Ancestral genome reconstruction identifies the evolutionary basis for trait acquisition in polyphosphate accumulating bacteria
The evolution of complex traits is hypothesized to occur incrementally. Identifying the transitions that lead to extant complex traits may provide a better understanding of the genetic nature of the observed phenotype. A keystone functional group in wastewater treatment processes are polyphosphate a...
Saved in:
Published in | The ISME Journal Vol. 10; no. 12; pp. 2931 - 2945 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.12.2016
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The evolution of complex traits is hypothesized to occur incrementally. Identifying the transitions that lead to extant complex traits may provide a better understanding of the genetic nature of the observed phenotype. A keystone functional group in wastewater treatment processes are polyphosphate accumulating organisms (PAOs), however the evolution of the PAO phenotype has yet to be explicitly investigated and the specific metabolic traits that discriminate non-PAO from PAO are currently unknown. Here we perform the first comprehensive investigation on the evolution of the PAO phenotype using the model uncultured organism
Candidatus
Accumulibacter phosphatis (Accumulibacter) through ancestral genome reconstruction, identification of horizontal gene transfer, and a kinetic/stoichiometric characterization of Accumulibacter Clade IIA. The analysis of Accumulibacter’s last common ancestor identified 135 laterally derived genes, including genes involved in glycogen, polyhydroxyalkanoate, pyruvate and NADH/NADPH metabolisms, as well as inorganic ion transport and regulatory mechanisms. In contrast, pathways such as the TCA cycle and polyphosphate metabolism displayed minimal horizontal gene transfer. We show that the transition from non-PAO to PAO coincided with horizontal gene transfer within Accumulibacter’s core metabolism; likely alleviating key kinetic and stoichiometric bottlenecks, such as anaerobically linking glycogen degradation to polyhydroxyalkanoate synthesis. These results demonstrate the utility of investigating the derived genome of a lineage to identify key transitions leading to an extant complex phenotype. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 USDOE AC02-05CH11231 |
ISSN: | 1751-7362 1751-7370 |
DOI: | 10.1038/ismej.2016.67 |