Developing drought impact functions for drought risk management
Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be predicted if droughts are to be better managed. However, the link betw...
Saved in:
Published in | Natural hazards and earth system sciences Vol. 17; no. 11; pp. 1947 - 1960 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Katlenburg-Lindau
Copernicus GmbH
16.11.2017
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be predicted if droughts are to be better managed. However, the link between drought intensity, expressed by some hydrometeorological indicator, and the occurrence of drought impacts has only recently begun to be addressed. One challenge is the paucity of information on ecological and socioeconomic consequences of drought. This study tests the potential for developing empirical drought impact functions based on drought indicators (Standardized Precipitation and Standardized Precipitation Evaporation Index) as predictors and text-based reports on drought impacts as a surrogate variable for drought damage. While there have been studies exploiting textual evidence of drought impacts, a systematic assessment of the effect of impact quantification method and different functional relationships for modeling drought impacts is missing. Using Southeast England as a case study we tested the potential of three different data-driven models for predicting drought impacts quantified from text-based reports: logistic regression, zero-altered negative binomial regression (hurdle model), and an ensemble regression tree approach (random forest). The logistic regression model can only be applied to a binary impact/no impact time series, whereas the other two models can additionally predict the full counts of impact occurrence at each time point. While modeling binary data results in the lowest prediction uncertainty, modeling the full counts has the advantage of also providing a measure of impact severity, and the counts were found to be reasonably predictable. However, there were noticeable differences in skill between modeling methodologies. For binary data the logistic regression and the random forest model performed similarly well based on leave-one-out cross validation. For count data the random forest outperformed the hurdle model. The between-model differences occurred for total drought impacts and for two subsets of impact categories (water supply and freshwater ecosystem impacts). In addition, different ways of defining the impact counts were investigated and were found to have little influence on the prediction skill. For all models we found a positive effect of including impact information of the preceding month as a predictor in addition to the hydrometeorological indicators. We conclude that, although having some limitations, text-based reports on drought impacts can provide useful information for drought risk management, and our study showcases different methodological approaches to developing drought impact functions based on text-based data. |
---|---|
AbstractList | Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative consequences that may arise from a lack of precipitation must also be predicted if droughts are to be better managed. However, the link between drought intensity, expressed by some hydrometeorological indicator, and the occurrence of drought impacts has only recently begun to be addressed. One challenge is the paucity of information on ecological and socioeconomic consequences of drought. This study tests the potential for developing empirical drought impact functions based on drought indicators (Standardized Precipitation and Standardized Precipitation Evaporation Index) as predictors and text-based reports on drought impacts as a surrogate variable for drought damage. While there have been studies exploiting textual evidence of drought impacts, a systematic assessment of the effect of impact quantification method and different functional relationships for modeling drought impacts is missing. Using Southeast England as a case study we tested the potential of three different data-driven models for predicting drought impacts quantified from text-based reports: logistic regression, zero-altered negative binomial regression (hurdle model), and an ensemble regression tree approach (random forest). The logistic regression model can only be applied to a binary impact/no impact time series, whereas the other two models can additionally predict the full counts of impact occurrence at each time point. While modeling binary data results in the lowest prediction uncertainty, modeling the full counts has the advantage of also providing a measure of impact severity, and the counts were found to be reasonably predictable. However, there were noticeable differences in skill between modeling methodologies. For binary data the logistic regression and the random forest model performed similarly well based on leave-one-out cross validation. For count data the random forest outperformed the hurdle model. The between-model differences occurred for total drought impacts and for two subsets of impact categories (water supply and freshwater ecosystem impacts). In addition, different ways of defining the impact counts were investigated and were found to have little influence on the prediction skill. For all models we found a positive effect of including impact information of the preceding month as a predictor in addition to the hydrometeorological indicators. We conclude that, although having some limitations, text-based reports on drought impacts can provide useful information for drought risk management, and our study showcases different methodological approaches to developing drought impact functions based on text-based data. |
Audience | Academic |
Author | Prosdocimi, Ilaria Svensson, Cecilia Stahl, Kerstin Bachmair, Sophie Hannaford, Jamie |
Author_xml | – sequence: 1 fullname: Bachmair, Sophie – sequence: 2 fullname: Svensson, Cecilia – sequence: 3 fullname: Prosdocimi, Ilaria – sequence: 4 fullname: Hannaford, Jamie – sequence: 5 fullname: Stahl, Kerstin |
BookMark | eNp9kltrFDEUxwepYFv9Aj4N-OTDtLlNLk9SqrYLBcHW55DJnEyz7iRrkin67ZvtSumCSB7OJb9zTi7_k-YoxABN8x6jsx4rdh7uIecOi64GoiMIi1fNMeaSdUpJfPTCf9Oc5LxGiKieoePm02d4gE3c-jC1Y4rLdF9aP2-NLa1bgi0-hty6mJ43k88_29kEM8EMobxtXjuzyfDurz1tfnz9cnd53d18u1pdXtx0tsesdEIQDHR0thd45ypuGGE9IwYpQbgbaD9YAZZLMEC4AekUowNBCrlhYAM9bVb7vmM0a71Nfjbpj47G66dETJM2qXi7Ac3swGmdpqplVJpBSSbF6JxCRBIQtdeHfa9tir8WyEWv45JCPb4mDDPEe8rx_yisOGNUSPKCmkwd7YOLJRk7-2z1Rb05lwpjXqmzf1B1jTB7W7_S-Zo_KPh4UFCZAr_LZJac9er2-yFL9qxNMecE7vl5MNI7degndWgs9E4deqcO-gh8laxd |
CitedBy_id | crossref_primary_10_1016_j_ejrh_2021_100884 crossref_primary_10_1080_19475705_2022_2095934 crossref_primary_10_1080_19475705_2023_2203798 crossref_primary_10_5194_hess_25_6523_2021 crossref_primary_10_1080_1573062X_2022_2058564 crossref_primary_10_1029_2020RG000704 crossref_primary_10_1016_j_agwat_2022_107713 crossref_primary_10_3389_fclim_2020_576653 crossref_primary_10_1016_j_jhydrol_2024_131012 crossref_primary_10_1088_1748_9326_abe828 crossref_primary_10_1016_j_jhydrol_2020_125531 crossref_primary_10_1016_j_ecolind_2020_106084 crossref_primary_10_1080_19475705_2022_2131471 crossref_primary_10_2139_ssrn_3590258 crossref_primary_10_1007_s11069_022_05791_0 crossref_primary_10_5194_nhess_24_1757_2024 crossref_primary_10_3390_hydrology9070117 crossref_primary_10_1016_j_jhydrol_2023_129966 crossref_primary_10_1016_j_agsy_2019_02_015 crossref_primary_10_1029_2023EF003906 crossref_primary_10_1016_j_scitotenv_2023_165509 crossref_primary_10_3390_su151310692 crossref_primary_10_1016_j_crm_2022_100402 crossref_primary_10_5194_nhess_19_551_2019 crossref_primary_10_3390_geosciences9010039 crossref_primary_10_2166_hydro_2023_064 crossref_primary_10_3390_su10093219 crossref_primary_10_5194_nhess_23_2915_2023 crossref_primary_10_3390_su14169997 crossref_primary_10_5194_nhess_20_1595_2020 crossref_primary_10_1002_joc_7946 crossref_primary_10_1016_j_ijdrr_2020_101483 crossref_primary_10_1029_2022WR033734 crossref_primary_10_1155_2019_3576285 crossref_primary_10_1088_1748_9326_acd8da crossref_primary_10_5194_hess_26_1821_2022 crossref_primary_10_1080_10106049_2021_1974959 crossref_primary_10_1007_s00703_019_00675_8 crossref_primary_10_1016_j_ecolind_2024_112238 crossref_primary_10_1016_j_kjs_2023_03_002 crossref_primary_10_1016_j_heliyon_2020_e05707 crossref_primary_10_1002_wat2_1698 crossref_primary_10_1016_j_ecolind_2021_107393 crossref_primary_10_3390_w15020255 crossref_primary_10_1007_s00484_023_02592_3 crossref_primary_10_1016_j_jenvman_2023_118176 crossref_primary_10_3390_rs16122163 crossref_primary_10_1080_10106049_2023_2178527 crossref_primary_10_1155_2023_5410333 crossref_primary_10_4018_IJOCI_2020040102 crossref_primary_10_1038_s41467_019_12840_z crossref_primary_10_1155_2021_3724919 |
Cites_doi | 10.5194/nhess-11-3335-2011 10.1016/j.jhydrol.2011.10.038 10.1002/2013WR014396 10.1111/j.1752-1688.2000.tb04299.x 10.1007/s11269-012-0119-9 10.1002/wea.99 10.1088/1748-9326/9/8/084008 10.1139/a11-013 10.1061/JRCEA4.0001390 10.5194/hess-20-2589-2016 10.1002/joc.1498 10.1016/j.ecolmodel.2006.05.025 10.1002/wat2.1154 10.1016/j.jhydrol.2015.09.039 10.5194/nhess-13-2815-2013 10.5194/nhess-14-2531-2014 10.1007/978-0-387-87458-6_10 10.1016/j.agrformet.2008.09.004 10.5194/nhess-15-1933-2015 10.5194/nhess-16-801-2016 10.5194/nhess-13-53-2013 10.1214/aos/1176344136 10.5194/nhess-15-1381-2015 10.1016/S0168-1923(03)00072-8 10.1002/env.873 10.1002/joc.3370140502 10.5194/nhess-10-1697-2010 10.1002/2014GL061344 10.1007/s11269-006-9076-5 10.1002/wea.2101 10.1111/j.1539-6924.2012.01928.x 10.5194/nhess-12-3733-2012 10.1016/j.agrformet.2015.10.011 10.1016/j.earscirev.2015.01.002 10.1016/j.envsoft.2014.10.003 10.1016/j.ecolecon.2013.03.022 10.1088/1748-9326/10/12/124013 10.1016/j.foreco.2012.03.003 10.1016/j.agrformet.2014.11.022 10.1073/pnas.1207068110 10.18637/jss.v027.i08 10.1029/2005WR004177 10.3390/rs8010055 10.1002/joc.4267 10.3354/cr01177 10.5194/hess-20-2779-2016 10.1175/2009JCLI2909.1 10.1016/j.jhydrol.2009.08.003 10.1175/1520-0477-95.11.1659 10.1023/A:1010933404324 10.5194/hess-20-2483-2016 10.1201/b18077-59 10.5194/nhess-12-535-2012 10.1088/1748-9326/10/1/014008 10.1029/2008JD010201 10.1007/978-0-387-87458-6_11 10.1080/02508068508686328 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2017 Copernicus GmbH Copyright Copernicus GmbH 2017 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2017 Copernicus GmbH – notice: Copyright Copernicus GmbH 2017 – notice: 2017. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H8D H96 H97 HCIFZ KL. KR7 L.G L6V L7M M7S PATMY PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.5194/nhess-17-1947-2017 |
DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Advanced Technologies Database with Aerospace Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1684-9981 |
EndPage | 1960 |
ExternalDocumentID | oai_doaj_org_article_4cb631e39cb6438ab98487dff90282e7 A514689116 10_5194_nhess_17_1947_2017 |
GeographicLocations | United Kingdom--UK England |
GeographicLocations_xml | – name: England – name: United Kingdom--UK |
GroupedDBID | 123 29M 2WC 2XV 3V. 5VS 6KP 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACIWK ADBBV AENEX AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS ATCPS BBORY BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION E3Z EBS EDH EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IEP IGS IPNFZ ISR ITC KQ8 L6V LK5 M7R M7S M~E OK1 P2P PATMY PCBAR PIMPY PQQKQ PROAC PTHSS PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H8D H96 H97 KL. KR7 L.G L7M PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c514t-7721e3dfc571721e96a424542a09726fb35bc7ec68eae26ae8f943b2090fbb4b3 |
IEDL.DBID | 8FG |
ISSN | 1684-9981 1561-8633 |
IngestDate | Tue Oct 22 15:14:52 EDT 2024 Sat Nov 09 08:07:34 EST 2024 Thu Oct 10 22:35:29 EDT 2024 Thu Feb 22 23:47:02 EST 2024 Tue Nov 12 22:59:13 EST 2024 Thu Aug 01 20:05:06 EDT 2024 Fri Aug 23 01:48:38 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-7721e3dfc571721e96a424542a09726fb35bc7ec68eae26ae8f943b2090fbb4b3 |
ORCID | 0000-0002-2159-9441 0000-0001-8565-094X |
OpenAccessLink | https://www.proquest.com/docview/1964437821?pq-origsite=%requestingapplication% |
PQID | 1964437821 |
PQPubID | 105722 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4cb631e39cb6438ab98487dff90282e7 proquest_journals_2414065361 proquest_journals_1964437821 gale_infotracmisc_A514689116 gale_infotracacademiconefile_A514689116 gale_incontextgauss_ISR_A514689116 crossref_primary_10_5194_nhess_17_1947_2017 |
PublicationCentury | 2000 |
PublicationDate | 2017-11-16 |
PublicationDateYYYYMMDD | 2017-11-16 |
PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Katlenburg-Lindau |
PublicationPlace_xml | – name: Katlenburg-Lindau |
PublicationTitle | Natural hazards and earth system sciences |
PublicationYear | 2017 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref68 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref1 – ident: ref13 doi: 10.5194/nhess-11-3335-2011 – ident: ref61 doi: 10.1016/j.jhydrol.2011.10.038 – ident: ref45 doi: 10.1002/2013WR014396 – ident: ref63 doi: 10.1111/j.1752-1688.2000.tb04299.x – ident: ref27 doi: 10.1007/s11269-012-0119-9 – ident: ref29 doi: 10.1002/wea.99 – ident: ref17 doi: 10.1088/1748-9326/9/8/084008 – ident: ref65 doi: 10.1139/a11-013 – ident: ref19 doi: 10.1061/JRCEA4.0001390 – ident: ref3 doi: 10.5194/hess-20-2589-2016 – ident: ref30 – ident: ref36 doi: 10.1002/joc.1498 – ident: ref43 doi: 10.1016/j.ecolmodel.2006.05.025 – ident: ref4 doi: 10.1002/wat2.1154 – ident: ref50 doi: 10.1016/j.jhydrol.2015.09.039 – ident: ref12 doi: 10.5194/nhess-13-2815-2013 – ident: ref48 doi: 10.5194/nhess-14-2531-2014 – ident: ref67 doi: 10.1007/978-0-387-87458-6_10 – ident: ref21 doi: 10.1016/j.agrformet.2008.09.004 – ident: ref32 doi: 10.5194/nhess-15-1933-2015 – ident: ref52 doi: 10.5194/nhess-16-801-2016 – ident: ref34 doi: 10.5194/nhess-13-53-2013 – ident: ref46 doi: 10.1214/aos/1176344136 – ident: ref2 doi: 10.5194/nhess-15-1381-2015 – ident: ref44 doi: 10.1016/S0168-1923(03)00072-8 – ident: ref58 doi: 10.1002/env.873 – ident: ref11 doi: 10.1002/joc.3370140502 – ident: ref26 – ident: ref33 doi: 10.5194/nhess-10-1697-2010 – ident: ref53 doi: 10.1002/2014GL061344 – ident: ref64 doi: 10.1007/s11269-006-9076-5 – ident: ref24 doi: 10.1002/wea.2101 – ident: ref35 doi: 10.1111/j.1539-6924.2012.01928.x – ident: ref23 doi: 10.5194/nhess-12-3733-2012 – ident: ref41 doi: 10.1016/j.agrformet.2015.10.011 – ident: ref54 doi: 10.1016/j.earscirev.2015.01.002 – ident: ref16 – ident: ref40 doi: 10.1016/j.envsoft.2014.10.003 – ident: ref5 doi: 10.1016/j.ecolecon.2013.03.022 – ident: ref37 doi: 10.1088/1748-9326/10/12/124013 – ident: ref39 doi: 10.1016/j.foreco.2012.03.003 – ident: ref42 doi: 10.1016/j.agrformet.2014.11.022 – ident: ref60 doi: 10.1073/pnas.1207068110 – ident: ref22 – ident: ref51 – ident: ref66 doi: 10.18637/jss.v027.i08 – ident: ref55 doi: 10.1029/2005WR004177 – ident: ref57 doi: 10.3390/rs8010055 – ident: ref49 doi: 10.1002/joc.4267 – ident: ref15 – ident: ref28 doi: 10.3354/cr01177 – ident: ref9 doi: 10.5194/hess-20-2779-2016 – ident: ref59 doi: 10.1175/2009JCLI2909.1 – ident: ref18 doi: 10.1016/j.jhydrol.2009.08.003 – ident: ref38 – ident: ref47 doi: 10.1175/1520-0477-95.11.1659 – ident: ref10 doi: 10.1023/A:1010933404324 – ident: ref6 doi: 10.5194/hess-20-2483-2016 – ident: ref7 doi: 10.1201/b18077-59 – ident: ref25 doi: 10.5194/nhess-12-535-2012 – ident: ref56 – ident: ref8 doi: 10.1088/1748-9326/10/1/014008 – ident: ref20 doi: 10.1029/2008JD010201 – ident: ref68 doi: 10.1007/978-0-387-87458-6_11 – ident: ref62 doi: 10.1080/02508068508686328 – ident: ref14 – ident: ref31 |
SSID | ssj0029540 |
Score | 2.4562068 |
Snippet | Drought management frameworks are dependent on methods for monitoring and prediction, but quantifying the hazard alone is arguably not sufficient; the negative... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 1947 |
SubjectTerms | Aquatic ecosystems Binary data Case studies Data Drought Drought damage Droughts Ecological monitoring Environmental aspects Environmental impact Environmental risk Evaporation Flood damage Freshwater Freshwater ecosystems Hydrology Hydrometeorology Impact damage Impact prediction Indicators Information management Inland water environment Methods Modelling Monitoring methods Precipitation Precipitation (Meteorology) Predictions Rain Regression analysis Regression models Risk assessment Risk management Socioeconomic factors Time series Water shortages Water supply |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQCyyITxEoKEJIDChqEzt2PKHyURUGBqBSN8t2bLqQoiod-PfcOWmhEoiFqWptJfU7x_euvXtHyLmVzAkpMEzVeQIeTyc6y9JEC0etFJnLfMjyfeTDEXsY5-Nvrb4wJ6yRB26A6zJrOE0dlfDKaKGNLIBjl96j7EjmmjrynlwEU22oJfOmFBLYQVJwSptyGWArrFtN4AhJ4GyGNwI2SWhV9uWSgnL_b-dzcDqDbbLVssW433zLHbLmql2y0TYun3zskavbZdFTXIaOO3XcFD7G6LHCpoqBly4HMZU8flvmvOyT0eDu5WaYtD0REgvUpkYyDGCU3uYCgzcnucb_LlmmUYeHe0NzY4WzvHDaZVy7wktGTdaTPW8MM_SArFfTyh2SWAiRW_wNKOXgxsFMTjAm4HpclExQHZHLBSzqvZG-UBAyIIgqgKhSoRBEhSBG5BqRW85E2erwARhTtcZUfxkzImeIu0JhigozX171HO5z__yk-jkWicHRzCNy0U7y03qmrW4LCWBVqGW1MrOzMhOeHLs6vDCvap9cWJMEhkiBN6U_DiNSKOfL06P_WPAx2UTwsLgx5R2yXs_m7gRYTm1Ow4b-BGjz9J8 priority: 102 providerName: Directory of Open Access Journals |
Title | Developing drought impact functions for drought risk management |
URI | https://www.proquest.com/docview/1964437821 https://www.proquest.com/docview/2414065361 https://doaj.org/article/4cb631e39cb6438ab98487dff90282e7 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JS8QwFA4uB72IK47LUETwIEWbpElzErdxOYi4gLeQpKle7OhYD_5730szlQH1VNqknemX5C3pe98jZNcp7qWS6KaaPAWNZ1JDaZYa6ZlTknpahSjfG3H5yK-f8qe44fYRwyrHMjEI6nLocI_8AImjOAN9lh29vadYNQq_rsYSGtNkNqNSovNVDC46h0vlbUIk2AhpIRhrk2bAZuEH9QsIkhQkNJxImCqhYNmPYgr8_X9J6aB6BotkIdqMyXE7yEtkytfLZC6WL3_5WiFHZ13qU1KGujtN0qY_Jqi3wtRKwDrtGjGgPHntIl9WyePg_OH0Mo2VEVIHBk6DJnHmWVm5XKIL55Uw-AWTU4NsPKKyLLdOeicKbzwVxheV4szSQ3VYWcstWyMz9bD26yQB1HKHO0GZAGUOg-Ul5xKeJ2TJJTM9sj-GRb-1BBgaHAcEUQcQdSY1gqgRxB45QeS6nkheHS4MR886rgXNnRUM_r-CI2eFsaoAt6msKmSSoR4esoO4a6SnqDH-5dl8wu9c3d_p4xxTxUBAix7Zi52qYTMyzsR0AngrZLSa6Lk10RPWj5tsHg-vjusX3qmbbb82I1JI6iuyjf_v3iTzCAsmL2Zii8w0o0-_DVZMY_thqvbJ7Mn5ze1dP-wFfAO0BO7V |
link.rule.ids | 315,783,787,867,2109,12777,21400,27936,27937,33385,33756,43612,43817,74363,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYDnBBrKJQIEJIHFAEiR27PiFWla1CLBI3y3acciGFkh74e2YcN6gScIoSO2nzbM_izLwhZM9K5oQU6KbqLAaNp2OdpkmshaNWitSlhY_y7fHuM7t-yV7ChttnCKscy0QvqPOBxT3yQySOYhT0WXL8_hFj1Sj8uhpKaEyTWaSqAudr9vSid__QuFwyq1MiwUqIO5zSOm0GrBZ2WL6CKIlBRsOJgMniS5b9qCbP4P-XnPbK53KRLASrMTqph3mJTLlymcyFAuavXyvk-LxJfopyX3mniuoEyAg1l59cEdinTSOGlEdvTezLKnm-vHg668ahNkJswcSp0ChOHM0Lmwl04pzkGr9hslQjHw8vDM2MFc7yjtMu5dp1CsmoSY_kUWEMM3SNzJSD0q2TSAiRWdwLSjiocxguJxgT8DwuciaobpGDMSzqvabAUOA6IIjKg6gSoRBEhSC2yCki1_RE-mp_YTDsq7AaFLOGU_j_Eo4wcNrIDjhOeVEgl0zq4CG7iLtCgooSI2D6egS_c_X4oE4yTBYDEc1bZD90KgbVUFsdEgrgrZDTaqJne6InrCA72TweXhVWMLxTM99-bUakkNaXJxv_371D5rpPd7fq9qp3s0nmESJMZUx4m8xUw5HbApumMtth4n4D_SDwlw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrQS9IMpDXSgQISQOKNpN7Njxqepr1QdaVYVKvVm2Y7eXZsuSHvj3zDjeoJWgp1XWTnbzeTyPZOYbgM9OcS-VpDDVVDlaPJObsixyIz1zSpa-DDHLdy5OrvjZdXWd8p9-pbTKlU6MirpZOHpGPiHiKM7QnhWTkNIiLo5me_c_c-ogRW9aUzuNJ7ApuWDTEWweHM8vLofwS1V9eSR6DHktGOtLaNCD4ZP2FtVKjvoaDyQKTmxf9tdMRTb__-nsaIhmL-B58iCz_X7Jt2HDty_hWWpmfvv7FewdDYVQWRO78HRZXwyZkRWLgpahrzoMUnp5djfkwbyGq9nxj8OTPPVJyB26Ox05yIVnTXCVpIDOK2HofSYvDXHziGBZZZ30TtTe-FIYXwfFmS2nahqs5Za9gVG7aP0OZFLKytFzoUKgacel85JzidcTsuGSmTF8XcGi73s6DI1hBIGoI4i6kJpA1ATiGA4IuWEmUVnHLxbLG512hubOCob_X-EnZ7WxqsYgqgmBeGVKjxf5RLhrIqtoadlvzAP-zun3S71fUeEYqmsxhi9pUlh0S-NMKi7AuyJ-q7WZu2szcTe59eHV8uq0m_GeBtn75zAhRRS_onj7-Nkf4SnKrP52Oj9_B1uEEFU1FmIXRt3ywb9H96azH5Lc_gFiofTF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+drought+impact+functions+for+drought+risk+management&rft.jtitle=Natural+hazards+and+earth+system+sciences&rft.au=Bachmair%2C+Sophie&rft.au=Svensson%2C+Cecilia&rft.au=Prosdocimi%2C+Ilaria&rft.au=Hannaford%2C+Jamie&rft.date=2017-11-16&rft.pub=Copernicus+GmbH&rft.issn=1561-8633&rft.eissn=1684-9981&rft.volume=17&rft.issue=11&rft.spage=1947&rft_id=info:doi/10.5194%2Fnhess-17-1947-2017&rft.externalDBID=ISR&rft.externalDocID=A514689116 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1684-9981&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1684-9981&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1684-9981&client=summon |