TUCNet: A channel and spatial attention-based graph convolutional network for teeth upsampling and completion

With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 166; p. 107519
Main Authors Liu, Mengting, Li, Xiaojie, Liu, Jie, Liu, Weifan, Yu, Zekuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset. •A novel convolutional network TUCNet for the completion of teeth point clouds.•A Channel and Spatial Attentive EdgeConv (CSAE) block for local feature extraction.•A CSAE-based point cloud upsample (CPCU) module for points upsampling.•State-of-the-art performance on the FDDI teeth dataset.
AbstractList AbstractWith the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset.
With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset. •A novel convolutional network TUCNet for the completion of teeth point clouds.•A Channel and Spatial Attentive EdgeConv (CSAE) block for local feature extraction.•A CSAE-based point cloud upsample (CPCU) module for points upsampling.•State-of-the-art performance on the FDDI teeth dataset.
With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset.
With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset.With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has become vital in oral prosthodontics and orthodontics. However, the point cloud data obtained can often be sparse and thus missing information. To address this issue, we construct a high-resolution teeth point cloud completion method named TUCNet to fill up the sparse and incomplete oral point cloud collected and output a dense and complete teeth point cloud. First, we propose a Channel and Spatial Attentive EdgeConv (CSAE) module to fuse local and global contexts in the point feature extraction. Second, we propose a CSAE-based point cloud upsample (CPCU) module to gradually increase the number of points in the point clouds. TUCNet employs a tree-based approach to generate complete point clouds, where child points are derived through a splitting process from parent points following each CPCU. The CPCU learns the up-sampling pattern of each parent point by combining the attention mechanism and the point deconvolution operation. Skip connections are introduced between CPCUs to summarize the split mode of the previous layer of CPCUs, which is used to generate the split mode of the current CPCUs. We conduct numerous experiments on the teeth point cloud completion dataset and the PCN dataset. The experimental results show that our TUCNet not only achieves the state-of-the-art performance on the teeth dataset, but also achieves excellent performance on the PCN dataset.
ArticleNumber 107519
Author Liu, Jie
Liu, Weifan
Yu, Zekuan
Liu, Mengting
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Mengting
  surname: Liu
  fullname: Liu, Mengting
  organization: School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China
– sequence: 2
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
  organization: Department of Dental and Endodontic Diseases, General Hospital of Ningxia Medical University, Yinchuan, 750000, China
– sequence: 3
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: jieliu@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, 100044, Beijing, China
– sequence: 4
  givenname: Weifan
  orcidid: 0000-0002-0710-9311
  surname: Liu
  fullname: Liu, Weifan
  email: weifanliu@bjfu.edu.cn
  organization: College of Science, Beijing Forestry University, 100083, Beijing, China
– sequence: 5
  givenname: Zekuan
  orcidid: 0000-0003-3655-872X
  surname: Yu
  fullname: Yu, Zekuan
  email: yzk@fudan.edu.cn
  organization: Academy for Engineering and Technology, Fudan University, 200433, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37801919$$D View this record in MEDLINE/PubMed
BookMark eNqVkk1v1DAQhi1URLeFv4AiceGSxR9JbHNAtCu-pAoOtGfLcSZdbxM72E5R_z0OWxapElI52Ro982rmfecEHTnvAKGC4DXBpHmzWxs_Tq31I3RriinLZV4T-QStiOCyxDWrjtAKY4LLStD6GJ3EuMMYV5jhZ-iYcYGJJHKFxsurzVdIb4uzwmy1czAU2nVFnHSyOv9TApesd2WrI3TFddDTtjDe3fphXuqZcZB--nBT9D4UCSBti3mKepwG665_iy2zDrDQz9HTXg8RXty_p-jq44fLzefy4tunL5uzi9LUpEplK4CDbCS0LdW86WSDDWuhaQmvWNVz1nSCiVoLwyRrGO-gb3vGpKEMcqFmp-j1XncK_scMManRRgPDoB34OSoqeEU5xkJm9NUDdOfnkPdaKMGobATjmXp5T81t9lxNwY463Kk_RmZA7AETfIwB-gNCsFoyUzv1NzO1ZKb2meXWdw9ajU16sSsFbYfHCJzvBSBbemshqGgsOAOdDWCS6rz9jykOIiYHaI0ebuAO4sEUoiJVWH1fbms5LcowlqISWeD9vwUeN8Mvx5rkGQ
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109241
crossref_primary_10_1111_jopr_14035
Cites_doi 10.1049/iet-ipr.2020.0658
10.3390/rs14041036
10.3901/JME.2011.03.129
10.3390/s22093531
10.1016/j.patcog.2022.109051
10.3390/rs12061005
10.1007/s12559-023-10161-4
10.1007/s41095-021-0229-5
10.1111/cgf.12573
10.1007/978-3-030-01234-2_1
10.1109/ACCESS.2021.3132293
10.3390/s19071553
10.1145/3326362
10.1007/s10994-022-06148-1
10.1111/cgf.12481
10.1016/j.cagd.2021.102026
10.1016/j.media.2020.101949
10.1109/TPAMI.2022.3159003
10.1109/TITS.2022.3195555
10.1177/0278364913491297
10.1145/2816795.2818094
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107519
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Dentistry
EISSN 1879-0534
EndPage 107519
ExternalDocumentID 37801919
10_1016_j_compbiomed_2023_107519
S0010482523009848
1_s2_0_S0010482523009848
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Research and Development
  grantid: 2023BEG02036
  funderid: https://doi.org/10.13039/100006190
– fundername: National Natural Science Foundation of China
  grantid: 81571836; KKA309004533
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AFCTW
AGRNS
ALIPV
RIG
3V.
AACTN
AFKWA
AJOXV
AMFUW
M0N
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-b8e7e969ebb2a76d960c3be6b17434f736d8385a8c393637defbf339c23e93653
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Tue Aug 05 10:01:53 EDT 2025
Wed Aug 13 09:38:38 EDT 2025
Mon Jul 21 05:55:02 EDT 2025
Tue Jul 01 03:29:05 EDT 2025
Thu Apr 24 22:57:56 EDT 2025
Sat Jan 18 16:09:16 EST 2025
Wed Jun 18 06:48:28 EDT 2025
Tue Aug 26 20:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Upsample transformer
Channel and spatial attention
Teeth point cloud completion
Point cloud completion
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-b8e7e969ebb2a76d960c3be6b17434f736d8385a8c393637defbf339c23e93653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0710-9311
0000-0003-3655-872X
PMID 37801919
PQID 2883296837
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2874270089
proquest_journals_2883296837
pubmed_primary_37801919
crossref_primary_10_1016_j_compbiomed_2023_107519
crossref_citationtrail_10_1016_j_compbiomed_2023_107519
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107519
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523009848
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Liu (bib20) 30 Nov. 2019
Fei (bib14) 2022; 23
Yang (bib18) 2018
Wen (bib31) 2020
Cui (bib38) 2021; 69
Geiger (bib3) 2013; 32
Wang (bib13) 5 Dec. 2017
Qiu (bib29) 2022; 2023
Wang (bib34) 2022
Woo (bib41) 2018
Yu (bib30) 2021
Ping (bib39) 2021; 90
Wang (bib23) 2020; 2020
Shan, Yan (bib43) 2021; 9
Prajapati (bib37) 2017
Xie (bib11) 2020; 2020
Guo (bib27) 2021; 7
Wang (bib36) 2021
Ryselis (bib28) 2022; 22
Kulikajevas (bib16) 2019; 19
Zhang (bib47) 5 July 2020
.
Li (bib10) 2015; 34
Pierdicca (bib25) 2020; 12
Groueix (bib6) 20 July 2018
Chang (bib2) 9 Dec. 2015
Charles (bib4) 2017
Wang (bib22) 2020
Yuan (bib17) 2018
Yu, Zekuan, et al. “A Benchmark Dual-Modality Dental Imaging Dataset and a Novel Cognitively Inspired Pipeline for High-Resolution Dental Point Cloud Synthesis - Cognitive Computation.” SpringerLink, 5 June 2023, link.springer.com/article/10.1007/s12559-023-10161-4.
Huang (bib21) 2020
Zhao (bib45) 1970
Xie (bib40) 2021
Sipiran (bib9) 2014; 33
Wen (bib49) 2023; 45
Tchapmi (bib19) 2019
Haoran (bib33) 2022
Fei (bib48) 2023; 133
Xiang (bib32) 2021
Wen (bib35) 2021
Yang, Qing-Long Zhang Yu-Bin. “Sa-Net: Shuffle Attention for Deep Convolutional Neural Networks.” arXiv.Org, 30 Jan. 2021, arxiv.org/abs/2102.00240.
Chung (bib50) 2014
Jing (bib24) 2022; 14
Su (bib12) 2018
Zhang (bib15) 2020; 14
Zheng (bib1) 2011; 47
Charles R. Qi, et al., PointNet++: deep hierachical feature learning on point sets in a metric space, NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (2017). 5105-5114
Sung (bib7) 2015; 34
Gao (bib26) 2022; 111
Wang (bib42) 2019; 38
Nguyen (bib8) 2016
Cui (10.1016/j.compbiomed.2023.107519_bib38) 2021; 69
Charles (10.1016/j.compbiomed.2023.107519_bib4) 2017
Guo (10.1016/j.compbiomed.2023.107519_bib27) 2021; 7
Wang (10.1016/j.compbiomed.2023.107519_bib13) 2017
Wang (10.1016/j.compbiomed.2023.107519_bib34) 2022
Chang (10.1016/j.compbiomed.2023.107519_bib2) 2015
Jing (10.1016/j.compbiomed.2023.107519_bib24) 2022; 14
Xiang (10.1016/j.compbiomed.2023.107519_bib32) 2021
Groueix (10.1016/j.compbiomed.2023.107519_bib6) 2018
Wen (10.1016/j.compbiomed.2023.107519_bib35) 2021
Ping (10.1016/j.compbiomed.2023.107519_bib39) 2021; 90
Geiger (10.1016/j.compbiomed.2023.107519_bib3) 2013; 32
Xie (10.1016/j.compbiomed.2023.107519_bib11) 2020; 2020
Wang (10.1016/j.compbiomed.2023.107519_bib23) 2020; 2020
Nguyen (10.1016/j.compbiomed.2023.107519_bib8) 2016
Yu (10.1016/j.compbiomed.2023.107519_bib30) 2021
Fei (10.1016/j.compbiomed.2023.107519_bib14) 2022; 23
Qiu (10.1016/j.compbiomed.2023.107519_bib29) 2022; 2023
Woo (10.1016/j.compbiomed.2023.107519_bib41) 2018
10.1016/j.compbiomed.2023.107519_bib5
Prajapati (10.1016/j.compbiomed.2023.107519_bib37) 2017
Wen (10.1016/j.compbiomed.2023.107519_bib31) 2020
10.1016/j.compbiomed.2023.107519_bib46
Yang (10.1016/j.compbiomed.2023.107519_bib18) 2018
10.1016/j.compbiomed.2023.107519_bib44
Zhang (10.1016/j.compbiomed.2023.107519_bib47) 2020
Pierdicca (10.1016/j.compbiomed.2023.107519_bib25) 2020; 12
Zhang (10.1016/j.compbiomed.2023.107519_bib15) 2020; 14
Su (10.1016/j.compbiomed.2023.107519_bib12) 2018
Wen (10.1016/j.compbiomed.2023.107519_bib49) 2023; 45
Sung (10.1016/j.compbiomed.2023.107519_bib7) 2015; 34
Gao (10.1016/j.compbiomed.2023.107519_bib26) 2022; 111
Liu (10.1016/j.compbiomed.2023.107519_bib20) 2019
Wang (10.1016/j.compbiomed.2023.107519_bib42) 2019; 38
Li (10.1016/j.compbiomed.2023.107519_bib10) 2015; 34
Huang (10.1016/j.compbiomed.2023.107519_bib21) 2020
Tchapmi (10.1016/j.compbiomed.2023.107519_bib19) 2019
Wang (10.1016/j.compbiomed.2023.107519_bib22) 2020
Yuan (10.1016/j.compbiomed.2023.107519_bib17) 2018
Zheng (10.1016/j.compbiomed.2023.107519_bib1) 2011; 47
Kulikajevas (10.1016/j.compbiomed.2023.107519_bib16) 2019; 19
Ryselis (10.1016/j.compbiomed.2023.107519_bib28) 2022; 22
Shan (10.1016/j.compbiomed.2023.107519_bib43) 2021; 9
Wang (10.1016/j.compbiomed.2023.107519_bib36) 2021
Zhao (10.1016/j.compbiomed.2023.107519_bib45) 1970
Chung (10.1016/j.compbiomed.2023.107519_bib50) 2014
Haoran (10.1016/j.compbiomed.2023.107519_bib33) 2022
Sipiran (10.1016/j.compbiomed.2023.107519_bib9) 2014; 33
Fei (10.1016/j.compbiomed.2023.107519_bib48) 2023; 133
Xie (10.1016/j.compbiomed.2023.107519_bib40) 2021
References_xml – year: 2017
  ident: bib37
  article-title: Classification of dental diseases using CNN and transfer learning
  publication-title: 2017 5th International Symposium on Computational and Business Intelligence (ISCBI)
– year: 2018
  ident: bib18
  article-title: FoldingNet: point cloud auto-encoder via deep grid deformation
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 9 Dec. 2015
  ident: bib2
  article-title: ShapeNet: an Information-Rich 3D Model Repository
– volume: 14
  start-page: 4086
  year: 2020
  end-page: 4091
  ident: bib15
  article-title: Hybrid feature CNN model for point cloud classification and segmentation
  publication-title: IET Image Process.
– volume: 47
  year: 2011
  ident: bib1
  article-title: 3D deformation design method for prosthetic dental surface based on feature mapping
  publication-title: J. Mech. Eng.
– volume: 22
  year: 2022
  ident: bib28
  article-title: Computer-aided depth video stream masking framework for human body segmentation in depth sensor images
  publication-title: Sensors
– volume: 7
  start-page: 187
  year: 2021
  end-page: 199
  ident: bib27
  article-title: PCT: point cloud transformer
  publication-title: Comput. Vis. Media
– volume: 33
  start-page: 131140
  year: 2014
  ident: bib9
  article-title: Approximate symmetry detection in partial 3D meshes
  publication-title: Comput. Graph. Forum
– year: 2020
  ident: bib22
  article-title: Cascaded refinement network for point cloud completion
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 32
  start-page: 1231
  year: 2013
  end-page: 1237
  ident: bib3
  article-title: Vision meets robotics: the kitti dataset
  publication-title: Int. J. Robot Res.
– volume: 69
  year: 2021
  ident: bib38
  article-title: TSegNet: an efficient and accurate tooth segmentation network on 3D dental model
  publication-title: Med. Image Anal.
– year: 2016
  ident: bib8
  article-title: A field model for repairing 3D shapes
  publication-title: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 14
  year: 2022
  ident: bib24
  article-title: Agnet: an attention-based graph network for point cloud classification and segmentation
  publication-title: Rem. Sens.
– volume: 12
  year: 2020
  ident: bib25
  article-title: Point cloud semantic segmentation using a deep learning framework for cultural heritage
  publication-title: Rem. Sens.
– year: 2020
  ident: bib21
  article-title: PF-net: point fractal network for 3D point cloud completion
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 23
  start-page: 22862
  year: 2022
  end-page: 22883
  ident: bib14
  article-title: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
– year: 2021
  ident: bib36
  article-title: Unsupervised point cloud pre-training via occlusion completion
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 90
  year: 2021
  ident: bib39
  article-title: Self-attention implicit function networks for 3D dental data completion
  publication-title: Comput. Aided Geomet. Des.
– volume: 9
  start-page: 160926
  year: 2021
  end-page: 160937
  ident: bib43
  article-title: SCA-net: a spatial and channel attention network for medical image segmentation
  publication-title: IEEE Access
– year: 2018
  ident: bib12
  article-title: SPLATNet: sparse lattice networks for point cloud processing
  publication-title: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– year: 2021
  ident: bib40
  article-title: Style-based point generator with adversarial rendering for point cloud completion
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 5 July 2020
  ident: bib47
  article-title: Detail Preserved Point Cloud Completion via Separated Feature Aggregation
– volume: 133
  year: 2023
  ident: bib48
  article-title: Dctr: noise-robust point cloud completion by dual-channel transformer with cross-attention
  publication-title: Pattern Recogn.
– year: 2021
  ident: bib35
  article-title: PMP-NET: point cloud completion by learning multi-step point moving paths
  publication-title: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 45
  start-page: 852
  year: 2023
  end-page: 867
  ident: bib49
  article-title: PMP-NET++: point cloud completion by transformer-enhanced multi-step point moving paths
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Yu, Zekuan, et al. “A Benchmark Dual-Modality Dental Imaging Dataset and a Novel Cognitively Inspired Pipeline for High-Resolution Dental Point Cloud Synthesis - Cognitive Computation.” SpringerLink, 5 June 2023, link.springer.com/article/10.1007/s12559-023-10161-4.
– year: 30 Nov. 2019
  ident: bib20
  article-title: Morphing and Sampling Network for Dense Point Cloud Completion
– volume: 34
  start-page: 435
  year: 2015
  end-page: 446
  ident: bib10
  article-title: Database-assisted object retrieval for real-time 3D reconstruction
  publication-title: Comput. Graph. Forum
– year: 2020
  ident: bib31
  article-title: Point cloud completion by skip-attention network with hierarchical folding
  publication-title: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: bib42
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: ACM Trans. Graph.
– volume: 2020
  start-page: 365
  year: 2020
  end-page: 381
  ident: bib11
  article-title: GRNET: gridding residual network for dense point cloud completion
  publication-title: Comput. Vis. – ECCV
– year: 2022
  ident: bib34
  article-title: Pointattn: You Only Need Attention for Point Cloud Completion
– volume: 19
  year: 2019
  ident: bib16
  article-title: Reconstruction of 3D object shape using hybrid modular neural network architecture trained on 3D models from shapenetcore dataset
  publication-title: Sensors
– year: 2019
  ident: bib19
  article-title: TopNet: structural point cloud decoder
  publication-title: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 1970
  ident: bib45
  article-title: Pui-Net: A Point Cloud Upsampling and Inpainting Network.” SpringerLink
– year: 2017
  ident: bib4
  article-title: PointNet: deep learning on point sets for 3D classification and segmentation
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: bib17
  article-title: PCN: point completion network
  publication-title: 2018 International Conference on 3D Vision (3DV)
– volume: 2020
  start-page: 70
  year: 2020
  end-page: 85
  ident: bib23
  article-title: SoftPoolNet: shape descriptor for point cloud completion and classification
  publication-title: Comput. Vis. – ECCV
– volume: 34
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib7
  article-title: Data-driven structural priors for shape completion
  publication-title: ACM Trans. Graph.
– start-page: 3
  year: 2018
  end-page: 19
  ident: bib41
  article-title: CBAM: convolutional block attention module
  publication-title: Comput. Vis. – ECCV 2018
– reference: .
– reference: Yang, Qing-Long Zhang Yu-Bin. “Sa-Net: Shuffle Attention for Deep Convolutional Neural Networks.” arXiv.Org, 30 Jan. 2021, arxiv.org/abs/2102.00240.
– year: 2014
  ident: bib50
  article-title: Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling
– start-page: 416
  year: 2022
  end-page: 432
  ident: bib33
  article-title: Seedformer: patch seeds based point cloud completion with upsample transformer
  publication-title: Lect. Notes Comput. Sci.
– volume: 2023
  start-page: 326
  year: 2022
  end-page: 343
  ident: bib29
  article-title: Pu-transformer: point cloud upsampling transformer
  publication-title: Comput. Vis. – ACCV
– year: 2021
  ident: bib32
  article-title: SnowflakeNet: point cloud completion by snowflake point deconvolution with PD-upsample transformer
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
– year: 2021
  ident: bib30
  article-title: Pointr: diverse point cloud completion with geometry-aware transformers
  publication-title: 2021 IEEE/CVF International Conference on Computer Vision (ICCV)
– volume: 111
  start-page: 1327
  year: 2022
  end-page: 1348
  ident: bib26
  article-title: SDANet: spatial deep attention-based for point cloud classification and segmentation
  publication-title: Mach. Learn.
– year: 20 July 2018
  ident: bib6
  article-title: AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation
– reference: Charles R. Qi, et al., PointNet++: deep hierachical feature learning on point sets in a metric space, NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems (2017). 5105-5114
– year: 5 Dec. 2017
  ident: bib13
  article-title: O-CNN: Octree-Based Convolutional Neural Networks for 3D Shape Analysis
– volume: 14
  start-page: 4086
  issue: 16
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib15
  article-title: Hybrid feature CNN model for point cloud classification and segmentation
  publication-title: IET Image Process.
  doi: 10.1049/iet-ipr.2020.0658
– volume: 14
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib24
  article-title: Agnet: an attention-based graph network for point cloud classification and segmentation
  publication-title: Rem. Sens.
  doi: 10.3390/rs14041036
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107519_bib13
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib22
  article-title: Cascaded refinement network for point cloud completion
– volume: 47
  year: 2011
  ident: 10.1016/j.compbiomed.2023.107519_bib1
  article-title: 3D deformation design method for prosthetic dental surface based on feature mapping
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2011.03.129
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib31
  article-title: Point cloud completion by skip-attention network with hierarchical folding
– volume: 22
  issue: 9
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib28
  article-title: Computer-aided depth video stream masking framework for human body segmentation in depth sensor images
  publication-title: Sensors
  doi: 10.3390/s22093531
– volume: 2023
  start-page: 326
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib29
  article-title: Pu-transformer: point cloud upsampling transformer
  publication-title: Comput. Vis. – ACCV
– volume: 133
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107519_bib48
  article-title: Dctr: noise-robust point cloud completion by dual-channel transformer with cross-attention
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2022.109051
– year: 2016
  ident: 10.1016/j.compbiomed.2023.107519_bib8
  article-title: A field model for repairing 3D shapes
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib35
  article-title: PMP-NET: point cloud completion by learning multi-step point moving paths
– volume: 2020
  start-page: 70
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib23
  article-title: SoftPoolNet: shape descriptor for point cloud completion and classification
  publication-title: Comput. Vis. – ECCV
– year: 2015
  ident: 10.1016/j.compbiomed.2023.107519_bib2
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107519_bib37
  article-title: Classification of dental diseases using CNN and transfer learning
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib47
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib30
  article-title: Pointr: diverse point cloud completion with geometry-aware transformers
– volume: 12
  issue: 6
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib25
  article-title: Point cloud semantic segmentation using a deep learning framework for cultural heritage
  publication-title: Rem. Sens.
  doi: 10.3390/rs12061005
– ident: 10.1016/j.compbiomed.2023.107519_bib46
  doi: 10.1007/s12559-023-10161-4
– volume: 7
  start-page: 187
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib27
  article-title: PCT: point cloud transformer
  publication-title: Comput. Vis. Media
  doi: 10.1007/s41095-021-0229-5
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib32
  article-title: SnowflakeNet: point cloud completion by snowflake point deconvolution with PD-upsample transformer
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107519_bib19
  article-title: TopNet: structural point cloud decoder
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107519_bib12
  article-title: SPLATNet: sparse lattice networks for point cloud processing
– ident: 10.1016/j.compbiomed.2023.107519_bib44
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107519_bib20
– volume: 2020
  start-page: 365
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib11
  article-title: GRNET: gridding residual network for dense point cloud completion
  publication-title: Comput. Vis. – ECCV
– volume: 34
  start-page: 435
  issue: 2
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107519_bib10
  article-title: Database-assisted object retrieval for real-time 3D reconstruction
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12573
– start-page: 416
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib33
  article-title: Seedformer: patch seeds based point cloud completion with upsample transformer
  publication-title: Lect. Notes Comput. Sci.
– start-page: 3
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107519_bib41
  article-title: CBAM: convolutional block attention module
  publication-title: Comput. Vis. – ECCV 2018
  doi: 10.1007/978-3-030-01234-2_1
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107519_bib21
  article-title: PF-net: point fractal network for 3D point cloud completion
– volume: 9
  start-page: 160926
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib43
  article-title: SCA-net: a spatial and channel attention network for medical image segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3132293
– volume: 19
  issue: 7
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107519_bib16
  article-title: Reconstruction of 3D object shape using hybrid modular neural network architecture trained on 3D models from shapenetcore dataset
  publication-title: Sensors
  doi: 10.3390/s19071553
– volume: 38
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107519_bib42
  article-title: Dynamic graph CNN for learning on point clouds
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3326362
– volume: 111
  start-page: 1327
  issue: 4
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib26
  article-title: SDANet: spatial deep attention-based for point cloud classification and segmentation
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-022-06148-1
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107519_bib4
  article-title: PointNet: deep learning on point sets for 3D classification and segmentation
– year: 1970
  ident: 10.1016/j.compbiomed.2023.107519_bib45
– volume: 33
  start-page: 131140
  issue: 7
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107519_bib9
  article-title: Approximate symmetry detection in partial 3D meshes
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12481
– volume: 90
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib39
  article-title: Self-attention implicit function networks for 3D dental data completion
  publication-title: Comput. Aided Geomet. Des.
  doi: 10.1016/j.cagd.2021.102026
– volume: 69
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib38
  article-title: TSegNet: an efficient and accurate tooth segmentation network on 3D dental model
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101949
– volume: 45
  start-page: 852
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107519_bib49
  article-title: PMP-NET++: point cloud completion by transformer-enhanced multi-step point moving paths
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3159003
– year: 2014
  ident: 10.1016/j.compbiomed.2023.107519_bib50
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib40
  article-title: Style-based point generator with adversarial rendering for point cloud completion
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib34
– ident: 10.1016/j.compbiomed.2023.107519_bib5
– year: 2021
  ident: 10.1016/j.compbiomed.2023.107519_bib36
  article-title: Unsupervised point cloud pre-training via occlusion completion
– volume: 23
  start-page: 22862
  issue: 12
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107519_bib14
  article-title: Comprehensive review of deep learning-based 3D point cloud completion processing and analysis
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3195555
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107519_bib3
  article-title: Vision meets robotics: the kitti dataset
  publication-title: Int. J. Robot Res.
  doi: 10.1177/0278364913491297
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107519_bib18
  article-title: FoldingNet: point cloud auto-encoder via deep grid deformation
– volume: 34
  start-page: 1
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107519_bib7
  article-title: Data-driven structural priors for shape completion
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2816795.2818094
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107519_bib6
– year: 2018
  ident: 10.1016/j.compbiomed.2023.107519_bib17
  article-title: PCN: point completion network
SSID ssj0004030
Score 2.396884
Snippet With the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental models has...
AbstractWith the increasing popularity of the use of 3D scanning equipment in capturing oral cavity in dental health applications, the quality of 3D dental...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107519
SubjectTerms Algorithms
Artificial neural networks
CAD
Channel and spatial attention
Computer aided design
Datasets
Deep learning
Dental materials
Dental prosthetics
Dentistry
Feature extraction
Humans
Imaging, Three-Dimensional - methods
Internal Medicine
Medical diagnosis
Modules
Neural Networks, Computer
Oral cavity
Orthodontics
Other
Point cloud completion
Symmetry
Teaching methods
Teeth
Teeth point cloud completion
Three dimensional models
Tooth - diagnostic imaging
Upsample transformer
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSNALgvJaKMhIXAO7ceIHHFBVqCqk9kJX2pvlxwSESnZpsv-fmdjJXgraSw6Ox4k8Y8-M_c0MY-9kLINqSlGE6NFBcaIpDEhZBOlQm0od9BCVdnEpz5fVt1W9ygduXYZVjnvisFHHdaAz8g9UFbc0Ev2pz5s_BVWNotvVXELjLrtHqcsI0qVWahcXORcpBAX3mgpdoYzkSfgugmynEPf3VEIcm1VN-XZuV0__Mj8HNXT2iD3M9iM_SQx_zO5Ae8QefCHMD5VtO2L3L_Jt-RP2-2p5egn9R37CKb63hWvu2sg7AlHjGJRZc8A6FqTKIh9yV3OCoWdxxD5tQolzNG15D9D_5NtN5wiF3v4YBhsg6UC9n7Ll2der0_Mil1coAlpJfeE1KDDSgPelUzKiLxOEB-nJSakaJWTUQtdOB2GEFCpC4xshTCgFYEMtnrGDdt3CC8ZN7fzCzSsk1ZWT2knwpm7wEUsTA8yYGmfVhpx7nEpgXNsRZPbL7vhhiR828WPGFhPlJuXf2IPGjIyzY3wp7ogWlcQetOo2Wujy0u7swnalndvvQ2YjFCr04eZGV3rGPk2U2XpJVsme3z0eJcxOn9rJ_Iy9nV7j-qdLHdfCekt9VEXgAY1DPE-SOU2UUGh_mIV5-f_BX7FD-pMUYXnMDvqbLbxGU6v3b4b19BebOCjc
  priority: 102
  providerName: ProQuest
Title TUCNet: A channel and spatial attention-based graph convolutional network for teeth upsampling and completion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523009848
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523009848
https://dx.doi.org/10.1016/j.compbiomed.2023.107519
https://www.ncbi.nlm.nih.gov/pubmed/37801919
https://www.proquest.com/docview/2883296837
https://www.proquest.com/docview/2874270089
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFBalg7GX0d2zdUWDvbpNLFuX7SkLzbKNhjEayJvQzV1H54baed1v3zmW7DLWQWAvCpF1bCMdnQv-viNC3nKfO1HlLHPeQoJiWJWpwHnmuAFvyqWTHSvtbMkXq-LzulzvkVnPhUFYZbL90aZ31jr1nKTZPNlcXiLHF1IJSHAgiB4rWSDhtygEavnxr1uYRzFmkYYC9gZHJzRPxHghbDvS3I_xGHHoFiXW3LnbRf0rBO1c0fyAPEwxJJ3G13xE9kL9mNw_S1_Jn5Cf56vZMrTv6JQir7cOV9TUnjYIngY5rKjZYRwzdGGedjWrKcLPkxrCmDqiwymEtLQNof1Ot5vGIPq8vuhu1kHRA45-Slbz0_PZIkvHKmQOoqM2szKIoLgK1uZGcA85jGM2cIvJSVEJxr1ksjTSMcU4Ez5UtmJMuZwF6CjZM7JfX9fhBaGqNHZixgWIysJwaXiwqqyg8bnyLoyI6GdSu1RzHI--uNI9uOyHvl0DjWug4xqMyGSQ3MS6GzvIqH6xdM8rBUuowTnsICvukg1N2tKNnugm12P9l9qNyPtB8g_N3fG5h71W6eFReAJ0rrhkYkTeDJdh3-PHHFOH6y2OEQWCBiTc4nnUxmGimIC4Q03Uy_96tVfkAf6LxMtDst_ebMNriMBae9RtMWjFWkAr5x-PyL3ppy-LJfx-OF1-_fYbyjI0_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRaJcEJRXoMAiwdGQeO19gBCqWkJKm1xIpN6WfRmEihOwI8Sf4jcy47WdS0G59OLDemcd7czOI_vNDCHPuU-dKFKWOG8hQDGsSFTgPHHcgDXl0skmK20645NF9vE8P98hf7pcGIRVdjqxUdR-6fA_8lfYFTdVHOKpd6sfCXaNwtvVroVGFIvT8PsXhGzV25Nj4O-LNB2_nx9NkrarQOLAOagTK4MIiqtgbWoE9-DCO2YDt-ibZ4Vg3EsmcyMdU4wz4UNhC8aUS1mAAewSASr_WgZDeKLk-MMmD3PIYsoL6LYMQq8WORTxZAgRjyn1L7FlOQyLHOv7XG4O_-XuNmZvfIvcbP1VehgF7DbZCeU-2TtGjBG2idsn16ft7fwd8n2-OJqF-jU9pJhPXIYLakpPKwRtwxpYybPBViZoOj1tamVThL234g9zyohKp-BK0zqE-itdryqDqPfyS7NYA4EPOPsuWVzJxt8ju-WyDA8IVbmxIzPMgFRmhkvDg1V5AQ-fKu_CgIhuV7Vra51jy40L3YHavukNPzTyQ0d-DMiop1zFeh9b0KiOcbrLZwUNrMEobUErLqMNVatKKj3SVaqH-lNTSQmECmLGoZKZHJA3PWXrLUUvaMvvHnQSpvtPbc7YgDzrX4O-wUskU4blGueIDMEKEpa4HyWz3ygmwN9RI_Xw_4s_JXuT-fRMn53MTh-RG_irYnbnAdmtf67DY3DzavukOVuUfL7qw_wX1DRlcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VRSpcEJRXoMAiwdE09tr7ACFUNUQtpRESjZTbsi-DqtYJ2BHir_HrmPHayaWgXHrJwdlZRzvv7DczhLzkPnOizFjivIUExbAyUYHzxHED3pRLJ9uqtNMJP5rmH2fFbIv86WthEFbZ28TWUPu5w__I93EqbqY45FP7ZQeL-Dwav1_8SHCCFN609uM0ooichN-_IH2r3x2PgNevsmz84ezwKOkmDCQOAoUmsTKIoLgK1mZGcA_hvGM2cItxel4Kxr1ksjDSMcU4Ez6UtmRMuYwFeIATI8D83xCsSFHHxEysazKHLJa_gJ3LIQ3rUEQRW4Zw8Vhe_xrHl8NjUWCvn6td479C39YFju-Q213sSg-isN0lW6HaJTdHiDfCkXG7ZOe0u6m_Ry7PpoeT0LyhBxRri6twQU3laY0AbtgDu3q2OMsE3ainbd9sihD4ThVgTRUR6hTCatqE0Hyny0VtEAFffWs3a-HwAVffJ9NrOfgHZLuaV-ERoaowNjXDHEhlbrg0PFhVlPDhM-VdGBDRn6p2Xd9zHL9xoXuA27le80MjP3Tkx4CkK8pF7P2xAY3qGaf72lawxhoc1Aa04iraUHdmpdaprjM91F_arkogVJA_DpXM5YC8XVF2kVOMiDZ8714vYXr1qrW-DciL1ddge_BCyVRhvsQ1IkfggoQtHkbJXB0UExD7qFQ9_v_mz8kOqLH-dDw5eUJu4Y-KhZ57ZLv5uQxPIeJr7LNWtSj5et26_BdY_2mf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TUCNet%3A+A+channel+and+spatial+attention-based+graph+convolutional+network+for+teeth+upsampling+and+completion&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Liu%2C+Mengting&rft.au=Li%2C+Xiaojie&rft.au=Liu%2C+Jie&rft.au=Liu%2C+Weifan&rft.date=2023-11-01&rft.eissn=1879-0534&rft.volume=166&rft.spage=107519&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107519&rft_id=info%3Apmid%2F37801919&rft.externalDocID=37801919
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482523X00134%2Fcov150h.gif