Classifying ASD based on time-series fMRI using spatial–temporal transformer
As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, wh...
Saved in:
Published in | Computers in biology and medicine Vol. 151; no. Pt B; p. 106320 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.
•LSTMA is designed to learn spatio-temporal features and accelerate model training.•The proposed GGDB addresses the data imbalance problem in ASD subtype diagnosis.•Compared with SOTA methods, our model shows the robust performance in ASD diagnosis. |
---|---|
AbstractList | AbstractAs the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial–temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial–temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. •LSTMA is designed to learn spatio-temporal features and accelerate model training.•The proposed GGDB addresses the data imbalance problem in ASD subtype diagnosis.•Compared with SOTA methods, our model shows the robust performance in ASD diagnosis. As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis.As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate their suffering. However, the current diagnosis method of ASD still adopts the subjective symptom-based criteria through clinical observation, which is time-consuming and costly. In recent years, functional magnetic resonance imaging (fMRI) neuroimaging techniques have emerged to facilitate the identification of potential biomarkers for diagnosing ASD. In this study, we developed a deep learning framework named spatial-temporal Transformer (ST-Transformer) to distinguish ASD subjects from typical controls based on fMRI data. Specifically, a linear spatial-temporal multi-headed attention unit is proposed to obtain the spatial and temporal representation of fMRI data. Moreover, a Gaussian GAN-based data balancing method is introduced to solve the data unbalance problem in real-world ASD datasets for subtype ASD diagnosis. Our proposed ST-Transformer is evaluated on a large cohort of subjects from two independent datasets (ABIDE I and ABIDE II) and achieves robust accuracies of 71.0% and 70.6%, respectively. Compared with state-of-the-art methods, our results demonstrate competitive performance in ASD diagnosis. |
ArticleNumber | 106320 |
Author | Liu, Rui Zhang, Jiahao Liu, Ke Deng, Xin |
Author_xml | – sequence: 1 givenname: Xin surname: Deng fullname: Deng, Xin organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China – sequence: 2 givenname: Jiahao surname: Zhang fullname: Zhang, Jiahao organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China – sequence: 3 givenname: Rui orcidid: 0000-0003-1926-3321 surname: Liu fullname: Liu, Rui email: rliu38-c@my.cityu.edu.hk organization: Department of Computer Science, City University of Hong Kong, 999077, Hong Kong, China – sequence: 4 givenname: Ke surname: Liu fullname: Liu, Ke organization: The Key Laboratory of Data Engineering and Visual Computing, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36442277$$D View this record in MEDLINE/PubMed |
BookMark | eNqVks9u1DAQxi1URLeFV0CRuHDJMrbz94IoS4FKBSQKZ8txJshLYqeeBGlvvEPfkCfB0ZZFqoRUTh5Zv_k0831zwo6cd8hYwmHNgRcvtmvjh7GxfsB2LUCI-F1IAQ_YildlnUIusyO2AuCQZpXIj9kJ0RYAMpDwiB3LIsuEKMsV-7jpNZHtdtZ9S86u3iSNJmwT75LJDpgSBouUdB8-XyQzLQyNerK6__XzZsJh9EH3yRS0o86HAcNj9rDTPeGT2_eUfX17_mXzPr389O5ic3aZmpxnU6rRtLzJIC-wbCtpsNJCIu-6CqQBU-u61kXcBEoNgEVnihoyyXWjlz1bI0_Z873uGPz1jDSpwZLBvtcO_UxKlJko8lrkZUSf3UG3fg4uTrdQuZQ1iIV6ekvNTTRVjcEOOuzUH6ciUO0BEzxRwO6AcFBLKGqr_oaillDUPpTY-vJOq7FTdNG76Jzt7yPwei-A0dIfFoMiY9EZbG1AM6nW2_-Y4iBieuus0f133CEdTOGKhAJ1tRzPcjtCxEJUdRR49W-B-83wG0Ws2RY |
CitedBy_id | crossref_primary_10_3390_s25010156 crossref_primary_10_1007_s13042_023_01980_w crossref_primary_10_1002_hbm_26542 crossref_primary_10_1016_j_compbiomed_2024_108069 crossref_primary_10_3390_brainsci15030277 crossref_primary_10_1016_j_bspc_2024_107466 crossref_primary_10_1109_TETCI_2024_3386612 crossref_primary_10_1016_j_compbiomed_2023_107667 crossref_primary_10_1002_brx2_29 crossref_primary_10_3390_diagnostics13233552 crossref_primary_10_3390_s23249647 crossref_primary_10_1016_j_cosrev_2025_100730 crossref_primary_10_1038_s41398_024_03024_5 crossref_primary_10_1109_ACCESS_2024_3434714 crossref_primary_10_1016_j_bspc_2024_106766 crossref_primary_10_1109_JBHI_2024_3396457 crossref_primary_10_1155_2023_4136087 crossref_primary_10_1016_j_bspc_2025_107678 crossref_primary_10_1016_j_compbiomed_2025_109926 crossref_primary_10_4108_eetpht_9_4240 crossref_primary_10_1016_j_asoc_2023_110363 crossref_primary_10_1109_TMI_2023_3325261 crossref_primary_10_1002_brx2_57 crossref_primary_10_1002_hbm_70008 crossref_primary_10_1162_imag_a_00290 crossref_primary_10_1016_j_aej_2024_04_023 crossref_primary_10_1109_ACCESS_2025_3532302 crossref_primary_10_3389_fnins_2024_1333712 crossref_primary_10_1109_TMI_2023_3327283 crossref_primary_10_31083_j_jin2307135 crossref_primary_10_3390_fi15090292 |
Cites_doi | 10.1016/j.compbiomed.2021.104963 10.3897/rio.3.e12733 10.1007/s12021-016-9299-4 10.1016/j.neucom.2018.04.080 10.1016/j.compbiomed.2020.104096 10.1016/j.media.2021.102279 10.1097/WCO.0b013e328306f2c5 10.1007/s10278-019-00196-1 10.1016/j.ejmp.2019.08.010 10.3389/fninf.2019.00070 10.1007/978-3-030-01234-2_1 10.1682/JRRD.2010.02.0017 10.1016/j.compbiomed.2020.103764 10.1016/j.neunet.2020.03.017 10.1109/SAMI48414.2020.9108717 10.1142/S0129065720500124 10.3390/e22080893 10.1016/j.nicl.2017.08.017 10.1016/j.neucom.2019.01.078 10.1146/annurev-publhealth-031816-044318 10.1109/ISBI48211.2021.9433842 10.1016/j.neulet.2020.135519 10.1016/j.artmed.2020.101870 10.2196/15767 10.1007/s12098-015-1894-0 10.1162/tacl_a_00353 10.1109/IAI50351.2020.9262176 10.3389/fncom.2021.654315 10.1109/TVCG.2020.3028976 10.1109/ACCESS.2021.3093456 10.1016/j.compbiomed.2022.105239 10.1111/acer.13441 10.32598/CJNS.7.25.5 10.1155/2020/1357853 10.1109/BigComp48618.2020.00013 10.1007/978-3-319-67389-9_42 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2022.106320 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 106320 |
ExternalDocumentID | 36442277 10_1016_j_compbiomed_2022_106320 S0010482522010289 1_s2_0_S0010482522010289 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Chongqing, China grantid: cstc2020jcyj-msxmX0284 funderid: http://dx.doi.org/10.13039/501100005230 – fundername: Educational Reform Project of CQUPT, China grantid: XJG20207 – fundername: The Science and Technology Research Program of Chongqing Municipal Education Commission, China grantid: KJQN202000625 funderid: http://dx.doi.org/10.13039/100012494 – fundername: National Natural Science Foundation of China grantid: 61806033; 61703065 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c514t-aecd1b4056e7d83ce8a23e1ff803c0c9a99a618707a00e6fc690431aba1063dc3 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Jul 11 00:50:53 EDT 2025 Wed Aug 13 01:55:29 EDT 2025 Wed Feb 19 02:25:12 EST 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 03:28:55 EDT 2025 Fri Feb 23 02:39:13 EST 2024 Tue Feb 25 20:10:54 EST 2025 Tue Aug 26 20:14:05 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt B |
Keywords | Deep learning(DL) ABIDE Transformer Functional magnetic resonance imaging (fMRI) Autism spectrum disorder (ASD) Adversarial Generation Network(GAN) |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-aecd1b4056e7d83ce8a23e1ff803c0c9a99a618707a00e6fc690431aba1063dc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1926-3321 |
PMID | 36442277 |
PQID | 2745339027 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2742659257 proquest_journals_2745339027 pubmed_primary_36442277 crossref_primary_10_1016_j_compbiomed_2022_106320 crossref_citationtrail_10_1016_j_compbiomed_2022_106320 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_106320 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522010289 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_106320 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | K. Byeon, J. Kwon, J. Hong, H. Park, Artificial Neural Network Inspired by Neuroimaging Connectivity: Application in Autism Spectrum Disorder, in: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, pp. 575–578. Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (b15) 2020 Leming, Górriz, Suckling (b33) 2020; 30 Kong, Gao, Xu, Pan, Wang, Liu (b7) 2019; 324 M. Bengs, N.T. Gessert, A. Schlaefer, 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification, in: Medical Imaging with Deep Learning, MIDL 2019 Conference, 2019, pp. 1–4. Bayram, İlyas, Temurtaş (b39) 2021; 4 Almuqhim, Saeed (b44) 2021; 15 Crosson, Ford, McGregor, Meinzer, Cheshkov, Li, Walker-Batson, Briggs (b4) 2010; 47 Heinsfeld, Franco, Craddock, Buchweitz, Meneguzzi (b34) 2018; 17 Liu, Guo (b11) 2019; 337 Yap, Chan (b27) 2020; 1 Dvornek, Ventola, Pelphrey, Duncan (b37) 2017 Jiang, Cao, Xu, Yang, Zaiane (b31) 2020; 127 Zhang, Li, Li, Peng, Kang, Jiang, Li, Zhu, Yao, Biswal, Xu (b20) 2020; 22 Chen, Chen, Yuan, Gerstein, Li, Liang, Froehlich, Lu (b54) 2020; 8 Yan, Wang, Zuo, Zang (b41) 2016; 14 Ma, Wang, Li (b28) 2021; 742 Wen, Cao, Bao, Yang, Zheng, Zaiane (b29) 2022 Puente-Castro, Fernandez-Blanco, Pazos, Munteanu (b32) 2020; 120 Shahamat, Abadeh (b46) 2020; 126 You, Liu, Zhang, Shao (b47) 2020 Yang, Zhang, Schrader (b43) 2022; 8 Chen, Wu, Wang, Liu, Li (b17) 2021 El-Gazzar, Quaak, Cerliani, Bloem, Wingen, Mani Thomas (b49) 2019 Zhao, Dai, Zhang, Ge, Liu (b56) 2019 Brahim, Farrugia (b45) 2020; 106 Rane, Jolly, Park, Jang, Craddock (b52) 2017; 3 Parmar, Vaswani, Uszkoreit, Kaiser, Shazeer, Ku, Tran (b16) 2018 Mnih, Heess, Graves (b8) 2014 Lyall, Croen, Daniels, Fallin, Ladd-Acosta, Lee, Park, Snyder, Schendel, Volk (b1) 2017; 38 Niu, Guo, Pan, Gao, Peng, Li, Li (b23) 2020; 2020 R. Liu, Z.-a. Huang, M. Jiang, K.C. Tan, Multi-LSTM Networks for Accurate Classification of Attention Deficit Hyperactivity Disorder from Resting-State fMRI Data, in: 2020 2nd International Conference on Industrial Artificial Intelligence, IAI, 2020, pp. 1–6. Wang, Xiao, Wu (b24) 2019; 65 A.D. Rasamoelina, F. Adjailia, P. Sinčák, A Review of Activation Function for Artificial Neural Network, in: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI, 2020, pp. 281–286. Roy, Saffar, Vaswani, Grangier (b12) 2021; 9 Dvornek, Ventola, Duncan (b50) 2018 Nickel, Huang-Storms (b2) 2017; 84 Li, Dvornek, Zhuang, Ventola, Duncan (b6) 2020 Yang, Wang, Tan, Liu, Li (b21) 2021; 139 Craddock, Benhajali, Chu, Chouinard, Evans, Jakab, Khundrakpam, Lewis, Li, Milham (b40) 2013; 7 Aghdam, Sharifi, Pedram (b55) 2019; 32 Chen, Radford, Child, Wu, Jun, Luan, Sutskever (b13) 2020 J.-c. Liu, J.-z. Ji, Classification method of fMRI data based on broad learning system, J. ZheJiang Univ. (Engineering Science) 55 (7) 1270–1278. Wang, Yao, Ma, Liu (b26) 2022; 75 Chung, Cornelius, Clark, Martin (b3) 2017; 41 DeRose, Wang, Berger (b9) 2021; 27 Dong, Xu, Xu (b18) 2018 S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. Greicius (b5) 2008; 21 Sadeghian, Hasani, Jafari (b25) 2021; 7 N.C. Dvornek, P. Ventola, K.A. Pelphrey, J.S. Duncan, Identifying autism from resting-state fMRI using long short-term memory networks, 2017, pp. 362–370. Yin, Li, Wu (b22) 2021 Loddo, Buttau, Di Ruberto (b30) 2021 Eslami, Mirjalili, Fong, Laird, Saeed (b35) 2019; 13 Kitada, Iyatomi (b10) 2021; 9 Y. Qiu, S. Yu, Y. Zhou, D. Liu, X. Song, T. Wang, B. Lei, Multi-channel Sparse Graph Transformer Network for Early Alzheimer’s Disease Identification, in: 2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI, 2021, pp. 1794–1797. Greicius (10.1016/j.compbiomed.2022.106320_b5) 2008; 21 Wang (10.1016/j.compbiomed.2022.106320_b26) 2022; 75 Chen (10.1016/j.compbiomed.2022.106320_b54) 2020; 8 Niu (10.1016/j.compbiomed.2022.106320_b23) 2020; 2020 Nickel (10.1016/j.compbiomed.2022.106320_b2) 2017; 84 Puente-Castro (10.1016/j.compbiomed.2022.106320_b32) 2020; 120 Liu (10.1016/j.compbiomed.2022.106320_b11) 2019; 337 Sadeghian (10.1016/j.compbiomed.2022.106320_b25) 2021; 7 Chung (10.1016/j.compbiomed.2022.106320_b3) 2017; 41 Parmar (10.1016/j.compbiomed.2022.106320_b16) 2018 Aghdam (10.1016/j.compbiomed.2022.106320_b55) 2019; 32 Jiang (10.1016/j.compbiomed.2022.106320_b31) 2020; 127 Wang (10.1016/j.compbiomed.2022.106320_b24) 2019; 65 Brahim (10.1016/j.compbiomed.2022.106320_b45) 2020; 106 Kitada (10.1016/j.compbiomed.2022.106320_b10) 2021; 9 Ma (10.1016/j.compbiomed.2022.106320_b28) 2021; 742 Carion (10.1016/j.compbiomed.2022.106320_b15) 2020 Yin (10.1016/j.compbiomed.2022.106320_b22) 2021 DeRose (10.1016/j.compbiomed.2022.106320_b9) 2021; 27 10.1016/j.compbiomed.2022.106320_b51 10.1016/j.compbiomed.2022.106320_b53 Mnih (10.1016/j.compbiomed.2022.106320_b8) 2014 Chen (10.1016/j.compbiomed.2022.106320_b17) 2021 10.1016/j.compbiomed.2022.106320_b14 Leming (10.1016/j.compbiomed.2022.106320_b33) 2020; 30 Zhang (10.1016/j.compbiomed.2022.106320_b20) 2020; 22 10.1016/j.compbiomed.2022.106320_b19 Crosson (10.1016/j.compbiomed.2022.106320_b4) 2010; 47 Wen (10.1016/j.compbiomed.2022.106320_b29) 2022 Yap (10.1016/j.compbiomed.2022.106320_b27) 2020; 1 Heinsfeld (10.1016/j.compbiomed.2022.106320_b34) 2018; 17 10.1016/j.compbiomed.2022.106320_b42 Eslami (10.1016/j.compbiomed.2022.106320_b35) 2019; 13 10.1016/j.compbiomed.2022.106320_b48 Lyall (10.1016/j.compbiomed.2022.106320_b1) 2017; 38 You (10.1016/j.compbiomed.2022.106320_b47) 2020 Loddo (10.1016/j.compbiomed.2022.106320_b30) 2021 Li (10.1016/j.compbiomed.2022.106320_b6) 2020 Rane (10.1016/j.compbiomed.2022.106320_b52) 2017; 3 Roy (10.1016/j.compbiomed.2022.106320_b12) 2021; 9 Chen (10.1016/j.compbiomed.2022.106320_b13) 2020 Yan (10.1016/j.compbiomed.2022.106320_b41) 2016; 14 Almuqhim (10.1016/j.compbiomed.2022.106320_b44) 2021; 15 Shahamat (10.1016/j.compbiomed.2022.106320_b46) 2020; 126 Dong (10.1016/j.compbiomed.2022.106320_b18) 2018 Dvornek (10.1016/j.compbiomed.2022.106320_b37) 2017 Craddock (10.1016/j.compbiomed.2022.106320_b40) 2013; 7 Bayram (10.1016/j.compbiomed.2022.106320_b39) 2021; 4 Yang (10.1016/j.compbiomed.2022.106320_b43) 2022; 8 Yang (10.1016/j.compbiomed.2022.106320_b21) 2021; 139 El-Gazzar (10.1016/j.compbiomed.2022.106320_b49) 2019 Zhao (10.1016/j.compbiomed.2022.106320_b56) 2019 10.1016/j.compbiomed.2022.106320_b36 10.1016/j.compbiomed.2022.106320_b38 Dvornek (10.1016/j.compbiomed.2022.106320_b50) 2018 Kong (10.1016/j.compbiomed.2022.106320_b7) 2019; 324 |
References_xml | – volume: 3 year: 2017 ident: b52 article-title: Developing predictive imaging biomarkers using whole-brain classifiers: Application to the ABIDE I dataset publication-title: Res. Ideas and Outcomes – volume: 21 start-page: 424 year: 2008 end-page: 430 ident: b5 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Curr. Opin. Neurol. – year: 2022 ident: b29 article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis publication-title: Comput. Biol. Med. – volume: 14 start-page: 339 year: 2016 end-page: 351 ident: b41 article-title: DPABI: data processing & analysis for (resting-state) brain imaging publication-title: Neuroinformatics – volume: 32 start-page: 899 year: 2019 end-page: 918 ident: b55 article-title: Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks publication-title: J. Digit. Imaging – reference: K. Byeon, J. Kwon, J. Hong, H. Park, Artificial Neural Network Inspired by Neuroimaging Connectivity: Application in Autism Spectrum Disorder, in: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), 2020, pp. 575–578. – volume: 84 start-page: 53 year: 2017 end-page: 60 ident: b2 article-title: Early identification of young children with autism spectrum disorder publication-title: Indian J. Pediatr. – start-page: 5884 year: 2018 end-page: 5888 ident: b18 article-title: Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition publication-title: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing – reference: A.D. Rasamoelina, F. Adjailia, P. Sinčák, A Review of Activation Function for Artificial Neural Network, in: 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics, SAMI, 2020, pp. 281–286. – volume: 38 start-page: 81 year: 2017 end-page: 102 ident: b1 article-title: The changing epidemiology of autism spectrum disorders publication-title: Annu. Rev. Public Health – reference: M. Bengs, N.T. Gessert, A. Schlaefer, 4D spatio-temporal deep learning with 4D fMRI data for autism spectrum disorder classification, in: Medical Imaging with Deep Learning, MIDL 2019 Conference, 2019, pp. 1–4. – start-page: 95 year: 2019 end-page: 102 ident: b49 article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study publication-title: OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging – year: 2020 ident: b6 article-title: Graph embedding using infomax for ASD classification and brain functional difference detection – volume: 13 start-page: 70 year: 2019 ident: b35 article-title: ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data publication-title: Front. Neuroinform. – volume: 22 year: 2020 ident: b20 article-title: Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset publication-title: Entropy – reference: N.C. Dvornek, P. Ventola, K.A. Pelphrey, J.S. Duncan, Identifying autism from resting-state fMRI using long short-term memory networks, 2017, pp. 362–370. – start-page: 725 year: 2018 end-page: 728 ident: b50 article-title: Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) – reference: R. Liu, Z.-a. Huang, M. Jiang, K.C. Tan, Multi-LSTM Networks for Accurate Classification of Attention Deficit Hyperactivity Disorder from Resting-State fMRI Data, in: 2020 2nd International Conference on Industrial Artificial Intelligence, IAI, 2020, pp. 1–6. – start-page: 1131 year: 2021 end-page: 1136 ident: b22 article-title: A graph attention neural network for diagnosing ASD with fMRI data publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – volume: 127 year: 2020 ident: b31 article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction publication-title: Comput. Biol. Med. – volume: 742 year: 2021 ident: b28 article-title: Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony publication-title: Neurosci. Lett. – volume: 27 start-page: 1160 year: 2021 end-page: 1170 ident: b9 article-title: Attention flows: Analyzing and comparing attention mechanisms in language models publication-title: IEEE Trans. Vis. Comput. Graphics – volume: 4 start-page: 142 year: 2021 end-page: 155 ident: b39 article-title: Deep learning methods for autism spectrum disorder diagnosis based on fMRI images publication-title: Sakarya Univ. J. Comput. Inf. Sci. – start-page: 77 year: 2020 end-page: 88 ident: b47 article-title: Classification of autism based on fMRI data with feature-fused convolutional neural network publication-title: Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health – volume: 65 start-page: 99 year: 2019 end-page: 105 ident: b24 article-title: Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data publication-title: Phys. Medica – reference: J.-c. Liu, J.-z. Ji, Classification method of fMRI data based on broad learning system, J. ZheJiang Univ. (Engineering Science) 55 (7) 1270–1278. – volume: 2020 year: 2020 ident: b23 article-title: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data publication-title: Complexity – reference: Y. Qiu, S. Yu, Y. Zhou, D. Liu, X. Song, T. Wang, B. Lei, Multi-channel Sparse Graph Transformer Network for Early Alzheimer’s Disease Identification, in: 2021 IEEE 18th International Symposium on Biomedical Imaging, ISBI, 2021, pp. 1794–1797. – start-page: 362 year: 2017 end-page: 370 ident: b37 article-title: Identifying autism from resting-state fMRI using long short-term memory networks publication-title: Machine Learning in Medical Imaging – volume: 8 year: 2022 ident: b43 article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity publication-title: Mach. Learn. Appl. – volume: 17 start-page: 16 year: 2018 end-page: 23 ident: b34 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clinical – volume: 30 year: 2020 ident: b33 article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks publication-title: Int. J. Neural Syst. – start-page: 1691 year: 2020 end-page: 1703 ident: b13 article-title: Generative pretraining from pixels – volume: 9 start-page: 53 year: 2021 end-page: 68 ident: b12 article-title: Efficient content-based sparse attention with routing transformers publication-title: Trans. Assoc. Comput. Linguist. – start-page: 2204 year: 2014 end-page: 2212 ident: b8 article-title: Recurrent models of visual attention publication-title: Advances in Neural Information Processing Systems – volume: 120 year: 2020 ident: b32 article-title: Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques publication-title: Comput. Biol. Med. – start-page: 5904 year: 2021 end-page: 5908 ident: b17 article-title: Developing real-time streaming transformer transducer for speech recognition on large-scale dataset publication-title: ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 41 start-page: 1584 year: 2017 end-page: 1592 ident: b3 article-title: Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents publication-title: Alcohol. Clin. Exp. Res. – reference: S. Woo, J. Park, J.-Y. Lee, I.S. Kweon, Cbam: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–19. – volume: 324 start-page: 63 year: 2019 end-page: 68 ident: b7 article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier publication-title: Neurocomputing – volume: 106 year: 2020 ident: b45 article-title: Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging publication-title: Artif. Intell. Med. – volume: 337 start-page: 325 year: 2019 end-page: 338 ident: b11 article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing – start-page: 213 year: 2020 end-page: 229 ident: b15 article-title: End-to-end object detection with transformers – start-page: 4055 year: 2018 end-page: 4064 ident: b16 article-title: Image transformer – year: 2021 ident: b30 article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method publication-title: Comput. Biol. Med. – volume: 126 start-page: 218 year: 2020 end-page: 234 ident: b46 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Netw. – volume: 1 year: 2020 ident: b27 article-title: Elastic SCAD SVM cluster for the selection of significant functional connectivity in autism spectrum disorder classification publication-title: Acad. Fundam. Comput. Res. – volume: 75 year: 2022 ident: b26 article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI publication-title: Med. Image Anal. – volume: 15 start-page: 27 year: 2021 ident: b44 article-title: ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data publication-title: Front. Comput. Neurosci. – volume: 8 year: 2020 ident: b54 article-title: The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study publication-title: JMIR Med. Inform. – volume: 47 start-page: vii year: 2010 ident: b4 article-title: Functional imaging and related techniques: an introduction for rehabilitation researchers publication-title: J. Rehabil. Res. Dev. – volume: 7 year: 2013 ident: b40 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front. Neuroinform. – start-page: 1576 year: 2019 end-page: 1580 ident: b56 article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling publication-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) – volume: 139 year: 2021 ident: b21 article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks publication-title: Comput. Biol. Med. – volume: 7 start-page: 74 year: 2021 end-page: 83 ident: b25 article-title: Feature selection based on genetic algorithm in the diagnosis of autism disorder by fMRI publication-title: Casp. J. Neurol. Sci. – volume: 9 start-page: 92974 year: 2021 end-page: 92985 ident: b10 article-title: Attention meets perturbations: Robust and interpretable attention with adversarial training publication-title: IEEE Access – volume: 139 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b21 article-title: Autism spectrum disorder diagnosis using graph attention network based on spatial-constrained sparse functional brain networks publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2021.104963 – volume: 3 year: 2017 ident: 10.1016/j.compbiomed.2022.106320_b52 article-title: Developing predictive imaging biomarkers using whole-brain classifiers: Application to the ABIDE I dataset publication-title: Res. Ideas and Outcomes doi: 10.3897/rio.3.e12733 – start-page: 725 year: 2018 ident: 10.1016/j.compbiomed.2022.106320_b50 article-title: Combining phenotypic and resting-state fMRI data for autism classification with recurrent neural networks – volume: 14 start-page: 339 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2022.106320_b41 article-title: DPABI: data processing & analysis for (resting-state) brain imaging publication-title: Neuroinformatics doi: 10.1007/s12021-016-9299-4 – volume: 8 year: 2022 ident: 10.1016/j.compbiomed.2022.106320_b43 article-title: A study of brain networks for autism spectrum disorder classification using resting-state functional connectivity publication-title: Mach. Learn. Appl. – volume: 324 start-page: 63 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b7 article-title: Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.04.080 – volume: 127 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b31 article-title: Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.104096 – volume: 7 year: 2013 ident: 10.1016/j.compbiomed.2022.106320_b40 article-title: The neuro bureau preprocessing initiative: open sharing of preprocessed neuroimaging data and derivatives publication-title: Front. Neuroinform. – volume: 75 year: 2022 ident: 10.1016/j.compbiomed.2022.106320_b26 article-title: Multi-site clustering and nested feature extraction for identifying autism spectrum disorder with resting-state fMRI publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102279 – volume: 21 start-page: 424 year: 2008 ident: 10.1016/j.compbiomed.2022.106320_b5 article-title: Resting-state functional connectivity in neuropsychiatric disorders publication-title: Curr. Opin. Neurol. doi: 10.1097/WCO.0b013e328306f2c5 – volume: 32 start-page: 899 issue: 6 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b55 article-title: Diagnosis of autism spectrum disorders in young children based on resting-state functional magnetic resonance imaging data using convolutional neural networks publication-title: J. Digit. Imaging doi: 10.1007/s10278-019-00196-1 – volume: 65 start-page: 99 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b24 article-title: Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data publication-title: Phys. Medica doi: 10.1016/j.ejmp.2019.08.010 – volume: 13 start-page: 70 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b35 article-title: ASD-DiagNet: A hybrid learning approach for detection of autism spectrum disorder using fMRI data publication-title: Front. Neuroinform. doi: 10.3389/fninf.2019.00070 – ident: 10.1016/j.compbiomed.2022.106320_b14 doi: 10.1007/978-3-030-01234-2_1 – volume: 1 issue: 2 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b27 article-title: Elastic SCAD SVM cluster for the selection of significant functional connectivity in autism spectrum disorder classification publication-title: Acad. Fundam. Comput. Res. – volume: 47 start-page: vii year: 2010 ident: 10.1016/j.compbiomed.2022.106320_b4 article-title: Functional imaging and related techniques: an introduction for rehabilitation researchers publication-title: J. Rehabil. Res. Dev. doi: 10.1682/JRRD.2010.02.0017 – volume: 120 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b32 article-title: Automatic assessment of Alzheimer’s disease diagnosis based on deep learning techniques publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103764 – volume: 126 start-page: 218 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b46 article-title: Brain MRI analysis using a deep learning based evolutionary approach publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.03.017 – ident: 10.1016/j.compbiomed.2022.106320_b42 doi: 10.1109/SAMI48414.2020.9108717 – volume: 30 issue: 07 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b33 article-title: Ensemble deep learning on large, mixed-site fMRI datasets in autism and other tasks publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065720500124 – volume: 22 issue: 8 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b20 article-title: Separated channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site rs-fMRI dataset publication-title: Entropy doi: 10.3390/e22080893 – start-page: 4055 year: 2018 ident: 10.1016/j.compbiomed.2022.106320_b16 article-title: Image transformer – year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b30 article-title: Deep learning based pipelines for Alzheimer’s disease diagnosis: A comparative study and a novel deep-ensemble method publication-title: Comput. Biol. Med. – start-page: 1691 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b13 article-title: Generative pretraining from pixels – year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b6 – volume: 17 start-page: 16 year: 2018 ident: 10.1016/j.compbiomed.2022.106320_b34 article-title: Identification of autism spectrum disorder using deep learning and the ABIDE dataset publication-title: NeuroImage: Clinical doi: 10.1016/j.nicl.2017.08.017 – volume: 337 start-page: 325 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b11 article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.078 – volume: 38 start-page: 81 year: 2017 ident: 10.1016/j.compbiomed.2022.106320_b1 article-title: The changing epidemiology of autism spectrum disorders publication-title: Annu. Rev. Public Health doi: 10.1146/annurev-publhealth-031816-044318 – ident: 10.1016/j.compbiomed.2022.106320_b19 doi: 10.1109/ISBI48211.2021.9433842 – volume: 742 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b28 article-title: Identifying individuals with autism spectrum disorder based on the principal components of whole-brain phase synchrony publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2020.135519 – volume: 4 start-page: 142 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b39 article-title: Deep learning methods for autism spectrum disorder diagnosis based on fMRI images publication-title: Sakarya Univ. J. Comput. Inf. Sci. – start-page: 213 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b15 article-title: End-to-end object detection with transformers – start-page: 5884 year: 2018 ident: 10.1016/j.compbiomed.2022.106320_b18 article-title: Speech-transformer: a no-recurrence sequence-to-sequence model for speech recognition – ident: 10.1016/j.compbiomed.2022.106320_b48 – volume: 106 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b45 article-title: Graph Fourier transform of fMRI temporal signals based on an averaged structural connectome for the classification of neuroimaging publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2020.101870 – volume: 8 issue: 5 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b54 article-title: The development of a practical artificial intelligence tool for diagnosing and evaluating autism spectrum disorder: multicenter study publication-title: JMIR Med. Inform. doi: 10.2196/15767 – volume: 84 start-page: 53 year: 2017 ident: 10.1016/j.compbiomed.2022.106320_b2 article-title: Early identification of young children with autism spectrum disorder publication-title: Indian J. Pediatr. doi: 10.1007/s12098-015-1894-0 – start-page: 77 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b47 article-title: Classification of autism based on fMRI data with feature-fused convolutional neural network – ident: 10.1016/j.compbiomed.2022.106320_b53 – start-page: 2204 year: 2014 ident: 10.1016/j.compbiomed.2022.106320_b8 article-title: Recurrent models of visual attention – volume: 9 start-page: 53 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b12 article-title: Efficient content-based sparse attention with routing transformers publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00353 – start-page: 1131 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b22 article-title: A graph attention neural network for diagnosing ASD with fMRI data – ident: 10.1016/j.compbiomed.2022.106320_b36 doi: 10.1109/IAI50351.2020.9262176 – volume: 15 start-page: 27 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b44 article-title: ASD-SAENet: A sparse autoencoder, and deep-neural network model for detecting autism spectrum disorder (ASD) using fMRI data publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2021.654315 – volume: 27 start-page: 1160 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b9 article-title: Attention flows: Analyzing and comparing attention mechanisms in language models publication-title: IEEE Trans. Vis. Comput. Graphics doi: 10.1109/TVCG.2020.3028976 – volume: 9 start-page: 92974 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b10 article-title: Attention meets perturbations: Robust and interpretable attention with adversarial training publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093456 – year: 2022 ident: 10.1016/j.compbiomed.2022.106320_b29 article-title: MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105239 – start-page: 95 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b49 article-title: A hybrid 3DCNN and 3DC-LSTM based model for 4D spatio-temporal fMRI data: an ABIDE autism classification study – volume: 41 start-page: 1584 issue: 9 year: 2017 ident: 10.1016/j.compbiomed.2022.106320_b3 article-title: Greater prevalence of proposed ICD-11 alcohol and cannabis dependence compared to ICD-10, DSM-IV, and DSM-5 in treated adolescents publication-title: Alcohol. Clin. Exp. Res. doi: 10.1111/acer.13441 – volume: 7 start-page: 74 issue: 2 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b25 article-title: Feature selection based on genetic algorithm in the diagnosis of autism disorder by fMRI publication-title: Casp. J. Neurol. Sci. doi: 10.32598/CJNS.7.25.5 – start-page: 5904 year: 2021 ident: 10.1016/j.compbiomed.2022.106320_b17 article-title: Developing real-time streaming transformer transducer for speech recognition on large-scale dataset – start-page: 362 year: 2017 ident: 10.1016/j.compbiomed.2022.106320_b37 article-title: Identifying autism from resting-state fMRI using long short-term memory networks – start-page: 1576 year: 2019 ident: 10.1016/j.compbiomed.2022.106320_b56 article-title: Two-stage spatial temporal deep learning framework for functional brain network modeling – volume: 2020 year: 2020 ident: 10.1016/j.compbiomed.2022.106320_b23 article-title: Multichannel deep attention neural networks for the classification of autism spectrum disorder using neuroimaging and personal characteristic data publication-title: Complexity doi: 10.1155/2020/1357853 – ident: 10.1016/j.compbiomed.2022.106320_b38 doi: 10.1109/BigComp48618.2020.00013 – ident: 10.1016/j.compbiomed.2022.106320_b51 doi: 10.1007/978-3-319-67389-9_42 |
SSID | ssj0004030 |
Score | 2.4899514 |
Snippet | As the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to alleviate... AbstractAs the prevalence of autism spectrum disorder (ASD) increases globally, more and more patients need to receive timely diagnosis and treatment to... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 106320 |
SubjectTerms | ABIDE Adversarial Generation Network(GAN) Autism Autism spectrum disorder (ASD) Autism Spectrum Disorder - diagnostic imaging Biomarkers Brain - diagnostic imaging Datasets Deep learning Deep learning(DL) Diagnosis Endoscopy Functional magnetic resonance imaging Functional magnetic resonance imaging (fMRI) Humans Internal Medicine Machine learning Magnetic resonance imaging Magnetic Resonance Imaging - methods Medical imaging Neuroimaging Other Spatial discrimination learning Time Factors Transformer Transformers |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXEbxW26TbbPEkPlBhPfgAbyHNQ1aW7mLXq_gf_If-EmeatCIqLHhsmqHtdDL5hvkmQ8i-NRD29LiKAH3oKLWKRcq6LDIx184ZPJEKM7r96-ziPr166D7MkJOmFgZplcH3e59ee-swchi0eTgeDLDGF0IJCHAYJnQhbsAK9lSglR-8ftE80pj7MhTwNzg7sHk8xwtp277MHSJFxmA449j5-_ct6i8IWm9F54tkIWBIeuxfc4nM2HKZzPVDlnyFXNedLgd1BRM9vj2luFUZOiopdpKP0OhsRV3_5pIi7f2RVkirVsOPt_dwUtWQThpAa59Xyf352d3JRRT6JkQa4M8ElK1NUgASy6wwPa5tTzFuE-d68ANinas8V1kCC1WoOLaZ0xAhA45QhcLvN5qvkdlyVNoNQpVyGdeKd43O0sImhYhd0i1yEFZCC9MholGV1OFQcextMZQNe-xJfilZopKlV3KHJK3k2B-sMYVM3vwN2RSOgquT4P2nkBW_ydoqrNlKJrJiMpY_7KpDjlrJb6Y55XO3G7OR7aOYSAFm5zETHbLX3oaFjdkaVdrRSz2HYc67C3PWvbm1iuKAYhkTYvNfr7ZF5vHKk3O2yezk-cXuAMSaFLv1GvoEYi4lPw priority: 102 providerName: Elsevier |
Title | Classifying ASD based on time-series fMRI using spatial–temporal transformer |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522010289 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522010289 https://dx.doi.org/10.1016/j.compbiomed.2022.106320 https://www.ncbi.nlm.nih.gov/pubmed/36442277 https://www.proquest.com/docview/2745339027 https://www.proquest.com/docview/2742659257 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtNAEB7RVkJcEOU30EaLxNVg7yZeWxxQgIYUlAi1VMpttd4fBIqcUqdXxDvwhjwJM961cykol0RKPLEznp39xvPNDMALZzHsKYROEH2YZOQ0T7TzeWJTYby31JGKMrrzRT67GH1cjpfxgVsTaZWdT2wdtV0bekb-CqMnRCYlRlFvLn8kNDWKsqtxhMYeHFDrMqJ0yaXc1kWmIpSgoK8ZYSgUmTyB30WU7VDijlEi5_hxLmjq983b07_gZ7sNTe_B3Ygf2STc8EO45er7cHseM-QPYNFOufzWVi-xyfl7RtuUZeua0RT5hAzONczPz04ZUd6_soYo1Xr159fv2KVqxTYdmHVXD-FievLl3SyJMxMSg9Bng4o2NqsQheVO2kIYV2guXOZ9gcpPTanLUucZLlKp09Tl3mB0jBhCV5r-vzXiEezX69o9Aaa1z4XRYmxNPqpcVsnUZ-OqRGEtjbQDkJ2qlIkNxWmuxUp1zLHvaqtkRUpWQckDyHrJy9BUYweZsrsbqisaRTen0PPvICtvknVNXK-NylTDVarO23ZFaCmcSAIYiw7gdS8ZIUmAGjue96gzG9WfamvIA3jef42LmjI1unbr6_YYTvnuMR7zOJhbryiBCJZzKZ_-_8efwR26ksC8OYL9zdW1O0b8tKmGsPfyZzZslwq-FtMPQziYnH6aLfD97cni89lfDhsfNQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuFAkaCYyCxs3kIoaqiLLu0uwfaSr0Zxw8EWmVLsxXixn_gf_Cj-CWdiePspaC99JyMY43HM99kXgAvrEG3pxAqQvSho9QqHinrssjEQjtnqCMVRXSns2x8lH48Hh5vwJ9QC0NplUEntoraLDT9I3-N3hMikxK9qO2T7xFNjaLoahih4cViz_78gS5b83ayi-f7kvPR-8N346ibKhBpBAdL3Io2SYU4JbO5KYS2heLCJs4VuL1Yl6osVZagGOcqjm3mNPqPaGVVpdB7EkYLXPcKXE1xM3SjitGHVR1mLHzJC-q2FF2vLnPI55NRirgvqUevlPNXtBpNGb_YHP4L7rZmb3QLbnZ4le14AbsNG7a-A9emXUT-LszaqZpf22optnOwy8gsGraoGU2tj0jAbcPc9NOEUYr9F9ZQCrea__31u-uKNWfLAJ7t6T04uhRu3ofNelHbh8CUcpnQSgyNztLKJlUeu2RYlUiscp2bAeSBVVJ3DcxpjsZchky1b3LFZElMlp7JA0h6yhPfxGMNmjKchgxFqqhWJVqaNWjzi2ht0-mHRiay4TKWB217JJQUTkkJ6PsO4E1P2UEgD23W_O5WEBvZf2p1cQbwvH-MSoQiQ6q2i7P2HU7x9SG-88CLW88ogYiZ8zx_9P_Fn8H18eF0X-5PZnuP4Qbtymf9bMHm8vTMPkHstqyetheGwefLvqHnyiFXXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcKt6kFFgkOBrs3dgbq0KoIkQNJRGiVMptWe8DtYqcUqdCvfEf-Df8HH4JM17buRSUS8_xrFfjeXyTeQG8cBbDnoHQEaIPE_Wd5pF2PotsLIz3liZSUUZ3Ms0OjvsfZulsA363vTBUVtnaxNpQ24Wh_8hfY_SEyCSnUN03ZRGfhqO3Z98j2iBFmdZ2nUYQkUN3-QPDt-rNeIjf-iXno_df3h1EzYaByCBQWOK1jE0KxCyZk3YgjBtoLlzi_QCvGptc57nOEhRpqePYZd5gLIkeVxcaIylhjcBzb8BNKdKEdEzO5KonMxah_QXtXB_DsKaKKNSWUbl4aK_HCJXzV3QabRy_2jX-C_rWLnB0G7Yb7Mr2g7DdgQ1X3oWtSZOdvwfTesPmSd05xfaPhoxcpGWLktEG-4iE3VXMTz6PGZXbf2MVlXPr-Z-fv5oJWXO2bIG0O78Px9fCzQewWS5K9wiY1j4TRovUmqxfuKSQsU_SIkdiLY20PZAtq5RphpnTTo25aqvWTtWKyYqYrAKTe5B0lGdhoMcaNHn7NVTbsIomVqHXWYNWXkXrqsZWVCpRFVexOqpHJaGkcCpQwDi4B3sdZQOHAsxZ8727rdio7lUrJerB8-5nNCiUJdKlW1zUz3DKtaf4zMMgbh2jBKJnzqXc-f_hz2ALdVN9HE8PH8MtulQoANqFzeX5hXuCMG5ZPK31hcHX61bQv53sW4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+ASD+based+on+time-series+fMRI+using+spatial-temporal+transformer&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Deng%2C+Xin&rft.au=Zhang%2C+Jiahao&rft.au=Liu%2C+Rui&rft.au=Liu%2C+Ke&rft.date=2022-12-01&rft.eissn=1879-0534&rft.volume=151&rft.issue=Pt+B&rft.spage=106320&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.106320&rft_id=info%3Apmid%2F36442277&rft.externalDocID=36442277 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |