Key factors in the cortical response to transcranial electrical Stimulations—A multi-scale modeling study
Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the re...
Saved in:
Published in | Computers in biology and medicine Vol. 144; p. 105328 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.05.2022
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2022.105328 |
Cover
Abstract | Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.
•We proposed a multi-scale model for C/HD-tDCS/tACS that integrated morphologically detailed neuron models and the head model.•A key factor for cortical neurons' excitability depended on neuronal morphology.•Electric field magnitude was the driving force for neurons with highly branched axon models, rather than its normal component.•True-to-life electrophysical and morphological properties of cortical neurons are essential for a precise estimation of NIBS. |
---|---|
AbstractList | Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. AbstractTranscranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely-the conventional (C)-tES and high-definition (HD)-tES-as well as two stimulation waveforms-direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells.Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely-the conventional (C)-tES and high-definition (HD)-tES-as well as two stimulation waveforms-direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by delivering weak electric currents through scalp-attached electrodes. This emerging technique has gained increasing attention recently; however, the results of tES vary greatly depending upon subjects and the stimulation paradigm, and its cellular mechanism remains unclear. In particular, there is a controversy over the factors that determine the cortical response to tES. Some studies have reported that the electric field's (EF) orientation is the determining factor, while others have demonstrated that the EF magnitude itself is the crucial factor. In this work, we conducted an in-depth investigation of cortical activity in two types of electrode montages used widely—the conventional (C)-tES and high-definition (HD)-tES—as well as two stimulation waveforms—direct current (DC) and alternating current (AC). To do so, we constructed a multi-scale model by coupling an anatomically realistic human head model and morphologically realistic multi-compartmental models of three types of cortical neurons (layer 2/3 pyramidal neuron, layer 4 basket cell, layer 5 pyramidal neuron). Then, we quantified the neuronal response to the C-/HD-tDCS/tACS and explored the relation between the electric field (EF) and the radial field's (RF: radial component of EF) magnitude and the cortical neurons' threshold. The EF tES induced depended upon the electrode montage, and the neuronal responses were correlated with the EF rather than the RF's magnitude. The electrode montages and stimulation waveforms caused a small difference in threshold, but the higher correlation between the EF's magnitude and the threshold was consistent. Further, we observed that the neurons' morphological features affected the degree of the correlation highly. Thus, the EF magnitude was a key factor in the responses of neurons with arborized axons. Our results demonstrate that the crucial factor in neuronal excitability depends upon the neuron models' morphological and biophysical properties. Hence, to predict the cellular targets of NIBS precisely, it is necessary to adopt more advanced neuron models that mimic realistic morphological and biophysical features of actual human cells. •We proposed a multi-scale model for C/HD-tDCS/tACS that integrated morphologically detailed neuron models and the head model.•A key factor for cortical neurons' excitability depended on neuronal morphology.•Electric field magnitude was the driving force for neurons with highly branched axon models, rather than its normal component.•True-to-life electrophysical and morphological properties of cortical neurons are essential for a precise estimation of NIBS. |
ArticleNumber | 105328 |
Author | Chung, Hyeyeon Im, Cheolki Seo, Hyeon Jun, Sung Chan |
Author_xml | – sequence: 1 givenname: Hyeyeon surname: Chung fullname: Chung, Hyeyeon organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea – sequence: 2 givenname: Cheolki surname: Im fullname: Im, Cheolki organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea – sequence: 3 givenname: Hyeon surname: Seo fullname: Seo, Hyeon organization: Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea – sequence: 4 givenname: Sung Chan orcidid: 0000-0001-5357-4436 surname: Jun fullname: Jun, Sung Chan email: scjun@gist.ac.kr organization: School of Electrical Engineering and Computer Science, Gwangju Institute of Science & Technology, South Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35231800$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhS1URKeFV0CW2LDJcO04f5uKtqKAqMSisLY8zg14msSD7SDNjofgCfsk3HRakEZCmo1_v3tsn-MTdjT6ERnjApYCRPlmvbR-2KycH7BdSpCSlotc1k_YQtRVk9FEHbEFgIBM1bI4ZicxrgFAQQ7P2HFeyFzUAAt2-wm3vDM2-RC5G3n6jtz6kJw1PQ8YN36MyJPnKZgxWmocbWCPNoV75ia5YepNcgTe_fp9zmmWXBZpD_ngW-zd-I3HNLXb5-xpZ_qILx76U_b16t2Xyw_Z9ef3Hy_PrzNbCJWyphF1bqrOlLASAotWNZB3FqysFEKjmhqMyjvAYlV0Cuoyb1EZLE1Vd8ZIzE_Z653uJvgfE8akBxct9r0Z0U9Ry5Ler_KyKAh9tYeu_RRGuh1RqqwEyKom6uUDNa3Icb0JbjBhqx9tJOBsB9jgYwzYaevSvSdkm-u1AD3nptf6X256zk3vciOBek_g8YwDSi92pUiW_nQYdLQOR4utC5SSbr07RORsT8RSbnPAt7jF-NcUoaPUoG_mnzV_LClpREIk8Pb_Aofd4Q_KZeRx |
CitedBy_id | crossref_primary_10_1007_s11571_024_10142_9 crossref_primary_10_1002_jnr_25154 crossref_primary_10_1016_j_psc_2023_02_005 crossref_primary_10_3389_fnhum_2024_1385427 crossref_primary_10_1016_j_compbiomed_2024_108697 crossref_primary_10_1016_j_pscychresns_2023_111718 crossref_primary_10_1016_j_compbiomed_2022_106472 crossref_primary_10_1016_j_neuroimage_2023_120379 crossref_primary_10_1016_j_brs_2023_11_018 |
Cites_doi | 10.1038/s41467-019-10638-7 10.1113/jphysiol.2003.055772 10.1088/0031-9155/57/21/6961 10.1016/j.brs.2018.11.004 10.1016/j.brs.2017.11.001 10.1109/TNSRE.2014.2308997 10.1016/j.neuroimage.2014.06.040 10.1016/S0006-3495(86)83558-5 10.1016/j.cell.2015.09.029 10.1088/1741-2552/aadbb1 10.1038/s41467-018-07233-7 10.1088/0031-9155/61/12/4506 10.1038/s41598-021-87371-z 10.1088/0031-9155/61/12/4346 10.1038/s41598-018-37226-x 10.1109/ACCESS.2018.2890019 10.3389/fncel.2017.00265 10.1016/j.neuroimage.2013.04.067 10.1162/neco.1997.9.6.1179 10.3389/fncel.2014.00145 10.1016/j.brs.2013.05.007 10.1088/0031-9155/59/1/203 10.1016/j.cub.2016.06.044 10.1111/ner.12296 10.1016/j.brs.2014.02.009 10.1088/1741-2552/ab8ccf 10.1109/TBME.2004.827925 10.1016/j.brs.2007.10.001 10.1038/s41598-017-03547-6 10.1016/j.brs.2019.03.072 10.1023/A:1024130211265 10.1016/j.brs.2012.09.010 10.1016/j.brs.2011.07.008 10.1093/cercor/bhx158 10.1016/j.brs.2018.10.014 10.1038/nn.3751 10.1007/s10827-015-0585-1 10.1016/j.brs.2011.10.001 10.1016/j.bpj.2018.06.004 10.1038/nn.3422 10.1016/j.neuroimage.2015.01.033 10.1113/jphysiol.2012.247171 10.1162/089892903321662994 10.7554/eLife.30552 10.1016/j.brs.2019.10.002 10.1016/j.brs.2009.03.005 10.1007/s10545-018-0181-4 10.1016/j.neuroimage.2013.01.042 10.1016/j.brs.2017.09.011 10.1088/1741-2560/11/1/016002 10.1016/j.brs.2009.03.007 10.1002/hbm.20006 10.1146/annurev.bioeng.9.061206.133100 10.1016/j.brs.2015.07.027 10.1016/j.neuroimage.2011.06.069 10.1038/382363a0 |
ContentType | Journal Article |
Copyright | 2022 Elsevier Ltd Copyright © 2022 Elsevier Ltd. All rights reserved. 2022. Elsevier Ltd |
Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright © 2022 Elsevier Ltd. All rights reserved. – notice: 2022. Elsevier Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2022.105328 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Proquest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 105328 |
ExternalDocumentID | 35231800 10_1016_j_compbiomed_2022_105328 S0010482522001202 1_s2_0_S0010482522001202 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAIAV ABLVK ABYKQ AHPSJ AJBFU EFLBG LCYCR AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 77I 7X8 |
ID | FETCH-LOGICAL-c514t-99183a7fa60b11e5d4903fc0c274e094980a43f0e5b5f40863de4ae6a78faa2e3 |
IEDL.DBID | 8FG |
ISSN | 0010-4825 1879-0534 |
IngestDate | Thu Sep 04 22:48:24 EDT 2025 Wed Aug 13 07:29:38 EDT 2025 Wed Feb 19 02:26:58 EST 2025 Tue Jul 01 03:28:48 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 23 02:39:35 EST 2024 Tue Feb 25 20:03:26 EST 2025 Tue Aug 26 20:14:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Copyright © 2022 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-99183a7fa60b11e5d4903fc0c274e094980a43f0e5b5f40863de4ae6a78faa2e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5357-4436 |
PMID | 35231800 |
PQID | 2646710278 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2635243655 proquest_journals_2646710278 pubmed_primary_35231800 crossref_citationtrail_10_1016_j_compbiomed_2022_105328 crossref_primary_10_1016_j_compbiomed_2022_105328 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2022_105328 elsevier_clinicalkeyesjournals_1_s2_0_S0010482522001202 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2022_105328 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Opitz (bib64) 2013; 81 Li (bib27) 2017; 6 Wang, Grill, Peterchev (bib57) 2018; 115 Romero (bib26) 2019; 10 Ziemann (bib10) 2009; 46 Foerster (bib38) 2019; 12 Rahman (bib33) 2013; 591 Mueller (bib25) 2014; 17 Reed, Cohen Kadosh (bib3) 2018; 41 Wagner, Valero-Cabre, Pascual-Leone (bib1) 2007; 9 Fox (bib35) 2004; 22 Hines, Carnevale (bib48) 1997; 9 Alam (bib53) 2016; 61 Reilly (bib52) 2016; 61 Shepherd, Grillner (bib49) 2018 Krieg (bib34) 2013; 6 Yi (bib5) 2017; 7 Im, Seo, Jun (bib24) 2019; 7 Radman (bib6) 2009; 2 Laakso (bib16) 2019; 9 Seo, Jun (bib28) 2019; 12 Rawji (bib36) 2018; 11 Peterchev (bib2) 2012; 5 Ramaswamy (bib46) 2015; 9 Masina (bib55) 2021; 11 Tranchina, Nicholson (bib12) 1986; 50 Pashut (bib13) 2011; 7 Opitz (bib22) 2011; 58 Edwards (bib56) 2013; 74 Aberra, Peterchev, Grill (bib7) 2018; 15 Vorwerk (bib63) 2014; 100 Thielscher, Antunes, Saturnino (bib42) 2015; 2015 DeFelipe, Alonso-Nanclares, Arellano (bib51) 2002; 31 Wagner (bib44) 2004; 51 Kuo (bib54) 2013; 6 Wagner (bib20) 2014; 11 Wu (bib14) 2016; 40 Suh, Lee, Kim (bib62) 2012; 57 Yi (bib9) 2017; 11 Gomez-Tames (bib21) 2020; 17 Carnevale, Hines (bib50) 2006 Datta (bib65) 2012; 3 Datta (bib23) 2009; 2 Aberra (bib29) 2020; 13 Antal (bib40) 2008; 1 Aspart, Remme, Obermayer (bib15) 2018; 14 Antonenko (bib37) 2019; 12 Chakraborty (bib31) 2018; 28 Liu (bib32) 2018; 9 Opitz (bib17) 2015; 109 Markram (bib47) 2015; 163 Di Lazzaro (bib58) 2012; 5 Bikson (bib4) 2004; 557 Laakso, Hirata, Ugawa (bib68) 2013; 59 McCambridge, Stinear, Byblow (bib59) 2015; 8 Bungert (bib19) 2017; 27 Lustenberger (bib41) 2016; 26 Rusu (bib61) 2014; 7 Nitsche (bib39) 2003; 15 Rampersad (bib66) 2014; 22 Thielscher, Opitz, Windhoff (bib43) 2011; 54 Aberra As, Grill (bib45) 2018 Pashut (bib11) 2014; 8 Esser, Hill, Tononi (bib60) 2005; 94 Mainen, Sejnowski (bib8) 1996; 382 Dayan (bib67) 2013; 16 Laakso (bib18) 2018; 11 Goodwin, Butson (bib30) 2015; 18 Vorwerk (10.1016/j.compbiomed.2022.105328_bib63) 2014; 100 Krieg (10.1016/j.compbiomed.2022.105328_bib34) 2013; 6 Lustenberger (10.1016/j.compbiomed.2022.105328_bib41) 2016; 26 Pashut (10.1016/j.compbiomed.2022.105328_bib11) 2014; 8 Romero (10.1016/j.compbiomed.2022.105328_bib26) 2019; 10 Wagner (10.1016/j.compbiomed.2022.105328_bib44) 2004; 51 Alam (10.1016/j.compbiomed.2022.105328_bib53) 2016; 61 Opitz (10.1016/j.compbiomed.2022.105328_bib64) 2013; 81 Di Lazzaro (10.1016/j.compbiomed.2022.105328_bib58) 2012; 5 Aspart (10.1016/j.compbiomed.2022.105328_bib15) 2018; 14 DeFelipe (10.1016/j.compbiomed.2022.105328_bib51) 2002; 31 Ziemann (10.1016/j.compbiomed.2022.105328_bib10) 2009; 46 Rahman (10.1016/j.compbiomed.2022.105328_bib33) 2013; 591 Fox (10.1016/j.compbiomed.2022.105328_bib35) 2004; 22 Antonenko (10.1016/j.compbiomed.2022.105328_bib37) 2019; 12 Wang (10.1016/j.compbiomed.2022.105328_bib57) 2018; 115 Pashut (10.1016/j.compbiomed.2022.105328_bib13) 2011; 7 Datta (10.1016/j.compbiomed.2022.105328_bib23) 2009; 2 Radman (10.1016/j.compbiomed.2022.105328_bib6) 2009; 2 Tranchina (10.1016/j.compbiomed.2022.105328_bib12) 1986; 50 Thielscher (10.1016/j.compbiomed.2022.105328_bib42) 2015; 2015 Yi (10.1016/j.compbiomed.2022.105328_bib9) 2017; 11 Suh (10.1016/j.compbiomed.2022.105328_bib62) 2012; 57 Thielscher (10.1016/j.compbiomed.2022.105328_bib43) 2011; 54 Kuo (10.1016/j.compbiomed.2022.105328_bib54) 2013; 6 Goodwin (10.1016/j.compbiomed.2022.105328_bib30) 2015; 18 Chakraborty (10.1016/j.compbiomed.2022.105328_bib31) 2018; 28 Foerster (10.1016/j.compbiomed.2022.105328_bib38) 2019; 12 Aberra (10.1016/j.compbiomed.2022.105328_bib7) 2018; 15 Reilly (10.1016/j.compbiomed.2022.105328_bib52) 2016; 61 Datta (10.1016/j.compbiomed.2022.105328_bib65) 2012; 3 Masina (10.1016/j.compbiomed.2022.105328_bib55) 2021; 11 Dayan (10.1016/j.compbiomed.2022.105328_bib67) 2013; 16 Im (10.1016/j.compbiomed.2022.105328_bib24) 2019; 7 Wagner (10.1016/j.compbiomed.2022.105328_bib1) 2007; 9 Aberra (10.1016/j.compbiomed.2022.105328_bib29) 2020; 13 Laakso (10.1016/j.compbiomed.2022.105328_bib16) 2019; 9 Yi (10.1016/j.compbiomed.2022.105328_bib5) 2017; 7 Hines (10.1016/j.compbiomed.2022.105328_bib48) 1997; 9 Rusu (10.1016/j.compbiomed.2022.105328_bib61) 2014; 7 Esser (10.1016/j.compbiomed.2022.105328_bib60) 2005; 94 Rawji (10.1016/j.compbiomed.2022.105328_bib36) 2018; 11 Wu (10.1016/j.compbiomed.2022.105328_bib14) 2016; 40 Shepherd (10.1016/j.compbiomed.2022.105328_bib49) 2018 Mueller (10.1016/j.compbiomed.2022.105328_bib25) 2014; 17 Li (10.1016/j.compbiomed.2022.105328_bib27) 2017; 6 Markram (10.1016/j.compbiomed.2022.105328_bib47) 2015; 163 Peterchev (10.1016/j.compbiomed.2022.105328_bib2) 2012; 5 Bikson (10.1016/j.compbiomed.2022.105328_bib4) 2004; 557 McCambridge (10.1016/j.compbiomed.2022.105328_bib59) 2015; 8 Gomez-Tames (10.1016/j.compbiomed.2022.105328_bib21) 2020; 17 Liu (10.1016/j.compbiomed.2022.105328_bib32) 2018; 9 Antal (10.1016/j.compbiomed.2022.105328_bib40) 2008; 1 Aberra As (10.1016/j.compbiomed.2022.105328_bib45) 2018 Laakso (10.1016/j.compbiomed.2022.105328_bib68) 2013; 59 Opitz (10.1016/j.compbiomed.2022.105328_bib17) 2015; 109 Wagner (10.1016/j.compbiomed.2022.105328_bib20) 2014; 11 Reed (10.1016/j.compbiomed.2022.105328_bib3) 2018; 41 Mainen (10.1016/j.compbiomed.2022.105328_bib8) 1996; 382 Opitz (10.1016/j.compbiomed.2022.105328_bib22) 2011; 58 Bungert (10.1016/j.compbiomed.2022.105328_bib19) 2017; 27 Seo (10.1016/j.compbiomed.2022.105328_bib28) 2019; 12 Rampersad (10.1016/j.compbiomed.2022.105328_bib66) 2014; 22 Laakso (10.1016/j.compbiomed.2022.105328_bib18) 2018; 11 Ramaswamy (10.1016/j.compbiomed.2022.105328_bib46) 2015; 9 Carnevale (10.1016/j.compbiomed.2022.105328_bib50) 2006 Edwards (10.1016/j.compbiomed.2022.105328_bib56) 2013; 74 Nitsche (10.1016/j.compbiomed.2022.105328_bib39) 2003; 15 |
References_xml | – year: 2018 ident: bib45 article-title: Biophysically Realistic Neuron Models for Simulation of Cortical Stimulation – volume: 6 year: 2017 ident: bib27 article-title: Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation publication-title: Elife – volume: 9 start-page: 626 year: 2019 ident: bib16 article-title: Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? publication-title: Sci. Rep. – volume: 27 start-page: 5083 year: 2017 end-page: 5094 ident: bib19 article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position publication-title: Cerebr. Cortex – volume: 11 start-page: 166 year: 2018 end-page: 174 ident: bib18 article-title: Where and what TMS activates: experiments and modeling publication-title: Brain Stimul – volume: 8 start-page: 145 year: 2014 ident: bib11 article-title: Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation publication-title: Front. Cell. Neurosci. – volume: 16 start-page: 838 year: 2013 end-page: 844 ident: bib67 article-title: Noninvasive brain stimulation: from physiology to network dynamics and back publication-title: Nat. Neurosci. – volume: 9 start-page: 44 year: 2015 ident: bib46 article-title: The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex publication-title: Front. Neural Circ. – volume: 6 start-page: 898 year: 2013 end-page: 904 ident: bib34 article-title: PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans publication-title: Brain Stimul – volume: 17 year: 2020 ident: bib21 article-title: TMS activation site estimation using multiscale realistic head models publication-title: J. Neural. Eng. – volume: 7 start-page: 8557 year: 2019 end-page: 8569 ident: bib24 article-title: Geometrical variation's influence on the effects of stimulation may be important in the conventional and multi-array tDCS–comparison of electrical fields computed publication-title: IEEE Access – volume: 74 start-page: 266 year: 2013 end-page: 275 ident: bib56 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: Neuroimage – volume: 17 start-page: 1130 year: 2014 end-page: 1136 ident: bib25 article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates publication-title: Nat. Neurosci. – volume: 11 start-page: 289 year: 2018 end-page: 298 ident: bib36 article-title: tDCS changes in motor excitability are specific to orientation of current flow publication-title: Brain Stimul – start-page: 599 year: 2018 ident: bib49 article-title: Handbook of Brain Microcircuits – volume: 9 start-page: 5092 year: 2018 ident: bib32 article-title: Immediate neurophysiological effects of transcranial electrical stimulation publication-title: Nat. Commun. – volume: 15 start-page: 619 year: 2003 end-page: 626 ident: bib39 article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human publication-title: J. Cognit. Neurosci. – volume: 31 start-page: 299 year: 2002 end-page: 316 ident: bib51 article-title: Microstructure of the neocortex: comparative aspects publication-title: J. Neurocytol. – volume: 11 year: 2017 ident: bib9 article-title: Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells publication-title: Front. Cell. Neurosci. – volume: 50 start-page: 1139 year: 1986 end-page: 1156 ident: bib12 article-title: A model for the polarization of neurons by extrinsically applied electric fields publication-title: Biophys. J. – volume: 557 start-page: 175 year: 2004 end-page: 190 ident: bib4 article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro publication-title: J. Physiol. – volume: 10 year: 2019 ident: bib26 article-title: Neural effects of transcranial magnetic stimulation at the single-cell level publication-title: Nat. Commun. – volume: 1 start-page: 97 year: 2008 end-page: 105 ident: bib40 article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans publication-title: Brain Stimul – volume: 15 year: 2018 ident: bib7 article-title: Biophysically realistic neuron models for simulation of cortical stimulation publication-title: J. Neural. Eng. – volume: 11 year: 2014 ident: bib20 article-title: Investigation of tDCS volume conduction effects in a highly realistic head model publication-title: J. Neural. Eng. – start-page: 457 year: 2006 ident: bib50 article-title: The NEURON Book – volume: 2015 start-page: 222 year: 2015 end-page: 225 ident: bib42 article-title: Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 9 start-page: 1179 year: 1997 end-page: 1209 ident: bib48 article-title: The NEURON simulation environment publication-title: Neural Comput. – volume: 41 start-page: 1123 year: 2018 end-page: 1130 ident: bib3 article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity publication-title: J. Inherit. Metab. Dis. – volume: 61 start-page: 4506 year: 2016 end-page: 4521 ident: bib53 article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS) publication-title: Phys. Med. Biol. – volume: 57 start-page: 6961 year: 2012 ident: bib62 article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model publication-title: Phys. Med. Biol. – volume: 46 start-page: 124 year: 2009 end-page: 127 ident: bib10 article-title: TMS in cognitive neuroscience: virtual lesion and beyond publication-title: Biophys. J. – volume: 40 start-page: 51 year: 2016 end-page: 64 ident: bib14 article-title: Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation publication-title: J. Comput. Neurosci. – volume: 18 start-page: 694 year: 2015 end-page: 704 ident: bib30 article-title: Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation publication-title: Neuromodulation – volume: 382 start-page: 363 year: 1996 end-page: 366 ident: bib8 article-title: Influence of dendritic structure on firing pattern in model neocortical neurons publication-title: Nature – volume: 94 start-page: 622 year: 2005 end-page: 639 ident: bib60 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits publication-title: J. Neuropsychol. – volume: 58 start-page: 849 year: 2011 end-page: 859 ident: bib22 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage – volume: 59 start-page: 203 year: 2013 ident: bib68 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys. Med. Biol. – volume: 9 start-page: 527 year: 2007 end-page: 565 ident: bib1 article-title: Noninvasive human brain stimulation publication-title: Annu. Rev. Biomed. Eng. – volume: 2 year: 2009 ident: bib23 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul – volume: 7 year: 2011 ident: bib13 article-title: Mechanisms of magnetic stimulation of central nervous system neurons publication-title: PLos Comput Bio – volume: 12 start-page: 1159 year: 2019 end-page: 1168 ident: bib37 article-title: Towards precise brain stimulation: is electric field simulation related to neuromodulation? publication-title: Brain Stimul – volume: 115 start-page: 95 year: 2018 end-page: 107 ident: bib57 article-title: Coupling magnetically induced electric fields to neurons: longitudinal and transverse activation publication-title: Biophys. J. – volume: 14 year: 2018 ident: bib15 article-title: Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields publication-title: PLos Comput Bio – volume: 163 start-page: 456 year: 2015 end-page: 492 ident: bib47 article-title: Reconstruction and simulation of neocortical microcircuitry publication-title: Cell – volume: 51 start-page: 1586 year: 2004 end-page: 1598 ident: bib44 article-title: Three-dimensional head model simulation of transcranial magnetic stimulation publication-title: IEEE Trans Biomed – volume: 81 start-page: 253 year: 2013 end-page: 264 ident: bib64 article-title: Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex publication-title: Neuroimage – volume: 7 start-page: 3210 year: 2017 ident: bib5 article-title: Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study publication-title: Sci. Rep. – volume: 28 start-page: 2786 year: 2018 end-page: 2794 ident: bib31 article-title: Neuromodulation of axon terminals publication-title: Cerebr. Cortex – volume: 22 start-page: 441 year: 2014 end-page: 452 ident: bib66 article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 13 start-page: 175 year: 2020 end-page: 189 ident: bib29 article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons publication-title: Brain Stimul – volume: 591 start-page: 2563 year: 2013 end-page: 2578 ident: bib33 article-title: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects publication-title: J. Physiol. – volume: 11 start-page: 7659 year: 2021 ident: bib55 article-title: Neurophysiological and behavioural effects of conventional and high definition tDCS publication-title: Sci. Rep. – volume: 54 start-page: 234 year: 2011 end-page: 243 ident: bib43 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: J. Neural. Eng. – volume: 109 start-page: 140 year: 2015 end-page: 150 ident: bib17 article-title: Determinants of the electric field during transcranial direct current stimulation publication-title: Neuroimage – volume: 5 start-page: 512 year: 2012 end-page: 525 ident: bib58 article-title: I-wave origin and modulation publication-title: Brain stimul – volume: 3 start-page: 91 year: 2012 ident: bib65 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front. Psychol. – volume: 26 start-page: 2127 year: 2016 end-page: 2136 ident: bib41 article-title: Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation publication-title: Curr. Biol. – volume: 8 start-page: 1124 year: 2015 end-page: 1129 ident: bib59 article-title: ‘I-wave’recruitment determines response to tDCS in the upper limb, but only so far publication-title: Brain Stimul – volume: 2 year: 2009 ident: bib6 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul – volume: 6 start-page: 644 year: 2013 end-page: 648 ident: bib54 article-title: Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study publication-title: Brain Stimul – volume: 100 start-page: 590 year: 2014 end-page: 607 ident: bib63 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: Neuroimage – volume: 12 start-page: 275 year: 2019 end-page: 289 ident: bib28 article-title: Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation publication-title: Brain Stimul – volume: 7 start-page: 401 year: 2014 end-page: 414 ident: bib61 article-title: A model of TMS-induced I-waves in motor cortex publication-title: Brain Stimul – volume: 22 start-page: 1 year: 2004 end-page: 14 ident: bib35 article-title: Column-based model of electric field excitation of cerebral cortex publication-title: Hum. Brain Mapp. – volume: 12 start-page: 263 year: 2019 end-page: 266 ident: bib38 article-title: Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability publication-title: Brain Stimul – volume: 61 start-page: 4346 year: 2016 end-page: 4363 ident: bib52 article-title: Survey of numerical electrostimulation models publication-title: Phys. Med. Biol. – volume: 5 start-page: 435 year: 2012 end-page: 453 ident: bib2 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul – volume: 10 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib26 article-title: Neural effects of transcranial magnetic stimulation at the single-cell level publication-title: Nat. Commun. doi: 10.1038/s41467-019-10638-7 – volume: 557 start-page: 175 issue: Pt 1 year: 2004 ident: 10.1016/j.compbiomed.2022.105328_bib4 article-title: Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro publication-title: J. Physiol. doi: 10.1113/jphysiol.2003.055772 – volume: 57 start-page: 6961 issue: 21 year: 2012 ident: 10.1016/j.compbiomed.2022.105328_bib62 article-title: Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/57/21/6961 – volume: 12 start-page: 275 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib28 article-title: Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation publication-title: Brain Stimul doi: 10.1016/j.brs.2018.11.004 – volume: 11 start-page: 289 issue: 2 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib36 article-title: tDCS changes in motor excitability are specific to orientation of current flow publication-title: Brain Stimul doi: 10.1016/j.brs.2017.11.001 – volume: 22 start-page: 441 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib66 article-title: Simulating transcranial direct current stimulation with a detailed anisotropic human head model publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2014.2308997 – start-page: 599 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib49 – start-page: 457 year: 2006 ident: 10.1016/j.compbiomed.2022.105328_bib50 – volume: 100 start-page: 590 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib63 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.040 – volume: 50 start-page: 1139 issue: 6 year: 1986 ident: 10.1016/j.compbiomed.2022.105328_bib12 article-title: A model for the polarization of neurons by extrinsically applied electric fields publication-title: Biophys. J. doi: 10.1016/S0006-3495(86)83558-5 – volume: 163 start-page: 456 issue: 2 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib47 article-title: Reconstruction and simulation of neocortical microcircuitry publication-title: Cell doi: 10.1016/j.cell.2015.09.029 – volume: 15 issue: 6 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib7 article-title: Biophysically realistic neuron models for simulation of cortical stimulation publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/aadbb1 – volume: 9 start-page: 5092 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib32 article-title: Immediate neurophysiological effects of transcranial electrical stimulation publication-title: Nat. Commun. doi: 10.1038/s41467-018-07233-7 – volume: 61 start-page: 4506 issue: 12 year: 2016 ident: 10.1016/j.compbiomed.2022.105328_bib53 article-title: Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS) publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/12/4506 – volume: 11 start-page: 7659 issue: 1 year: 2021 ident: 10.1016/j.compbiomed.2022.105328_bib55 article-title: Neurophysiological and behavioural effects of conventional and high definition tDCS publication-title: Sci. Rep. doi: 10.1038/s41598-021-87371-z – year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib45 – volume: 61 start-page: 4346 issue: 12 year: 2016 ident: 10.1016/j.compbiomed.2022.105328_bib52 article-title: Survey of numerical electrostimulation models publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/12/4346 – volume: 9 start-page: 44 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib46 article-title: The neocortical microcircuit collaboration portal: a resource for rat somatosensory cortex publication-title: Front. Neural Circ. – volume: 9 start-page: 626 issue: 1 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib16 article-title: Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? publication-title: Sci. Rep. doi: 10.1038/s41598-018-37226-x – volume: 7 start-page: 8557 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib24 article-title: Geometrical variation's influence on the effects of stimulation may be important in the conventional and multi-array tDCS–comparison of electrical fields computed publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2890019 – volume: 11 year: 2017 ident: 10.1016/j.compbiomed.2022.105328_bib9 article-title: Dendritic properties control energy efficiency of action potentials in cortical pyramidal cells publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2017.00265 – volume: 81 start-page: 253 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib64 article-title: Physiological observations validate finite element models for estimating subject-specific electric field distributions induced by transcranial magnetic stimulation of the human motor cortex publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.067 – volume: 27 start-page: 5083 issue: 11 year: 2017 ident: 10.1016/j.compbiomed.2022.105328_bib19 article-title: Where does TMS stimulate the motor cortex? Combining electrophysiological measurements and realistic field estimates to reveal the affected cortex position publication-title: Cerebr. Cortex – volume: 9 start-page: 1179 issue: 6 year: 1997 ident: 10.1016/j.compbiomed.2022.105328_bib48 article-title: The NEURON simulation environment publication-title: Neural Comput. doi: 10.1162/neco.1997.9.6.1179 – volume: 54 start-page: 234 issue: 1 year: 2011 ident: 10.1016/j.compbiomed.2022.105328_bib43 article-title: Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation publication-title: J. Neural. Eng. – volume: 8 start-page: 145 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib11 article-title: Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2014.00145 – volume: 6 start-page: 898 issue: 6 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib34 article-title: PET-based confirmation of orientation sensitivity of TMS-induced cortical activation in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2013.05.007 – volume: 59 start-page: 203 issue: 1 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib68 article-title: Effects of coil orientation on the electric field induced by TMS over the hand motor area publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/59/1/203 – volume: 26 start-page: 2127 issue: 16 year: 2016 ident: 10.1016/j.compbiomed.2022.105328_bib41 article-title: Feedback-controlled transcranial alternating current stimulation reveals a functional role of sleep spindles in motor memory consolidation publication-title: Curr. Biol. doi: 10.1016/j.cub.2016.06.044 – volume: 18 start-page: 694 issue: 8 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib30 article-title: Subject-specific multiscale modeling to investigate effects of transcranial magnetic stimulation publication-title: Neuromodulation doi: 10.1111/ner.12296 – volume: 7 start-page: 401 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib61 article-title: A model of TMS-induced I-waves in motor cortex publication-title: Brain Stimul doi: 10.1016/j.brs.2014.02.009 – volume: 17 issue: 3 year: 2020 ident: 10.1016/j.compbiomed.2022.105328_bib21 article-title: TMS activation site estimation using multiscale realistic head models publication-title: J. Neural. Eng. doi: 10.1088/1741-2552/ab8ccf – volume: 51 start-page: 1586 issue: 9 year: 2004 ident: 10.1016/j.compbiomed.2022.105328_bib44 article-title: Three-dimensional head model simulation of transcranial magnetic stimulation publication-title: IEEE Trans Biomed doi: 10.1109/TBME.2004.827925 – volume: 1 start-page: 97 issue: 2 year: 2008 ident: 10.1016/j.compbiomed.2022.105328_bib40 article-title: Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans publication-title: Brain Stimul doi: 10.1016/j.brs.2007.10.001 – volume: 7 start-page: 3210 issue: 1 year: 2017 ident: 10.1016/j.compbiomed.2022.105328_bib5 article-title: Morphology controls how hippocampal CA1 pyramidal neuron responds to uniform electric fields: a biophysical modeling study publication-title: Sci. Rep. doi: 10.1038/s41598-017-03547-6 – volume: 12 start-page: 1159 issue: 5 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib37 article-title: Towards precise brain stimulation: is electric field simulation related to neuromodulation? publication-title: Brain Stimul doi: 10.1016/j.brs.2019.03.072 – volume: 31 start-page: 299 issue: 3–5 year: 2002 ident: 10.1016/j.compbiomed.2022.105328_bib51 article-title: Microstructure of the neocortex: comparative aspects publication-title: J. Neurocytol. doi: 10.1023/A:1024130211265 – volume: 6 start-page: 644 issue: 4 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib54 article-title: Comparing cortical plasticity induced by conventional and high-definition 4 x 1 ring tDCS: a neurophysiological study publication-title: Brain Stimul doi: 10.1016/j.brs.2012.09.010 – volume: 5 start-page: 512 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.105328_bib58 article-title: I-wave origin and modulation publication-title: Brain stimul doi: 10.1016/j.brs.2011.07.008 – volume: 28 start-page: 2786 issue: 8 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib31 article-title: Neuromodulation of axon terminals publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhx158 – volume: 12 start-page: 263 issue: 2 year: 2019 ident: 10.1016/j.compbiomed.2022.105328_bib38 article-title: Effects of electrode angle-orientation on the impact of transcranial direct current stimulation on motor cortex excitability publication-title: Brain Stimul doi: 10.1016/j.brs.2018.10.014 – volume: 17 start-page: 1130 issue: 8 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib25 article-title: Simultaneous transcranial magnetic stimulation and single-neuron recording in alert non-human primates publication-title: Nat. Neurosci. doi: 10.1038/nn.3751 – volume: 40 start-page: 51 issue: 1 year: 2016 ident: 10.1016/j.compbiomed.2022.105328_bib14 article-title: Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-015-0585-1 – volume: 5 start-page: 435 issue: 4 year: 2012 ident: 10.1016/j.compbiomed.2022.105328_bib2 article-title: Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices publication-title: Brain Stimul doi: 10.1016/j.brs.2011.10.001 – volume: 115 start-page: 95 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib57 article-title: Coupling magnetically induced electric fields to neurons: longitudinal and transverse activation publication-title: Biophys. J. doi: 10.1016/j.bpj.2018.06.004 – volume: 16 start-page: 838 issue: 7 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib67 article-title: Noninvasive brain stimulation: from physiology to network dynamics and back publication-title: Nat. Neurosci. doi: 10.1038/nn.3422 – volume: 109 start-page: 140 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib17 article-title: Determinants of the electric field during transcranial direct current stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.01.033 – volume: 591 start-page: 2563 issue: 10 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib33 article-title: Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects publication-title: J. Physiol. doi: 10.1113/jphysiol.2012.247171 – volume: 3 start-page: 91 year: 2012 ident: 10.1016/j.compbiomed.2022.105328_bib65 article-title: Inter-individual variation during transcranial direct current stimulation and normalization of dose using MRI-derived computational models publication-title: Front. Psychol. – volume: 15 start-page: 619 issue: 4 year: 2003 ident: 10.1016/j.compbiomed.2022.105328_bib39 article-title: Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human publication-title: J. Cognit. Neurosci. doi: 10.1162/089892903321662994 – volume: 6 year: 2017 ident: 10.1016/j.compbiomed.2022.105328_bib27 article-title: Lifting the veil on the dynamics of neuronal activities evoked by transcranial magnetic stimulation publication-title: Elife doi: 10.7554/eLife.30552 – volume: 13 start-page: 175 issue: 1 year: 2020 ident: 10.1016/j.compbiomed.2022.105328_bib29 article-title: Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons publication-title: Brain Stimul doi: 10.1016/j.brs.2019.10.002 – volume: 2 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2022.105328_bib23 article-title: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.005 – volume: 41 start-page: 1123 issue: 6 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib3 article-title: Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity publication-title: J. Inherit. Metab. Dis. doi: 10.1007/s10545-018-0181-4 – volume: 14 issue: 5 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib15 article-title: Differential polarization of cortical pyramidal neuron dendrites through weak extracellular fields publication-title: PLos Comput Bio – volume: 74 start-page: 266 year: 2013 ident: 10.1016/j.compbiomed.2022.105328_bib56 article-title: Physiological and modeling evidence for focal transcranial electrical brain stimulation in humans: a basis for high-definition tDCS publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.01.042 – volume: 11 start-page: 166 issue: 1 year: 2018 ident: 10.1016/j.compbiomed.2022.105328_bib18 article-title: Where and what TMS activates: experiments and modeling publication-title: Brain Stimul doi: 10.1016/j.brs.2017.09.011 – volume: 11 issue: 1 year: 2014 ident: 10.1016/j.compbiomed.2022.105328_bib20 article-title: Investigation of tDCS volume conduction effects in a highly realistic head model publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/11/1/016002 – volume: 2 issue: 4 year: 2009 ident: 10.1016/j.compbiomed.2022.105328_bib6 article-title: Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro publication-title: Brain Stimul doi: 10.1016/j.brs.2009.03.007 – volume: 22 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.compbiomed.2022.105328_bib35 article-title: Column-based model of electric field excitation of cerebral cortex publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.20006 – volume: 9 start-page: 527 year: 2007 ident: 10.1016/j.compbiomed.2022.105328_bib1 article-title: Noninvasive human brain stimulation publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.061206.133100 – volume: 7 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2022.105328_bib13 article-title: Mechanisms of magnetic stimulation of central nervous system neurons publication-title: PLos Comput Bio – volume: 46 start-page: 124 issue: 1 year: 2009 ident: 10.1016/j.compbiomed.2022.105328_bib10 article-title: TMS in cognitive neuroscience: virtual lesion and beyond publication-title: Biophys. J. – volume: 2015 start-page: 222 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib42 article-title: Field modeling for transcranial magnetic stimulation: a useful tool to understand the physiological effects of TMS? publication-title: Annu Int Conf IEEE Eng Med Biol Soc – volume: 8 start-page: 1124 issue: 6 year: 2015 ident: 10.1016/j.compbiomed.2022.105328_bib59 article-title: ‘I-wave’recruitment determines response to tDCS in the upper limb, but only so far publication-title: Brain Stimul doi: 10.1016/j.brs.2015.07.027 – volume: 58 start-page: 849 issue: 3 year: 2011 ident: 10.1016/j.compbiomed.2022.105328_bib22 article-title: How the brain tissue shapes the electric field induced by transcranial magnetic stimulation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.06.069 – volume: 382 start-page: 363 issue: 6589 year: 1996 ident: 10.1016/j.compbiomed.2022.105328_bib8 article-title: Influence of dendritic structure on firing pattern in model neocortical neurons publication-title: Nature doi: 10.1038/382363a0 – volume: 94 start-page: 622 issue: 1 year: 2005 ident: 10.1016/j.compbiomed.2022.105328_bib60 article-title: Modeling the effects of transcranial magnetic stimulation on cortical circuits publication-title: J. Neuropsychol. |
SSID | ssj0004030 |
Score | 2.370175 |
Snippet | Transcranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by... AbstractTranscranial electrode stimulation (tES), one of the techniques used to apply non-invasive brain stimulation (NIBS), modulates cortical activities by... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 105328 |
SubjectTerms | Alternating current Axons Biophysics Brain - physiology Brain research Correlation Direct current Electric currents Electric fields Electric Stimulation Electrical stimuli Electricity Electroconvulsive therapy Electrodes Excitability Geometry High definition Humans Internal Medicine Investigations Morphology Neurons Other Pyramidal cells Scale models Scalp Simulation Stimulation Transcranial Direct Current Stimulation - methods Transcranial magnetic stimulation Waveforms |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NatwwEBZhA6WX0jZpu2laFMjVRJZkyaanJTRsE5JLE8hNyNoRbJt4Q-wccutD9An7JB1ZskNoCgu5GGxpkJDm5xtrRkPIviq81bmrMy4UZNKjSNlai0yidGjLgCsIjuLpmZpfyOPL4nKDHA65MCGsMun-qNN7bZ2-HKTVPLhZLkOOL7oS6OBw3meAoh7e5KJSxYRszr6dzM8e0iOZiJkoqHICQQroiWFeIXI7Zrqjs8h5qHsrQmn2p63U_1Bob42OXpNXCUbSWZzpG7IBzVvy4jQdlG-RnydwT1MtHbpsKMI8in5m_-Oa3sa4WKDdinbBVjl8IB_SWBOn7_O9W16nyl7tn1-_Z7SPPMxabAPal89Bm0f7y2m3ycXR1_PDeZbqKmQO4VGXISQshdXeKlbnORQLWTHhHXPooQK6e1XJrBSeQVEXXqLPIxYgLSirS28tB_GOTJpVAx8IXbiqch6UqlyJ5tBW2tcsd05qZ3MvyynRwzoaly4dD7UvrswQXfbDPOyACTtg4g5MST5S3sSLN9agqYatMkNiKapCg9ZhDVr9FC20SaZbk5uWG2b-4bsp-TJSPmLdNcfdHXjKjEMhSlUB-mls3hubUfDDaY5tYHUX-iB2lkIVxZS8j7w4LhS2oK5mbOdZU_tIXoa3GN65Sybd7R18QgjW1Z-TiP0F6t8xQg priority: 102 providerName: Elsevier |
Title | Key factors in the cortical response to transcranial electrical Stimulations—A multi-scale modeling study |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482522001202 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482522001202 https://dx.doi.org/10.1016/j.compbiomed.2022.105328 https://www.ncbi.nlm.nih.gov/pubmed/35231800 https://www.proquest.com/docview/2646710278 https://www.proquest.com/docview/2635243655 |
Volume | 144 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoKyEuFW8CZWUkrgE7duxEHNCCuixUXSFKpb1ZjteWCjRbmvTABfEj-IX8EsaPZC8F7SU52JNEmbc94w-h56J0WlLT5AUTNucOVEo3kuUctENqYgthfaJ4vBDzU_5hWS7TgluXyioHmxgM9Wpt_Br5S3DcwntDWb2--J571Ci_u5ogNHbQHgVP4-W8mr3b9EUSFltQwNZwSIVSJU-s7_Il27HFHbLEovCAt8xjsl_vnv4VfgY3NLuN9lP8iKeR4XfQDdveRTeP0w75PfT1yP7ACUQHn7UY4jsMCWZYscaXsSDW4n6Ne--kDFxAAHEEwwlzTvqz8wTp1f359XuKQ8lh3sGYxQE3B5wdDqfS3kens8PPb-d5AlTIDcRFfQ6xYMW0dFqQhlJbrnhNmDPEQGpqIc-rK6I5c8SWTek4JDtsZbm2QsvKaV1Y9gDttuvWPkJ4ZeraOCtEbSrwg7qWriHUGC6Npo5XGZLDf1QmnTbuQS--qaGs7IvacEB5DqjIgQzRkfIinrixBU09sEoNHaVgAxW4hS1o5XW0tkvK3CmqukIRdRLOMgIxKorQclxk6NVImeKVGIds-d6DQabU-KqNlGfo2TgMGu-3cXRr11d-DgTNnImyzNDDKIvjj4IRMNKEPP7_w5-gW_5LYuHmAdrtL6_sUwiu-maCdl78pHCVSzkJ2jRBe9P3R_MF3N8cLj5--gsq8inm |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrQRcEP8EChgJjhGO49iJEEIFWm1pd4VoK_VmHK8tlZ_d0qRC3HgInoOH4kkYx072UtBeesnFmSTyjGe-iWf8ATwVhdMyM3XKcmFT7nBJ6VrmKcfVITW1TFifKE6mYnzI3x0VR2vwu--F8WWVvU_sHPVsYfw_8ucYuIWPhrJ8dfIt9axRfne1p9AIZrFrf3zHlK15ufMW9fuMse2tgzfjNLIKpAbBQZsiICpzLZ0WtM4yW8x4RXNnqMH8zGKyU5VU89xRW9SF44j485nl2gotS6c1szk-9xKsc9_ROoL111vT9x-WnZg0D00v6N04Jl-xdihUlPki8dBUj3kpY55iN_cs8OcHxH8B3i7wbV-HaxGxks1gYjdgzc5vwuVJ3JO_BZ9xPkik7SHHc4KIkmBK2_0jJ6ehBNeSdkFaHxYNXtDkSaDf6e7Zb4-_RhKx5s_PX5ukK3JMGxyzpGPqwfBKunNwb8PhhUz2HRjNF3N7D8jMVJVxVojKlBh5dSVdTTNjuDQ6c7xMQPbzqEw839zTbHxRfSHbJ7XUgPIaUEEDCWSD5Ek442MFmapXlep7WNHrKgxEK8jK82RtE91HozLVMEXVfnd6EpoRY12TM0vgxSAZEVJAPiu-d6O3KTW8armuEngyDKOP8RtHem4XZ_4ehOk8F0WRwN1gi8NE4QiGBUrv___hj-HK-GCyp_Z2prsP4Kr_qlA2ugGj9vTMPkRo19aP4noi8PGil_BfaLFi6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlVcEP8EChgJjlEd27ETIYQqyqqltEIqlfZmHK8tlZ9saVIhbjwET8Pj8CSMY2f3UtBeesnFmSSy5-ebeMYfwDNZeqMK2-SMS5cLjyZlGsVzgdahDHVMupAoHhzK3WPxdlpO1-D32AsTyipHnzg46tnchn_kWxi4ZYiGqtryqSzi_c7k1em3PDBIhZ3WkU4jqsi--_Ed07fu5d4OrvVzxiZvPrzezRPDQG4RKPQ5gqOKG-WNpE1RuHImasq9pRZzNYeJT11RI7inrmxKLxD985kTxkmjKm8McxyfewWuKo6oCm1JTdWyJ5Py2P6Cfk5gGpaqiGJtWSgXj-31mKEyFsh2eeCDvzg0_gv6DiFwcgOuJ-xKtqOy3YQ1196CjYO0O38bPuNskETgQ05agtiSYHI7_C0nZ7EY15F-TvoQIC1eUPlJJOIZ7jnqT74mOrHuz89f22Qod8w7HHNk4OzBQEuGE3HvwPGlTPVdWG_nrbsPZGbr2nonZW0rjMGmVr6hhbVCWVN4UWWgxnnUNp10Hgg3vuixpO2TXq6ADiug4wpkUCwkT-NpHyvI1ONS6bGbFf2vxpC0gqy6SNZ1yZF0utAd01QfDecooRoxNrQ7swxeLCQTVooYaMX3bo46pRevWlpYBk8Xw-htwhaSad38PNyDgF1wWZYZ3Iu6uJgoHMEAQemD_z_8CWyg4ep3e4f7D-Fa-KhYP7oJ6_3ZuXuEGK9vHg_GRODjZVvvX7sNZbE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Key+factors+in+the+cortical+response+to+transcranial+electrical+Stimulations%E2%80%94A+multi-scale+modeling+study&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Chung%2C+Hyeyeon&rft.au=Im%2C+Cheolki&rft.au=Seo%2C+Hyeon&rft.au=Jun%2C+Sung+Chan&rft.date=2022-05-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=144&rft_id=info:doi/10.1016%2Fj.compbiomed.2022.105328&rft.externalDocID=S0010482522001202 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |