Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems
Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grow...
Saved in:
Published in | Plants (Basel) Vol. 8; no. 1; p. 24 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
18.01.2019
MDPI |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. |
---|---|
AbstractList | Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition.Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat (Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat ( Triticum aestivum L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The present study was carried out to understand the oxidative damage and antioxidant defense in wheat ( L. cv. BARI Gom-25) grown under different pH regimes. Eight-day-old seedlings were exposed to growing media with different pH levels (4.0, 5.5, 7.0, and 8.5). Seedlings grown in pH 4.0 and in pH 8.5 showed reductions in biomass, water, and chlorophyll contents; whereas plants grown at pH 7.0 (neutral) exhibited a better performance. Extremely acidic (pH 4.0) and/or strongly alkaline (pH 8.5)-stress also increased oxidative damage in wheat by excess reactive oxygen species (ROS) generation and methylglyoxal (MG) production, which increased lipid peroxidation and disrupted the redox state. In contrary, the lowest oxidative damage was observed at a neutral condition, followed by a strong acidic condition (pH 5.5), which was mainly attributed to the better performance of the antioxidant defense and glyoxalase systems. Interestingly, seedlings grown at pH 5.5 showed a significant increase in morphophysiological attributes compared with extreme acidic (pH 4.0)- and strong alkaline (pH 8.5)-stress treatments, which indicates the tolerance of wheat to the acidic condition. |
Author | Hossain, Md. Shahadat Bhuiyan, Tasnim Farha Bhuyan, M. H. M. Borhannuddin Mahmud, Jubayer Al Hasanuzzaman, Mirza Fujita, Masayuki |
AuthorAffiliation | 2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh 1 Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; razon_sau@yahoo.com (M.H.M.B.B.); shahadatsau24@gmail.com (M.S.H.) 4 Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; jamahmud_bd@yahoo.com 3 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; mhzsauag@yahoo.com 5 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com |
AuthorAffiliation_xml | – name: 2 Citrus Research Station, Bangladesh Agricultural Research Institute, Jaintapur, Sylhet 3156, Bangladesh – name: 3 Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; mhzsauag@yahoo.com – name: 4 Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; jamahmud_bd@yahoo.com – name: 5 Department of Agricultural Botany, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh; farhatasnim28@gmail.com – name: 1 Laboratory of Plant Stress Response, Department of Applied Biological Sciences, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Kagawa 761-0795, Japan; razon_sau@yahoo.com (M.H.M.B.B.); shahadatsau24@gmail.com (M.S.H.) |
Author_xml | – sequence: 1 givenname: M. H. M. Borhannuddin orcidid: 0000-0002-7602-3087 surname: Bhuyan fullname: Bhuyan, M. H. M. Borhannuddin – sequence: 2 givenname: Mirza orcidid: 0000-0002-0461-8743 surname: Hasanuzzaman fullname: Hasanuzzaman, Mirza – sequence: 3 givenname: Jubayer Al surname: Mahmud fullname: Mahmud, Jubayer Al – sequence: 4 givenname: Md. Shahadat surname: Hossain fullname: Hossain, Md. Shahadat – sequence: 5 givenname: Tasnim Farha surname: Bhuiyan fullname: Bhuiyan, Tasnim Farha – sequence: 6 givenname: Masayuki surname: Fujita fullname: Fujita, Masayuki |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30669317$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUk1vEzEQXaEiWkqPXJElLlxS_Lkbc0AKobSVgpCgPVteezZxtWtv7U2U_Bz-KU5SqqYSwrLkN_ab5xn7vS6OfPBQFG8JPmdM4o99q_2QxphgTPmL4oRSykZVxaujJ_i4OEvpDucxzpOUr4pjhstSMlKdFL9vfdQraJ2fo-8h9ovQLzbJhTbMndEt0t6iLy6YBXS7-CekPvgECYUG3UQ3OLPskIY0uFUGs3M0BHSxHiJ0gPqrT2gaQrTO6wEsmpjB5eRt6sRnuHY214--QgNZcnfXZbsJa93qHP7apAG69KZ42eg2wdnDelrcfru4mV6NZj8ur6eT2cgIwodRxYwW2EpLWSlshjW2ppEN1JJjAEKhMozTMSGV4Vg0QjIxFrohZFzW1Gp2WlzvdW3Qd6qPrtNxo4J2arcR4lzpmNttQRFrx5XE3NIa88aImpe0tBwkyFqKWmatz3utfll3YA34Ier2QPTwxLuFmoeVKpmQlLMs8OFBIIb7ZX5d1blkoM3_DWGZFGW0krKiUvyfSirJaSnKLfX9M-pdWEafX1VRIXB2DKHb4t89Lf6x6r-myYTRnmBiSClC80ghWG19qQ58mfnsGd-4QW-tkHt37T-y_gDPz-oR |
CitedBy_id | crossref_primary_10_1134_S1021443720010033 crossref_primary_10_1016_j_jhazmat_2020_123020 crossref_primary_10_31857_S036705972302004X crossref_primary_10_1134_S1067413623020042 crossref_primary_10_1016_j_scitotenv_2022_161039 crossref_primary_10_30766_2072_9081_2024_25_4_592_601 crossref_primary_10_1016_j_eti_2024_103753 crossref_primary_10_1007_s12298_019_00678_0 crossref_primary_10_1134_S1021443724606232 crossref_primary_10_31857_S0015330324040113 crossref_primary_10_32604_phyton_2021_013259 crossref_primary_10_1007_s42729_023_01603_x crossref_primary_10_1016_j_envpol_2021_118513 crossref_primary_10_1111_ppl_13950 crossref_primary_10_1007_s11104_021_05047_z |
Cites_doi | 10.3389/fpls.2016.01341 10.1007/s00709-012-0386-6 10.1007/s00216-012-6086-4 10.1007/s11104-017-3549-6 10.3389/fpls.2017.00115 10.1080/07352689.2014.904147 10.1007/s00709-010-0144-6 10.1007/s12011-012-9419-4 10.1016/0167-4838(92)90429-H 10.1007/s11099-014-0002-4 10.1016/j.ecoenv.2017.06.010 10.1007/BF00010712 10.1371/journal.pone.0116971 10.3389/fpls.2015.00682 10.1105/tpc.109.069609 10.1146/annurev-arplant-043014-114822 10.1071/FP03091 10.1073/pnas.1110189108 10.1071/BI9620413 10.1016/j.plaphy.2018.02.021 10.1134/S102144371302009X 10.1007/s11033-012-2403-4 10.1016/0003-9861(68)90654-1 10.1016/0003-2697(76)90527-3 10.3389/fgene.2017.00141 10.1104/pp.24.1.1 10.1134/S1021443711040169 10.1016/S2095-3119(15)61325-9 10.1016/S0147-6513(02)00123-9 10.1007/BF00018060 10.1080/17429145.2017.1362052 10.1007/s10535-012-0271-3 10.1016/j.scienta.2011.07.006 10.1111/pbi.12173 10.1007/s11738-011-0882-x 10.1007/s11356-015-4532-5 10.1016/0167-4838(87)90076-8 10.3390/ijms18010200 10.1007/s10646-016-1740-9 10.1016/S0176-1617(11)81192-2 10.26651/allelo.j./2017-42-2-1116 10.1007/s11099-009-0013-8 10.1093/aob/mcq134 10.5772/45842 10.1080/01904168909364043 10.1007/s11099-008-0018-8 10.1016/j.plaphy.2010.08.016 10.1093/jxb/erv437 |
ContentType | Journal Article |
Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2019 by the authors. 2019 |
Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2019 by the authors. 2019 |
DBID | AAYXX CITATION NPM 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PYCSY 7X8 7S9 L.6 5PM DOA |
DOI | 10.3390/plants8010024 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information Biological Science Collection ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic Agricultural Science Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_1dd87904d2b04fc5b4626d4e9e9b95b9 PMC6359243 30669317 10_3390_plants8010024 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 7X2 7XC 8FE 8FH AADQD AAHBH AAYXX ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU CITATION ECGQY GROUPED_DOAJ HCIFZ HYE KQ8 LK8 M0K M48 M7P MODMG M~E OK1 PATMY PGMZT PHGZM PHGZT PIMPY PROAC PYCSY RPM NPM 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 5PM PUEGO |
ID | FETCH-LOGICAL-c514t-73ca50d9d2365da50b0dcf9feb940ee12e7c3428117c405f593585af1186b2da3 |
IEDL.DBID | DOA |
ISSN | 2223-7747 |
IngestDate | Wed Aug 27 01:32:34 EDT 2025 Thu Aug 21 14:13:11 EDT 2025 Thu Jul 10 22:02:33 EDT 2025 Thu Jul 10 22:51:58 EDT 2025 Fri Jul 25 09:28:43 EDT 2025 Thu Jan 02 23:01:35 EST 2025 Tue Jul 01 00:40:01 EDT 2025 Thu Apr 24 23:05:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | methylglyoxal phytotoxicity acidity antioxidant defense alkalinity reactive oxygen species |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-73ca50d9d2365da50b0dcf9feb940ee12e7c3428117c405f593585af1186b2da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7602-3087 0000-0002-0461-8743 |
OpenAccessLink | https://doaj.org/article/1dd87904d2b04fc5b4626d4e9e9b95b9 |
PMID | 30669317 |
PQID | 2550222129 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1dd87904d2b04fc5b4626d4e9e9b95b9 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6359243 proquest_miscellaneous_2327997295 proquest_miscellaneous_2179426565 proquest_journals_2550222129 pubmed_primary_30669317 crossref_primary_10_3390_plants8010024 crossref_citationtrail_10_3390_plants8010024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190118 |
PublicationDateYYYYMMDD | 2019-01-18 |
PublicationDate_xml | – month: 1 year: 2019 text: 20190118 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2019 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Yang (ref_23) 2009; 47 Heath (ref_44) 1968; 125 Xu (ref_38) 2013; 250 Nahar (ref_19) 2017; 26 Bradford (ref_50) 1976; 72 Doderer (ref_51) 1992; 112 Viveros (ref_20) 2013; 40 ref_18 Barrs (ref_48) 1962; 15 ref_59 Mahmud (ref_21) 2017; 144 Arnon (ref_46) 1949; 24 Zhang (ref_30) 2017; 8 Shi (ref_36) 2006; 5 Gill (ref_15) 2010; 48 Shah (ref_40) 2017; 8 Hasanuzzaman (ref_17) 2017; 8 Kaur (ref_41) 2015; 6 Hasanuzzaman (ref_14) 2017; 12 Ivanov (ref_13) 2013; 60 Gill (ref_34) 2015; 22 Wild (ref_58) 2012; 403 Amist (ref_32) 2017; 42 Wang (ref_24) 2011; 130 ref_26 Yang (ref_9) 2010; 22 Elia (ref_54) 2003; 55 Zheng (ref_5) 2010; 106 Bates (ref_49) 1973; 39 Nakano (ref_55) 1981; 22 Wellburn (ref_47) 1994; 144 ref_33 Martins (ref_35) 2013; 57 Yu (ref_45) 2003; 30 Kumar (ref_52) 2010; 245 Hoque (ref_42) 2016; 7 Kaur (ref_43) 2014; 33 Hossain (ref_56) 1984; 25 Song (ref_11) 2011; 58 Principato (ref_57) 1987; 911 Kochian (ref_22) 2015; 66 Hasanuzzaman (ref_53) 2018; 126 Shavrukov (ref_6) 2015; 67 Zhang (ref_12) 2016; 15 Pryor (ref_37) 1976; Volume 1 Pavlovkin (ref_28) 2012; 7 ref_1 ref_3 Wilkinson (ref_7) 1989; 12 Hasanuzzaman (ref_16) 2012; 149 ref_2 Marschner (ref_25) 1991; 134 Gong (ref_27) 2014; 12 Wu (ref_31) 2014; 52 Zhang (ref_29) 2015; 10 Yang (ref_8) 2008; 46 Joliot (ref_10) 2011; 108 ref_4 Varga (ref_39) 2012; 34 |
References_xml | – volume: 7 start-page: 1341 year: 2016 ident: ref_42 article-title: Methylglyoxal: An emerging signaling molecule in plant abiotic stress responses and tolerance publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01341 – volume: 250 start-page: 415 year: 2013 ident: ref_38 article-title: Organization of actin cytoskeleton during meiosis I in a wheat thermo-sensitive genic male sterile line publication-title: Protoplasma doi: 10.1007/s00709-012-0386-6 – volume: 403 start-page: 2577 year: 2012 ident: ref_58 article-title: A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: The N-acetyl-l-cysteine assay publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-012-6086-4 – ident: ref_26 doi: 10.1007/s11104-017-3549-6 – volume: 8 start-page: 115 year: 2017 ident: ref_17 article-title: Hydrogen peroxide pretreatment mitigates cadmium-induced oxidative stress in Brassica napus L.: An intrinsic study on antioxidant defense and glyoxalase systems publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00115 – volume: 25 start-page: 385 year: 1984 ident: ref_56 article-title: Monodehydroascorbate reductase in spinach chloroplasts and its participation in the regeneration of ascorbate for scavenging hydrogen peroxide publication-title: Plant Cell Physiol. – volume: 33 start-page: 429 year: 2014 ident: ref_43 article-title: Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance publication-title: Crit. Rev. Plant Sci. doi: 10.1080/07352689.2014.904147 – volume: 245 start-page: 85 year: 2010 ident: ref_52 article-title: Redox homeostasis, antioxidant defense, and methylglyoxal detoxification as markers for salt tolerance in Pokkali rice publication-title: Protoplasma doi: 10.1007/s00709-010-0144-6 – volume: 149 start-page: 248 year: 2012 ident: ref_16 article-title: Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems publication-title: Biol. Trace Elem. Res. doi: 10.1007/s12011-012-9419-4 – volume: 112 start-page: 97 year: 1992 ident: ref_51 article-title: Purification and characterization of two lipoxygenase isoenzymes from germinating barley publication-title: Biochim. Biophys. Acta doi: 10.1016/0167-4838(92)90429-H – volume: 52 start-page: 157 year: 2014 ident: ref_31 article-title: Photosynthesis, photosystem II efficiency, amino acid metabolism and ion distribution in rice (Oryza sativa L.) in response to alkaline stress publication-title: Photosynthetica doi: 10.1007/s11099-014-0002-4 – volume: 144 start-page: 216 year: 2017 ident: ref_21 article-title: Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.06.010 – ident: ref_4 – volume: 134 start-page: 1 year: 1991 ident: ref_25 article-title: Mechanisms of adaptation of plants to acid soils publication-title: Plant Soil doi: 10.1007/BF00010712 – volume: 10 start-page: e0116971 year: 2015 ident: ref_29 article-title: Low pH-induced changes of antioxidant enzyme and ATPase activities in the roots of rice (Oryza sativa L.) seedlings publication-title: PloS ONE doi: 10.1371/journal.pone.0116971 – volume: 6 start-page: 682 year: 2015 ident: ref_41 article-title: Analysis of global gene expression profile of rice in response to methylglyoxal indicates its possible role as a stress signal molecule publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00682 – volume: 22 start-page: 1313 year: 2010 ident: ref_9 article-title: The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 kinase publication-title: Plant Cell doi: 10.1105/tpc.109.069609 – ident: ref_59 – volume: 66 start-page: 571 year: 2015 ident: ref_22 article-title: Plant adaptation to acid soils: the molecular basis for crop aluminum resistance publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-043014-114822 – volume: 30 start-page: 955 year: 2003 ident: ref_45 article-title: Hydrogen peroxide induced chilling tolerance in mung beans mediated through ABA-independent glutathione accumulation publication-title: Func. Plant Biol. doi: 10.1071/FP03091 – volume: 108 start-page: 13317 year: 2011 ident: ref_10 article-title: Regulation of cyclic and linear electron flow in higher plants publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1110189108 – volume: 15 start-page: 413 year: 1962 ident: ref_48 article-title: A re-examination of the relative turgidity technique for estimating water deficits in leaves publication-title: Aust. J. Biol. Sci. doi: 10.1071/BI9620413 – ident: ref_3 – volume: 126 start-page: 173 year: 2018 ident: ref_53 article-title: Exogenous nitric oxide pretreatment protects Brassica napus L. seedlings from paraquat toxicity through the modulation of antioxidant defense and glyoxalase systems publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2018.02.021 – volume: 60 start-page: 260 year: 2013 ident: ref_13 article-title: Effect of mineral composition and medium pH on Scots pine tolerance to toxic effect of zinc ions publication-title: Russ. J. Plant Physiol. doi: 10.1134/S102144371302009X – volume: 40 start-page: 3281 year: 2013 ident: ref_20 article-title: Overexpression of GlyI and GlyII genes in transgenic tomato (Solanum lycopersicum Mill.) plants confers salt tolerance by decreasing oxidative stress publication-title: Mol. Biol. Rep. doi: 10.1007/s11033-012-2403-4 – volume: 125 start-page: 189 year: 1968 ident: ref_44 article-title: Photo peroxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 22 start-page: 867 year: 1981 ident: ref_55 article-title: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts publication-title: Plant Cell Physiol. – volume: 72 start-page: 248 year: 1976 ident: ref_50 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding publication-title: Anal. Biochem. doi: 10.1016/0003-2697(76)90527-3 – volume: 8 start-page: 141 year: 2017 ident: ref_40 article-title: Redox and ionic homeostasis regulations against oxidative, salinity and drought stress in wheat (A Systems Biology Approach) publication-title: Front. Genet. doi: 10.3389/fgene.2017.00141 – volume: 24 start-page: 1 year: 1949 ident: ref_46 article-title: Copper enzymes in isolated chloroplasts polyphenal oxidase in Beta vulgaris publication-title: Plant Physiol. doi: 10.1104/pp.24.1.1 – volume: 58 start-page: 653 year: 2011 ident: ref_11 article-title: Protein carbonylation in barley seedling roots caused by aluminum and proton toxicity is suppressed by salicylic acid publication-title: Russ. J. Plant Physiol. doi: 10.1134/S1021443711040169 – volume: 15 start-page: 1499 year: 2016 ident: ref_12 article-title: Comprehensive evaluation of tolerance to alkali stress by 17 genotypes of apple rootstocks publication-title: J. Integr. Agric. doi: 10.1016/S2095-3119(15)61325-9 – volume: 55 start-page: 162 year: 2003 ident: ref_54 article-title: Antioxidant responses and bioaccumulation in Ictalurus melas under mercury exposure publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/S0147-6513(02)00123-9 – volume: 39 start-page: 205 year: 1973 ident: ref_49 article-title: Rapid determination of free proline for water-stress studies publication-title: Plant Soil doi: 10.1007/BF00018060 – volume: 12 start-page: 323 year: 2017 ident: ref_14 article-title: Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed publication-title: J. Plant Interact. doi: 10.1080/17429145.2017.1362052 – ident: ref_33 – volume: 57 start-page: 325 year: 2013 ident: ref_35 article-title: Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress publication-title: Biol. Plant doi: 10.1007/s10535-012-0271-3 – volume: 130 start-page: 248 year: 2011 ident: ref_24 article-title: Physiological responses and adaptive strategies of tomato plants to salt and alkali stresses publication-title: Sci. Hort. doi: 10.1016/j.scienta.2011.07.006 – volume: 12 start-page: 694 year: 2014 ident: ref_27 article-title: Overexpression of S-adenosyl-l-methionine synthetase increased tomato tolerance to alkali stress through polyamine metabolism publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12173 – ident: ref_2 – volume: 34 start-page: 849 year: 2012 ident: ref_39 article-title: Influence of abiotic stresses on the antioxidant enzyme activity of cereals publication-title: Acta Physiol. Plant doi: 10.1007/s11738-011-0882-x – volume: 22 start-page: 10375 year: 2015 ident: ref_34 article-title: Superoxide dismutase—mentor of abiotic stress tolerance in crop plants publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-015-4532-5 – volume: 5 start-page: 767 year: 2006 ident: ref_36 article-title: Combined effects of excess Mn and low pH on oxidative stress and antioxidant enzymes in cucumber roots publication-title: J. Integr. Agri. – volume: 911 start-page: 349 year: 1987 ident: ref_57 article-title: Purification and characterization of two forms of glyoxalase II from the liver and brain of Wistar rats publication-title: Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. doi: 10.1016/0167-4838(87)90076-8 – ident: ref_18 doi: 10.3390/ijms18010200 – volume: 26 start-page: 58 year: 2017 ident: ref_19 article-title: Polyamines-induced aluminum tolerance in mung bean: A study on antioxidant defense and methylglyoxal detoxification systems publication-title: Ecotoxicology doi: 10.1007/s10646-016-1740-9 – volume: Volume 1 start-page: 51 year: 1976 ident: ref_37 article-title: Free radical mechanisms of lipid damage and consequences for cellular membranes publication-title: Free Radicals in Biology – volume: 144 start-page: 307 year: 1994 ident: ref_47 article-title: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(11)81192-2 – volume: 42 start-page: 195 year: 2017 ident: ref_32 article-title: Responses of enzymes involved in proline biosynthesis and degradation in wheat seedlings under stress publication-title: Allelopathy J. doi: 10.26651/allelo.j./2017-42-2-1116 – volume: 47 start-page: 79 year: 2009 ident: ref_23 article-title: Comparative effects of salt stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants publication-title: Photosynthetica doi: 10.1007/s11099-009-0013-8 – volume: 8 start-page: 185 year: 2017 ident: ref_30 article-title: Effects of ow pH on photosynthesis, related physiological parameters, and nutrient profiles of Citrus publication-title: Front Plant Sci. – volume: 106 start-page: 183 year: 2010 ident: ref_5 article-title: Crop production on acidic soils: overcoming aluminium toxicity and phosphorus deficiency publication-title: Ann. Bot. doi: 10.1093/aob/mcq134 – ident: ref_1 doi: 10.5772/45842 – volume: 12 start-page: 1379 year: 1989 ident: ref_7 article-title: Sorghum seedling growth as influenced by H+, Ca2+, and Mn2+ concentrations publication-title: J. Plant Nutr. doi: 10.1080/01904168909364043 – volume: 46 start-page: 107 year: 2008 ident: ref_8 article-title: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat publication-title: Photosynthetica doi: 10.1007/s11099-008-0018-8 – volume: 7 start-page: 1046 year: 2012 ident: ref_28 article-title: Cellular responses of two Latin-American cultivars of Lotus corniculatus to low pH and Al stress publication-title: Cent. Eur. J. Biol. – volume: 48 start-page: 909 year: 2010 ident: ref_15 article-title: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2010.08.016 – volume: 67 start-page: 15 year: 2015 ident: ref_6 article-title: Good and bad protons: genetic aspects of acidity stress responses in plants publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv437 |
SSID | ssj0000800816 |
Score | 2.193908 |
Snippet | Soil pH, either low (acidity) or high (alkalinity), is one of the major constraints that affect many biochemical and biological processes within the cell. The... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 24 |
SubjectTerms | Abiotic stress Acidity Alkalinity antioxidant activity antioxidant defense Antioxidants Biological activity Biomass Chlorophyll Crops Damage Enzymes growing media Lipid peroxidation Lipids methylglyoxal Oxidative stress Peroxidation pH effects Physiology phytotoxicity Pyruvaldehyde Reactive oxygen species Redox properties Seedlings Soil chemistry Soil pH Triticum aestivum Wheat |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdg44EXxDcZAxkJ8URY7Dgf5gW1o6NCbELTKu0tSvwxKpW4W1PU_Tn8p9w5aSAI9hbFVyXp2Xe_3_l8R8hrmzNW8awMLWMmFIKXYQ6eOoyVkJmJcpv4lP_jk3Q6E5_Pk_Mu4Lbq0iq3NtEbau0UxsgPAPoiNwH39GF5GWLXKNxd7Vpo3Ca7MJID-dodT06-nvZRFsRDOUvb4pox8PuD5QLzS8Auo3caOCNfs_9fQPPvfMk_HNDRfXKvQ4501Kr6Abll6ofkztgBurt-RH7OamwkhIfL6bGDP8_5mMXWtNGy1nQ8x_ZYvj4APW1zY82KOkvPfL-D9XdaYs2NH3Dx5R1tHJ1sGgwf0uX0PT10QFPnNUBTTUf-MIT_6QizJTdzDZ9LPxoLpNj4Z31aXLsNntE0tCuK_pjMjiZnh9Owa78QKkBRTZjF2C5BS83jNNFwWUVaWWlNJUVkDOMmUzGwF8YyBbDPJrilmpSg9DytuC7jJ2SndrV5RmiWlSySXCmAk8IKWdlEGYsJGjzl1tiAvN3qoVBdbXJskbEogKOg2oqB2gLyphdftkU5_ic4RqX2QlhL299wVxdFtzQLpnWeyUhoXkXCqqQSQPK0MNLISiaVDMj-dkoU3QJfFb-nY0Be9cOwNHG_payNW4MMGjsOgDm5QSbmGZ5dliDztJ1l_dsCm0sl4LuAZIP5N_ic4Ug9_-ZLhAOMBGId79386s_JXcB_mC8Xsnyf7DRXa_MCMFZTvewW0i8j-iwu priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELVg4cAF8U1hQUZCnMgSO04cIyHULrtUiHJAW2lvUeKPpajEpZui9ufwT5lx0kJg4cQtSiZqnfF43kvGbwh56nLGKi7LyDFmIyF4GeWQqaNECyVtnLs0lPxPPmTjqXh3mp7-lBTqHuD5hdQO-0lNl_OD9dfNawj4V8g4gbK_WMyxZASWWkw4l8kVSEoSY3TSIf3PHTDKWdaqbP55Vy8rBfH-ixDn74WTv2Si4xvkegch6bD1-U1yyda3yNWRB5i3uU2-T2vsKIS7zOnEw1P04eXFdo2jZW3oaIZ9soJQAP3YFsnac-odPQmND1ZfaIniG9_g4P0BbTw9Wjf4HpEuxi_poQe-OqsBoxo6DLsiwq1DLJtczwwMl76xDtixDb_1dr7xa9ysaWmnjn6HTI-PTg7HUdeHIdIAp5pIJtg3wSjDkyw1cFjFRjvlbKVEbC3jVuoEaAxjUgP-cyl-W01L8H6eVdyUyV2yV_va3idUypLFimsNuFI4oSqXauuwUoNn3Fk3IM-3fih0J1KOvTLmBZAVdFvRc9uAPNuZL1p1jr8ZjtCpOyMU1Q4n_PKs6GK0YMbkUsXC8CoWTqeVALZnhFVWVSqt1IDsb6dEsZ2oBVAy5MwAmwbkye4yxCh-eClr61dgg6seB-Sc_sMm4RI3MSuwudfOst2_BVqXKQB6AyJ78683nP6VevYpaIUDngSGnTz4H-N_SK4BXMTyuojl-2SvWa7sI4BkTfU4BNsPHxY7TQ priority: 102 providerName: Scholars Portal |
Title | Unraveling Morphophysiological and Biochemical Responses of Triticum aestivum L. to Extreme pH: Coordinated Actions of Antioxidant Defense and Glyoxalase Systems |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30669317 https://www.proquest.com/docview/2550222129 https://www.proquest.com/docview/2179426565 https://www.proquest.com/docview/2327997295 https://pubmed.ncbi.nlm.nih.gov/PMC6359243 https://doaj.org/article/1dd87904d2b04fc5b4626d4e9e9b95b9 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQwoEL4k1gWRkJcSJs7DhxzK1dulSIrtBqK-0til-iqCQVm6Luz-GfMuOkVYN4XLhUUTNV48zY_r5k5htCXvqCMc1lFXvGXCwEr-ICduo4NUJJlxQ-Cyn_s7N8OhcfLrPLvVZfmBPWyQN3N-6YWVtIlQjLdSK8ybQACG6FU05plelQugd73h6Z-tLjoILlnahmCrz-eLXEvBJYj3FXGmxCQav_dwDz1zzJvY3n9C650yNGOuqu9B654er75Na4AVR3_YD8mNfYQAiLyumsgZvWhGcV2yWNVrWl4wW2xQq6APS8y4l1V7Tx9CL0OVh_pRVqbXyHg49vaNvQyabFx4Z0NX1LTxqgp4saIKmlo1AEEX46wizJzcLCcOk754EMu_Bf75fXzQZrMx3txdAfkvnp5OJkGvdtF2ID6KmNZYptEqyyPM0zC4c6scYr77QSiXOMO2lSYC2MSQNwz2f4KjWrwNlFrrmt0kfkoG5q94RQKSuWKG4MwEjhhdI-M85jYgbPuXc-Iq-3fihNr0mOrTGWJXATdFs5cFtEXu3MV50Yx58Mx-jUnRFqaIcvILLKPrLKf0VWRA63IVH2E_uqBAaGFBlQUkRe7E7DlMT3LFXtmjXY4CLHAShnf7FJucSaZQU2j7so210tsLhcAa6LiBzE32A4wzP14nOQBgf4CIQ6ffo_xv-M3AZ0iNl0MSsOyUH7be2eAwJr9RG5OZ6cfTo_CpMOPmei-AkjsDYN |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGhwQviG8KA4wEPJEtcZwPIyHUbh0days0tdLeQhLbW6USl7WF9s_hH-Bv5M5JCkWwt71FySWxc5e739n3QchLHXtexqLU0Z6nHM5Z6sRgqR0_5yJSbqwDG_LfH4TdEf94GpxukZ91LgyGVdY60SpqaXJcI98D6Iu-CZin99OvDnaNwt3VuoVGKRbHavUdXLbZu6MD4O8rxg47w_2uU3UVcHIAB3Mn8rELgBSS-WEg4TBzZa6FVpngrlIeU1HuAyj3vCgHNKMD3CkMUphLHGZMpj489xrZ5j64Mg2y3e4MPp2sV3UQf8VeWBbz9H3h7k0nGM8CdgCt4Ybxsz0C_gVs_47P_MPgHd4mtyqkSlulaN0hW6q4S663DaDJ1T3yY1Rg4yJMZqd9A8wydo2kVqU0LSRtj7Edl61HQE_KWFw1o0bToe2vsPhCU6zx8Q0Oert0bmhnOcflSjrtvqX7Br7xuAAoLGnLJl_YW1sYnbkcS5guPVAanHBl3_VhsjJLzAlVtCrCfp-MroQxD0ijMIV6RGgUpZ4rWJ4DfOWai0wHudIYEMJCppVukjc1H5K8qoWOLTkmCfhEyLZkg21N8npNPi2LgPyPsI1MXRNh7W57wlycJZUqSDwp40i4XLLM5ToPMg5OpeRKKJGJIBNNslOLRFIplFnyW_yb5MX6MqgC3N9JC2UWQIPKlQFADy6h8VmEudICaB6WUrYeLXiPoQA82STRhvxtTGfzSjE-tyXJAbaCI-8_vnzoz8mN7rDfS3pHg-Mn5CZgT4zVc7x4hzTmFwv1FPDdPHtW_VSUfL7q__gXsu1ouQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VFKG-IG4CBRYJeMLEuz4XCaGkSUhpG1VVI_XN2HuUSMEbmgSSn8Pf4Ncx4yMQBH3rm2WPj_XMznyzOwchL0zMWMaj1DGMacf3eerEYKkdT_oi0m5sgiLk_2gYDkb-x7PgbIv8rHNhMKyy1omFolZW4hp5C6Av-iZgnlqmCos47vbfT7862EEKd1rrdhqliBzo1Xdw32bv9rvA65ec93unewOn6jDgSAAKcyfysCOAEop7YaDgMHOVNMLoTPiu1ozrSHoA0BmLJCAbE-CuYZDCuOIw4yr14LnXyHYEXpHbINud3vD4ZL3Cg1gsZmFZ2NPzhNuaTjC2BWwCWsYNQ1j0C_gXyP07VvMP49e_RW5WqJW2SzG7TbZ0fodc71hAlqu75McoxyZGmNhOjywwzhbrJbVapWmuaGeMrbmK2gT0pIzL1TNqDT0tei0svtAU6318g4PDN3RuaW85x6VLOh28pXsW_vE4B1isaLtIxChubWOk5nKsYLi0qw045Lp414fJyi4xP1TTqiD7PTK6EsbcJ43c5vohoVGUMldwKQHK-sYXmQmkNhgcwkNutGmS1zUfElnVRcf2HJME_CNkW7LBtiZ5tSaflgVB_kfYQaauibCOd3HCXpwnlVpImFJxJFxf8cz1jQwyHxxM5WuhRSaCTDTJbi0SSaVcZsnvqdAkz9eXQS3gXk-aa7sAGlS0HMB6cAmNxyPMmxZA86CUsvXXgicZCsCWTRJtyN_GcDav5OPPRXlygLDg1HuPLv_0Z-QGzN_kcH948JjsAAzFsD2HxbukMb9Y6CcA9ebZ02pOUfLpqqfxLzbGbO4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unraveling+Morphophysiological+and+Biochemical+Responses+of+Triticum+aestivum+L.+to+Extreme+pH%3A+Coordinated+Actions+of+Antioxidant+Defense+and+Glyoxalase+Systems&rft.jtitle=Plants+%28Basel%29&rft.au=M.+H.+M.+Borhannuddin+Bhuyan&rft.au=Mirza+Hasanuzzaman&rft.au=Jubayer+Al+Mahmud&rft.au=Md.+Shahadat+Hossain&rft.date=2019-01-18&rft.pub=MDPI+AG&rft.eissn=2223-7747&rft.volume=8&rft.issue=1&rft.spage=24&rft_id=info:doi/10.3390%2Fplants8010024&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1dd87904d2b04fc5b4626d4e9e9b95b9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |