Key factors in the cortical response to transcranial electrical Stimulations—A multi-scale modeling study

Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the re...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 144; p. 105328
Main Authors Chung, Hyeyeon, Im, Cheolki, Seo, Hyeon, Jun, Sung Chan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2022.105328

Cover

Abstract Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. •We proposed a multi-scale model for C/HD-tDCS/tACS that integrated morphologically detailed neuron models and the head model.•A key factor for cortical neurons' excitability depended on neuronal morphology.•Electric field magnitude was the driving force for neurons with highly branched axon models, rather than its normal component.•True-to-life electrophysical and morphological properties of cortical neurons are essential for a precise estimation of NIBS.
AbstractList Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.
AbstractTranscranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.
Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely-the conventional (C)-tES and high-definition (HD)-tES-as well as two stimulation waveforms-direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely-the conventional (C)-tES and high-definition (HD)-tES-as well as two stimulation waveforms-direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.
Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. •We proposed a multi-scale model for C/HD-tDCS/tACS that integrated morphologically detailed neuron models and the head model.•A key factor for cortical neurons' excitability depended on neuronal morphology.•Electric field magnitude was the driving force for neurons with highly branched axon models, rather than its normal component.•True-to-life electrophysical and morphological properties of cortical neurons are essential for a precise estimation of NIBS.
ArticleNumber 105328
Author Chung, Hyeyeon
Im, Cheolki
Seo, Hyeon
Jun, Sung Chan
Author_xml – sequence: 1
  givenname: Hyeyeon
  surname: Chung
  fullname: Chung, Hyeyeon
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea
– sequence: 2
  givenname: Cheolki
  surname: Im
  fullname: Im, Cheolki
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea
– sequence: 3
  givenname: Hyeon
  surname: Seo
  fullname: Seo, Hyeon
  organization: Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
– sequence: 4
  givenname: Sung Chan
  orcidid: 0000-0001-5357-4436
  surname: Jun
  fullname: Jun, Sung Chan
  email: scjun@gist.ac.kr
  organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35231800$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhS1URKeFV0CW2LDJcO04f5uKtqKAqMSisLY8zg14msSD7SDNjofgCfsk3HRakEZCmo1_v3tsn-MTdjT6ERnjApYCRPlmvbR-2KycH7BdSpCSlotc1k_YQtRVk9FEHbEFgIBM1bI4ZicxrgFAQQ7P2HFeyFzUAAt2-wm3vDM2-RC5G3n6jtz6kJw1PQ8YN36MyJPnKZgxWmocbWCPNoV75ia5YepNcgTe_fp9zmmWXBZpD_ngW-zd-I3HNLXb5-xpZ_qILx76U_b16t2Xyw_Z9ef3Hy_PrzNbCJWyphF1bqrOlLASAotWNZB3FqysFEKjmhqMyjvAYlV0Cuoyb1EZLE1Vd8ZIzE_Z653uJvgfE8akBxct9r0Z0U9Ry5Ler_KyKAh9tYeu_RRGuh1RqqwEyKom6uUDNa3Icb0JbjBhqx9tJOBsB9jgYwzYaevSvSdkm-u1AD3nptf6X256zk3vciOBek_g8YwDSi92pUiW_nQYdLQOR4utC5SSbr07RORsT8RSbnPAt7jF-NcUoaPUoG_mnzV_LClpREIk8Pb_Aofd4Q_KZeRx
CitedBy_id crossref_primary_10_1007_s11571_024_10142_9
crossref_primary_10_1002_jnr_25154
crossref_primary_10_1016_j_psc_2023_02_005
crossref_primary_10_3389_fnhum_2024_1385427
crossref_primary_10_1016_j_compbiomed_2024_108697
crossref_primary_10_1016_j_pscychresns_2023_111718
crossref_primary_10_1016_j_compbiomed_2022_106472
crossref_primary_10_1016_j_neuroimage_2023_120379
crossref_primary_10_1016_j_brs_2023_11_018
Cites_doi 10.1038/s41467-019-10638-7
10.1113/jphysiol.2003.055772
10.1088/0031-9155/57/21/6961
10.1016/j.brs.2018.11.004
10.1016/j.brs.2017.11.001
10.1109/TNSRE.2014.2308997
10.1016/j.neuroimage.2014.06.040
10.1016/S0006-3495(86)83558-5
10.1016/j.cell.2015.09.029
10.1088/1741-2552/aadbb1
10.1038/s41467-018-07233-7
10.1088/0031-9155/61/12/4506
10.1038/s41598-021-87371-z
10.1088/0031-9155/61/12/4346
10.1038/s41598-018-37226-x
10.1109/ACCESS.2018.2890019
10.3389/fncel.2017.00265
10.1016/j.neuroimage.2013.04.067
10.1162/neco.1997.9.6.1179
10.3389/fncel.2014.00145
10.1016/j.brs.2013.05.007
10.1088/0031-9155/59/1/203
10.1016/j.cub.2016.06.044
10.1111/ner.12296
10.1016/j.brs.2014.02.009
10.1088/1741-2552/ab8ccf
10.1109/TBME.2004.827925
10.1016/j.brs.2007.10.001
10.1038/s41598-017-03547-6
10.1016/j.brs.2019.03.072
10.1023/A:1024130211265
10.1016/j.brs.2012.09.010
10.1016/j.brs.2011.07.008
10.1093/cercor/bhx158
10.1016/j.brs.2018.10.014
10.1038/nn.3751
10.1007/s10827-015-0585-1
10.1016/j.brs.2011.10.001
10.1016/j.bpj.2018.06.004
10.1038/nn.3422
10.1016/j.neuroimage.2015.01.033
10.1113/jphysiol.2012.247171
10.1162/089892903321662994
10.7554/eLife.30552
10.1016/j.brs.2019.10.002
10.1016/j.brs.2009.03.005
10.1007/s10545-018-0181-4
10.1016/j.neuroimage.2013.01.042
10.1016/j.brs.2017.09.011
10.1088/1741-2560/11/1/016002
10.1016/j.brs.2009.03.007
10.1002/hbm.20006
10.1146/annurev.bioeng.9.061206.133100
10.1016/j.brs.2015.07.027
10.1016/j.neuroimage.2011.06.069
10.1038/382363a0
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright © 2022 Elsevier Ltd. All rights reserved.
2022. Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright © 2022 Elsevier Ltd. All rights reserved.
– notice: 2022. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2022.105328
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 105328
ExternalDocumentID 35231800
10_1016_j_compbiomed_2022_105328
S0010482522001202
1_s2_0_S0010482522001202
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
77I
7X8
ID FETCH-LOGICAL-c514t-99183a7fa60b11e5d4903fc0c274e094980a43f0e5b5f40863de4ae6a78faa2e3
IEDL.DBID 8FG
ISSN 0010-4825
1879-0534
IngestDate Thu Sep 04 22:48:24 EDT 2025
Wed Aug 13 07:29:38 EDT 2025
Wed Feb 19 02:26:58 EST 2025
Tue Jul 01 03:28:48 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 23 02:39:35 EST 2024
Tue Feb 25 20:03:26 EST 2025
Tue Aug 26 20:14:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2022 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-99183a7fa60b11e5d4903fc0c274e094980a43f0e5b5f40863de4ae6a78faa2e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5357-4436
PMID 35231800
PQID 2646710278
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2635243655
proquest_journals_2646710278
pubmed_primary_35231800
crossref_citationtrail_10_1016_j_compbiomed_2022_105328
crossref_primary_10_1016_j_compbiomed_2022_105328
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105328
elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001202
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105328
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Opitz (bib64) 2013; 81
Li (bib27) 2017; 6
Wang, Grill, Peterchev (bib57) 2018; 115
Romero (bib26) 2019; 10
Ziemann (bib10) 2009; 46
Foerster (bib38) 2019; 12
Rahman (bib33) 2013; 591
Mueller (bib25) 2014; 17
Reed, Cohen Kadosh (bib3) 2018; 41
Wagner, Valero-Cabre, Pascual-Leone (bib1) 2007; 9
Fox (bib35) 2004; 22
Hines, Carnevale (bib48) 1997; 9
Alam (bib53) 2016; 61
Reilly (bib52) 2016; 61
Shepherd, Grillner (bib49) 2018
Krieg (bib34) 2013; 6
Yi (bib5) 2017; 7
Im, Seo, Jun (bib24) 2019; 7
Radman (bib6) 2009; 2
Laakso (bib16) 2019; 9
Seo, Jun (bib28) 2019; 12
Rawji (bib36) 2018; 11
Peterchev (bib2) 2012; 5
Ramaswamy (bib46) 2015; 9
Masina (bib55) 2021; 11
Tranchina, Nicholson (bib12) 1986; 50
Pashut (bib13) 2011; 7
Opitz (bib22) 2011; 58
Edwards (bib56) 2013; 74
Aberra, Peterchev, Grill (bib7) 2018; 15
Vorwerk (bib63) 2014; 100
Thielscher, Antunes, Saturnino (bib42) 2015; 2015
DeFelipe, Alonso-Nanclares, Arellano (bib51) 2002; 31
Wagner (bib44) 2004; 51
Kuo (bib54) 2013; 6
Wagner (bib20) 2014; 11
Wu (bib14) 2016; 40
Suh, Lee, Kim (bib62) 2012; 57
Yi (bib9) 2017; 11
Gomez-Tames (bib21) 2020; 17
Carnevale, Hines (bib50) 2006
Datta (bib65) 2012; 3
Datta (bib23) 2009; 2
Aberra (bib29) 2020; 13
Antal (bib40) 2008; 1
Aspart, Remme, Obermayer (bib15) 2018; 14
Antonenko (bib37) 2019; 12
Chakraborty (bib31) 2018; 28
Liu (bib32) 2018; 9
Opitz (bib17) 2015; 109
Markram (bib47) 2015; 163
Di Lazzaro (bib58) 2012; 5
Bikson (bib4) 2004; 557
Laakso, Hirata, Ugawa (bib68) 2013; 59
McCambridge, Stinear, Byblow (bib59) 2015; 8
Bungert (bib19) 2017; 27
Lustenberger (bib41) 2016; 26
Rusu (bib61) 2014; 7
Nitsche (bib39) 2003; 15
Rampersad (bib66) 2014; 22
Thielscher, Opitz, Windhoff (bib43) 2011; 54
Aberra As, Grill (bib45) 2018
Pashut (bib11) 2014; 8
Esser, Hill, Tononi (bib60) 2005; 94
Mainen, Sejnowski (bib8) 1996; 382
Dayan (bib67) 2013; 16
Laakso (bib18) 2018; 11
Goodwin, Butson (bib30) 2015; 18
Vorwerk (10.1016/j.compbiomed.2022.105328_bib63) 2014; 100
Krieg (10.1016/j.compbiomed.2022.105328_bib34) 2013; 6
Lustenberger (10.1016/j.compbiomed.2022.105328_bib41) 2016; 26
Pashut (10.1016/j.compbiomed.2022.105328_bib11) 2014; 8
Romero (10.1016/j.compbiomed.2022.105328_bib26) 2019; 10
Wagner (10.1016/j.compbiomed.2022.105328_bib44) 2004; 51
Alam (10.1016/j.compbiomed.2022.105328_bib53) 2016; 61
Opitz (10.1016/j.compbiomed.2022.105328_bib64) 2013; 81
Di Lazzaro (10.1016/j.compbiomed.2022.105328_bib58) 2012; 5
Aspart (10.1016/j.compbiomed.2022.105328_bib15) 2018; 14
DeFelipe (10.1016/j.compbiomed.2022.105328_bib51) 2002; 31
Ziemann (10.1016/j.compbiomed.2022.105328_bib10) 2009; 46
Rahman (10.1016/j.compbiomed.2022.105328_bib33) 2013; 591
Fox (10.1016/j.compbiomed.2022.105328_bib35) 2004; 22
Antonenko (10.1016/j.compbiomed.2022.105328_bib37) 2019; 12
Wang (10.1016/j.compbiomed.2022.105328_bib57) 2018; 115
Pashut (10.1016/j.compbiomed.2022.105328_bib13) 2011; 7
Datta (10.1016/j.compbiomed.2022.105328_bib23) 2009; 2
Radman (10.1016/j.compbiomed.2022.105328_bib6) 2009; 2
Tranchina (10.1016/j.compbiomed.2022.105328_bib12) 1986; 50
Thielscher (10.1016/j.compbiomed.2022.105328_bib42) 2015; 2015
Yi (10.1016/j.compbiomed.2022.105328_bib9) 2017; 11
Suh (10.1016/j.compbiomed.2022.105328_bib62) 2012; 57
Thielscher (10.1016/j.compbiomed.2022.105328_bib43) 2011; 54
Kuo (10.1016/j.compbiomed.2022.105328_bib54) 2013; 6
Goodwin (10.1016/j.compbiomed.2022.105328_bib30) 2015; 18
Chakraborty (10.1016/j.compbiomed.2022.105328_bib31) 2018; 28
Foerster (10.1016/j.compbiomed.2022.105328_bib38) 2019; 12
Aberra (10.1016/j.compbiomed.2022.105328_bib7) 2018; 15
Reilly (10.1016/j.compbiomed.2022.105328_bib52) 2016; 61
Datta (10.1016/j.compbiomed.2022.105328_bib65) 2012; 3
Masina (10.1016/j.compbiomed.2022.105328_bib55) 2021; 11
Dayan (10.1016/j.compbiomed.2022.105328_bib67) 2013; 16
Im (10.1016/j.compbiomed.2022.105328_bib24) 2019; 7
Wagner (10.1016/j.compbiomed.2022.105328_bib1) 2007; 9
Aberra (10.1016/j.compbiomed.2022.105328_bib29) 2020; 13
Laakso (10.1016/j.compbiomed.2022.105328_bib16) 2019; 9
Yi (10.1016/j.compbiomed.2022.105328_bib5) 2017; 7
Hines (10.1016/j.compbiomed.2022.105328_bib48) 1997; 9
Rusu (10.1016/j.compbiomed.2022.105328_bib61) 2014; 7
Esser (10.1016/j.compbiomed.2022.105328_bib60) 2005; 94
Rawji (10.1016/j.compbiomed.2022.105328_bib36) 2018; 11
Wu (10.1016/j.compbiomed.2022.105328_bib14) 2016; 40
Shepherd (10.1016/j.compbiomed.2022.105328_bib49) 2018
Mueller (10.1016/j.compbiomed.2022.105328_bib25) 2014; 17
Li (10.1016/j.compbiomed.2022.105328_bib27) 2017; 6
Markram (10.1016/j.compbiomed.2022.105328_bib47) 2015; 163
Peterchev (10.1016/j.compbiomed.2022.105328_bib2) 2012; 5
Bikson (10.1016/j.compbiomed.2022.105328_bib4) 2004; 557
McCambridge (10.1016/j.compbiomed.2022.105328_bib59) 2015; 8
Gomez-Tames (10.1016/j.compbiomed.2022.105328_bib21) 2020; 17
Liu (10.1016/j.compbiomed.2022.105328_bib32) 2018; 9
Antal (10.1016/j.compbiomed.2022.105328_bib40) 2008; 1
Aberra As (10.1016/j.compbiomed.2022.105328_bib45) 2018
Laakso (10.1016/j.compbiomed.2022.105328_bib68) 2013; 59
Opitz (10.1016/j.compbiomed.2022.105328_bib17) 2015; 109
Wagner (10.1016/j.compbiomed.2022.105328_bib20) 2014; 11
Reed (10.1016/j.compbiomed.2022.105328_bib3) 2018; 41
Mainen (10.1016/j.compbiomed.2022.105328_bib8) 1996; 382
Opitz (10.1016/j.compbiomed.2022.105328_bib22) 2011; 58
Bungert (10.1016/j.compbiomed.2022.105328_bib19) 2017; 27
Seo (10.1016/j.compbiomed.2022.105328_bib28) 2019; 12
Rampersad (10.1016/j.compbiomed.2022.105328_bib66) 2014; 22
Laakso (10.1016/j.compbiomed.2022.105328_bib18) 2018; 11
Ramaswamy (10.1016/j.compbiomed.2022.105328_bib46) 2015; 9
Carnevale (10.1016/j.compbiomed.2022.105328_bib50) 2006
Edwards (10.1016/j.compbiomed.2022.105328_bib56) 2013; 74
Nitsche (10.1016/j.compbiomed.2022.105328_bib39) 2003; 15
References_xml – year: 2018
  ident: bib45
  article-title: Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation
– volume: 6
  year: 2017
  ident: bib27
  article-title: Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
  publication-title: Elife
– volume: 9
  start-page: 626
  year: 2019
  ident: bib16
  article-title: Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex?
  publication-title: Sci. Rep.
– volume: 27
  start-page: 5083
  year: 2017
  end-page: 5094
  ident: bib19
  article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position
  publication-title: Cerebr. Cortex
– volume: 11
  start-page: 166
  year: 2018
  end-page: 174
  ident: bib18
  article-title: Where and what TMS activates: experiments and modeling
  publication-title: Brain Stimul
– volume: 8
  start-page: 145
  year: 2014
  ident: bib11
  article-title: Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation
  publication-title: Front. Cell. Neurosci.
– volume: 16
  start-page: 838
  year: 2013
  end-page: 844
  ident: bib67
  article-title: Noninvasive brain stimulation: from physiology to network dynamics and back
  publication-title: Nat. Neurosci.
– volume: 9
  start-page: 44
  year: 2015
  ident: bib46
  article-title: The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex
  publication-title: Front. Neural Circ.
– volume: 6
  start-page: 898
  year: 2013
  end-page: 904
  ident: bib34
  article-title: PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans
  publication-title: Brain Stimul
– volume: 17
  year: 2020
  ident: bib21
  article-title: TMS activation site estimation using multiscale realistic head models
  publication-title: J. Neural. Eng.
– volume: 7
  start-page: 8557
  year: 2019
  end-page: 8569
  ident: bib24
  article-title: Geometrical variation's influence on the effects of stimulation may be important in the conventional and multi-array tDCS–comparison of electrical fields computed
  publication-title: IEEE Access
– volume: 74
  start-page: 266
  year: 2013
  end-page: 275
  ident: bib56
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: Neuroimage
– volume: 17
  start-page: 1130
  year: 2014
  end-page: 1136
  ident: bib25
  article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 289
  year: 2018
  end-page: 298
  ident: bib36
  article-title: tDCS changes in motor excitability are specific to orientation of current flow
  publication-title: Brain Stimul
– start-page: 599
  year: 2018
  ident: bib49
  article-title: Handbook of Brain Microcircuits
– volume: 9
  start-page: 5092
  year: 2018
  ident: bib32
  article-title: Immediate neurophysiological effects of transcranial electrical stimulation
  publication-title: Nat. Commun.
– volume: 15
  start-page: 619
  year: 2003
  end-page: 626
  ident: bib39
  article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human
  publication-title: J. Cognit. Neurosci.
– volume: 31
  start-page: 299
  year: 2002
  end-page: 316
  ident: bib51
  article-title: Microstructure of the neocortex: comparative aspects
  publication-title: J. Neurocytol.
– volume: 11
  year: 2017
  ident: bib9
  article-title: Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells
  publication-title: Front. Cell. Neurosci.
– volume: 50
  start-page: 1139
  year: 1986
  end-page: 1156
  ident: bib12
  article-title: A model for the polarization of neurons by extrinsically applied electric fields
  publication-title: Biophys. J.
– volume: 557
  start-page: 175
  year: 2004
  end-page: 190
  ident: bib4
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J. Physiol.
– volume: 10
  year: 2019
  ident: bib26
  article-title: Neural effects of transcranial magnetic stimulation at the single-cell level
  publication-title: Nat. Commun.
– volume: 1
  start-page: 97
  year: 2008
  end-page: 105
  ident: bib40
  article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans
  publication-title: Brain Stimul
– volume: 15
  year: 2018
  ident: bib7
  article-title: Biophysically realistic neuron models for simulation of cortical stimulation
  publication-title: J. Neural. Eng.
– volume: 11
  year: 2014
  ident: bib20
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J. Neural. Eng.
– start-page: 457
  year: 2006
  ident: bib50
  article-title: The NEURON Book
– volume: 2015
  start-page: 222
  year: 2015
  end-page: 225
  ident: bib42
  article-title: Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 9
  start-page: 1179
  year: 1997
  end-page: 1209
  ident: bib48
  article-title: The NEURON simulation environment
  publication-title: Neural Comput.
– volume: 41
  start-page: 1123
  year: 2018
  end-page: 1130
  ident: bib3
  article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity
  publication-title: J. Inherit. Metab. Dis.
– volume: 61
  start-page: 4506
  year: 2016
  end-page: 4521
  ident: bib53
  article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)
  publication-title: Phys. Med. Biol.
– volume: 57
  start-page: 6961
  year: 2012
  ident: bib62
  article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model
  publication-title: Phys. Med. Biol.
– volume: 46
  start-page: 124
  year: 2009
  end-page: 127
  ident: bib10
  article-title: TMS in cognitive neuroscience: virtual lesion and beyond
  publication-title: Biophys. J.
– volume: 40
  start-page: 51
  year: 2016
  end-page: 64
  ident: bib14
  article-title: Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation
  publication-title: J. Comput. Neurosci.
– volume: 18
  start-page: 694
  year: 2015
  end-page: 704
  ident: bib30
  article-title: Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation
  publication-title: Neuromodulation
– volume: 382
  start-page: 363
  year: 1996
  end-page: 366
  ident: bib8
  article-title: Influence of dendritic structure on firing pattern in model neocortical neurons
  publication-title: Nature
– volume: 94
  start-page: 622
  year: 2005
  end-page: 639
  ident: bib60
  article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits
  publication-title: J. Neuropsychol.
– volume: 58
  start-page: 849
  year: 2011
  end-page: 859
  ident: bib22
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
– volume: 59
  start-page: 203
  year: 2013
  ident: bib68
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys. Med. Biol.
– volume: 9
  start-page: 527
  year: 2007
  end-page: 565
  ident: bib1
  article-title: Noninvasive human brain stimulation
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 2
  year: 2009
  ident: bib23
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
– volume: 7
  year: 2011
  ident: bib13
  article-title: Mechanisms of magnetic stimulation of central nervous system neurons
  publication-title: PLos Comput Bio
– volume: 12
  start-page: 1159
  year: 2019
  end-page: 1168
  ident: bib37
  article-title: Towards precise brain stimulation: is electric field simulation related to neuromodulation?
  publication-title: Brain Stimul
– volume: 115
  start-page: 95
  year: 2018
  end-page: 107
  ident: bib57
  article-title: Coupling magnetically induced electric fields to neurons: longitudinal and transverse activation
  publication-title: Biophys. J.
– volume: 14
  year: 2018
  ident: bib15
  article-title: Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields
  publication-title: PLos Comput Bio
– volume: 163
  start-page: 456
  year: 2015
  end-page: 492
  ident: bib47
  article-title: Reconstruction and simulation of neocortical microcircuitry
  publication-title: Cell
– volume: 51
  start-page: 1586
  year: 2004
  end-page: 1598
  ident: bib44
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans Biomed
– volume: 81
  start-page: 253
  year: 2013
  end-page: 264
  ident: bib64
  article-title: Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex
  publication-title: Neuroimage
– volume: 7
  start-page: 3210
  year: 2017
  ident: bib5
  article-title: Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study
  publication-title: Sci. Rep.
– volume: 28
  start-page: 2786
  year: 2018
  end-page: 2794
  ident: bib31
  article-title: Neuromodulation of axon terminals
  publication-title: Cerebr. Cortex
– volume: 22
  start-page: 441
  year: 2014
  end-page: 452
  ident: bib66
  article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 13
  start-page: 175
  year: 2020
  end-page: 189
  ident: bib29
  article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons
  publication-title: Brain Stimul
– volume: 591
  start-page: 2563
  year: 2013
  end-page: 2578
  ident: bib33
  article-title: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects
  publication-title: J. Physiol.
– volume: 11
  start-page: 7659
  year: 2021
  ident: bib55
  article-title: Neurophysiological and behavioural effects of conventional and high definition tDCS
  publication-title: Sci. Rep.
– volume: 54
  start-page: 234
  year: 2011
  end-page: 243
  ident: bib43
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: J. Neural. Eng.
– volume: 109
  start-page: 140
  year: 2015
  end-page: 150
  ident: bib17
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: Neuroimage
– volume: 5
  start-page: 512
  year: 2012
  end-page: 525
  ident: bib58
  article-title: I-wave origin and modulation
  publication-title: Brain stimul
– volume: 3
  start-page: 91
  year: 2012
  ident: bib65
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front. Psychol.
– volume: 26
  start-page: 2127
  year: 2016
  end-page: 2136
  ident: bib41
  article-title: Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation
  publication-title: Curr. Biol.
– volume: 8
  start-page: 1124
  year: 2015
  end-page: 1129
  ident: bib59
  article-title: ‘I-wave’recruitment determines response to tDCS in the upper limb, but only so far
  publication-title: Brain Stimul
– volume: 2
  year: 2009
  ident: bib6
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
– volume: 6
  start-page: 644
  year: 2013
  end-page: 648
  ident: bib54
  article-title: Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study
  publication-title: Brain Stimul
– volume: 100
  start-page: 590
  year: 2014
  end-page: 607
  ident: bib63
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: Neuroimage
– volume: 12
  start-page: 275
  year: 2019
  end-page: 289
  ident: bib28
  article-title: Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation
  publication-title: Brain Stimul
– volume: 7
  start-page: 401
  year: 2014
  end-page: 414
  ident: bib61
  article-title: A model of TMS-induced I-waves in motor cortex
  publication-title: Brain Stimul
– volume: 22
  start-page: 1
  year: 2004
  end-page: 14
  ident: bib35
  article-title: Column-based model of electric field excitation of cerebral cortex
  publication-title: Hum. Brain Mapp.
– volume: 12
  start-page: 263
  year: 2019
  end-page: 266
  ident: bib38
  article-title: Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability
  publication-title: Brain Stimul
– volume: 61
  start-page: 4346
  year: 2016
  end-page: 4363
  ident: bib52
  article-title: Survey of numerical electrostimulation models
  publication-title: Phys. Med. Biol.
– volume: 5
  start-page: 435
  year: 2012
  end-page: 453
  ident: bib2
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
– volume: 10
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib26
  article-title: Neural effects of transcranial magnetic stimulation at the single-cell level
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10638-7
– volume: 557
  start-page: 175
  issue: Pt 1
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105328_bib4
  article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2003.055772
– volume: 57
  start-page: 6961
  issue: 21
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105328_bib62
  article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/57/21/6961
– volume: 12
  start-page: 275
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib28
  article-title: Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.11.004
– volume: 11
  start-page: 289
  issue: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib36
  article-title: tDCS changes in motor excitability are specific to orientation of current flow
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.11.001
– volume: 22
  start-page: 441
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib66
  article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2308997
– start-page: 599
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib49
– start-page: 457
  year: 2006
  ident: 10.1016/j.compbiomed.2022.105328_bib50
– volume: 100
  start-page: 590
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib63
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.040
– volume: 50
  start-page: 1139
  issue: 6
  year: 1986
  ident: 10.1016/j.compbiomed.2022.105328_bib12
  article-title: A model for the polarization of neurons by extrinsically applied electric fields
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(86)83558-5
– volume: 163
  start-page: 456
  issue: 2
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib47
  article-title: Reconstruction and simulation of neocortical microcircuitry
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– volume: 15
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib7
  article-title: Biophysically realistic neuron models for simulation of cortical stimulation
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/aadbb1
– volume: 9
  start-page: 5092
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib32
  article-title: Immediate neurophysiological effects of transcranial electrical stimulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07233-7
– volume: 61
  start-page: 4506
  issue: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105328_bib53
  article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS)
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/12/4506
– volume: 11
  start-page: 7659
  issue: 1
  year: 2021
  ident: 10.1016/j.compbiomed.2022.105328_bib55
  article-title: Neurophysiological and behavioural effects of conventional and high definition tDCS
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-87371-z
– year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib45
– volume: 61
  start-page: 4346
  issue: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105328_bib52
  article-title: Survey of numerical electrostimulation models
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/12/4346
– volume: 9
  start-page: 44
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib46
  article-title: The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex
  publication-title: Front. Neural Circ.
– volume: 9
  start-page: 626
  issue: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib16
  article-title: Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex?
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37226-x
– volume: 7
  start-page: 8557
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib24
  article-title: Geometrical variation's influence on the effects of stimulation may be important in the conventional and multi-array tDCS–comparison of electrical fields computed
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2890019
– volume: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105328_bib9
  article-title: Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2017.00265
– volume: 81
  start-page: 253
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib64
  article-title: Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.067
– volume: 27
  start-page: 5083
  issue: 11
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105328_bib19
  article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position
  publication-title: Cerebr. Cortex
– volume: 9
  start-page: 1179
  issue: 6
  year: 1997
  ident: 10.1016/j.compbiomed.2022.105328_bib48
  article-title: The NEURON simulation environment
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.6.1179
– volume: 54
  start-page: 234
  issue: 1
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105328_bib43
  article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation
  publication-title: J. Neural. Eng.
– volume: 8
  start-page: 145
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib11
  article-title: Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2014.00145
– volume: 6
  start-page: 898
  issue: 6
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib34
  article-title: PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2013.05.007
– volume: 59
  start-page: 203
  issue: 1
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib68
  article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/59/1/203
– volume: 26
  start-page: 2127
  issue: 16
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105328_bib41
  article-title: Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2016.06.044
– volume: 18
  start-page: 694
  issue: 8
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib30
  article-title: Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation
  publication-title: Neuromodulation
  doi: 10.1111/ner.12296
– volume: 7
  start-page: 401
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib61
  article-title: A model of TMS-induced I-waves in motor cortex
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2014.02.009
– volume: 17
  issue: 3
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105328_bib21
  article-title: TMS activation site estimation using multiscale realistic head models
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2552/ab8ccf
– volume: 51
  start-page: 1586
  issue: 9
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105328_bib44
  article-title: Three-dimensional head model simulation of transcranial magnetic stimulation
  publication-title: IEEE Trans Biomed
  doi: 10.1109/TBME.2004.827925
– volume: 1
  start-page: 97
  issue: 2
  year: 2008
  ident: 10.1016/j.compbiomed.2022.105328_bib40
  article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2007.10.001
– volume: 7
  start-page: 3210
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105328_bib5
  article-title: Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-03547-6
– volume: 12
  start-page: 1159
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib37
  article-title: Towards precise brain stimulation: is electric field simulation related to neuromodulation?
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2019.03.072
– volume: 31
  start-page: 299
  issue: 3–5
  year: 2002
  ident: 10.1016/j.compbiomed.2022.105328_bib51
  article-title: Microstructure of the neocortex: comparative aspects
  publication-title: J. Neurocytol.
  doi: 10.1023/A:1024130211265
– volume: 6
  start-page: 644
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib54
  article-title: Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2012.09.010
– volume: 5
  start-page: 512
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105328_bib58
  article-title: I-wave origin and modulation
  publication-title: Brain stimul
  doi: 10.1016/j.brs.2011.07.008
– volume: 28
  start-page: 2786
  issue: 8
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib31
  article-title: Neuromodulation of axon terminals
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhx158
– volume: 12
  start-page: 263
  issue: 2
  year: 2019
  ident: 10.1016/j.compbiomed.2022.105328_bib38
  article-title: Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2018.10.014
– volume: 17
  start-page: 1130
  issue: 8
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib25
  article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3751
– volume: 40
  start-page: 51
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2022.105328_bib14
  article-title: Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-015-0585-1
– volume: 5
  start-page: 435
  issue: 4
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105328_bib2
  article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2011.10.001
– volume: 115
  start-page: 95
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib57
  article-title: Coupling magnetically induced electric fields to neurons: longitudinal and transverse activation
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2018.06.004
– volume: 16
  start-page: 838
  issue: 7
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib67
  article-title: Noninvasive brain stimulation: from physiology to network dynamics and back
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3422
– volume: 109
  start-page: 140
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib17
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.01.033
– volume: 591
  start-page: 2563
  issue: 10
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib33
  article-title: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2012.247171
– volume: 3
  start-page: 91
  year: 2012
  ident: 10.1016/j.compbiomed.2022.105328_bib65
  article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models
  publication-title: Front. Psychol.
– volume: 15
  start-page: 619
  issue: 4
  year: 2003
  ident: 10.1016/j.compbiomed.2022.105328_bib39
  article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human
  publication-title: J. Cognit. Neurosci.
  doi: 10.1162/089892903321662994
– volume: 6
  year: 2017
  ident: 10.1016/j.compbiomed.2022.105328_bib27
  article-title: Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation
  publication-title: Elife
  doi: 10.7554/eLife.30552
– volume: 13
  start-page: 175
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2022.105328_bib29
  article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2019.10.002
– volume: 2
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105328_bib23
  article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.005
– volume: 41
  start-page: 1123
  issue: 6
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib3
  article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity
  publication-title: J. Inherit. Metab. Dis.
  doi: 10.1007/s10545-018-0181-4
– volume: 14
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib15
  article-title: Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields
  publication-title: PLos Comput Bio
– volume: 74
  start-page: 266
  year: 2013
  ident: 10.1016/j.compbiomed.2022.105328_bib56
  article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.01.042
– volume: 11
  start-page: 166
  issue: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2022.105328_bib18
  article-title: Where and what TMS activates: experiments and modeling
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2017.09.011
– volume: 11
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2022.105328_bib20
  article-title: Investigation of tDCS volume conduction effects in a highly realistic head model
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/11/1/016002
– volume: 2
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105328_bib6
  article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2009.03.007
– volume: 22
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.compbiomed.2022.105328_bib35
  article-title: Column-based model of electric field excitation of cerebral cortex
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.20006
– volume: 9
  start-page: 527
  year: 2007
  ident: 10.1016/j.compbiomed.2022.105328_bib1
  article-title: Noninvasive human brain stimulation
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.061206.133100
– volume: 7
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105328_bib13
  article-title: Mechanisms of magnetic stimulation of central nervous system neurons
  publication-title: PLos Comput Bio
– volume: 46
  start-page: 124
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2022.105328_bib10
  article-title: TMS in cognitive neuroscience: virtual lesion and beyond
  publication-title: Biophys. J.
– volume: 2015
  start-page: 222
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib42
  article-title: Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS?
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 8
  start-page: 1124
  issue: 6
  year: 2015
  ident: 10.1016/j.compbiomed.2022.105328_bib59
  article-title: ‘I-wave’recruitment determines response to tDCS in the upper limb, but only so far
  publication-title: Brain Stimul
  doi: 10.1016/j.brs.2015.07.027
– volume: 58
  start-page: 849
  issue: 3
  year: 2011
  ident: 10.1016/j.compbiomed.2022.105328_bib22
  article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.06.069
– volume: 382
  start-page: 363
  issue: 6589
  year: 1996
  ident: 10.1016/j.compbiomed.2022.105328_bib8
  article-title: Influence of dendritic structure on firing pattern in model neocortical neurons
  publication-title: Nature
  doi: 10.1038/382363a0
– volume: 94
  start-page: 622
  issue: 1
  year: 2005
  ident: 10.1016/j.compbiomed.2022.105328_bib60
  article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits
  publication-title: J. Neuropsychol.
SSID ssj0004030
Score 2.370175
Snippet Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by...
AbstractTranscranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 105328
SubjectTerms Alternating current
Axons
Biophysics
Brain - physiology
Brain research
Correlation
Direct current
Electric currents
Electric fields
Electric Stimulation
Electrical stimuli
Electricity
Electroconvulsive therapy
Electrodes
Excitability
Geometry
High definition
Humans
Internal Medicine
Investigations
Morphology
Neurons
Other
Pyramidal cells
Scale models
Scalp
Simulation
Stimulation
Transcranial Direct Current Stimulation - methods
Transcranial magnetic stimulation
Waveforms
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZhA6WX0jZpu2laFMjVRJZkyaanJTRsE5JLE8hNyNoRbJt4Q-wccutD9An7JB1ZskNoCgu5GGxpkJDm5xtrRkPIviq81bmrMy4UZNKjSNlai0yidGjLgCsIjuLpmZpfyOPL4nKDHA65MCGsMun-qNN7bZ2-HKTVPLhZLkOOL7oS6OBw3meAoh7e5KJSxYRszr6dzM8e0iOZiJkoqHICQQroiWFeIXI7Zrqjs8h5qHsrQmn2p63U_1Bob42OXpNXCUbSWZzpG7IBzVvy4jQdlG-RnydwT1MtHbpsKMI8in5m_-Oa3sa4WKDdinbBVjl8IB_SWBOn7_O9W16nyl7tn1-_Z7SPPMxabAPal89Bm0f7y2m3ycXR1_PDeZbqKmQO4VGXISQshdXeKlbnORQLWTHhHXPooQK6e1XJrBSeQVEXXqLPIxYgLSirS28tB_GOTJpVAx8IXbiqch6UqlyJ5tBW2tcsd05qZ3MvyynRwzoaly4dD7UvrswQXfbDPOyACTtg4g5MST5S3sSLN9agqYatMkNiKapCg9ZhDVr9FC20SaZbk5uWG2b-4bsp-TJSPmLdNcfdHXjKjEMhSlUB-mls3hubUfDDaY5tYHUX-iB2lkIVxZS8j7w4LhS2oK5mbOdZU_tIXoa3GN65Sybd7R18QgjW1Z-TiP0F6t8xQg
  priority: 102
  providerName: Elsevier
Title Key factors in the cortical response to transcranial electrical Stimulations—A multi-scale modeling study
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001202
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001202
https://dx.doi.org/10.1016/j.compbiomed.2022.105328
https://www.ncbi.nlm.nih.gov/pubmed/35231800
https://www.proquest.com/docview/2646710278
https://www.proquest.com/docview/2635243655
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuFW8CZWUkrgE7duxEHNCCuixUXSFKpb1ZjteWCjRbmvTABfEj-IX8EsaPZC8F7SU52JNEmbc94w-h56J0WlLT5AUTNucOVEo3kuUctENqYgthfaJ4vBDzU_5hWS7TgluXyioHmxgM9Wpt_Br5S3DcwntDWb2--J571Ci_u5ogNHbQHgVP4-W8mr3b9EUSFltQwNZwSIVSJU-s7_Il27HFHbLEovCAt8xjsl_vnv4VfgY3NLuN9lP8iKeR4XfQDdveRTeP0w75PfT1yP7ACUQHn7UY4jsMCWZYscaXsSDW4n6Ne--kDFxAAHEEwwlzTvqz8wTp1f359XuKQ8lh3sGYxQE3B5wdDqfS3kens8PPb-d5AlTIDcRFfQ6xYMW0dFqQhlJbrnhNmDPEQGpqIc-rK6I5c8SWTek4JDtsZbm2QsvKaV1Y9gDttuvWPkJ4ZeraOCtEbSrwg7qWriHUGC6Npo5XGZLDf1QmnTbuQS--qaGs7IvacEB5DqjIgQzRkfIinrixBU09sEoNHaVgAxW4hS1o5XW0tkvK3CmqukIRdRLOMgIxKorQclxk6NVImeKVGIds-d6DQabU-KqNlGfo2TgMGu-3cXRr11d-DgTNnImyzNDDKIvjj4IRMNKEPP7_w5-gW_5LYuHmAdrtL6_sUwiu-maCdl78pHCVSzkJ2jRBe9P3R_MF3N8cLj5--gsq8inm
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8EChgJjhGO49iJEEIFWm1pd4VoK_VmHK8tlZ_d0qRC3HgInoOH4kkYx072UtBeesnFmSTyjGe-iWf8ATwVhdMyM3XKcmFT7nBJ6VrmKcfVITW1TFifKE6mYnzI3x0VR2vwu--F8WWVvU_sHPVsYfw_8ucYuIWPhrJ8dfIt9axRfne1p9AIZrFrf3zHlK15ufMW9fuMse2tgzfjNLIKpAbBQZsiICpzLZ0WtM4yW8x4RXNnqMH8zGKyU5VU89xRW9SF44j485nl2gotS6c1szk-9xKsc9_ROoL111vT9x-WnZg0D00v6N04Jl-xdihUlPki8dBUj3kpY55iN_cs8OcHxH8B3i7wbV-HaxGxks1gYjdgzc5vwuVJ3JO_BZ9xPkik7SHHc4KIkmBK2_0jJ6ehBNeSdkFaHxYNXtDkSaDf6e7Zb4-_RhKx5s_PX5ukK3JMGxyzpGPqwfBKunNwb8PhhUz2HRjNF3N7D8jMVJVxVojKlBh5dSVdTTNjuDQ6c7xMQPbzqEw839zTbHxRfSHbJ7XUgPIaUEEDCWSD5Ek442MFmapXlep7WNHrKgxEK8jK82RtE91HozLVMEXVfnd6EpoRY12TM0vgxSAZEVJAPiu-d6O3KTW8armuEngyDKOP8RtHem4XZ_4ehOk8F0WRwN1gi8NE4QiGBUrv___hj-HK-GCyp_Z2prsP4Kr_qlA2ugGj9vTMPkRo19aP4noi8PGil_BfaLFi6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEP8EChgJjlEd27ETIYQqyqqltEIqlfZmHK8tlZ9saVIhbjwET8Pj8CSMY2f3UtBeesnFmSSy5-ebeMYfwDNZeqMK2-SMS5cLjyZlGsVzgdahDHVMupAoHhzK3WPxdlpO1-D32AsTyipHnzg46tnchn_kWxi4ZYiGqtryqSzi_c7k1em3PDBIhZ3WkU4jqsi--_Ed07fu5d4OrvVzxiZvPrzezRPDQG4RKPQ5gqOKG-WNpE1RuHImasq9pRZzNYeJT11RI7inrmxKLxD985kTxkmjKm8McxyfewWuKo6oCm1JTdWyJ5Py2P6Cfk5gGpaqiGJtWSgXj-31mKEyFsh2eeCDvzg0_gv6DiFwcgOuJ-xKtqOy3YQ1196CjYO0O38bPuNskETgQ05agtiSYHI7_C0nZ7EY15F-TvoQIC1eUPlJJOIZ7jnqT74mOrHuz89f22Qod8w7HHNk4OzBQEuGE3HvwPGlTPVdWG_nrbsPZGbr2nonZW0rjMGmVr6hhbVCWVN4UWWgxnnUNp10Hgg3vuixpO2TXq6ADiug4wpkUCwkT-NpHyvI1ONS6bGbFf2vxpC0gqy6SNZ1yZF0utAd01QfDecooRoxNrQ7swxeLCQTVooYaMX3bo46pRevWlpYBk8Xw-htwhaSad38PNyDgF1wWZYZ3Iu6uJgoHMEAQemD_z_8CWyg4ep3e4f7D-Fa-KhYP7oJ6_3ZuXuEGK9vHg_GRODjZVvvX7sNZbE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+factors+in+the+cortical+response+to+transcranial+electrical+Stimulations%E2%80%94A+multi-scale+modeling+study&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chung%2C+Hyeyeon&rft.au=Im%2C+Cheolki&rft.au=Seo%2C+Hyeon&rft.au=Jun%2C+Sung+Chan&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=144&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105328&rft.externalDocID=S0010482522001202
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon