Classifying ASD based on time-series fMRI using spatial–temporal transformer

As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, wh...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 151; no. Pt B; p. 106320
Main Authors Deng, Xin, Zhang, Jiahao, Liu, Rui, Liu, Ke
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.12.2022
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. •LSTMA is designed to learn spatio-temporal features and accelerate model training.•The proposed GGDB addresses the data imbalance problem in ASD subtype diagnosis.•Compared with SOTA methods, our model shows the robust performance in ASD diagnosis.
AbstractList AbstractAs the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. •LSTMA is designed to learn spatio-temporal features and accelerate model training.•The proposed GGDB addresses the data imbalance problem in ASD subtype diagnosis.•Compared with SOTA methods, our model shows the robust performance in ASD diagnosis.
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
ArticleNumber 106320
Author Liu, Rui
Zhang, Jiahao
Liu, Ke
Deng, Xin
Author_xml – sequence: 1
  givenname: Xin
  surname: Deng
  fullname: Deng, Xin
  organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
– sequence: 2
  givenname: Jiahao
  surname: Zhang
  fullname: Zhang, Jiahao
  organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
– sequence: 3
  givenname: Rui
  orcidid: 0000-0003-1926-3321
  surname: Liu
  fullname: Liu, Rui
  email: rliu38-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, 999077, Hong Kong, China
– sequence: 4
  givenname: Ke
  surname: Liu
  fullname: Liu, Ke
  organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36442277$$D View this record in MEDLINE/PubMed
BookMark eNqVks9u1DAQxi1URLeFV0CRuHDJMrbz94IoS4FKBSQKZ8txJshLYqeeBGlvvEPfkCfB0ZZFqoRUTh5Zv_k0831zwo6cd8hYwmHNgRcvtmvjh7GxfsB2LUCI-F1IAQ_YildlnUIusyO2AuCQZpXIj9kJ0RYAMpDwiB3LIsuEKMsV-7jpNZHtdtZ9S86u3iSNJmwT75LJDpgSBouUdB8-XyQzLQyNerK6__XzZsJh9EH3yRS0o86HAcNj9rDTPeGT2_eUfX17_mXzPr389O5ic3aZmpxnU6rRtLzJIC-wbCtpsNJCIu-6CqQBU-u61kXcBEoNgEVnihoyyXWjlz1bI0_Z873uGPz1jDSpwZLBvtcO_UxKlJko8lrkZUSf3UG3fg4uTrdQuZQ1iIV6ekvNTTRVjcEOOuzUH6ciUO0BEzxRwO6AcFBLKGqr_oaillDUPpTY-vJOq7FTdNG76Jzt7yPwei-A0dIfFoMiY9EZbG1AM6nW2_-Y4iBieuus0f133CEdTOGKhAJ1tRzPcjtCxEJUdRR49W-B-83wG0Ws2RY
CitedBy_id crossref_primary_10_3390_s25010156
crossref_primary_10_1007_s13042_023_01980_w
crossref_primary_10_1002_hbm_26542
crossref_primary_10_1016_j_compbiomed_2024_108069
crossref_primary_10_3390_brainsci15030277
crossref_primary_10_1016_j_bspc_2024_107466
crossref_primary_10_1109_TETCI_2024_3386612
crossref_primary_10_1016_j_compbiomed_2023_107667
crossref_primary_10_1002_brx2_29
crossref_primary_10_3390_diagnostics13233552
crossref_primary_10_3390_s23249647
crossref_primary_10_1016_j_cosrev_2025_100730
crossref_primary_10_1038_s41398_024_03024_5
crossref_primary_10_1109_ACCESS_2024_3434714
crossref_primary_10_1016_j_bspc_2024_106766
crossref_primary_10_1109_JBHI_2024_3396457
crossref_primary_10_1155_2023_4136087
crossref_primary_10_1016_j_bspc_2025_107678
crossref_primary_10_1016_j_compbiomed_2025_109926
crossref_primary_10_4108_eetpht_9_4240
crossref_primary_10_1016_j_asoc_2023_110363
crossref_primary_10_1109_TMI_2023_3325261
crossref_primary_10_1002_brx2_57
crossref_primary_10_1002_hbm_70008
crossref_primary_10_1162_imag_a_00290
crossref_primary_10_1016_j_aej_2024_04_023
crossref_primary_10_1109_ACCESS_2025_3532302
crossref_primary_10_3389_fnins_2024_1333712
crossref_primary_10_1109_TMI_2023_3327283
crossref_primary_10_31083_j_jin2307135
crossref_primary_10_3390_fi15090292
Cites_doi 10.1016/j.compbiomed.2021.104963
10.3897/rio.3.e12733
10.1007/s12021-016-9299-4
10.1016/j.neucom.2018.04.080
10.1016/j.compbiomed.2020.104096
10.1016/j.media.2021.102279
10.1097/WCO.0b013e328306f2c5
10.1007/s10278-019-00196-1
10.1016/j.ejmp.2019.08.010
10.3389/fninf.2019.00070
10.1007/978-3-030-01234-2_1
10.1682/JRRD.2010.02.0017
10.1016/j.compbiomed.2020.103764
10.1016/j.neunet.2020.03.017
10.1109/SAMI48414.2020.9108717
10.1142/S0129065720500124
10.3390/e22080893
10.1016/j.nicl.2017.08.017
10.1016/j.neucom.2019.01.078
10.1146/annurev-publhealth-031816-044318
10.1109/ISBI48211.2021.9433842
10.1016/j.neulet.2020.135519
10.1016/j.artmed.2020.101870
10.2196/15767
10.1007/s12098-015-1894-0
10.1162/tacl_a_00353
10.1109/IAI50351.2020.9262176
10.3389/fncom.2021.654315
10.1109/TVCG.2020.3028976
10.1109/ACCESS.2021.3093456
10.1016/j.compbiomed.2022.105239
10.1111/acer.13441
10.32598/CJNS.7.25.5
10.1155/2020/1357853
10.1109/BigComp48618.2020.00013
10.1007/978-3-319-67389-9_42
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.106320
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Research Library Prep

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106320
ExternalDocumentID 36442277
10_1016_j_compbiomed_2022_106320
S0010482522010289
1_s2_0_S0010482522010289
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing, China
  grantid: cstc2020jcyj-msxmX0284
  funderid: http://dx.doi.org/10.13039/501100005230
– fundername: Educational Reform Project of CQUPT, China
  grantid: XJG20207
– fundername: The Science and Technology Research Program of Chongqing Municipal Education Commission, China
  grantid: KJQN202000625
  funderid: http://dx.doi.org/10.13039/100012494
– fundername: National Natural Science Foundation of China
  grantid: 61806033; 61703065
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-aecd1b4056e7d83ce8a23e1ff803c0c9a99a618707a00e6fc690431aba1063dc3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Fri Jul 11 00:50:53 EDT 2025
Wed Aug 13 01:55:29 EDT 2025
Wed Feb 19 02:25:12 EST 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 03:28:55 EDT 2025
Fri Feb 23 02:39:13 EST 2024
Tue Feb 25 20:10:54 EST 2025
Tue Aug 26 20:14:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt B
Keywords Deep learning(DL)
ABIDE
Transformer
Functional magnetic resonance imaging (fMRI)
Autism spectrum disorder (ASD)
Adversarial Generation Network(GAN)
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-aecd1b4056e7d83ce8a23e1ff803c0c9a99a618707a00e6fc690431aba1063dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1926-3321
PMID 36442277
PQID 2745339027
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2742659257
proquest_journals_2745339027
pubmed_primary_36442277
crossref_primary_10_1016_j_compbiomed_2022_106320
crossref_citationtrail_10_1016_j_compbiomed_2022_106320
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106320
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522010289
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106320
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References K. Byeon, J. Kwon, J. Hong, H. Park, Artificial Neural Network Inspired by Neuroimaging Connectivity: Application in Autism Spectrum Disorder, in: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, pp. 575–578.
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b15) 2020
Leming, Górriz, Suckling (b33) 2020; 30
Kong, Gao, Xu, Pan, Wang, Liu (b7) 2019; 324
M. Bengs, N.T. Gessert, A. Schlaefer, 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification, in: Medical Imaging with Deep Learning, MIDL 2019 Conference, 2019, pp. 1–4.
Bayram, İlyas, Temurtaş (b39) 2021; 4
Almuqhim, Saeed (b44) 2021; 15
Crosson, Ford, McGregor, Meinzer, Cheshkov, Li, Walker-Batson, Briggs (b4) 2010; 47
Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (b34) 2018; 17
Liu, Guo (b11) 2019; 337
Yap, Chan (b27) 2020; 1
Dvornek, Ventola, Pelphrey, Duncan (b37) 2017
Jiang, Cao, Xu, Yang, Zaiane (b31) 2020; 127
Zhang, Li, Li, Peng, Kang, Jiang, Li, Zhu, Yao, Biswal, Xu (b20) 2020; 22
Chen, Chen, Yuan, Gerstein, Li, Liang, Froehlich, Lu (b54) 2020; 8
Yan, Wang, Zuo, Zang (b41) 2016; 14
Ma, Wang, Li (b28) 2021; 742
Wen, Cao, Bao, Yang, Zheng, Zaiane (b29) 2022
Puente-Castro, Fernandez-Blanco, Pazos, Munteanu (b32) 2020; 120
Shahamat, Abadeh (b46) 2020; 126
You, Liu, Zhang, Shao (b47) 2020
Yang, Zhang, Schrader (b43) 2022; 8
Chen, Wu, Wang, Liu, Li (b17) 2021
El-Gazzar, Quaak, Cerliani, Bloem, Wingen, Mani Thomas (b49) 2019
Zhao, Dai, Zhang, Ge, Liu (b56) 2019
Brahim, Farrugia (b45) 2020; 106
Rane, Jolly, Park, Jang, Craddock (b52) 2017; 3
Parmar, Vaswani, Uszkoreit, Kaiser, Shazeer, Ku, Tran (b16) 2018
Mnih, Heess, Graves (b8) 2014
Lyall, Croen, Daniels, Fallin, Ladd-Acosta, Lee, Park, Snyder, Schendel, Volk (b1) 2017; 38
Niu, Guo, Pan, Gao, Peng, Li, Li (b23) 2020; 2020
R. Liu, Z.-a. Huang, M. Jiang, K.C. Tan, Multi-LSTM Networks for Accurate Classification of Attention Deficit Hyperactivity Disorder from Resting-State fMRI Data, in: 2020 2nd International Conference on Industrial Artificial Intelligence, IAI, 2020, pp. 1–6.
Wang, Xiao, Wu (b24) 2019; 65
A.D. Rasamoelina, F. Adjailia, P. Sinčák, A Review of Activation Function for Artificial Neural Network, in: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI, 2020, pp. 281–286.
Roy, Saffar, Vaswani, Grangier (b12) 2021; 9
Dvornek, Ventola, Duncan (b50) 2018
Nickel, Huang-Storms (b2) 2017; 84
Li, Dvornek, Zhuang, Ventola, Duncan (b6) 2020
Yang, Wang, Tan, Liu, Li (b21) 2021; 139
Craddock, Benhajali, Chu, Chouinard, Evans, Jakab, Khundrakpam, Lewis, Li, Milham (b40) 2013; 7
Aghdam, Sharifi, Pedram (b55) 2019; 32
Chen, Radford, Child, Wu, Jun, Luan, Sutskever (b13) 2020
J.-c. Liu, J.-z. Ji, Classification method of fMRI data based on broad learning system, J. ZheJiang Univ. (Engineering Science) 55 (7) 1270–1278.
Wang, Yao, Ma, Liu (b26) 2022; 75
Chung, Cornelius, Clark, Martin (b3) 2017; 41
DeRose, Wang, Berger (b9) 2021; 27
Dong, Xu, Xu (b18) 2018
S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
Greicius (b5) 2008; 21
Sadeghian, Hasani, Jafari (b25) 2021; 7
N.C. Dvornek, P. Ventola, K.A. Pelphrey, J.S. Duncan, Identifying autism from resting-state fMRI using long short-term memory networks, 2017, pp. 362–370.
Yin, Li, Wu (b22) 2021
Loddo, Buttau, Di Ruberto (b30) 2021
Eslami, Mirjalili, Fong, Laird, Saeed (b35) 2019; 13
Kitada, Iyatomi (b10) 2021; 9
Y. Qiu, S. Yu, Y. Zhou, D. Liu, X. Song, T. Wang, B. Lei, Multi-channel Sparse Graph Transformer Network for Early Alzheimer’s Disease Identification, in: 2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI, 2021, pp. 1794–1797.
Greicius (10.1016/j.compbiomed.2022.106320_b5) 2008; 21
Wang (10.1016/j.compbiomed.2022.106320_b26) 2022; 75
Chen (10.1016/j.compbiomed.2022.106320_b54) 2020; 8
Niu (10.1016/j.compbiomed.2022.106320_b23) 2020; 2020
Nickel (10.1016/j.compbiomed.2022.106320_b2) 2017; 84
Puente-Castro (10.1016/j.compbiomed.2022.106320_b32) 2020; 120
Liu (10.1016/j.compbiomed.2022.106320_b11) 2019; 337
Sadeghian (10.1016/j.compbiomed.2022.106320_b25) 2021; 7
Chung (10.1016/j.compbiomed.2022.106320_b3) 2017; 41
Parmar (10.1016/j.compbiomed.2022.106320_b16) 2018
Aghdam (10.1016/j.compbiomed.2022.106320_b55) 2019; 32
Jiang (10.1016/j.compbiomed.2022.106320_b31) 2020; 127
Wang (10.1016/j.compbiomed.2022.106320_b24) 2019; 65
Brahim (10.1016/j.compbiomed.2022.106320_b45) 2020; 106
Kitada (10.1016/j.compbiomed.2022.106320_b10) 2021; 9
Ma (10.1016/j.compbiomed.2022.106320_b28) 2021; 742
Carion (10.1016/j.compbiomed.2022.106320_b15) 2020
Yin (10.1016/j.compbiomed.2022.106320_b22) 2021
DeRose (10.1016/j.compbiomed.2022.106320_b9) 2021; 27
10.1016/j.compbiomed.2022.106320_b51
10.1016/j.compbiomed.2022.106320_b53
Mnih (10.1016/j.compbiomed.2022.106320_b8) 2014
Chen (10.1016/j.compbiomed.2022.106320_b17) 2021
10.1016/j.compbiomed.2022.106320_b14
Leming (10.1016/j.compbiomed.2022.106320_b33) 2020; 30
Zhang (10.1016/j.compbiomed.2022.106320_b20) 2020; 22
10.1016/j.compbiomed.2022.106320_b19
Crosson (10.1016/j.compbiomed.2022.106320_b4) 2010; 47
Wen (10.1016/j.compbiomed.2022.106320_b29) 2022
Yap (10.1016/j.compbiomed.2022.106320_b27) 2020; 1
Heinsfeld (10.1016/j.compbiomed.2022.106320_b34) 2018; 17
10.1016/j.compbiomed.2022.106320_b42
Eslami (10.1016/j.compbiomed.2022.106320_b35) 2019; 13
10.1016/j.compbiomed.2022.106320_b48
Lyall (10.1016/j.compbiomed.2022.106320_b1) 2017; 38
You (10.1016/j.compbiomed.2022.106320_b47) 2020
Loddo (10.1016/j.compbiomed.2022.106320_b30) 2021
Li (10.1016/j.compbiomed.2022.106320_b6) 2020
Rane (10.1016/j.compbiomed.2022.106320_b52) 2017; 3
Roy (10.1016/j.compbiomed.2022.106320_b12) 2021; 9
Chen (10.1016/j.compbiomed.2022.106320_b13) 2020
Yan (10.1016/j.compbiomed.2022.106320_b41) 2016; 14
Almuqhim (10.1016/j.compbiomed.2022.106320_b44) 2021; 15
Shahamat (10.1016/j.compbiomed.2022.106320_b46) 2020; 126
Dong (10.1016/j.compbiomed.2022.106320_b18) 2018
Dvornek (10.1016/j.compbiomed.2022.106320_b37) 2017
Craddock (10.1016/j.compbiomed.2022.106320_b40) 2013; 7
Bayram (10.1016/j.compbiomed.2022.106320_b39) 2021; 4
Yang (10.1016/j.compbiomed.2022.106320_b43) 2022; 8
Yang (10.1016/j.compbiomed.2022.106320_b21) 2021; 139
El-Gazzar (10.1016/j.compbiomed.2022.106320_b49) 2019
Zhao (10.1016/j.compbiomed.2022.106320_b56) 2019
10.1016/j.compbiomed.2022.106320_b36
10.1016/j.compbiomed.2022.106320_b38
Dvornek (10.1016/j.compbiomed.2022.106320_b50) 2018
Kong (10.1016/j.compbiomed.2022.106320_b7) 2019; 324
References_xml – volume: 3
  year: 2017
  ident: b52
  article-title: Developing predictive imaging biomarkers using whole-brain classifiers: Application to the ABIDE I dataset
  publication-title: Res. Ideas and Outcomes
– volume: 21
  start-page: 424
  year: 2008
  end-page: 430
  ident: b5
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Curr. Opin. Neurol.
– year: 2022
  ident: b29
  article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis
  publication-title: Comput. Biol. Med.
– volume: 14
  start-page: 339
  year: 2016
  end-page: 351
  ident: b41
  article-title: DPABI: data processing & analysis for (resting-state) brain imaging
  publication-title: Neuroinformatics
– volume: 32
  start-page: 899
  year: 2019
  end-page: 918
  ident: b55
  article-title: Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks
  publication-title: J. Digit. Imaging
– reference: K. Byeon, J. Kwon, J. Hong, H. Park, Artificial Neural Network Inspired by Neuroimaging Connectivity: Application in Autism Spectrum Disorder, in: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, pp. 575–578.
– volume: 84
  start-page: 53
  year: 2017
  end-page: 60
  ident: b2
  article-title: Early identification of young children with autism spectrum disorder
  publication-title: Indian J. Pediatr.
– start-page: 5884
  year: 2018
  end-page: 5888
  ident: b18
  article-title: Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition
  publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
– reference: A.D. Rasamoelina, F. Adjailia, P. Sinčák, A Review of Activation Function for Artificial Neural Network, in: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI, 2020, pp. 281–286.
– volume: 38
  start-page: 81
  year: 2017
  end-page: 102
  ident: b1
  article-title: The changing epidemiology of autism spectrum disorders
  publication-title: Annu. Rev. Public Health
– reference: M. Bengs, N.T. Gessert, A. Schlaefer, 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification, in: Medical Imaging with Deep Learning, MIDL 2019 Conference, 2019, pp. 1–4.
– start-page: 95
  year: 2019
  end-page: 102
  ident: b49
  article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study
  publication-title: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging
– year: 2020
  ident: b6
  article-title: Graph embedding using infomax for ASD classification and brain functional difference detection
– volume: 13
  start-page: 70
  year: 2019
  ident: b35
  article-title: ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data
  publication-title: Front. Neuroinform.
– volume: 22
  year: 2020
  ident: b20
  article-title: Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset
  publication-title: Entropy
– reference: N.C. Dvornek, P. Ventola, K.A. Pelphrey, J.S. Duncan, Identifying autism from resting-state fMRI using long short-term memory networks, 2017, pp. 362–370.
– start-page: 725
  year: 2018
  end-page: 728
  ident: b50
  article-title: Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018)
– reference: R. Liu, Z.-a. Huang, M. Jiang, K.C. Tan, Multi-LSTM Networks for Accurate Classification of Attention Deficit Hyperactivity Disorder from Resting-State fMRI Data, in: 2020 2nd International Conference on Industrial Artificial Intelligence, IAI, 2020, pp. 1–6.
– start-page: 1131
  year: 2021
  end-page: 1136
  ident: b22
  article-title: A graph attention neural network for diagnosing ASD with fMRI data
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 127
  year: 2020
  ident: b31
  article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction
  publication-title: Comput. Biol. Med.
– volume: 742
  year: 2021
  ident: b28
  article-title: Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony
  publication-title: Neurosci. Lett.
– volume: 27
  start-page: 1160
  year: 2021
  end-page: 1170
  ident: b9
  article-title: Attention flows: Analyzing and comparing attention mechanisms in language models
  publication-title: IEEE Trans. Vis. Comput. Graphics
– volume: 4
  start-page: 142
  year: 2021
  end-page: 155
  ident: b39
  article-title: Deep learning methods for autism spectrum disorder diagnosis based on fMRI images
  publication-title: Sakarya Univ. J. Comput. Inf. Sci.
– start-page: 77
  year: 2020
  end-page: 88
  ident: b47
  article-title: Classification of autism based on fMRI data with feature-fused convolutional neural network
  publication-title: Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health
– volume: 65
  start-page: 99
  year: 2019
  end-page: 105
  ident: b24
  article-title: Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data
  publication-title: Phys. Medica
– reference: J.-c. Liu, J.-z. Ji, Classification method of fMRI data based on broad learning system, J. ZheJiang Univ. (Engineering Science) 55 (7) 1270–1278.
– volume: 2020
  year: 2020
  ident: b23
  article-title: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data
  publication-title: Complexity
– reference: Y. Qiu, S. Yu, Y. Zhou, D. Liu, X. Song, T. Wang, B. Lei, Multi-channel Sparse Graph Transformer Network for Early Alzheimer’s Disease Identification, in: 2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI, 2021, pp. 1794–1797.
– start-page: 362
  year: 2017
  end-page: 370
  ident: b37
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
  publication-title: Machine Learning in Medical Imaging
– volume: 8
  year: 2022
  ident: b43
  article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity
  publication-title: Mach. Learn. Appl.
– volume: 17
  start-page: 16
  year: 2018
  end-page: 23
  ident: b34
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical
– volume: 30
  year: 2020
  ident: b33
  article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks
  publication-title: Int. J. Neural Syst.
– start-page: 1691
  year: 2020
  end-page: 1703
  ident: b13
  article-title: Generative pretraining from pixels
– volume: 9
  start-page: 53
  year: 2021
  end-page: 68
  ident: b12
  article-title: Efficient content-based sparse attention with routing transformers
  publication-title: Trans. Assoc. Comput. Linguist.
– start-page: 2204
  year: 2014
  end-page: 2212
  ident: b8
  article-title: Recurrent models of visual attention
  publication-title: Advances in Neural Information Processing Systems
– volume: 120
  year: 2020
  ident: b32
  article-title: Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques
  publication-title: Comput. Biol. Med.
– start-page: 5904
  year: 2021
  end-page: 5908
  ident: b17
  article-title: Developing real-time streaming transformer transducer for speech recognition on large-scale dataset
  publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 41
  start-page: 1584
  year: 2017
  end-page: 1592
  ident: b3
  article-title: Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents
  publication-title: Alcohol. Clin. Exp. Res.
– reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19.
– volume: 324
  start-page: 63
  year: 2019
  end-page: 68
  ident: b7
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
– volume: 106
  year: 2020
  ident: b45
  article-title: Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging
  publication-title: Artif. Intell. Med.
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  ident: b11
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
– start-page: 213
  year: 2020
  end-page: 229
  ident: b15
  article-title: End-to-end object detection with transformers
– start-page: 4055
  year: 2018
  end-page: 4064
  ident: b16
  article-title: Image transformer
– year: 2021
  ident: b30
  article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method
  publication-title: Comput. Biol. Med.
– volume: 126
  start-page: 218
  year: 2020
  end-page: 234
  ident: b46
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Netw.
– volume: 1
  year: 2020
  ident: b27
  article-title: Elastic SCAD SVM cluster for the selection of significant functional connectivity in autism spectrum disorder classification
  publication-title: Acad. Fundam. Comput. Res.
– volume: 75
  year: 2022
  ident: b26
  article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 27
  year: 2021
  ident: b44
  article-title: ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data
  publication-title: Front. Comput. Neurosci.
– volume: 8
  year: 2020
  ident: b54
  article-title: The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study
  publication-title: JMIR Med. Inform.
– volume: 47
  start-page: vii
  year: 2010
  ident: b4
  article-title: Functional imaging and related techniques: an introduction for rehabilitation researchers
  publication-title: J. Rehabil. Res. Dev.
– volume: 7
  year: 2013
  ident: b40
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinform.
– start-page: 1576
  year: 2019
  end-page: 1580
  ident: b56
  article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling
  publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
– volume: 139
  year: 2021
  ident: b21
  article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks
  publication-title: Comput. Biol. Med.
– volume: 7
  start-page: 74
  year: 2021
  end-page: 83
  ident: b25
  article-title: Feature selection based on genetic algorithm in the diagnosis of autism disorder by fMRI
  publication-title: Casp. J. Neurol. Sci.
– volume: 9
  start-page: 92974
  year: 2021
  end-page: 92985
  ident: b10
  article-title: Attention meets perturbations: Robust and interpretable attention with adversarial training
  publication-title: IEEE Access
– volume: 139
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b21
  article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104963
– volume: 3
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106320_b52
  article-title: Developing predictive imaging biomarkers using whole-brain classifiers: Application to the ABIDE I dataset
  publication-title: Res. Ideas and Outcomes
  doi: 10.3897/rio.3.e12733
– start-page: 725
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106320_b50
  article-title: Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks
– volume: 14
  start-page: 339
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2022.106320_b41
  article-title: DPABI: data processing & analysis for (resting-state) brain imaging
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9299-4
– volume: 8
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106320_b43
  article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity
  publication-title: Mach. Learn. Appl.
– volume: 324
  start-page: 63
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b7
  article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.080
– volume: 127
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b31
  article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.104096
– volume: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2022.106320_b40
  article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives
  publication-title: Front. Neuroinform.
– volume: 75
  year: 2022
  ident: 10.1016/j.compbiomed.2022.106320_b26
  article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102279
– volume: 21
  start-page: 424
  year: 2008
  ident: 10.1016/j.compbiomed.2022.106320_b5
  article-title: Resting-state functional connectivity in neuropsychiatric disorders
  publication-title: Curr. Opin. Neurol.
  doi: 10.1097/WCO.0b013e328306f2c5
– volume: 32
  start-page: 899
  issue: 6
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b55
  article-title: Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-019-00196-1
– volume: 65
  start-page: 99
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b24
  article-title: Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data
  publication-title: Phys. Medica
  doi: 10.1016/j.ejmp.2019.08.010
– volume: 13
  start-page: 70
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b35
  article-title: ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data
  publication-title: Front. Neuroinform.
  doi: 10.3389/fninf.2019.00070
– ident: 10.1016/j.compbiomed.2022.106320_b14
  doi: 10.1007/978-3-030-01234-2_1
– volume: 1
  issue: 2
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b27
  article-title: Elastic SCAD SVM cluster for the selection of significant functional connectivity in autism spectrum disorder classification
  publication-title: Acad. Fundam. Comput. Res.
– volume: 47
  start-page: vii
  year: 2010
  ident: 10.1016/j.compbiomed.2022.106320_b4
  article-title: Functional imaging and related techniques: an introduction for rehabilitation researchers
  publication-title: J. Rehabil. Res. Dev.
  doi: 10.1682/JRRD.2010.02.0017
– volume: 120
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b32
  article-title: Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103764
– volume: 126
  start-page: 218
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b46
  article-title: Brain MRI analysis using a deep learning based evolutionary approach
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.03.017
– ident: 10.1016/j.compbiomed.2022.106320_b42
  doi: 10.1109/SAMI48414.2020.9108717
– volume: 30
  issue: 07
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b33
  article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065720500124
– volume: 22
  issue: 8
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b20
  article-title: Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset
  publication-title: Entropy
  doi: 10.3390/e22080893
– start-page: 4055
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106320_b16
  article-title: Image transformer
– year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b30
  article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method
  publication-title: Comput. Biol. Med.
– start-page: 1691
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b13
  article-title: Generative pretraining from pixels
– year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b6
– volume: 17
  start-page: 16
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106320_b34
  article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset
  publication-title: NeuroImage: Clinical
  doi: 10.1016/j.nicl.2017.08.017
– volume: 337
  start-page: 325
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b11
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.078
– volume: 38
  start-page: 81
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106320_b1
  article-title: The changing epidemiology of autism spectrum disorders
  publication-title: Annu. Rev. Public Health
  doi: 10.1146/annurev-publhealth-031816-044318
– ident: 10.1016/j.compbiomed.2022.106320_b19
  doi: 10.1109/ISBI48211.2021.9433842
– volume: 742
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b28
  article-title: Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2020.135519
– volume: 4
  start-page: 142
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b39
  article-title: Deep learning methods for autism spectrum disorder diagnosis based on fMRI images
  publication-title: Sakarya Univ. J. Comput. Inf. Sci.
– start-page: 213
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b15
  article-title: End-to-end object detection with transformers
– start-page: 5884
  year: 2018
  ident: 10.1016/j.compbiomed.2022.106320_b18
  article-title: Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition
– ident: 10.1016/j.compbiomed.2022.106320_b48
– volume: 106
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b45
  article-title: Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101870
– volume: 8
  issue: 5
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b54
  article-title: The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study
  publication-title: JMIR Med. Inform.
  doi: 10.2196/15767
– volume: 84
  start-page: 53
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106320_b2
  article-title: Early identification of young children with autism spectrum disorder
  publication-title: Indian J. Pediatr.
  doi: 10.1007/s12098-015-1894-0
– start-page: 77
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b47
  article-title: Classification of autism based on fMRI data with feature-fused convolutional neural network
– ident: 10.1016/j.compbiomed.2022.106320_b53
– start-page: 2204
  year: 2014
  ident: 10.1016/j.compbiomed.2022.106320_b8
  article-title: Recurrent models of visual attention
– volume: 9
  start-page: 53
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b12
  article-title: Efficient content-based sparse attention with routing transformers
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00353
– start-page: 1131
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b22
  article-title: A graph attention neural network for diagnosing ASD with fMRI data
– ident: 10.1016/j.compbiomed.2022.106320_b36
  doi: 10.1109/IAI50351.2020.9262176
– volume: 15
  start-page: 27
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b44
  article-title: ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2021.654315
– volume: 27
  start-page: 1160
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b9
  article-title: Attention flows: Analyzing and comparing attention mechanisms in language models
  publication-title: IEEE Trans. Vis. Comput. Graphics
  doi: 10.1109/TVCG.2020.3028976
– volume: 9
  start-page: 92974
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b10
  article-title: Attention meets perturbations: Robust and interpretable attention with adversarial training
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093456
– year: 2022
  ident: 10.1016/j.compbiomed.2022.106320_b29
  article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105239
– start-page: 95
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b49
  article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study
– volume: 41
  start-page: 1584
  issue: 9
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106320_b3
  article-title: Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents
  publication-title: Alcohol. Clin. Exp. Res.
  doi: 10.1111/acer.13441
– volume: 7
  start-page: 74
  issue: 2
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b25
  article-title: Feature selection based on genetic algorithm in the diagnosis of autism disorder by fMRI
  publication-title: Casp. J. Neurol. Sci.
  doi: 10.32598/CJNS.7.25.5
– start-page: 5904
  year: 2021
  ident: 10.1016/j.compbiomed.2022.106320_b17
  article-title: Developing real-time streaming transformer transducer for speech recognition on large-scale dataset
– start-page: 362
  year: 2017
  ident: 10.1016/j.compbiomed.2022.106320_b37
  article-title: Identifying autism from resting-state fMRI using long short-term memory networks
– start-page: 1576
  year: 2019
  ident: 10.1016/j.compbiomed.2022.106320_b56
  article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling
– volume: 2020
  year: 2020
  ident: 10.1016/j.compbiomed.2022.106320_b23
  article-title: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data
  publication-title: Complexity
  doi: 10.1155/2020/1357853
– ident: 10.1016/j.compbiomed.2022.106320_b38
  doi: 10.1109/BigComp48618.2020.00013
– ident: 10.1016/j.compbiomed.2022.106320_b51
  doi: 10.1007/978-3-319-67389-9_42
SSID ssj0004030
Score 2.4899514
Snippet As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate...
AbstractAs the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106320
SubjectTerms ABIDE
Adversarial Generation Network(GAN)
Autism
Autism spectrum disorder (ASD)
Autism Spectrum Disorder - diagnostic imaging
Biomarkers
Brain - diagnostic imaging
Datasets
Deep learning
Deep learning(DL)
Diagnosis
Endoscopy
Functional magnetic resonance imaging
Functional magnetic resonance imaging (fMRI)
Humans
Internal Medicine
Machine learning
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Medical imaging
Neuroimaging
Other
Spatial discrimination learning
Time Factors
Transformer
Transformers
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXEbxW26TbbPEkPlBhPfgAbyHNQ1aW7mLXq_gf_If-EmeatCIqLHhsmqHtdDL5hvkmQ8i-NRD29LiKAH3oKLWKRcq6LDIx184ZPJEKM7r96-ziPr166D7MkJOmFgZplcH3e59ee-swchi0eTgeDLDGF0IJCHAYJnQhbsAK9lSglR-8ftE80pj7MhTwNzg7sHk8xwtp277MHSJFxmA449j5-_ct6i8IWm9F54tkIWBIeuxfc4nM2HKZzPVDlnyFXNedLgd1BRM9vj2luFUZOiopdpKP0OhsRV3_5pIi7f2RVkirVsOPt_dwUtWQThpAa59Xyf352d3JRRT6JkQa4M8ElK1NUgASy6wwPa5tTzFuE-d68ANinas8V1kCC1WoOLaZ0xAhA45QhcLvN5qvkdlyVNoNQpVyGdeKd43O0sImhYhd0i1yEFZCC9MholGV1OFQcextMZQNe-xJfilZopKlV3KHJK3k2B-sMYVM3vwN2RSOgquT4P2nkBW_ydoqrNlKJrJiMpY_7KpDjlrJb6Y55XO3G7OR7aOYSAFm5zETHbLX3oaFjdkaVdrRSz2HYc67C3PWvbm1iuKAYhkTYvNfr7ZF5vHKk3O2yezk-cXuAMSaFLv1GvoEYi4lPw
  priority: 102
  providerName: Elsevier
Title Classifying ASD based on time-series fMRI using spatial–temporal transformer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522010289
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522010289
https://dx.doi.org/10.1016/j.compbiomed.2022.106320
https://www.ncbi.nlm.nih.gov/pubmed/36442277
https://www.proquest.com/docview/2745339027
https://www.proquest.com/docview/2742659257
Volume 151
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB7RVkJcEOU30EaLxNVg7yZeWxxQgIYUlAi1VMpttd4fBIqcUqdXxDvwhjwJM961cykol0RKPLEznp39xvPNDMALZzHsKYROEH2YZOQ0T7TzeWJTYby31JGKMrrzRT67GH1cjpfxgVsTaZWdT2wdtV0bekb-CqMnRCYlRlFvLn8kNDWKsqtxhMYeHFDrMqJ0yaXc1kWmIpSgoK8ZYSgUmTyB30WU7VDijlEi5_hxLmjq983b07_gZ7sNTe_B3Ygf2STc8EO45er7cHseM-QPYNFOufzWVi-xyfl7RtuUZeua0RT5hAzONczPz04ZUd6_soYo1Xr159fv2KVqxTYdmHVXD-FievLl3SyJMxMSg9Bng4o2NqsQheVO2kIYV2guXOZ9gcpPTanLUucZLlKp09Tl3mB0jBhCV5r-vzXiEezX69o9Aaa1z4XRYmxNPqpcVsnUZ-OqRGEtjbQDkJ2qlIkNxWmuxUp1zLHvaqtkRUpWQckDyHrJy9BUYweZsrsbqisaRTen0PPvICtvknVNXK-NylTDVarO23ZFaCmcSAIYiw7gdS8ZIUmAGjue96gzG9WfamvIA3jef42LmjI1unbr6_YYTvnuMR7zOJhbryiBCJZzKZ_-_8efwR26ksC8OYL9zdW1O0b8tKmGsPfyZzZslwq-FtMPQziYnH6aLfD97cni89lfDhsfNQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCYyCxs3kIoaqiLLu0uwfaSr0Zxw8EWmVLsxXixn_gf_Cj-CWdiePspaC99JyMY43HM99kXgAvrEG3pxAqQvSho9QqHinrssjEQjtnqCMVRXSns2x8lH48Hh5vwJ9QC0NplUEntoraLDT9I3-N3hMikxK9qO2T7xFNjaLoahih4cViz_78gS5b83ayi-f7kvPR-8N346ibKhBpBAdL3Io2SYU4JbO5KYS2heLCJs4VuL1Yl6osVZagGOcqjm3mNPqPaGVVpdB7EkYLXPcKXE1xM3SjitGHVR1mLHzJC-q2FF2vLnPI55NRirgvqUevlPNXtBpNGb_YHP4L7rZmb3QLbnZ4le14AbsNG7a-A9emXUT-LszaqZpf22optnOwy8gsGraoGU2tj0jAbcPc9NOEUYr9F9ZQCrea__31u-uKNWfLAJ7t6T04uhRu3ofNelHbh8CUcpnQSgyNztLKJlUeu2RYlUiscp2bAeSBVVJ3DcxpjsZchky1b3LFZElMlp7JA0h6yhPfxGMNmjKchgxFqqhWJVqaNWjzi2ht0-mHRiay4TKWB217JJQUTkkJ6PsO4E1P2UEgD23W_O5WEBvZf2p1cQbwvH-MSoQiQ6q2i7P2HU7x9SG-88CLW88ogYiZ8zx_9P_Fn8H18eF0X-5PZnuP4Qbtymf9bMHm8vTMPkHstqyetheGwefLvqHnyiFXXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcKt6kFFgkOBrs3dgbq0KoIkQNJRGiVMptWe8DtYqcUqdCvfEf-Df8HH4JM17buRSUS8_xrFfjeXyTeQG8cBbDnoHQEaIPE_Wd5pF2PotsLIz3liZSUUZ3Ms0OjvsfZulsA363vTBUVtnaxNpQ24Wh_8hfY_SEyCSnUN03ZRGfhqO3Z98j2iBFmdZ2nUYQkUN3-QPDt-rNeIjf-iXno_df3h1EzYaByCBQWOK1jE0KxCyZk3YgjBtoLlzi_QCvGptc57nOEhRpqePYZd5gLIkeVxcaIylhjcBzb8BNKdKEdEzO5KonMxah_QXtXB_DsKaKKNSWUbl4aK_HCJXzV3QabRy_2jX-C_rWLnB0G7Yb7Mr2g7DdgQ1X3oWtSZOdvwfTesPmSd05xfaPhoxcpGWLktEG-4iE3VXMTz6PGZXbf2MVlXPr-Z-fv5oJWXO2bIG0O78Px9fCzQewWS5K9wiY1j4TRovUmqxfuKSQsU_SIkdiLY20PZAtq5RphpnTTo25aqvWTtWKyYqYrAKTe5B0lGdhoMcaNHn7NVTbsIomVqHXWYNWXkXrqsZWVCpRFVexOqpHJaGkcCpQwDi4B3sdZQOHAsxZ8727rdio7lUrJerB8-5nNCiUJdKlW1zUz3DKtaf4zMMgbh2jBKJnzqXc-f_hz2ALdVN9HE8PH8MtulQoANqFzeX5hXuCMG5ZPK31hcHX61bQv53sW4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+ASD+based+on+time-series+fMRI+using+spatial-temporal+transformer&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Deng%2C+Xin&rft.au=Zhang%2C+Jiahao&rft.au=Liu%2C+Rui&rft.au=Liu%2C+Ke&rft.date=2022-12-01&rft.eissn=1879-0534&rft.volume=151&rft.issue=Pt+B&rft.spage=106320&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106320&rft_id=info%3Apmid%2F36442277&rft.externalDocID=36442277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon