Sleep stage classification using single-channel EOG
Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employ...
Saved in:
Published in | Computers in biology and medicine Vol. 102; pp. 211 - 220 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.11.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.
•A single-channel Electrooculography based automated sleep scoring method is proposed.•Discrete Wavelet Transform is employed for time-frequency decomposition of the Electrooculography signals.•A feature reduction technique based on Neighborhood Component Analysis is used to reduce the number of features.•The performance of the proposed scheme is promising.•The proposed scheme can be used for sleep stage detection in ambulatory sleep studies and mobile applications. |
---|---|
AbstractList | Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques.Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2-6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. •A single-channel Electrooculography based automated sleep scoring method is proposed.•Discrete Wavelet Transform is employed for time-frequency decomposition of the Electrooculography signals.•A feature reduction technique based on Neighborhood Component Analysis is used to reduce the number of features.•The performance of the proposed scheme is promising.•The proposed scheme can be used for sleep stage detection in ambulatory sleep studies and mobile applications. AbstractSleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of sleep stages using Electrooculogram (EOG) is presented. Single channel EOG signals are analyzed in Discrete Wavelet Transform (DWT) domain employing various statistical features such as Spectral Entropy, Moment-based Measures, Refined Composite Multiscale Dispersion Entropy (RCMDE) and Autoregressive (AR) Model Coefficients. The discriminating ability of the features is studied using the One Way Analysis of Variance (ANOVA) and box plots. A feature reduction algorithm based on Neighborhood Component Analysis is used to reduce the model complexity and select the features with highest discriminating abilities. Random Under-Sampling Boosting (RUSBoost), Random Forest (RF) and Support Vector Machine (SVM) are employed to classify various sleep stages for 2–6 stage classification problem. Performance of the proposed method is studied using three publicly available databases, the Sleep-EDF, Sleep-EDFX and ISRUC-Sleep databases consisting of 8, 20 and 10 subjects respectively. The proposed method outperforms the state-of-the-art EOG based techniques in accuracy. In addition, its performance is shown to be on par or better than those of various single channel EEG based methods. An important limitation of existing sleep detection methods is the low accuracy of the S1 sleep stage classification for which the proposed method using the RUSBoost classifier gives a superior accuracy as compared to those of EOG and EEG based techniques. |
Author | Hassan, Ahnaf Rashik Rahman, Md Mosheyur Bhuiyan, Mohammed Imamul Hassan |
Author_xml | – sequence: 1 givenname: Md Mosheyur surname: Rahman fullname: Rahman, Md Mosheyur email: mosheyur1355@gmail.com organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh – sequence: 2 givenname: Mohammed Imamul Hassan surname: Bhuiyan fullname: Bhuiyan, Mohammed Imamul Hassan email: imamhas@gmail.com organization: Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh – sequence: 3 givenname: Ahnaf Rashik surname: Hassan fullname: Hassan, Ahnaf Rashik email: ahnafrashik.hassan@mail.utoronto.ca organization: Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30170769$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1r3DAQhkVJSTZp_kIw9NKLt6MvS76EtiFNC4Ec0p6FVh4n2mqlrWUX8u8rd5MWFgoLg3R559HwaE7JUUwRCakoLCnQ5v166dJmu_Jpg92SAdVLKMXYK7KgWrU1SC6OyAKAQi00kyfkNOc1AAjgcExOOFAFqmkXhN8HxG2VR_uAlQs2Z997Z0efYjVlHx-q-QhYu0cbI4bq-u7mDXnd25Dx_Pk-I98_X3-7-lLf3t18vfp4WztJxVgrTiXvkTZWNpRh31khxcq1ule0F8yBFW0rnBASbN_JldBSWd7KTnTgQCE_I-923O2Qfk6YR7Px2WEINmKasmHQaqWo4qpE3-5F12kaYpnOMMpkwxTTtKQunlPTqpgz28Fv7PBkXnSUwOUu4IaU84C9cX78I2McrA-Ggpn9m7X559_M_g2UYqwA9B7g5Y0DWj_tWrEo_eVxMNl5jA47P6AbTZf8IZDLPYgLPpYPDT_wCfNfKdRkZsDczxsyLwjVHJhgs8gP_wccNsNv3YvOTg |
CitedBy_id | crossref_primary_10_1016_j_bspc_2022_104150 crossref_primary_10_1016_j_bspc_2021_103061 crossref_primary_10_1007_s10489_021_02597_8 crossref_primary_10_3390_bioengineering10050573 crossref_primary_10_1016_j_cmpb_2019_105116 crossref_primary_10_1109_ACCESS_2020_2983917 crossref_primary_10_1016_j_cmpb_2019_04_032 crossref_primary_10_1016_j_cmpb_2024_108405 crossref_primary_10_3390_biomedinformatics2010007 crossref_primary_10_1109_ACCESS_2020_3000272 crossref_primary_10_2147_NSS_S401270 crossref_primary_10_1088_1361_6579_ac647b crossref_primary_10_1016_j_heliyon_2022_e12136 crossref_primary_10_1109_JSEN_2024_3455943 crossref_primary_10_3390_ijms24119505 crossref_primary_10_3390_pr9122265 crossref_primary_10_3390_e27010076 crossref_primary_10_1007_s11042_023_18103_w crossref_primary_10_1016_j_bspc_2024_106184 crossref_primary_10_1016_j_jneumeth_2020_108971 crossref_primary_10_1016_j_bspc_2022_103751 crossref_primary_10_1109_ACCESS_2019_2951028 crossref_primary_10_1016_j_knosys_2019_105333 crossref_primary_10_1145_3625238 crossref_primary_10_2139_ssrn_4887171 crossref_primary_10_32604_csse_2023_026482 crossref_primary_10_1088_1361_6579_ad4251 crossref_primary_10_3390_ijerph16040599 crossref_primary_10_1109_ACCESS_2021_3109780 crossref_primary_10_3390_ijerph19127176 crossref_primary_10_1016_j_bspc_2023_105062 crossref_primary_10_3390_jpm12020136 crossref_primary_10_1109_JBHI_2022_3157262 crossref_primary_10_1016_j_bspc_2022_104299 crossref_primary_10_1109_ACCESS_2019_2940627 crossref_primary_10_1007_s10055_021_00571_w crossref_primary_10_1016_j_compbiomed_2023_107501 crossref_primary_10_3233_THC_212847 crossref_primary_10_1109_ACCESS_2019_2918560 crossref_primary_10_3390_e22030347 crossref_primary_10_1007_s42979_021_00528_5 crossref_primary_10_1016_j_smrv_2019_07_007 crossref_primary_10_1007_s42979_022_01156_3 crossref_primary_10_1016_j_eswa_2022_118752 crossref_primary_10_1109_ACCESS_2024_3424236 crossref_primary_10_1109_JIOT_2022_3146926 crossref_primary_10_1016_j_neures_2022_09_009 crossref_primary_10_3389_fgene_2020_00238 crossref_primary_10_3390_electronics12030571 crossref_primary_10_1016_j_bspc_2021_102898 crossref_primary_10_1109_ACCESS_2022_3180730 crossref_primary_10_1109_JBHI_2022_3208314 crossref_primary_10_1007_s11042_020_10199_8 crossref_primary_10_1016_j_bbe_2020_01_013 crossref_primary_10_3390_diagnostics13142358 crossref_primary_10_1088_1361_6579_ad2059 crossref_primary_10_1016_j_bbe_2020_01_010 crossref_primary_10_1016_j_irbm_2022_04_006 crossref_primary_10_1109_JBHI_2023_3240437 crossref_primary_10_1109_ACCESS_2025_3534235 crossref_primary_10_1016_j_bspc_2020_101998 crossref_primary_10_1515_bmt_2019_0001 crossref_primary_10_1007_s13755_024_00328_0 crossref_primary_10_1007_s00521_022_08037_z crossref_primary_10_1515_bmt_2021_0408 crossref_primary_10_1016_j_bspc_2020_102171 crossref_primary_10_1016_j_bspc_2022_103819 crossref_primary_10_3390_s23073446 crossref_primary_10_1016_j_cmpb_2019_06_008 crossref_primary_10_1016_j_imu_2020_100370 crossref_primary_10_1016_j_sna_2023_114895 crossref_primary_10_1007_s13369_024_09623_0 crossref_primary_10_1109_TIM_2022_3177747 crossref_primary_10_3390_bios14080406 crossref_primary_10_1016_j_cmpb_2023_107992 crossref_primary_10_1049_htl2_12007 crossref_primary_10_3390_s20174677 crossref_primary_10_21015_vtse_v12i1_1593 crossref_primary_10_1007_s12539_019_00328_9 crossref_primary_10_1109_ACCESS_2020_3027289 crossref_primary_10_1109_JIOT_2024_3477732 crossref_primary_10_1080_03772063_2019_1568206 crossref_primary_10_1016_j_artmed_2020_101981 crossref_primary_10_1109_TIM_2025_3542109 crossref_primary_10_3390_e23010116 crossref_primary_10_1016_j_knosys_2021_106890 crossref_primary_10_1016_j_sleep_2024_09_025 crossref_primary_10_1109_ACCESS_2019_2939038 crossref_primary_10_1016_j_eswa_2019_04_039 crossref_primary_10_1515_bmt_2020_0139 crossref_primary_10_3390_bios12030155 crossref_primary_10_3390_ijerph19106322 crossref_primary_10_1016_j_bspc_2022_104009 crossref_primary_10_3390_ijerph19052845 crossref_primary_10_1109_JSEN_2022_3155345 crossref_primary_10_31590_ejosat_948124 crossref_primary_10_3389_fninf_2023_1123376 crossref_primary_10_1051_e3sconf_202343001020 crossref_primary_10_3390_bioengineering12030286 crossref_primary_10_1007_s11042_022_13195_2 crossref_primary_10_1016_j_bspc_2020_102318 crossref_primary_10_1016_j_bspc_2023_104688 crossref_primary_10_3389_fbioe_2023_1190211 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_32604_cmc_2022_021830 crossref_primary_10_1007_s11517_023_02943_7 crossref_primary_10_1016_j_bspc_2023_105647 crossref_primary_10_1109_TNSRE_2024_3438610 crossref_primary_10_1007_s10439_024_03486_0 crossref_primary_10_1088_1361_6579_ac6bdb crossref_primary_10_3390_healthcare10040621 crossref_primary_10_1109_JBHI_2022_3228341 crossref_primary_10_7555_JBR_33_20190019 |
Cites_doi | 10.1053/smrv.1999.0087 10.1007/BF00994018 10.1016/j.cmpb.2015.10.013 10.4172/2155-9821.1000216 10.1109/JBHI.2014.2303991 10.4304/jcp.7.1.161-168 10.1016/0013-4694(69)90021-2 10.1007/s11325-014-1060-3 10.1007/s10439-015-1444-y 10.1016/j.cmpb.2016.12.015 10.1007/s10916-008-9218-9 10.1109/LSP.2016.2542881 10.1016/j.jneumeth.2016.07.012 10.1093/sleep/30.11.1587 10.1109/TIM.2015.2433652 10.1007/s10527-007-0006-5 10.1161/01.CIR.101.23.e215 10.1109/TSMCA.2009.2029559 10.1007/978-981-10-0207-6_80 10.1016/j.smrv.2011.06.003 10.1016/j.jneumeth.2007.06.016 10.1109/TIM.2012.2187242 10.1023/A:1010933404324 10.1016/j.jneumeth.2011.12.022 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Ltd. Copyright Elsevier Limited Nov 1, 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Ltd. – notice: Copyright Elsevier Limited Nov 1, 2018 |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2018.08.022 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central (New) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database ProQuest Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 220 |
ExternalDocumentID | 30170769 10_1016_j_compbiomed_2018_08_022 S0010482518302427 1_s2_0_S0010482518302427 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .DC .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ABMZM ABOCM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD ARAPS AXJTR AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 EX3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HMCUK IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL RPZ RXW SCC SDF SDG SDP SEL SES SPC SPCBC SSH SSV SSZ T5K UKHRP WOW Z5R ~G- .55 .GJ 29F 3V. 53G AACTN AAQXK ABFNM ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFCTW AFJKZ AFKWA AJOXV ALIPV AMFUW ASPBG AVWKF AZFZN EMOBN FEDTE FGOYB G-2 HLZ HMK HMO HVGLF HZ~ M0N R2- RIG SAE SBC SEW SV3 TAE UAP WUQ X7M XPP ZGI AAIAV ABLVK ABYKQ EFLBG LCYCR AAYXX AGQPQ AGRNS AIGII APXCP CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 7X8 |
ID | FETCH-LOGICAL-c514t-73153fe16a5612efda454bc98f71f42c0a4994c4450afd5b4857a395d4d0c07e3 |
IEDL.DBID | 7X7 |
ISSN | 0010-4825 1879-0534 |
IngestDate | Sun Aug 24 04:04:38 EDT 2025 Wed Aug 13 03:06:37 EDT 2025 Wed Feb 19 02:33:34 EST 2025 Thu Apr 24 22:59:50 EDT 2025 Tue Jul 01 03:28:31 EDT 2025 Fri Feb 23 02:24:55 EST 2024 Sun Feb 23 10:19:11 EST 2025 Tue Aug 26 16:33:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | AR model Electrooculogram (EOG) Discrete Wavelet Transform (DWT) Neighborhood Component Analysis (NCA) Random forest Support Vector Machine Random Under Sampling Boosting (RUSboost) |
Language | English |
License | Copyright © 2018. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-73153fe16a5612efda454bc98f71f42c0a4994c4450afd5b4857a395d4d0c07e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 30170769 |
PQID | 2125627281 |
PQPubID | 1226355 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2098771737 proquest_journals_2125627281 pubmed_primary_30170769 crossref_citationtrail_10_1016_j_compbiomed_2018_08_022 crossref_primary_10_1016_j_compbiomed_2018_08_022 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2018_08_022 elsevier_clinicalkeyesjournals_1_s2_0_S0010482518302427 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2018_08_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-11-01 |
PublicationDateYYYYMMDD | 2018-11-01 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Hassan, Bhuiyan (bib12) 2016; 271 Khalighi, Sousa, Santos, Nunes (bib28) 2016; 124 W. Yang, K. Wang, W. Zuo, Neighborhood component feature selection for high-dimensional data, J. Comput. 7 (1). Physionet, Sleep-edf database, (Accessed on 01/19/2018/). URL Bulling, Roggen, Tröster (bib14) 2009 Olesen, Christensen, Sorensen, Jennum (bib24) 2016 Penzel, Conradt (bib3) 2000; 4 Azami, Rostaghi, Abasolo, Escudero (bib30) 2017; 64 Ronzhina, Janouek, Kolov, Novkov, Honzk, Provaznk (bib6) 2012; 16 Liang, Kuo, Hu, Pan, Wang (bib5) 2012; 61 Hassan, Bashar, Bhuiyan (bib37) 2015 Tsinalis, Matthews, Guo (bib13) 2016; 44 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (bib25) 2000; 101 Breiman (bib35) 2001; 45 Kuo, Liang, Lee, Cherng, Lin, Chen, Liu, Shaw (bib22) 2014 Seiffert, Khoshgoftaar, Hulse, Napolitano (bib36) 2010; 40 Virkkala, Toppila, Maasilta, Bachour (bib18) 2014; 19 C. Iber, S. Ancoli-Israel, A. Chesson, S. Quan, The Aasm Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, IL: American Academy of Sleep Medicine. Hassan, Bhuiyan (bib11) 2017; 140 Norman, Pal, Stewart, Walsleben, Rapoport (bib17) 2000; 23 7 Xia, Li, Jia, Wang, Chaudhary, Ramos-Murguialday, Birbaumer (bib21) 2015 Liang, Kuo, Lee, Lin, Liu, Chen, Cherng, Shaw (bib20) 2015; 64 Rostaghi, Azami (bib31) 2016; 23 Zhu, Li, Wen (bib4) 2014; 18 E.M. SobhanSalari, Automatic sleep stage detection and classification: distinguishing between patients with periodic limb movements, sleep apnea hypopnea syndrome, and healthy controls using electrooculography (EOG) signals, J. Bioprocess. Biotech. 05 (03). Adeli, Ghosh-Dastidar, Dadmehr (bib29) 2007; 54 Hobson (bib1) 1969; 26 . Hayes (bib32) 1996 Doroshenkov, Konyshev, Selishchev (bib8) 2007; 41 Manabe, Fukumoto (bib15) 2006 Liang, Kuo, Hu, Cheng (bib10) 2012; 205 Physionet, Sleep-edf database expanded, (Accessed on 01/19/2018/). URL Cortes, Vapnik (bib34) 1995; 20 Vural, Yildiz (bib9) 2008; 34 Virkkala, Hasan, Värri, Himanen, Müller (bib16) 2007; 166 Yang, Xia (bib23) 2016 Berthomier, Drouot, Herman-Stoca, Berthomier, Prado, Bokar-Thire, Benoit, Mattout, d'Ortho (bib7) 2007; 30 Virkkala (10.1016/j.compbiomed.2018.08.022_bib18) 2014; 19 Tsinalis (10.1016/j.compbiomed.2018.08.022_bib13) 2016; 44 Doroshenkov (10.1016/j.compbiomed.2018.08.022_bib8) 2007; 41 Xia (10.1016/j.compbiomed.2018.08.022_bib21) 2015 Bulling (10.1016/j.compbiomed.2018.08.022_bib14) 2009 Norman (10.1016/j.compbiomed.2018.08.022_bib17) 2000; 23 7 Seiffert (10.1016/j.compbiomed.2018.08.022_bib36) 2010; 40 Adeli (10.1016/j.compbiomed.2018.08.022_bib29) 2007; 54 Virkkala (10.1016/j.compbiomed.2018.08.022_bib16) 2007; 166 Yang (10.1016/j.compbiomed.2018.08.022_bib23) 2016 Liang (10.1016/j.compbiomed.2018.08.022_bib10) 2012; 205 10.1016/j.compbiomed.2018.08.022_bib19 Liang (10.1016/j.compbiomed.2018.08.022_bib5) 2012; 61 Breiman (10.1016/j.compbiomed.2018.08.022_bib35) 2001; 45 10.1016/j.compbiomed.2018.08.022_bib33 Hassan (10.1016/j.compbiomed.2018.08.022_bib11) 2017; 140 Olesen (10.1016/j.compbiomed.2018.08.022_bib24) 2016 Penzel (10.1016/j.compbiomed.2018.08.022_bib3) 2000; 4 Hassan (10.1016/j.compbiomed.2018.08.022_bib37) 2015 Hayes (10.1016/j.compbiomed.2018.08.022_bib32) 1996 Liang (10.1016/j.compbiomed.2018.08.022_bib20) 2015; 64 Kuo (10.1016/j.compbiomed.2018.08.022_bib22) 2014 Hassan (10.1016/j.compbiomed.2018.08.022_bib12) 2016; 271 Vural (10.1016/j.compbiomed.2018.08.022_bib9) 2008; 34 Zhu (10.1016/j.compbiomed.2018.08.022_bib4) 2014; 18 Ronzhina (10.1016/j.compbiomed.2018.08.022_bib6) 2012; 16 Azami (10.1016/j.compbiomed.2018.08.022_bib30) 2017; 64 10.1016/j.compbiomed.2018.08.022_bib2 Berthomier (10.1016/j.compbiomed.2018.08.022_bib7) 2007; 30 Rostaghi (10.1016/j.compbiomed.2018.08.022_bib31) 2016; 23 Khalighi (10.1016/j.compbiomed.2018.08.022_bib28) 2016; 124 Hobson (10.1016/j.compbiomed.2018.08.022_bib1) 1969; 26 10.1016/j.compbiomed.2018.08.022_bib27 Manabe (10.1016/j.compbiomed.2018.08.022_bib15) 2006 10.1016/j.compbiomed.2018.08.022_bib26 Cortes (10.1016/j.compbiomed.2018.08.022_bib34) 1995; 20 Goldberger (10.1016/j.compbiomed.2018.08.022_bib25) 2000; 101 |
References_xml | – reference: C. Iber, S. Ancoli-Israel, A. Chesson, S. Quan, The Aasm Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Westchester, IL: American Academy of Sleep Medicine. – volume: 124 start-page: 180 year: 2016 end-page: 192 ident: bib28 article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers publication-title: Comput. Meth. Progr. Biomed. – start-page: 595 year: 2016 end-page: 600 ident: bib23 article-title: Single electrooculogram channel-based sleep stage classification publication-title: Advances in Cognitive Neurodynamics (V) – start-page: 71 year: 2014 end-page: 88 ident: bib22 article-title: An EOG-based automatic sleep scoring system and its related application in sleep environmental control publication-title: Physiological Computing Systems – volume: 166 start-page: 109 year: 2007 end-page: 115 ident: bib16 article-title: Automatic sleep stage classification using two-channel electro-oculography publication-title: J. Neurosci. Meth. – volume: 44 start-page: 1587 year: 2016 end-page: 1597 ident: bib13 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. – volume: 140 start-page: 201 year: 2017 end-page: 210 ident: bib11 article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Meth. Progr. Biomed. – volume: 19 start-page: 785 year: 2014 end-page: 789 ident: bib18 article-title: Electro-oculography-based detection of sleep-wake in sleep apnea patients publication-title: Sleep Breath. – reference: Physionet, Sleep-edf database expanded, (Accessed on 01/19/2018/). URL – volume: 23 start-page: 1 year: 2016 ident: bib31 article-title: Dispersion entropy: a measure for time series analysis publication-title: IEEE Signal Process. Lett. – volume: 18 start-page: 1813 year: 2014 end-page: 1821 ident: bib4 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Inf. – start-page: 3259 year: 2009 end-page: 3264 ident: bib14 article-title: Wearable eog goggles: eye-based interaction in everyday environments publication-title: CHI ’09 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’09 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib34 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 30 year: 2007 ident: bib7 article-title: Automatic analysis of single-channel sleep eeg: validation in healthy individuals publication-title: Sleep – start-page: 1 year: 2015 end-page: 5 ident: bib21 article-title: Electrooculogram based sleep stage classification using deep belief network publication-title: 2015 International Joint Conference on Neural Networks (IJCNN) – volume: 271 start-page: 107 year: 2016 end-page: 118 ident: bib12 article-title: A decision support system for automatic sleep staging from eeg signals using tunable q-factor wavelet transform and spectral features publication-title: J. Neurosci. Meth. – volume: 26 start-page: 644 year: 1969 ident: bib1 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Electroencephalogr. Clin. Neurophysiol. – reference: E.M. SobhanSalari, Automatic sleep stage detection and classification: distinguishing between patients with periodic limb movements, sleep apnea hypopnea syndrome, and healthy controls using electrooculography (EOG) signals, J. Bioprocess. Biotech. 05 (03). – reference: Physionet, Sleep-edf database, (Accessed on 01/19/2018/). URL – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: bib25 article-title: Physiobank, physiotoolkit, and physionet publication-title: Circulation – start-page: 1073 year: 2006 end-page: 1078 ident: bib15 article-title: Full-time Wearable Headphone-type Gaze Detector – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib35 article-title: Random forests publication-title: Mach. Learn. – volume: 205 start-page: 169 year: 2012 end-page: 176 ident: bib10 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Meth. – volume: 54 start-page: 205 year: 2007 end-page: 211 ident: bib29 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 41 start-page: 25 year: 2007 end-page: 28 ident: bib8 article-title: Classification of human sleep stages based on EEG processing using hidden markov models publication-title: Biomed. Eng. – reference: W. Yang, K. Wang, W. Zuo, Neighborhood component feature selection for high-dimensional data, J. Comput. 7 (1). – reference: . – volume: 64 year: 2017 ident: bib30 article-title: Refined composite multiscale dispersion entropy and its application to biomedical signals publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 64 start-page: 2977 year: 2015 end-page: 2985 ident: bib20 article-title: Development of an eog-based automatic sleep-monitoring eye mask publication-title: IEEE Trans. Instrum. Meas. – start-page: 2238 year: 2015 end-page: 2243 ident: bib37 article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram publication-title: 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI) – volume: 16 start-page: 251 year: 2012 end-page: 263 ident: bib6 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. – start-page: 3769 year: 2016 end-page: 3772 ident: bib24 article-title: A noise-assisted data analysis method for automatic eog-based sleep stage classification using ensemble learning publication-title: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 61 start-page: 1649 year: 2012 end-page: 1657 ident: bib5 article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models publication-title: IEEE Trans. Instrum. Meas. – volume: 4 start-page: 131 year: 2000 end-page: 148 ident: bib3 article-title: Computer based sleep recording and analysis publication-title: Sleep Med. Rev. – volume: 34 start-page: 83 year: 2008 end-page: 89 ident: bib9 article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis publication-title: J. Med. Syst. – volume: 23 7 start-page: 901 year: 2000 end-page: 908 ident: bib17 article-title: Interobserver agreement among sleep scorers from different centers in a large dataset publication-title: Sleep – year: 1996 ident: bib32 article-title: Statistical Digital Signal Processing and Modeling – volume: 40 start-page: 185 year: 2010 end-page: 197 ident: bib36 article-title: Rusboost: a hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. – volume: 4 start-page: 131 issue: 2 year: 2000 ident: 10.1016/j.compbiomed.2018.08.022_bib3 article-title: Computer based sleep recording and analysis publication-title: Sleep Med. Rev. doi: 10.1053/smrv.1999.0087 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.compbiomed.2018.08.022_bib34 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 124 start-page: 180 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib28 article-title: Isruc-sleep: a comprehensive public dataset for sleep researchers publication-title: Comput. Meth. Progr. Biomed. doi: 10.1016/j.cmpb.2015.10.013 – ident: 10.1016/j.compbiomed.2018.08.022_bib19 doi: 10.4172/2155-9821.1000216 – volume: 18 start-page: 1813 issue: 6 year: 2014 ident: 10.1016/j.compbiomed.2018.08.022_bib4 article-title: Analysis and classification of sleep stages based on difference visibility graphs from a single-channel eeg signal publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2014.2303991 – year: 1996 ident: 10.1016/j.compbiomed.2018.08.022_bib32 – ident: 10.1016/j.compbiomed.2018.08.022_bib33 doi: 10.4304/jcp.7.1.161-168 – volume: 26 start-page: 644 issue: 6 year: 1969 ident: 10.1016/j.compbiomed.2018.08.022_bib1 article-title: A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects publication-title: Electroencephalogr. Clin. Neurophysiol. doi: 10.1016/0013-4694(69)90021-2 – start-page: 3259 year: 2009 ident: 10.1016/j.compbiomed.2018.08.022_bib14 article-title: Wearable eog goggles: eye-based interaction in everyday environments – start-page: 71 year: 2014 ident: 10.1016/j.compbiomed.2018.08.022_bib22 article-title: An EOG-based automatic sleep scoring system and its related application in sleep environmental control – volume: 19 start-page: 785 issue: 3 year: 2014 ident: 10.1016/j.compbiomed.2018.08.022_bib18 article-title: Electro-oculography-based detection of sleep-wake in sleep apnea patients publication-title: Sleep Breath. doi: 10.1007/s11325-014-1060-3 – volume: 44 start-page: 1587 issue: 5 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib13 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1444-y – volume: 140 start-page: 201 year: 2017 ident: 10.1016/j.compbiomed.2018.08.022_bib11 article-title: Automated identification of sleep states from EEG signals by means of ensemble empirical mode decomposition and random under sampling boosting publication-title: Comput. Meth. Progr. Biomed. doi: 10.1016/j.cmpb.2016.12.015 – start-page: 1073 year: 2006 ident: 10.1016/j.compbiomed.2018.08.022_bib15 – volume: 34 start-page: 83 issue: 1 year: 2008 ident: 10.1016/j.compbiomed.2018.08.022_bib9 article-title: Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9218-9 – volume: 64 issue: 12 year: 2017 ident: 10.1016/j.compbiomed.2018.08.022_bib30 article-title: Refined composite multiscale dispersion entropy and its application to biomedical signals publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – volume: 23 7 start-page: 901 year: 2000 ident: 10.1016/j.compbiomed.2018.08.022_bib17 article-title: Interobserver agreement among sleep scorers from different centers in a large dataset publication-title: Sleep – volume: 23 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib31 article-title: Dispersion entropy: a measure for time series analysis publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2016.2542881 – volume: 271 start-page: 107 issue: 3 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib12 article-title: A decision support system for automatic sleep staging from eeg signals using tunable q-factor wavelet transform and spectral features publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2016.07.012 – volume: 30 issue: 11 year: 2007 ident: 10.1016/j.compbiomed.2018.08.022_bib7 article-title: Automatic analysis of single-channel sleep eeg: validation in healthy individuals publication-title: Sleep doi: 10.1093/sleep/30.11.1587 – ident: 10.1016/j.compbiomed.2018.08.022_bib26 – volume: 64 start-page: 2977 issue: 11 year: 2015 ident: 10.1016/j.compbiomed.2018.08.022_bib20 article-title: Development of an eog-based automatic sleep-monitoring eye mask publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2015.2433652 – volume: 41 start-page: 25 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2018.08.022_bib8 article-title: Classification of human sleep stages based on EEG processing using hidden markov models publication-title: Biomed. Eng. doi: 10.1007/s10527-007-0006-5 – start-page: 1 year: 2015 ident: 10.1016/j.compbiomed.2018.08.022_bib21 article-title: Electrooculogram based sleep stage classification using deep belief network – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.compbiomed.2018.08.022_bib25 article-title: Physiobank, physiotoolkit, and physionet publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 40 start-page: 185 issue: 1 year: 2010 ident: 10.1016/j.compbiomed.2018.08.022_bib36 article-title: Rusboost: a hybrid approach to alleviating class imbalance publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. doi: 10.1109/TSMCA.2009.2029559 – start-page: 595 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib23 article-title: Single electrooculogram channel-based sleep stage classification doi: 10.1007/978-981-10-0207-6_80 – volume: 16 start-page: 251 issue: 3 year: 2012 ident: 10.1016/j.compbiomed.2018.08.022_bib6 article-title: Sleep scoring using artificial neural networks publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2011.06.003 – volume: 54 start-page: 205 issue: 2 year: 2007 ident: 10.1016/j.compbiomed.2018.08.022_bib29 article-title: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy publication-title: IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. – start-page: 2238 year: 2015 ident: 10.1016/j.compbiomed.2018.08.022_bib37 article-title: On the classification of sleep states by means of statistical and spectral features from single channel electroencephalogram – volume: 166 start-page: 109 issue: 1 year: 2007 ident: 10.1016/j.compbiomed.2018.08.022_bib16 article-title: Automatic sleep stage classification using two-channel electro-oculography publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2007.06.016 – ident: 10.1016/j.compbiomed.2018.08.022_bib2 – volume: 61 start-page: 1649 issue: 6 year: 2012 ident: 10.1016/j.compbiomed.2018.08.022_bib5 article-title: Automatic stage scoring of single-channel sleep eeg by using multiscale entropy and autoregressive models publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2012.2187242 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.compbiomed.2018.08.022_bib35 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 205 start-page: 169 issue: 1 year: 2012 ident: 10.1016/j.compbiomed.2018.08.022_bib10 article-title: A rule-based automatic sleep staging method publication-title: J. Neurosci. Meth. doi: 10.1016/j.jneumeth.2011.12.022 – start-page: 3769 year: 2016 ident: 10.1016/j.compbiomed.2018.08.022_bib24 article-title: A noise-assisted data analysis method for automatic eog-based sleep stage classification using ensemble learning – ident: 10.1016/j.compbiomed.2018.08.022_bib27 |
SSID | ssj0004030 |
Score | 2.5313165 |
Snippet | Sleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring of... AbstractSleep stage classification is an important task for the timely diagnosis of sleep disorders and sleep-related studies. In this paper, automatic scoring... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 211 |
SubjectTerms | Accuracy Algorithms AR model Autoregressive models Autoregressive processes Classification Datasets Discrete Wavelet Transform Discrete Wavelet Transform (DWT) EEG Electrodes Electroencephalography Electrooculogram (EOG) Entropy Experts Internal Medicine Methods Neighborhood Component Analysis (NCA) Other Physiology Random forest Random Under Sampling Boosting (RUSboost) Sleep Sleep disorders State of the art Support Vector Machine Support vector machines Variance analysis Wavelet analysis Wavelet transforms |
SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7iQbyIb9cXFbxW2zw2KZ5kURdBPajgLaR5iLJ0F3e9-tudadOKqLDgpdDH0DCdTL7Q75sh5JhaVgRYydO-cNjCDDasRXA29S5ANADeD7Vu7ea2P3zk10_iaYEMWi0M0ipj7m9yep2t45XT6M3TycsLanxhK4HKSyxhxSkqyjmXGOUnH180D56xRoYC-QafjmyehuOFtO1G5o4kL1UX86T0ryXqLwhaL0WXq2QlYsjkvBnmGlnw1TpZuol_yTcIux95P0kA9z37xCI8Rj5Q_QkS5Lk_J3gY-RRVv5UfJRd3V5vk8fLiYTBMY3OE1ALGmaWSQa4KPu8b7G_pgzNc8NIWKsg8cGozA3sZbjkXmQlOlFwJaVghHHeZzaRnW2SxGld-hyTMZMLQMjfGOx5sqZRQ1LtcAbSSktkeka0_tI2Vw7GBxUi3FLFX_eVJjZ7U2NuS0h7JO8tJUz1jDpuidblu1aGQzzSk-Dls5W-2fhon5lTnekp1pn8ET4-cdZbf4m_O9-63saG7VwEoAHApqcp75Ki7DbMXf8mYyo_f4ZmsUBKJEDCA7SamOkcxLG0k-8Xuv4a2R5bxrJFP7pPF2du7PwAcNSsP64nyCXnyGaE priority: 102 providerName: Elsevier |
Title | Sleep stage classification using single-channel EOG |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482518302427 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482518302427 https://dx.doi.org/10.1016/j.compbiomed.2018.08.022 https://www.ncbi.nlm.nih.gov/pubmed/30170769 https://www.proquest.com/docview/2125627281 https://www.proquest.com/docview/2098771737 |
Volume | 102 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-xTUK8IL5XGFWQeA0ktlM72sO0oXYFtIIYk_pmOf6YhKq0W7tX_vbdJU76wlBfnIfkEutyPv9s_-4O4COzvAw4k6ejwlEJM1ywlsHZ1LuA1oB4PzRxaxez0fRKfJsX87jhto60ys4nNo7aLS3tkX9GF4tTtWQqP1ndpFQ1ik5XYwmNPTig1GVE6ZJzuY2LzHgbgoK-RuBSKDJ5Wn4XUbbbEHcieKkmkSdjD01PD8HPZhqaPIOnET8mp-0Pfw6PfP0CHl_EE_KXwC8X3q8SxHzXPrEEjYkL1Kg_IY77dULNwqcU8Vv7RTL-cf4Kribj31-maSyMkFrEN5tUcvRTwecjQ7UtfXBGFKKypQoyD4LZzOA6RlghiswEV1RCFdLwsnDCZTaTnr-G_XpZ-0NIuMkKw6rcGO9EsJVShWLe5QphlZTcDkB2-tA2Zg2n4hUL3dHD_uitJjVpUlNdS8YGkPeSqzZzxg4yZady3UWGoi_T6N53kJX_kvXrOCjXOtdrpjN92eQkopBdyn0mmBzAcS8ZcUeLJ3b87lFnG7r_1NZaB_Chv40jl45jTO2Xd_hMVipJJAjswJvWpnpFcUprJEfl2_-__B08oZ60sZFHsL-5vfPvESRtqiHsffqbD5vxgK2anA_h4PTr9-kMr2fj2c9f9yc6E1Q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgEXVF4lUMBIcLSwd9fZtVBVIWia0qYc2kq9Let9VEKRE0gqxJ_iN3bGazsXinLpxRd7bGs8j2-9880AvGOWlwEzeTosHI0wwwVrGZxNvQtoDYj3Q8Nbm5wMx-fi60VxsQF_Oy4MlVV2MbEJ1G5m6R_5BwyxmKolU_ne_GdKU6Nod7UboRHN4sj_-Y1LtsXu4Rf8vu8ZG-2ffR6n7VSB1CI4WKaSo5MHnw8NDYb0wRlRiMqWKsg8CGYzg4sAYYUoMhNcUQlVSMPLwgmX2Ux6jve9A3cF5yV5lBodrHiYGY-UF4xtApdebeVQrCejEvFIqaeCMtU0DmXspnR4E9xt0t5oCx62eDX5FA3sEWz4-jHcm7Q78k-An069nyeIMS99YgmKU-1R87kTqqm_TOgw9SkxjGs_Tfa_HTyF81tR2TPYrGe1fw4JN1lhWJUb450ItlKqUMy7XCGMk5LbAchOH9q2XcppWMZUd-VoP_RKk5o0qWmOJmMDyHvJeezUsYZM2alcd0xUjJ0a08kasvJfsn7RBoGFzvWC6UyfNj2QiCJMvdYEkwP42Eu2OCfilzWfu9PZhu4ftfKOAbztT2OkoO0fU_vZFV6TlUpS0QW-wHa0qV5RnNooyWH54v83fwP3x2eTY318eHL0Eh7QW0Ve5g5sLn9d-VcI0JbV68YrEvh-2254DWWZSo4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIlVcEO-GFjASHK3a-8jaqlCFaENLaUEqlXJb1vuohCInNKlQ_xq_rjNe27lQlEsvvthjW-N5fOv9ZgbgHbO8DJjJ06F0NMIMF6xlcDb1LqA1IN4PTd3ayenw8Fx8GcvxGvztamGIVtnFxCZQu6mlf-Q7GGIxVStW5DuhpUV83x_tzX6nNEGKdlq7cRrRRI799R9cvs0_HO3jt37P2Ojgx6fDtJ0wkFoECotUcXT44POhoSGRPjgjpKhsWQSVB8FsZnBBIKwQMjPByUoUUhleSidcZjPlOd73HtxXXObkY2qsljWZGY_lLxjnBC7DWhZR5JYRXTyW1xO5rGiaiDJ2W2q8Dfo2KXD0CB622DX5GI3tMaz5-glsnLS780-Bn028nyWINy98YgmWEw-p-fQJ8esvEjpMfErVxrWfJAffPj-D8ztR2XNYr6e134SEm0waVuXGeCeCrYpCFsy7vEBIpxS3A1CdPrRtO5bT4IyJ7qhpv_RSk5o0qWmmJmMDyHvJWezasYJM2alcd1WpGEc1ppYVZNW_ZP28DQhznes505k-a_ohUbkw9V0TTA1gt5dsMU_EMis-d7uzDd0_aukpA3jbn8aoQVtBpvbTK7wmKwtFBAx8gRfRpnpFcWqppIbly__f_A1soAPqr0enx1vwgF4qlmhuw_ri8sq_Qqy2qF43TpHAz7v2whvC9k67 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sleep+stage+classification+using+single-channel+EOG&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Rahman%2C+Md+Mosheyur&rft.au=Bhuiyan%2C+Mohammed+Imamul+Hassan&rft.au=Hassan%2C+Ahnaf+Rashik&rft.date=2018-11-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=102&rft.spage=211&rft_id=info:doi/10.1016%2Fj.compbiomed.2018.08.022&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |