Sleep stage classification using single-channel EOG

Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employ...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 102; pp. 211 - 220
Main Authors Rahman, Md Mosheyur, Bhuiyan, Mohammed Imamul Hassan, Hassan, Ahnaf Rashik
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. •A single-channel Electrooculography based automated sleep scoring method is proposed.•Discrete Wavelet Transform is employed for time-frequency decomposition of the Electrooculography signals.•A feature reduction technique based on Neighborhood Component Analysis is used to reduce the number of features.•The performance of the proposed scheme is promising.•The proposed scheme can be used for sleep stage detection in ambulatory sleep studies and mobile applications.
AbstractList Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.
Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.
Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. •A single-channel Electrooculography based automated sleep scoring method is proposed.•Discrete Wavelet Transform is employed for time-frequency decomposition of the Electrooculography signals.•A feature reduction technique based on Neighborhood Component Analysis is used to reduce the number of features.•The performance of the proposed scheme is promising.•The proposed scheme can be used for sleep stage detection in ambulatory sleep studies and mobile applications.
AbstractSleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.
Author Hassan, Ahnaf Rashik
Rahman, Md Mosheyur
Bhuiyan, Mohammed Imamul Hassan
Author_xml – sequence: 1
  givenname: Md Mosheyur
  surname: Rahman
  fullname: Rahman, Md Mosheyur
  email: mosheyur1355@gmail.com
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
– sequence: 2
  givenname: Mohammed Imamul Hassan
  surname: Bhuiyan
  fullname: Bhuiyan, Mohammed Imamul Hassan
  email: imamhas@gmail.com
  organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh
– sequence: 3
  givenname: Ahnaf Rashik
  surname: Hassan
  fullname: Hassan, Ahnaf Rashik
  email: ahnafrashik.hassan@mail.utoronto.ca
  organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30170769$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJSTZp_kIw9NKLt6MvS76EtiFNC4Ec0p6FVh4n2mqlrWUX8u8rd5MWFgoLg3R559HwaE7JUUwRCakoLCnQ5v166dJmu_Jpg92SAdVLKMXYK7KgWrU1SC6OyAKAQi00kyfkNOc1AAjgcExOOFAFqmkXhN8HxG2VR_uAlQs2Z997Z0efYjVlHx-q-QhYu0cbI4bq-u7mDXnd25Dx_Pk-I98_X3-7-lLf3t18vfp4WztJxVgrTiXvkTZWNpRh31khxcq1ule0F8yBFW0rnBASbN_JldBSWd7KTnTgQCE_I-923O2Qfk6YR7Px2WEINmKasmHQaqWo4qpE3-5F12kaYpnOMMpkwxTTtKQunlPTqpgz28Fv7PBkXnSUwOUu4IaU84C9cX78I2McrA-Ggpn9m7X559_M_g2UYqwA9B7g5Y0DWj_tWrEo_eVxMNl5jA47P6AbTZf8IZDLPYgLPpYPDT_wCfNfKdRkZsDczxsyLwjVHJhgs8gP_wccNsNv3YvOTg
CitedBy_id crossref_primary_10_1016_j_bspc_2022_104150
crossref_primary_10_1016_j_bspc_2021_103061
crossref_primary_10_1007_s10489_021_02597_8
crossref_primary_10_3390_bioengineering10050573
crossref_primary_10_1016_j_cmpb_2019_105116
crossref_primary_10_1109_ACCESS_2020_2983917
crossref_primary_10_1016_j_cmpb_2019_04_032
crossref_primary_10_1016_j_cmpb_2024_108405
crossref_primary_10_3390_biomedinformatics2010007
crossref_primary_10_1109_ACCESS_2020_3000272
crossref_primary_10_2147_NSS_S401270
crossref_primary_10_1088_1361_6579_ac647b
crossref_primary_10_1016_j_heliyon_2022_e12136
crossref_primary_10_1109_JSEN_2024_3455943
crossref_primary_10_3390_ijms24119505
crossref_primary_10_3390_pr9122265
crossref_primary_10_3390_e27010076
crossref_primary_10_1007_s11042_023_18103_w
crossref_primary_10_1016_j_bspc_2024_106184
crossref_primary_10_1016_j_jneumeth_2020_108971
crossref_primary_10_1016_j_bspc_2022_103751
crossref_primary_10_1109_ACCESS_2019_2951028
crossref_primary_10_1016_j_knosys_2019_105333
crossref_primary_10_1145_3625238
crossref_primary_10_2139_ssrn_4887171
crossref_primary_10_32604_csse_2023_026482
crossref_primary_10_1088_1361_6579_ad4251
crossref_primary_10_3390_ijerph16040599
crossref_primary_10_1109_ACCESS_2021_3109780
crossref_primary_10_3390_ijerph19127176
crossref_primary_10_1016_j_bspc_2023_105062
crossref_primary_10_3390_jpm12020136
crossref_primary_10_1109_JBHI_2022_3157262
crossref_primary_10_1016_j_bspc_2022_104299
crossref_primary_10_1109_ACCESS_2019_2940627
crossref_primary_10_1007_s10055_021_00571_w
crossref_primary_10_1016_j_compbiomed_2023_107501
crossref_primary_10_3233_THC_212847
crossref_primary_10_1109_ACCESS_2019_2918560
crossref_primary_10_3390_e22030347
crossref_primary_10_1007_s42979_021_00528_5
crossref_primary_10_1016_j_smrv_2019_07_007
crossref_primary_10_1007_s42979_022_01156_3
crossref_primary_10_1016_j_eswa_2022_118752
crossref_primary_10_1109_ACCESS_2024_3424236
crossref_primary_10_1109_JIOT_2022_3146926
crossref_primary_10_1016_j_neures_2022_09_009
crossref_primary_10_3389_fgene_2020_00238
crossref_primary_10_3390_electronics12030571
crossref_primary_10_1016_j_bspc_2021_102898
crossref_primary_10_1109_ACCESS_2022_3180730
crossref_primary_10_1109_JBHI_2022_3208314
crossref_primary_10_1007_s11042_020_10199_8
crossref_primary_10_1016_j_bbe_2020_01_013
crossref_primary_10_3390_diagnostics13142358
crossref_primary_10_1088_1361_6579_ad2059
crossref_primary_10_1016_j_bbe_2020_01_010
crossref_primary_10_1016_j_irbm_2022_04_006
crossref_primary_10_1109_JBHI_2023_3240437
crossref_primary_10_1109_ACCESS_2025_3534235
crossref_primary_10_1016_j_bspc_2020_101998
crossref_primary_10_1515_bmt_2019_0001
crossref_primary_10_1007_s13755_024_00328_0
crossref_primary_10_1007_s00521_022_08037_z
crossref_primary_10_1515_bmt_2021_0408
crossref_primary_10_1016_j_bspc_2020_102171
crossref_primary_10_1016_j_bspc_2022_103819
crossref_primary_10_3390_s23073446
crossref_primary_10_1016_j_cmpb_2019_06_008
crossref_primary_10_1016_j_imu_2020_100370
crossref_primary_10_1016_j_sna_2023_114895
crossref_primary_10_1007_s13369_024_09623_0
crossref_primary_10_1109_TIM_2022_3177747
crossref_primary_10_3390_bios14080406
crossref_primary_10_1016_j_cmpb_2023_107992
crossref_primary_10_1049_htl2_12007
crossref_primary_10_3390_s20174677
crossref_primary_10_21015_vtse_v12i1_1593
crossref_primary_10_1007_s12539_019_00328_9
crossref_primary_10_1109_ACCESS_2020_3027289
crossref_primary_10_1109_JIOT_2024_3477732
crossref_primary_10_1080_03772063_2019_1568206
crossref_primary_10_1016_j_artmed_2020_101981
crossref_primary_10_1109_TIM_2025_3542109
crossref_primary_10_3390_e23010116
crossref_primary_10_1016_j_knosys_2021_106890
crossref_primary_10_1016_j_sleep_2024_09_025
crossref_primary_10_1109_ACCESS_2019_2939038
crossref_primary_10_1016_j_eswa_2019_04_039
crossref_primary_10_1515_bmt_2020_0139
crossref_primary_10_3390_bios12030155
crossref_primary_10_3390_ijerph19106322
crossref_primary_10_1016_j_bspc_2022_104009
crossref_primary_10_3390_ijerph19052845
crossref_primary_10_1109_JSEN_2022_3155345
crossref_primary_10_31590_ejosat_948124
crossref_primary_10_3389_fninf_2023_1123376
crossref_primary_10_1051_e3sconf_202343001020
crossref_primary_10_3390_bioengineering12030286
crossref_primary_10_1007_s11042_022_13195_2
crossref_primary_10_1016_j_bspc_2020_102318
crossref_primary_10_1016_j_bspc_2023_104688
crossref_primary_10_3389_fbioe_2023_1190211
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_32604_cmc_2022_021830
crossref_primary_10_1007_s11517_023_02943_7
crossref_primary_10_1016_j_bspc_2023_105647
crossref_primary_10_1109_TNSRE_2024_3438610
crossref_primary_10_1007_s10439_024_03486_0
crossref_primary_10_1088_1361_6579_ac6bdb
crossref_primary_10_3390_healthcare10040621
crossref_primary_10_1109_JBHI_2022_3228341
crossref_primary_10_7555_JBR_33_20190019
Cites_doi 10.1053/smrv.1999.0087
10.1007/BF00994018
10.1016/j.cmpb.2015.10.013
10.4172/2155-9821.1000216
10.1109/JBHI.2014.2303991
10.4304/jcp.7.1.161-168
10.1016/0013-4694(69)90021-2
10.1007/s11325-014-1060-3
10.1007/s10439-015-1444-y
10.1016/j.cmpb.2016.12.015
10.1007/s10916-008-9218-9
10.1109/LSP.2016.2542881
10.1016/j.jneumeth.2016.07.012
10.1093/sleep/30.11.1587
10.1109/TIM.2015.2433652
10.1007/s10527-007-0006-5
10.1161/01.CIR.101.23.e215
10.1109/TSMCA.2009.2029559
10.1007/978-981-10-0207-6_80
10.1016/j.smrv.2011.06.003
10.1016/j.jneumeth.2007.06.016
10.1109/TIM.2012.2187242
10.1023/A:1010933404324
10.1016/j.jneumeth.2011.12.022
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Ltd.
Copyright Elsevier Limited Nov 1, 2018
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Ltd.
– notice: Copyright Elsevier Limited Nov 1, 2018
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2018.08.022
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central (New)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Research Library Prep


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 220
ExternalDocumentID 30170769
10_1016_j_compbiomed_2018_08_022
S0010482518302427
1_s2_0_S0010482518302427
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.DC
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ARAPS
AXJTR
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SEL
SES
SPC
SPCBC
SSH
SSV
SSZ
T5K
UKHRP
WOW
Z5R
~G-
.55
.GJ
29F
3V.
53G
AACTN
AAQXK
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFCTW
AFJKZ
AFKWA
AJOXV
ALIPV
AMFUW
ASPBG
AVWKF
AZFZN
EMOBN
FEDTE
FGOYB
G-2
HLZ
HMK
HMO
HVGLF
HZ~
M0N
R2-
RIG
SAE
SBC
SEW
SV3
TAE
UAP
WUQ
X7M
XPP
ZGI
AAIAV
ABLVK
ABYKQ
EFLBG
LCYCR
AAYXX
AGQPQ
AGRNS
AIGII
APXCP
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-73153fe16a5612efda454bc98f71f42c0a4994c4450afd5b4857a395d4d0c07e3
IEDL.DBID 7X7
ISSN 0010-4825
1879-0534
IngestDate Sun Aug 24 04:04:38 EDT 2025
Wed Aug 13 03:06:37 EDT 2025
Wed Feb 19 02:33:34 EST 2025
Thu Apr 24 22:59:50 EDT 2025
Tue Jul 01 03:28:31 EDT 2025
Fri Feb 23 02:24:55 EST 2024
Sun Feb 23 10:19:11 EST 2025
Tue Aug 26 16:33:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords AR model
Electrooculogram (EOG)
Discrete Wavelet Transform (DWT)
Neighborhood Component Analysis (NCA)
Random forest
Support Vector Machine
Random Under Sampling Boosting (RUSboost)
Language English
License Copyright © 2018. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-73153fe16a5612efda454bc98f71f42c0a4994c4450afd5b4857a395d4d0c07e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 30170769
PQID 2125627281
PQPubID 1226355
PageCount 10
ParticipantIDs proquest_miscellaneous_2098771737
proquest_journals_2125627281
pubmed_primary_30170769
crossref_citationtrail_10_1016_j_compbiomed_2018_08_022
crossref_primary_10_1016_j_compbiomed_2018_08_022
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2018_08_022
elsevier_clinicalkeyesjournals_1_s2_0_S0010482518302427
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2018_08_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Hassan, Bhuiyan (bib12) 2016; 271
Khalighi, Sousa, Santos, Nunes (bib28) 2016; 124
W. Yang, K. Wang, W. Zuo, Neighborhood component feature selection for high-dimensional data, J. Comput. 7 (1).
Physionet, Sleep-edf database, (Accessed on 01/19/2018/). URL
Bulling, Roggen, Tröster (bib14) 2009
Olesen, Christensen, Sorensen, Jennum (bib24) 2016
Penzel, Conradt (bib3) 2000; 4
Azami, Rostaghi, Abasolo, Escudero (bib30) 2017; 64
Ronzhina, Janouek, Kolov, Novkov, Honzk, Provaznk (bib6) 2012; 16
Liang, Kuo, Hu, Pan, Wang (bib5) 2012; 61
Hassan, Bashar, Bhuiyan (bib37) 2015
Tsinalis, Matthews, Guo (bib13) 2016; 44
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib25) 2000; 101
Breiman (bib35) 2001; 45
Kuo, Liang, Lee, Cherng, Lin, Chen, Liu, Shaw (bib22) 2014
Seiffert, Khoshgoftaar, Hulse, Napolitano (bib36) 2010; 40
Virkkala, Toppila, Maasilta, Bachour (bib18) 2014; 19
C. Iber, S. Ancoli-Israel, A. Chesson, S. Quan, The Aasm Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, IL: American Academy of Sleep Medicine.
Hassan, Bhuiyan (bib11) 2017; 140
Norman, Pal, Stewart, Walsleben, Rapoport (bib17) 2000; 23 7
Xia, Li, Jia, Wang, Chaudhary, Ramos-Murguialday, Birbaumer (bib21) 2015
Liang, Kuo, Lee, Lin, Liu, Chen, Cherng, Shaw (bib20) 2015; 64
Rostaghi, Azami (bib31) 2016; 23
Zhu, Li, Wen (bib4) 2014; 18
E.M. SobhanSalari, Automatic sleep stage detection and classification: distinguishing between patients with periodic limb movements, sleep apnea hypopnea syndrome, and healthy controls using electrooculography (EOG) signals, J. Bioprocess. Biotech. 05 (03).
Adeli, Ghosh-Dastidar, Dadmehr (bib29) 2007; 54
Hobson (bib1) 1969; 26
.
Hayes (bib32) 1996
Doroshenkov, Konyshev, Selishchev (bib8) 2007; 41
Manabe, Fukumoto (bib15) 2006
Liang, Kuo, Hu, Cheng (bib10) 2012; 205
Physionet, Sleep-edf database expanded, (Accessed on 01/19/2018/). URL
Cortes, Vapnik (bib34) 1995; 20
Vural, Yildiz (bib9) 2008; 34
Virkkala, Hasan, Värri, Himanen, Müller (bib16) 2007; 166
Yang, Xia (bib23) 2016
Berthomier, Drouot, Herman-Stoca, Berthomier, Prado, Bokar-Thire, Benoit, Mattout, d'Ortho (bib7) 2007; 30
Virkkala (10.1016/j.compbiomed.2018.08.022_bib18) 2014; 19
Tsinalis (10.1016/j.compbiomed.2018.08.022_bib13) 2016; 44
Doroshenkov (10.1016/j.compbiomed.2018.08.022_bib8) 2007; 41
Xia (10.1016/j.compbiomed.2018.08.022_bib21) 2015
Bulling (10.1016/j.compbiomed.2018.08.022_bib14) 2009
Norman (10.1016/j.compbiomed.2018.08.022_bib17) 2000; 23 7
Seiffert (10.1016/j.compbiomed.2018.08.022_bib36) 2010; 40
Adeli (10.1016/j.compbiomed.2018.08.022_bib29) 2007; 54
Virkkala (10.1016/j.compbiomed.2018.08.022_bib16) 2007; 166
Yang (10.1016/j.compbiomed.2018.08.022_bib23) 2016
Liang (10.1016/j.compbiomed.2018.08.022_bib10) 2012; 205
10.1016/j.compbiomed.2018.08.022_bib19
Liang (10.1016/j.compbiomed.2018.08.022_bib5) 2012; 61
Breiman (10.1016/j.compbiomed.2018.08.022_bib35) 2001; 45
10.1016/j.compbiomed.2018.08.022_bib33
Hassan (10.1016/j.compbiomed.2018.08.022_bib11) 2017; 140
Olesen (10.1016/j.compbiomed.2018.08.022_bib24) 2016
Penzel (10.1016/j.compbiomed.2018.08.022_bib3) 2000; 4
Hassan (10.1016/j.compbiomed.2018.08.022_bib37) 2015
Hayes (10.1016/j.compbiomed.2018.08.022_bib32) 1996
Liang (10.1016/j.compbiomed.2018.08.022_bib20) 2015; 64
Kuo (10.1016/j.compbiomed.2018.08.022_bib22) 2014
Hassan (10.1016/j.compbiomed.2018.08.022_bib12) 2016; 271
Vural (10.1016/j.compbiomed.2018.08.022_bib9) 2008; 34
Zhu (10.1016/j.compbiomed.2018.08.022_bib4) 2014; 18
Ronzhina (10.1016/j.compbiomed.2018.08.022_bib6) 2012; 16
Azami (10.1016/j.compbiomed.2018.08.022_bib30) 2017; 64
10.1016/j.compbiomed.2018.08.022_bib2
Berthomier (10.1016/j.compbiomed.2018.08.022_bib7) 2007; 30
Rostaghi (10.1016/j.compbiomed.2018.08.022_bib31) 2016; 23
Khalighi (10.1016/j.compbiomed.2018.08.022_bib28) 2016; 124
Hobson (10.1016/j.compbiomed.2018.08.022_bib1) 1969; 26
10.1016/j.compbiomed.2018.08.022_bib27
Manabe (10.1016/j.compbiomed.2018.08.022_bib15) 2006
10.1016/j.compbiomed.2018.08.022_bib26
Cortes (10.1016/j.compbiomed.2018.08.022_bib34) 1995; 20
Goldberger (10.1016/j.compbiomed.2018.08.022_bib25) 2000; 101
References_xml – reference: C. Iber, S. Ancoli-Israel, A. Chesson, S. Quan, The Aasm Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, IL: American Academy of Sleep Medicine.
– volume: 124
  start-page: 180
  year: 2016
  end-page: 192
  ident: bib28
  article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers
  publication-title: Comput. Meth. Progr. Biomed.
– start-page: 595
  year: 2016
  end-page: 600
  ident: bib23
  article-title: Single electrooculogram channel-based sleep stage classification
  publication-title: Advances in Cognitive Neurodynamics (V)
– start-page: 71
  year: 2014
  end-page: 88
  ident: bib22
  article-title: An EOG-based automatic sleep scoring system and its related application in sleep environmental control
  publication-title: Physiological Computing Systems
– volume: 166
  start-page: 109
  year: 2007
  end-page: 115
  ident: bib16
  article-title: Automatic sleep stage classification using two-channel electro-oculography
  publication-title: J. Neurosci. Meth.
– volume: 44
  start-page: 1587
  year: 2016
  end-page: 1597
  ident: bib13
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
– volume: 140
  start-page: 201
  year: 2017
  end-page: 210
  ident: bib11
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Meth. Progr. Biomed.
– volume: 19
  start-page: 785
  year: 2014
  end-page: 789
  ident: bib18
  article-title: Electro-oculography-based detection of sleep-wake in sleep apnea patients
  publication-title: Sleep Breath.
– reference: Physionet, Sleep-edf database expanded, (Accessed on 01/19/2018/). URL
– volume: 23
  start-page: 1
  year: 2016
  ident: bib31
  article-title: Dispersion entropy: a measure for time series analysis
  publication-title: IEEE Signal Process. Lett.
– volume: 18
  start-page: 1813
  year: 2014
  end-page: 1821
  ident: bib4
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 3259
  year: 2009
  end-page: 3264
  ident: bib14
  article-title: Wearable eog goggles: eye-based interaction in everyday environments
  publication-title: CHI ’09 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’09
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib34
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 30
  year: 2007
  ident: bib7
  article-title: Automatic analysis of single-channel sleep eeg: validation in healthy individuals
  publication-title: Sleep
– start-page: 1
  year: 2015
  end-page: 5
  ident: bib21
  article-title: Electrooculogram based sleep stage classification using deep belief network
  publication-title: 2015 International Joint Conference on Neural Networks (IJCNN)
– volume: 271
  start-page: 107
  year: 2016
  end-page: 118
  ident: bib12
  article-title: A decision support system for automatic sleep staging from eeg signals using tunable q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Meth.
– volume: 26
  start-page: 644
  year: 1969
  ident: bib1
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– reference: E.M. SobhanSalari, Automatic sleep stage detection and classification: distinguishing between patients with periodic limb movements, sleep apnea hypopnea syndrome, and healthy controls using electrooculography (EOG) signals, J. Bioprocess. Biotech. 05 (03).
– reference: Physionet, Sleep-edf database, (Accessed on 01/19/2018/). URL
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: bib25
  article-title: Physiobank, physiotoolkit, and physionet
  publication-title: Circulation
– start-page: 1073
  year: 2006
  end-page: 1078
  ident: bib15
  article-title: Full-time Wearable Headphone-type Gaze Detector
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib35
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 205
  start-page: 169
  year: 2012
  end-page: 176
  ident: bib10
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Meth.
– volume: 54
  start-page: 205
  year: 2007
  end-page: 211
  ident: bib29
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 41
  start-page: 25
  year: 2007
  end-page: 28
  ident: bib8
  article-title: Classification of human sleep stages based on EEG processing using hidden markov models
  publication-title: Biomed. Eng.
– reference: W. Yang, K. Wang, W. Zuo, Neighborhood component feature selection for high-dimensional data, J. Comput. 7 (1).
– reference: .
– volume: 64
  year: 2017
  ident: bib30
  article-title: Refined composite multiscale dispersion entropy and its application to biomedical signals
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 64
  start-page: 2977
  year: 2015
  end-page: 2985
  ident: bib20
  article-title: Development of an eog-based automatic sleep-monitoring eye mask
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 2238
  year: 2015
  end-page: 2243
  ident: bib37
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram
  publication-title: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
– volume: 16
  start-page: 251
  year: 2012
  end-page: 263
  ident: bib6
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
– start-page: 3769
  year: 2016
  end-page: 3772
  ident: bib24
  article-title: A noise-assisted data analysis method for automatic eog-based sleep stage classification using ensemble learning
  publication-title: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 61
  start-page: 1649
  year: 2012
  end-page: 1657
  ident: bib5
  article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 4
  start-page: 131
  year: 2000
  end-page: 148
  ident: bib3
  article-title: Computer based sleep recording and analysis
  publication-title: Sleep Med. Rev.
– volume: 34
  start-page: 83
  year: 2008
  end-page: 89
  ident: bib9
  article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis
  publication-title: J. Med. Syst.
– volume: 23 7
  start-page: 901
  year: 2000
  end-page: 908
  ident: bib17
  article-title: Interobserver agreement among sleep scorers from different centers in a large dataset
  publication-title: Sleep
– year: 1996
  ident: bib32
  article-title: Statistical Digital Signal Processing and Modeling
– volume: 40
  start-page: 185
  year: 2010
  end-page: 197
  ident: bib36
  article-title: Rusboost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
– volume: 4
  start-page: 131
  issue: 2
  year: 2000
  ident: 10.1016/j.compbiomed.2018.08.022_bib3
  article-title: Computer based sleep recording and analysis
  publication-title: Sleep Med. Rev.
  doi: 10.1053/smrv.1999.0087
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.compbiomed.2018.08.022_bib34
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 124
  start-page: 180
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib28
  article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers
  publication-title: Comput. Meth. Progr. Biomed.
  doi: 10.1016/j.cmpb.2015.10.013
– ident: 10.1016/j.compbiomed.2018.08.022_bib19
  doi: 10.4172/2155-9821.1000216
– volume: 18
  start-page: 1813
  issue: 6
  year: 2014
  ident: 10.1016/j.compbiomed.2018.08.022_bib4
  article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2014.2303991
– year: 1996
  ident: 10.1016/j.compbiomed.2018.08.022_bib32
– ident: 10.1016/j.compbiomed.2018.08.022_bib33
  doi: 10.4304/jcp.7.1.161-168
– volume: 26
  start-page: 644
  issue: 6
  year: 1969
  ident: 10.1016/j.compbiomed.2018.08.022_bib1
  article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects
  publication-title: Electroencephalogr. Clin. Neurophysiol.
  doi: 10.1016/0013-4694(69)90021-2
– start-page: 3259
  year: 2009
  ident: 10.1016/j.compbiomed.2018.08.022_bib14
  article-title: Wearable eog goggles: eye-based interaction in everyday environments
– start-page: 71
  year: 2014
  ident: 10.1016/j.compbiomed.2018.08.022_bib22
  article-title: An EOG-based automatic sleep scoring system and its related application in sleep environmental control
– volume: 19
  start-page: 785
  issue: 3
  year: 2014
  ident: 10.1016/j.compbiomed.2018.08.022_bib18
  article-title: Electro-oculography-based detection of sleep-wake in sleep apnea patients
  publication-title: Sleep Breath.
  doi: 10.1007/s11325-014-1060-3
– volume: 44
  start-page: 1587
  issue: 5
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib13
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1444-y
– volume: 140
  start-page: 201
  year: 2017
  ident: 10.1016/j.compbiomed.2018.08.022_bib11
  article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput. Meth. Progr. Biomed.
  doi: 10.1016/j.cmpb.2016.12.015
– start-page: 1073
  year: 2006
  ident: 10.1016/j.compbiomed.2018.08.022_bib15
– volume: 34
  start-page: 83
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2018.08.022_bib9
  article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9218-9
– volume: 64
  issue: 12
  year: 2017
  ident: 10.1016/j.compbiomed.2018.08.022_bib30
  article-title: Refined composite multiscale dispersion entropy and its application to biomedical signals
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– volume: 23 7
  start-page: 901
  year: 2000
  ident: 10.1016/j.compbiomed.2018.08.022_bib17
  article-title: Interobserver agreement among sleep scorers from different centers in a large dataset
  publication-title: Sleep
– volume: 23
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib31
  article-title: Dispersion entropy: a measure for time series analysis
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2542881
– volume: 271
  start-page: 107
  issue: 3
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib12
  article-title: A decision support system for automatic sleep staging from eeg signals using tunable q-factor wavelet transform and spectral features
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2016.07.012
– volume: 30
  issue: 11
  year: 2007
  ident: 10.1016/j.compbiomed.2018.08.022_bib7
  article-title: Automatic analysis of single-channel sleep eeg: validation in healthy individuals
  publication-title: Sleep
  doi: 10.1093/sleep/30.11.1587
– ident: 10.1016/j.compbiomed.2018.08.022_bib26
– volume: 64
  start-page: 2977
  issue: 11
  year: 2015
  ident: 10.1016/j.compbiomed.2018.08.022_bib20
  article-title: Development of an eog-based automatic sleep-monitoring eye mask
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2015.2433652
– volume: 41
  start-page: 25
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2018.08.022_bib8
  article-title: Classification of human sleep stages based on EEG processing using hidden markov models
  publication-title: Biomed. Eng.
  doi: 10.1007/s10527-007-0006-5
– start-page: 1
  year: 2015
  ident: 10.1016/j.compbiomed.2018.08.022_bib21
  article-title: Electrooculogram based sleep stage classification using deep belief network
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.compbiomed.2018.08.022_bib25
  article-title: Physiobank, physiotoolkit, and physionet
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 40
  start-page: 185
  issue: 1
  year: 2010
  ident: 10.1016/j.compbiomed.2018.08.022_bib36
  article-title: Rusboost: a hybrid approach to alleviating class imbalance
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
  doi: 10.1109/TSMCA.2009.2029559
– start-page: 595
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib23
  article-title: Single electrooculogram channel-based sleep stage classification
  doi: 10.1007/978-981-10-0207-6_80
– volume: 16
  start-page: 251
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2018.08.022_bib6
  article-title: Sleep scoring using artificial neural networks
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2011.06.003
– volume: 54
  start-page: 205
  issue: 2
  year: 2007
  ident: 10.1016/j.compbiomed.2018.08.022_bib29
  article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy
  publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng.
– start-page: 2238
  year: 2015
  ident: 10.1016/j.compbiomed.2018.08.022_bib37
  article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram
– volume: 166
  start-page: 109
  issue: 1
  year: 2007
  ident: 10.1016/j.compbiomed.2018.08.022_bib16
  article-title: Automatic sleep stage classification using two-channel electro-oculography
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2007.06.016
– ident: 10.1016/j.compbiomed.2018.08.022_bib2
– volume: 61
  start-page: 1649
  issue: 6
  year: 2012
  ident: 10.1016/j.compbiomed.2018.08.022_bib5
  article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2012.2187242
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.compbiomed.2018.08.022_bib35
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 205
  start-page: 169
  issue: 1
  year: 2012
  ident: 10.1016/j.compbiomed.2018.08.022_bib10
  article-title: A rule-based automatic sleep staging method
  publication-title: J. Neurosci. Meth.
  doi: 10.1016/j.jneumeth.2011.12.022
– start-page: 3769
  year: 2016
  ident: 10.1016/j.compbiomed.2018.08.022_bib24
  article-title: A noise-assisted data analysis method for automatic eog-based sleep stage classification using ensemble learning
– ident: 10.1016/j.compbiomed.2018.08.022_bib27
SSID ssj0004030
Score 2.5313165
Snippet Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of...
AbstractSleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 211
SubjectTerms Accuracy
Algorithms
AR model
Autoregressive models
Autoregressive processes
Classification
Datasets
Discrete Wavelet Transform
Discrete Wavelet Transform (DWT)
EEG
Electrodes
Electroencephalography
Electrooculogram (EOG)
Entropy
Experts
Internal Medicine
Methods
Neighborhood Component Analysis (NCA)
Other
Physiology
Random forest
Random Under Sampling Boosting (RUSboost)
Sleep
Sleep disorders
State of the art
Support Vector Machine
Support vector machines
Variance analysis
Wavelet analysis
Wavelet transforms
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXFbxW2zw2KZ5kURdBPajgLaR5iLJ0F3e9-tudadOKqLDgpdDH0DCdTL7Q75sh5JhaVgRYydO-cNjCDDasRXA29S5ANADeD7Vu7ea2P3zk10_iaYEMWi0M0ipj7m9yep2t45XT6M3TycsLanxhK4HKSyxhxSkqyjmXGOUnH180D56xRoYC-QafjmyehuOFtO1G5o4kL1UX86T0ryXqLwhaL0WXq2QlYsjkvBnmGlnw1TpZuol_yTcIux95P0kA9z37xCI8Rj5Q_QkS5Lk_J3gY-RRVv5UfJRd3V5vk8fLiYTBMY3OE1ALGmaWSQa4KPu8b7G_pgzNc8NIWKsg8cGozA3sZbjkXmQlOlFwJaVghHHeZzaRnW2SxGld-hyTMZMLQMjfGOx5sqZRQ1LtcAbSSktkeka0_tI2Vw7GBxUi3FLFX_eVJjZ7U2NuS0h7JO8tJUz1jDpuidblu1aGQzzSk-Dls5W-2fhon5lTnekp1pn8ET4-cdZbf4m_O9-63saG7VwEoAHApqcp75Ki7DbMXf8mYyo_f4ZmsUBKJEDCA7SamOkcxLG0k-8Xuv4a2R5bxrJFP7pPF2du7PwAcNSsP64nyCXnyGaE
  priority: 102
  providerName: Elsevier
Title Sleep stage classification using single-channel EOG
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482518302427
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482518302427
https://dx.doi.org/10.1016/j.compbiomed.2018.08.022
https://www.ncbi.nlm.nih.gov/pubmed/30170769
https://www.proquest.com/docview/2125627281
https://www.proquest.com/docview/2098771737
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xTUK8IL5XGFWQeA0ktlM72sO0oXYFtIIYk_pmOf6YhKq0W7tX_vbdJU76wlBfnIfkEutyPv9s_-4O4COzvAw4k6ejwlEJM1ywlsHZ1LuA1oB4PzRxaxez0fRKfJsX87jhto60ys4nNo7aLS3tkX9GF4tTtWQqP1ndpFQ1ik5XYwmNPTig1GVE6ZJzuY2LzHgbgoK-RuBSKDJ5Wn4XUbbbEHcieKkmkSdjD01PD8HPZhqaPIOnET8mp-0Pfw6PfP0CHl_EE_KXwC8X3q8SxHzXPrEEjYkL1Kg_IY77dULNwqcU8Vv7RTL-cf4Kribj31-maSyMkFrEN5tUcvRTwecjQ7UtfXBGFKKypQoyD4LZzOA6RlghiswEV1RCFdLwsnDCZTaTnr-G_XpZ-0NIuMkKw6rcGO9EsJVShWLe5QphlZTcDkB2-tA2Zg2n4hUL3dHD_uitJjVpUlNdS8YGkPeSqzZzxg4yZady3UWGoi_T6N53kJX_kvXrOCjXOtdrpjN92eQkopBdyn0mmBzAcS8ZcUeLJ3b87lFnG7r_1NZaB_Chv40jl45jTO2Xd_hMVipJJAjswJvWpnpFcUprJEfl2_-__B08oZ60sZFHsL-5vfPvESRtqiHsffqbD5vxgK2anA_h4PTr9-kMr2fj2c9f9yc6E1Q
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXVF4lUMBIcLSwd9fZtVBVIWia0qYc2kq9Let9VEKRE0gqxJ_iN3bGazsXinLpxRd7bGs8j2-9880AvGOWlwEzeTosHI0wwwVrGZxNvQtoDYj3Q8Nbm5wMx-fi60VxsQF_Oy4MlVV2MbEJ1G5m6R_5BwyxmKolU_ne_GdKU6Nod7UboRHN4sj_-Y1LtsXu4Rf8vu8ZG-2ffR6n7VSB1CI4WKaSo5MHnw8NDYb0wRlRiMqWKsg8CGYzg4sAYYUoMhNcUQlVSMPLwgmX2Ux6jve9A3cF5yV5lBodrHiYGY-UF4xtApdebeVQrCejEvFIqaeCMtU0DmXspnR4E9xt0t5oCx62eDX5FA3sEWz4-jHcm7Q78k-An069nyeIMS99YgmKU-1R87kTqqm_TOgw9SkxjGs_Tfa_HTyF81tR2TPYrGe1fw4JN1lhWJUb450ItlKqUMy7XCGMk5LbAchOH9q2XcppWMZUd-VoP_RKk5o0qWmOJmMDyHvJeezUsYZM2alcd0xUjJ0a08kasvJfsn7RBoGFzvWC6UyfNj2QiCJMvdYEkwP42Eu2OCfilzWfu9PZhu4ftfKOAbztT2OkoO0fU_vZFV6TlUpS0QW-wHa0qV5RnNooyWH54v83fwP3x2eTY318eHL0Eh7QW0Ve5g5sLn9d-VcI0JbV68YrEvh-2254DWWZSo4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEO-GFjASHK3a-8jaqlCFaENLaUEqlXJb1vuohCInNKlQ_xq_rjNe27lQlEsvvthjW-N5fOv9ZgbgHbO8DJjJ06F0NMIMF6xlcDb1LqA1IN4PTd3ayenw8Fx8GcvxGvztamGIVtnFxCZQu6mlf-Q7GGIxVStW5DuhpUV83x_tzX6nNEGKdlq7cRrRRI799R9cvs0_HO3jt37P2Ojgx6fDtJ0wkFoECotUcXT44POhoSGRPjgjpKhsWQSVB8FsZnBBIKwQMjPByUoUUhleSidcZjPlOd73HtxXXObkY2qsljWZGY_lLxjnBC7DWhZR5JYRXTyW1xO5rGiaiDJ2W2q8Dfo2KXD0CB622DX5GI3tMaz5-glsnLS780-Bn028nyWINy98YgmWEw-p-fQJ8esvEjpMfErVxrWfJAffPj-D8ztR2XNYr6e134SEm0waVuXGeCeCrYpCFsy7vEBIpxS3A1CdPrRtO5bT4IyJ7qhpv_RSk5o0qWmmJmMDyHvJWezasYJM2alcd1WpGEc1ppYVZNW_ZP28DQhznes505k-a_ohUbkw9V0TTA1gt5dsMU_EMis-d7uzDd0_aukpA3jbn8aoQVtBpvbTK7wmKwtFBAx8gRfRpnpFcWqppIbly__f_A1soAPqr0enx1vwgF4qlmhuw_ri8sq_Qqy2qF43TpHAz7v2whvC9k67
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+stage+classification+using+single-channel+EOG&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Rahman%2C+Md+Mosheyur&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.au=Hassan%2C+Ahnaf+Rashik&rft.date=2018-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=102&rft.spage=211&rft_id=info:doi/10.1016%2Fj.compbiomed.2018.08.022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon