 10.1093/cercor/bhaa391
– volume: 63
  start-page: 910
  issue: 2
  year: 2012
  ident: 2024121918191723200_bib8
  article-title: Measuring functional connectivity in MEG: A multivariate approach insensitive to linear source leakage
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.03.048
– volume: 16
  start-page: 962
  issue: 5
  year: 2013
  ident: 2024121918191723200_bib63
  article-title: Heritability of resting state EEG functional connectivity patterns
  publication-title: Twin Research and Human Genetics
  doi: 10.1017/thg.2013.55
– volume: 112
  start-page: 545
  issue: 3
  year: 2001
  ident: 2024121918191723200_bib74
  article-title: A convenient method for detecting electrolyte bridges in multichannel electroencephalogram and event-related potential recordings
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(00)00553-8
– volume: 3
  start-page: 119
  issue: 2
  year: 2002
  ident: 2024121918191723200_bib54
  article-title: Analytic approaches to twin data using structural equation models
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/3.2.119
– volume: 55
  start-page: e13038
  issue: 3
  year: 2018
  ident: 2024121918191723200_bib27
  article-title: Brain reflections: A circuit-based framework for understanding information processing and cognitive control
  publication-title: Psychophysiology
  doi: 10.1111/psyp.13038
– volume: 52
  start-page: 317
  issue: 3
  year: 1987
  ident: 2024121918191723200_bib1
  article-title: Factor analysis and AIC
  publication-title: Psychometrika
  doi: 10.1007/BF02294359
– volume: 48
  start-page: 229
  issue: 2
  year: 2011
  ident: 2024121918191723200_bib46
  article-title: ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2010.01061.x
– volume: 38
  start-page: 308
  issue: 1
  year: 2017
  ident: 2024121918191723200_bib40
  article-title: Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23362
– volume: 199
  start-page: 127
  year: 2019
  ident: 2024121918191723200_bib45
  article-title: Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2019.05.060
– volume: 25
  start-page: 1368
  issue: 10
  year: 2015
  ident: 2024121918191723200_bib30
  article-title: BOLD fMRI correlation reflects frequency-specific neuronal correlation
  publication-title: Current Biology
  doi: 10.1016/j.cub.2015.03.049
– volume: 29
  start-page: 1368
  issue: 12
  year: 2008
  ident: 2024121918191723200_bib71
  article-title: Heritability of “small-world” networks in the brain: A graph theoretical analysis of resting-state EEG functional connectivity
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20468
– volume: 5
  start-page: 145
  issue: 1
  year: 2021
  ident: 2024121918191723200_bib22
  article-title: Differential contributions of static and time-varying functional connectivity to human behavior
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00172
– volume: 7
  start-page: 22
  year: 2016
  ident: 2024121918191723200_bib53
  article-title: 15 years of microstate research in schizophrenia—Where are we? A meta-analysis
  publication-title: Frontiers in Psychiatry
  doi: 10.3389/fpsyt.2016.00022
– volume: 2
  start-page: 381
  issue: 3
  year: 2018
  ident: 2024121918191723200_bib66
  article-title: Catecholaminergic manipulation alters dynamic network topology across cognitive states
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00042
– volume: 18
  start-page: 1421
  issue: 10
  year: 2015
  ident: 2024121918191723200_bib76
  article-title: Environmental influence in the brain, human welfare and mental health
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.4108
– volume: 16
  start-page: 606
  issue: 12
  year: 2012
  ident: 2024121918191723200_bib41
  article-title: Alpha-band oscillations, attention, and controlled access to stored information
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2012.10.007
– volume: 13
  start-page: 76
  year: 2019
  ident: 2024121918191723200_bib73
  article-title: MEG/EEG group analysis with brainstorm
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2019.00076
– volume: 4
  start-page: 1
  issue: 1
  year: 2020
  ident: 2024121918191723200_bib60
  article-title: Intrinsic connectome organization across temporal scales: New insights from cross-modal approaches
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00114
– volume: 18
  start-page: 14
  issue: 6
  year: 2001
  ident: 2024121918191723200_bib2
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.962275
– volume: 107
  start-page: 6040
  issue: 13
  year: 2010
  ident: 2024121918191723200_bib18
  article-title: Temporal dynamics of spontaneous MEG activity in brain networks
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0913863107
– volume: 138
  start-page: 284
  year: 2016
  ident: 2024121918191723200_bib14
  article-title: How reliable are MEG resting-state connectivity metrics?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.05.070
– volume: 121
  start-page: 243
  year: 2015
  ident: 2024121918191723200_bib67
  article-title: Heritability of the network architecture of intrinsic brain functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.07.048
– volume: 11
  start-page: 869
  issue: 4
  year: 1999
  ident: 2024121918191723200_bib32
  article-title: Behavioral disinhibition and the development of substance-use disorders: Findings from the Minnesota Twin Family Study
  publication-title: Development and Psychopathology
  doi: 10.1017/S0954579499002369
– volume: 30
  start-page: 502
  issue: 4
  year: 2017
  ident: 2024121918191723200_bib61
  article-title: EEG microstate correlates of fluid intelligence and response to cognitive training
  publication-title: Brain Topography
  doi: 10.1007/s10548-017-0565-z
– volume: 281
  start-page: 559
  issue: 5376
  year: 1998
  ident: 2024121918191723200_bib9
  article-title: Activity-dependent cortical target selection by thalamic axons
  publication-title: Science
  doi: 10.1126/science.281.5376.559
– volume: 2
  start-page: 204
  year: 2011
  ident: 2024121918191723200_bib48
  article-title: Functional roles of alpha-band phase synchronization in local and large-scale cortical networks
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2011.00204
– volume: 112
  start-page: 8463
  issue: 27
  year: 2015
  ident: 2024121918191723200_bib59
  article-title: Ongoing dynamics in large-scale functional connectivity predict perception
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1420687112
– volume: 31
  start-page: 968
  issue: 3
  year: 2006
  ident: 2024121918191723200_bib20
  article-title: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.01.021
– volume: 114
  start-page: 12827
  issue: 48
  year: 2017
  ident: 2024121918191723200_bib82
  article-title: Brain network dynamics are hierarchically organized in time
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1705120114
– volume: 4
  start-page: 7632
  issue: 3
  year: 2009
  ident: 2024121918191723200_bib44
  article-title: EEG microstates
  publication-title: Scholarpedia
  doi: 10.4249/scholarpedia.7632
– volume: 227
  start-page: 117674
  year: 2021
  ident: 2024121918191723200_bib35
  article-title: The dynamic modular fingerprints of the human brain at rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117674
– volume: 161
  start-page: 251
  year: 2017
  ident: 2024121918191723200_bib86
  article-title: Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.055
– volume: 61
  start-page: 235
  issue: 2
  year: 2006
  ident: 2024121918191723200_bib69
  article-title: Genetic variation of individual alpha frequency (IAF) and alpha power in a large adolescent twin sample
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2005.10.004
– volume: 7
  start-page: 121165
  year: 2019
  ident: 2024121918191723200_bib43
  article-title: EEG fingerprints: Phase synchronization of EEG signals as biomarker for subject identification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931624
– volume: 6
  start-page: e20178
  year: 2017
  ident: 2024121918191723200_bib13
  article-title: The heritability of multi-modal connectivity in human brain activity
  publication-title: eLife
  doi: 10.7554/eLife.20178
– volume: 31
  start-page: 567
  issue: 6
  year: 2001
  ident: 2024121918191723200_bib50
  article-title: Are smarter brains running faster? Heritability of alpha peak frequency, IQ, and their interrelation
  publication-title: Behavior Genetics
  doi: 10.1023/A:1013345411774
– volume: 108
  start-page: 16783
  issue: 40
  year: 2011
  ident: 2024121918191723200_bib7
  article-title: Investigating the electrophysiological basis of resting state networks using magnetoencephalography
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1112685108
– volume: 53
  start-page: 1197
  issue: 4
  year: 2010
  ident: 2024121918191723200_bib89
  article-title: Network-based statistic: Identifying differences in brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 2024121918191723200_bib56
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 9
  start-page: eadd2870
  issue: 7
  year: 2023
  ident: 2024121918191723200_bib64
  article-title: Genetic architecture of the white matter connectome of the human brain
  publication-title: Science Advances
  doi: 10.1126/sciadv.add2870
– volume: 22
  start-page: 746
  issue: 6
  year: 2019
  ident: 2024121918191723200_bib83
  article-title: Minnesota center for twin and family research
  publication-title: Twin Research and Human Genetics
  doi: 10.1017/thg.2019.107
– volume: 180
  start-page: 396
  year: 2018
  ident: 2024121918191723200_bib65
  article-title: Principles of dynamic network reconfiguration across diverse brain states
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.010
– volume: 180
  start-page: 515
  year: 2018
  ident: 2024121918191723200_bib11
  article-title: The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.09.036
– volume: 111
  start-page: 300
  year: 2015
  ident: 2024121918191723200_bib42
  article-title: Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.050
– volume-title: Introduction to quantitative genetics
  year: 1990
  ident: 2024121918191723200_bib23
– volume: 12
  start-page: 3417
  issue: 1
  year: 2021
  ident: 2024121918191723200_bib19
  article-title: Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores
  publication-title: Nature Communications
  doi: 10.1038/s41467-021-22491-8
– volume: 247
  start-page: 118850
  year: 2022
  ident: 2024121918191723200_bib15
  article-title: Microstates and power envelope hidden Markov modeling probe bursting brain activity at different timescales
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118850
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 2024121918191723200_bib17
  article-title: EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 15
  start-page: 884
  issue: 6
  year: 2012
  ident: 2024121918191723200_bib29
  article-title: Large-scale cortical correlation structure of spontaneous oscillatory activity
  publication-title: Nature Neuroscience
  doi: 10.1038/nn.3101
– volume: 185
  start-page: 72
  year: 2019
  ident: 2024121918191723200_bib31
  article-title: A dynamic system of brain networks revealed by fast transient EEG fluctuations and their fMRI correlates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.09.082
– volume: 20
  start-page: 805
  issue: 11
  year: 2016
  ident: 2024121918191723200_bib57
  article-title: Brain networks and α-oscillations: Structural and functional foundations of cognitive control
  publication-title: Trends in Cognitive Sciences
  doi: 10.1016/j.tics.2016.09.004
– volume: 34
  start-page: 3280
  issue: 12
  year: 2013
  ident: 2024121918191723200_bib75
  article-title: Short-time windows of correlation between large-scale functional brain networks predict vigilance intraindividually and interindividually
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.22140
– volume: 3
  start-page: e01867
  year: 2014
  ident: 2024121918191723200_bib3
  article-title: Fast transient networks in spontaneous human brain activity
  publication-title: eLife
  doi: 10.7554/eLife.01867
– volume: 88
  start-page: 1273
  issue: 424
  year: 1993
  ident: 2024121918191723200_bib55
  article-title: Alternatives to the median absolute deviation
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1993.10476408
– year: 2020
  ident: 2024121918191723200_bib68
  article-title: Spontaneous activity changes in large-scale cortical networks in older adults couple to distinct hemodynamic morphology
  publication-title: bioRxiv
  doi: 10.1101/2020.05.05.079749
– volume: 26
  start-page: 191
  issue: 3
  year: 2005
  ident: 2024121918191723200_bib49
  article-title: Genetic components of functional connectivity in the brain: The heritability of synchronization likelihood
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.20156
– volume: 75
  start-page: 260
  issue: 3
  year: 2007
  ident: 2024121918191723200_bib10
  article-title: Heritability of EEG coherence in a large sib-pair population
  publication-title: Biological Psychology
  doi: 10.1016/j.biopsycho.2007.03.006
– volume: 117
  start-page: 449
  year: 2015
  ident: 2024121918191723200_bib28
  article-title: Long-range dependencies make the difference—Comment on “A stochastic model for EEG microstate sequence analysis.”
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.062
– volume: 8
  start-page: 1089
  issue: 4
  year: 2024
  ident: 2024121918191723200_bib34
  article-title: Cognitive abilities are associated with rapid dynamics of electrophysiological connectome states
  publication-title: Network Neuroscience
  doi: 10.1162/netn_a_00390
– volume: 74
  start-page: 036104
  issue: 3
  year: 2006
  ident: 2024121918191723200_bib47
  article-title: Finding community structure in networks using the eigenvectors of matrices
  publication-title: Physical Review E—Statistical, Nonlinear, and Soft Matter Physics
  doi: 10.1103/PhysRevE.74.036104
– volume: 240
  start-page: 118331
  year: 2021
  ident: 2024121918191723200_bib62
  article-title: Exploring MEG brain fingerprints: Evaluation, pitfalls, and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.118331
– volume: 42
  start-page: 691
  issue: 6
  year: 2005
  ident: 2024121918191723200_bib70
  article-title: Heritability of background EEG across the power spectrum
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2005.00352.x
– volume: 28
  start-page: 443
  issue: 6
  year: 1998
  ident: 2024121918191723200_bib77
  article-title: Genetic and environmental influences on EEG coherence
  publication-title: Behavior Genetics
  doi: 10.1023/A:1021637328512
– volume: 9
  start-page: 45
  issue: 1
  year: 2010
  ident: 2024121918191723200_bib26
  article-title: OpenMEEG: Opensource software for quasistatic bioelectromagnetics
  publication-title: BioMedical Engineering OnLine
  doi: 10.1186/1475-925X-9-45
– volume: 231
  start-page: 117864
  year: 2021
  ident: 2024121918191723200_bib85
  article-title: The relationship between EEG and fMRI connectomes is reproducible across simultaneous EEG-fMRI studies from 1.5T to 7T
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2021.117864
– volume: 91
  start-page: 282
  year: 2014
  ident: 2024121918191723200_bib6
  article-title: Measuring temporal, spectral and spatial changes in electrophysiological brain network connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.12.066
– volume: 106
  start-page: 1125
  issue: 3
  year: 2011
  ident: 2024121918191723200_bib88
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00338.2011
– volume: 25
  start-page: 441
  issue: 4
  year: 2015
  ident: 2024121918191723200_bib37
  article-title: The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression
  publication-title: European Neuropsychopharmacology
  doi: 10.1016/j.euroneuro.2015.01.001
– volume: 12
  start-page: 603
  year: 2018
  ident: 2024121918191723200_bib52
  article-title: Task-evoked dynamic network analysis through hidden Markov modeling
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2018.00603
– volume: 2
  start-page: 260
  issue: 3
  year: 1999
  ident: 2024121918191723200_bib25
  article-title: Learning enhances adult neurogenesis in the hippocampal formation
  publication-title: Nature Neuroscience
  doi: 10.1038/6365
– volume: 58
  start-page: 562
  issue: 3
  year: 1996
  ident: 2024121918191723200_bib78
  article-title: Heritability of human brain functioning as assessed by electroencephalography
  publication-title: American Journal of Human Genetics
– volume: 339
  start-page: 12
  year: 2016
  ident: 2024121918191723200_bib21
  article-title: State-dependent variability of dynamic functional connectivity between frontoparietal and default networks relates to cognitive flexibility
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.09.034
– volume: 219
  start-page: 116998
  year: 2020
  ident: 2024121918191723200_bib84
  article-title: Concurrent EEG- and fMRI-derived functional connectomes exhibit linked dynamics
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116998
– volume: 160
  start-page: 41
  year: 2017
  ident: 2024121918191723200_bib51
  article-title: The dynamic functional connectome: State-of-the-art and perspectives
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.061
– volume: 24
  start-page: 213
  issue: 4
  year: 2023
  ident: 2024121918191723200_bib79
  article-title: Developmental mechanisms underlying the evolution of human cortical circuits
  publication-title: Nature Reviews Neuroscience
  doi: 10.1038/s41583-023-00675-z
– volume: 8
  start-page: 258
  year: 2014
  ident: 2024121918191723200_bib16
  article-title: Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2014.00258
– volume: 2011
  start-page: 879716
  year: 2011
  ident: 2024121918191723200_bib72
  article-title: Brainstorm: A user-friendly application for MEG/EEG analysis
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2011/879716
– volume: 12
  start-page: 489
  issue: 5
  year: 2009
  ident: 2024121918191723200_bib39
  article-title: The enrichment study of the Minnesota twin family study: Increasing the yield of twin families at high risk for externalizing psychopathology
  publication-title: Twin Research and Human Genetics
  doi: 10.1375/twin.12.5.489
– volume: 58
  start-page: 601
  issue: 3
  year: 1987
  ident: 2024121918191723200_bib24
  article-title: Development of cortical circuitry and cognitive function
  publication-title: Child Development
  doi: 10.2307/1130201
– reference: 38293031 - bioRxiv. 2024 Jan 27:2024.01.15.575731. doi: 10.1101/2024.01.15.575731
SSID ssj0002121048
ssj0002507470
Score 2.290508
Snippet Time-varying changes in whole-brain connectivity patterns, or connectome state dynamics, are a prominent feature of brain activity with broad functional...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
mit
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1065
SubjectTerms Brain
Cognition & reasoning
Cognitive ability
Dynamic functional connectivity
Dynamics
Electrophysiology
Heritability
Hidden Markov modeling
Markov chains
Multivariate analysis
Neural networks
Neurosciences
Theta rhythms
Time measurement
Transition probabilities
Twin study
Twins
Variance component modeling
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS90wFA5OX_YyNvyxbm5E0KdRTJs0TZ5kDi8iKCITfCtJmmwXZnt3b_3_PadNq3dMnwrtoW1ykpzvnJx8h5DDELRiwhvQAC9SYbM81aLmac6DYwBPWWkwNHB5Jc9vxcVdcRcDbquYVjmuif1CXbcOY-THHInLwTpJdrL4m2LVKNxdjSU03pAtWIIVOF9bp2dX1zdTlCVHfiyhxox3mR-Dw99UpuqZ0ddsUU_ZDxbmft79D23-mzT5zArN3pN3ET7S74O-P5AN32yT2Y1ZzGtaD8XlV7QNNFa36eMW4_JGHSa1uK6997Q_R7SiZukpHgDs8ADVDrmdnf38cZ7G-gipA5jTpU4ZsOcBPALlRKi5FN5rLlnp4LYTmSq9LrNaqyABlQIWsUXuwGOydWZ04J7vks2mbfxHQh0LhVNKGmQA5NZby-CqbaExQlSEhHwbe6pykTwca1j8qXonQubV835NyNEkvRhIM16QO8VOn2SQ6rq_0S5_VXHmVEbmQYBXGTggCWaZtrVlXmALAe2YMiEHoLIqTr3VCx_aHxX6JPg0ouAV02OYXbhlYhrfPgwyGZZFLRKyN-h_-ltAchzZ4BKi1kbGWnPWnzTz3z2DN25-CcH4p9f_6zN5mwOGwuyZjO2TzW754L8ABurs1zjQHwHXnwdu
  priority: 102
  providerName: ProQuest
Title Rapid dynamics of electrophysiological connectome states are heritable
URI https://direct.mit.edu/netn/article/doi/10.1162/netn_a_00391
https://www.ncbi.nlm.nih.gov/pubmed/39735507
https://www.proquest.com/docview/3150851260
https://www.proquest.com/docview/3150138655
https://pubmed.ncbi.nlm.nih.gov/PMC11674403
https://doaj.org/article/a62f4191f36140b09bdb0e419c4750a7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7a9NJLm_TpPBYV2lMxkS1ZKx2bsttQSCihgdyMJEt0ofGGrHPtb8-MbG93S0MvvdhgDX6MRppv5NE3AO9jNJrLYLEHRJVLV5S5kY3ISxE9R3jKp5aWBs7O1eml_HpVXW2U-qKcsJ4euFfcsVVllBhURIGOhDtuXON4wCteorOzaR85-ryNYIrmYHTsiJP5mOmuymMM9Nva1okRfcsHJap-9CzXi-5vKPPPZMkN7zPfhWcDbGSf-tfdg0ehfQHPx5IMbBihL2F-YW8WDWv6OvMrtoxsKHSTljDGmY55ym_x3fI6sLSlaMXsbWC0F7CjvVSv4HI--_75NB9KJeQeEU-Xe23RtUcMDrSXsRFKhmCE4lOvSVOFngYzLRqjo0KAirDEVaXH4Mk1hTVRBPEadtplG94C8zxWXmtliQxQuOAcx7NxlaHFoipm8HFUXu0HHnEqZ_GzTvGEKutNVWfwYS190_NnPCB3Qv2wliHW63QBbaEebKH-ly1k8A57sR5G4eqBBx2OffxbUBArPkIfxfEW62YcaPT3xLZhedfLFFQhtcrgTW8S67dFUCeIGC4DvWUsW5-z3dIufiQyb_oPJiUX-_9DAQfwtETQRek2BT-Ene72LhwhaOrcBB7r-ZcJPDmZnX-7mKTRgsezX7N71dkX3Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOcAFgXiltGAkekJRHdtJ7AOqeC1b-jigVuot2I4NK7XJspsK8af4jczk1S6i3HpaKRllE8-M5_N4_A0hr0LQiklvQAMijaVNeKxlKWIugmMAT1luMDVweJRNT-Tn0_R0jfwezsJgWeUwJ7YTdVk7zJHvCCQuh-iUsd35jxi7RuHu6tBCozOLff_rJyzZlm_2PoB-tzmffDx-P437rgKxA3DQxE4ZiIIBcLRyMpQik95rkbHcwWUnE5V7nSelViEDLAcR3KbcwTrDlonRQXgBz71FbkshNHqUmnwaczoc2bikGurrM75T-aYqTNHysK9EvrZBAMSz81nzL2z7d4nmlZg3uU_u9WCVvu2s6wFZ89VDMvli5rOSll0r-yWtA-176bRZkmEypQ5LaFxTn3vanlpaUrPwFI8bNnhc6xE5uZFxe0zWq7ryTwl1LKROqcwg36Cw3loGv9qmGvNRaYjI62GkCtdTlWPHjLOiXbJkvLg6rhHZHqXnHUXHNXLvcNBHGSTWbi_Ui29F76eFyXiQsIYNAnALs0zb0jIv8QsBW5k8Ii9BZUXv6Mtr_mhzUOil4KX9wiPG2-DLuEFjKl9fdDIJNmFNI_Kk0__4toAbBXLPRUStWMbK56zeqWbfW75w3GqTkomN_7_XC3Jnenx4UBzsHe0_I3c5oDes20nYJllvFhd-C9BXY5-3Jk_J15v2sT-4pEHi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+dynamics+of+electrophysiological+connectome+states+are+heritable&rft.jtitle=Network+neuroscience+%28Cambridge%2C+Mass.%29&rft.au=Jun%2C+Suhnyoung&rft.au=Alderson%2C+Thomas+H.&rft.au=Malone%2C+Stephen+M.&rft.au=Harper%2C+Jeremy&rft.date=2024-12-10&rft.issn=2472-1751&rft.eissn=2472-1751&rft.volume=8&rft.issue=4&rft.spage=1065&rft.epage=1088&rft_id=info:doi/10.1162%2Fnetn_a_00391&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_netn_a_00391
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2472-1751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2472-1751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2472-1751&client=summon