Mathematical Modeling of Multi-sized Argon Gas Bubbles Motion and Its Impact on Melt Flow in Continuous Casting Mold of Steel

The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbl...

Full description

Saved in:
Bibliographic Details
Published inJournal of iron and steel research, international Vol. 21; no. 4; pp. 403 - 407
Main Authors LIU, Chong-lin, LUO, Zhi-guo, ZHANG, Tao, DENG, Shen, WANG, Nan, ZOU, Zong-shu
Format Journal Article
LanguageEnglish
Published Singapore Elsevier Ltd 01.04.2014
Springer Singapore
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
AbstractList The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
The 3D turbulence k- epsilon model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1-2. 5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25-2. 5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the meniscus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0. 1-0. 25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
The 3D turbulence k-e model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles ( dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0.1–2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0.25–2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the meniscus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1–0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1 — 2. 5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25 – 2. 5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the meniscus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0. 1 – 0. 25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
Author Chong-lin LIU Zhi-guo LUO Tao ZHANG Shen DENG Nan WANG Zong-shu ZOU
AuthorAffiliation School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China Technology Center, C-uangxi Liuzhou Iron and Steel Company, Liuzhou 545002, Guangxi, China
Author_xml – sequence: 1
  givenname: Chong-lin
  surname: LIU
  fullname: LIU, Chong-lin
  organization: School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
– sequence: 2
  givenname: Zhi-guo
  surname: LUO
  fullname: LUO, Zhi-guo
  email: luozg@smm.neu.edu.cn
  organization: School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
– sequence: 3
  givenname: Tao
  surname: ZHANG
  fullname: ZHANG, Tao
  organization: School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
– sequence: 4
  givenname: Shen
  surname: DENG
  fullname: DENG, Shen
  organization: Technology Center, Guangxi Liuzhou Iron and Steel Company, Liuzhou 545002, Guangxi, China
– sequence: 5
  givenname: Nan
  surname: WANG
  fullname: WANG, Nan
  organization: School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
– sequence: 6
  givenname: Zong-shu
  surname: ZOU
  fullname: ZOU, Zong-shu
  organization: School of Materials and Metallurgy, Northeastern University, Shenyang 110819, Liaoning, China
BookMark eNqFkU9rFDEYxoNUcK39CEK81cNo_swkM3iQuti60MFDFbyFTPLONiWbbCcZRcHvbqZbevCyuYS8PL8nD8_7Ep2EGACh15S8o4SK9zeUEFFJIn6c0_qtKA9WNc_QijFKKt617QlaPUleoLOU7shyOsFZu0J_e51vYaezM9rjPlrwLmxxHHE_--yq5P6AxRfTNgZ8pRP-NA-Dh1SU2ZWRDhZvcsKb3V6bjMukB5_xpY-_sAt4HUN2YY5zwmud8uLcR28X-5sM4F-h56P2Cc4e71P0_fLzt_WX6vrr1WZ9cV2Zhta5koxLqjnQgQHXg21GJrm1BuRgRGsF5aThtK1pywUdu0ZoNoCkNQXJrNaSn6Lzg-9-ivczpKx2LhnwXgco4RQVUnaMcV4flzZCko7wmhbph4PUTDGlCUZlXNZLL3nSzitK1LIi9bAitfSvaK0eVqSaQjf_0fvJ7fT0-ygnDlwq-rCFSd3FeQqlvqPgxwMIpemfroDJOAgGrJvAZGWjO-rw5jHybQzb-_L7U-a6a2pRIP4P_LTF8A
CitedBy_id crossref_primary_10_1002_srin_201700312
crossref_primary_10_1007_s11663_015_0525_5
crossref_primary_10_1016_j_powtec_2014_12_036
crossref_primary_10_1007_s11663_023_02938_7
crossref_primary_10_3390_pr10071429
crossref_primary_10_1007_s11663_020_02046_w
crossref_primary_10_1016_j_ijmultiphaseflow_2024_105104
crossref_primary_10_1007_s42243_021_00648_5
crossref_primary_10_1007_s11837_018_3255_8
crossref_primary_10_2355_isijinternational_ISIJINT_2020_106
crossref_primary_10_1002_srin_201800287
crossref_primary_10_1016_j_powtec_2021_10_055
crossref_primary_10_3390_met8080590
crossref_primary_10_3390_met13122010
crossref_primary_10_2355_isijinternational_ISIJINT_2018_502
crossref_primary_10_3390_met9010036
crossref_primary_10_3390_met10091160
crossref_primary_10_1007_s11663_018_1191_1
Cites_doi 10.2355/isijinternational.43.271
10.1201/9781482277333
10.2355/isijinternational.44.556
10.1007/BF02650074
10.1016/j.msea.2005.08.178
10.2355/isijinternational.41.1252
10.2355/isijinternational.42.1251
10.2355/isijinternational.41.1245
10.2355/isijinternational.46.210
ContentType Journal Article
Copyright 2014 Central Iron and Steel Research Institute
China Iron and Steel Research Institute Group 2014
Copyright_xml – notice: 2014 Central Iron and Steel Research Institute
– notice: China Iron and Steel Research Institute Group 2014
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8BQ
8FD
JG9
DOI 10.1016/S1006-706X(14)60062-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database


Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
DocumentTitleAlternate Mathematical Modeling of Multi-sized Argon Gas Bubbles Motion and Its Impact on Melt Flow in Continuous Casting Mold of Steel
EISSN 2210-3988
EndPage 407
ExternalDocumentID 10_1016_S1006_706X_14_60062_5
S1006706X14600625
49546100
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 50874130, 50974034
GroupedDBID --K
--M
-02
-0B
-EM
-SB
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2C0
2RA
4.4
406
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92H
92I
92L
92M
92R
93N
9D9
9DB
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAFGU
AAHNG
AAIAL
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATNV
AAUYE
AAXUO
AAYFA
ABDZT
ABECU
ABFGW
ABFNM
ABFTV
ABJNI
ABJOX
ABKAS
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABXDB
ABXPI
ABXRA
ABYKQ
ACAOD
ACBMV
ACBRV
ACBYP
ACDAQ
ACGFO
ACGFS
ACHSB
ACIGE
ACIPQ
ACMLO
ACNNM
ACOKC
ACRLP
ACTTH
ACVWB
ACWMK
ACZOJ
ADEZE
ADHHG
ADKNI
ADMDM
ADMUD
ADOXG
ADRFC
ADURQ
ADYFF
AEBSH
AEFTE
AEJRE
AEKER
AENEX
AEPYU
AESKC
AESTI
AEVTX
AEZYN
AFKWA
AFNRJ
AFQWF
AFRZQ
AFUIB
AGDGC
AGGBP
AGHFR
AGJBK
AGMZJ
AGUBO
AGYEJ
AIAKS
AIEXJ
AIKHN
AILAN
AIMYW
AITGF
AITUG
AJBFU
AJDOV
AJOXV
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMKLP
AMRAJ
AMXSW
AMYLF
AXJTR
AXYYD
BGNMA
BKOJK
BLXMC
CAJEB
CAJUS
CCEZO
CDRFL
CHBEP
CQIGP
CS3
CW9
DPUIP
EBLON
EBS
EFJIC
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FEDTE
FINBP
FIRID
FNLPD
FNPLU
FSGXE
FYGXN
GBLVA
GGCAI
GJIRD
HVGLF
HZ~
IKXTQ
IWAJR
J-C
J1W
JUIAU
JZLTJ
KOV
LLZTM
M41
M4Y
MAGPM
MO0
N9A
NPVJJ
NQJWS
NU0
O-L
O9-
O9J
OAUVE
OZT
P-8
P-9
PC.
PT4
Q--
Q38
R-B
RIG
RLLFE
ROL
RSV
RT2
S..
SDC
SDF
SDG
SES
SNE
SNPRN
SOHCF
SOJ
SPC
SPD
SRMVM
SSLCW
SSM
SSZ
STPWE
T5K
T8R
TCJ
TGT
TSG
U1F
U1G
U5B
U5L
UOJIU
UTJUX
VEKWB
VFIZW
W92
Z7S
Z7Y
Z7Z
Z85
ZMTXR
~WA
AGQEE
FIGPU
AACDK
AAJBT
AASML
AAXDM
AAXKI
ABAKF
ABWVN
ACDTI
ACPIV
ACRPL
ADNMO
AEFQL
AEIPS
AEMSY
AFBBN
AGRTI
AIGIU
AKRWK
ANKPU
SJYHP
AATTM
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AFXIZ
AGCQF
AGRNS
AHPBZ
AHWEU
AIGII
AIIUN
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
SSH
8BQ
8FD
JG9
ID FETCH-LOGICAL-c514t-72371a3e1b2e3abd5f273ddce7bc68d61305318418361f956a2be7141e72daa73
IEDL.DBID .~1
ISSN 1006-706X
IngestDate Fri Jul 11 03:47:17 EDT 2025
Thu Jul 10 18:20:39 EDT 2025
Thu Apr 24 23:03:04 EDT 2025
Tue Jul 01 03:19:43 EDT 2025
Fri Feb 21 02:32:01 EST 2025
Fri Feb 23 02:34:09 EST 2024
Wed Feb 14 10:37:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords void fraction
dispersed phase
continuous casting
bubble
multi-sized distribution
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-72371a3e1b2e3abd5f273ddce7bc68d61305318418361f956a2be7141e72daa73
Notes 11-3678/TF
The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting mold were simulated using an Eulerian-Lagrangian approach. In order to investigate the effect of bubble size distribution, the radii of bubbles are set with an initial value of 0. 1- 2.5 mm which follows the normal distribution. The presented results indicate that, in the submerged entry nozzle (SEN), the distribution of void fraction is only near the wall. Due to the fact that the bubbles motion is only limited to the wall, the deoxidization products have no access to contacting the wall, which prevents clogging. In the mold, the bubbles with a radius of 0. 25--2.5 mm will move to the top surface. Larger bubbles issuing out of the ports will attack the menis- cus and induce the fluid flows upwards in the top surface near the nozzle. It may induce mold powder entrapment into the mold. The bubbles with a radius of 0.1--0.25 mm will move to the zone near the narrow surface and the wide surface. These small bubbles will probably be trapped by the solidification front. Most of the bubbles moving to the narrow surface will flow with the ascending flow, while others will flow with the descending flow.
continuous casting;bubble; multi-sized distribution; dispersed phase; void fraction
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567090341
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1677922334
proquest_miscellaneous_1567090341
crossref_citationtrail_10_1016_S1006_706X_14_60062_5
crossref_primary_10_1016_S1006_706X_14_60062_5
springer_journals_10_1016_S1006_706X_14_60062_5
elsevier_sciencedirect_doi_10_1016_S1006_706X_14_60062_5
chongqing_primary_49546100
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-04-01
PublicationDateYYYYMMDD 2014-04-01
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of iron and steel research, international
PublicationTitleAbbrev J. Iron Steel Res. Int
PublicationTitleAlternate Journal of Iron and Steel Research
PublicationYear 2014
Publisher Elsevier Ltd
Springer Singapore
Publisher_xml – name: Elsevier Ltd
– name: Springer Singapore
References Yu (bib1) 2001
Kubo, Ishii, Kubota, Aramaki (bib7) 2002; 42
Thomas, Huang, Sussman (bib3) 1994; B
Toh, Hasegawa, Harada, Nishimura (bib9) 2001; 41
Thomas, Dennisov, Bai (bib4) 1997
Kubo, Ishii, Kubo (bib10) 2004; 44
Zhang, Thomas (bib2) 2003; 43
Takatani, Tanizawa, Mizukami, Nishimura (bib6) 2001; 41
Singh, Dash, Sunitha, Ajmanii, Das (bib8) 2006; 46
Pfeiler, Wu, Ludwig (bib5) 2005; A
TakataniKTanizawaYMizukamiHNishimuraKISIJ Int.2001411252126110.2355/isijinternational.41.1252
YuK OModeling for Casting and Solidification Processing2001New YorkCRC Press
PfeilerCWuMLudwigAModel. Simul. Mater. Sci. Eng. A2005413–41411512010.1016/j.msea.2005.08.178
KuboNIshiiTKubotaJAramakiNISIJ Int.2002421251125810.2355/isijinternational.42.1251
SinghVDashS KSunithaJ SAjmaniiSDasA KISIJ Int.20064621021810.2355/isijinternational.46.210
B. G. Thomas, A. Dennisov, H. Bai, in: 80th Steelmaking Conference Proceedings, Iron and Steel Society, Warrendale, 1997, pp. 375–384.
ZhangL FThomasB GISIJ Int.20034327129110.2355/isijinternational.43.271
TohTHasegawaHHaradaHNishimuraKISIJ Int.2001411245125110.2355/isijinternational.41.1245
ThomasB GHuangG XSussmanR CMetall. Mater. Trans. B19942552754710.1007/BF02650074
KuboNIshiiTKuboJISIJ Int.20044455656410.2355/isijinternational.44.556
K Takatani (2104403_CR6) 2001; 41
B G Thomas (2104403_CR3) 1994; 25
T Toh (2104403_CR9) 2001; 41
2104403_CR4
N Kubo (2104403_CR7) 2002; 42
N Kubo (2104403_CR10) 2004; 44
L F Zhang (2104403_CR2) 2003; 43
V Singh (2104403_CR8) 2006; 46
K O Yu (2104403_CR1) 2001
C Pfeiler (2104403_CR5) 2005; 413–414
References_xml – volume: 42
  start-page: 1251
  year: 2002
  end-page: 1258
  ident: bib7
  publication-title: ISIJ Int.
– volume: 44
  start-page: 556
  year: 2004
  end-page: 564
  ident: bib10
  publication-title: ISIJ Int.
– volume: A
  start-page: 115
  year: 2005
  end-page: 120
  ident: bib5
  publication-title: Model. Simul. Mater. Sci. Eng.
– volume: 46
  start-page: 210
  year: 2006
  end-page: 218
  ident: bib8
  publication-title: ISIJ Int.
– start-page: 375
  year: 1997
  end-page: 384
  ident: bib4
  publication-title: 80th Steelmaking Conference Proceedings
– volume: 41
  start-page: 1245
  year: 2001
  end-page: 1251
  ident: bib9
  publication-title: ISIJ Int.
– volume: B
  start-page: 527
  year: 1994
  end-page: 547
  ident: bib3
  publication-title: Metall. Mater. Trans.
– year: 2001
  ident: bib1
  publication-title: Modeling for Casting and Solidification Processing
– volume: 41
  start-page: 1252
  year: 2001
  end-page: 1261
  ident: bib6
  publication-title: ISIJ Int.
– volume: 43
  start-page: 271
  year: 2003
  end-page: 291
  ident: bib2
  publication-title: ISIJ Int.
– reference: TohTHasegawaHHaradaHNishimuraKISIJ Int.2001411245125110.2355/isijinternational.41.1245
– reference: KuboNIshiiTKuboJISIJ Int.20044455656410.2355/isijinternational.44.556
– reference: ZhangL FThomasB GISIJ Int.20034327129110.2355/isijinternational.43.271
– reference: PfeilerCWuMLudwigAModel. Simul. Mater. Sci. Eng. A2005413–41411512010.1016/j.msea.2005.08.178
– reference: TakataniKTanizawaYMizukamiHNishimuraKISIJ Int.2001411252126110.2355/isijinternational.41.1252
– reference: ThomasB GHuangG XSussmanR CMetall. Mater. Trans. B19942552754710.1007/BF02650074
– reference: YuK OModeling for Casting and Solidification Processing2001New YorkCRC Press
– reference: KuboNIshiiTKubotaJAramakiNISIJ Int.2002421251125810.2355/isijinternational.42.1251
– reference: B. G. Thomas, A. Dennisov, H. Bai, in: 80th Steelmaking Conference Proceedings, Iron and Steel Society, Warrendale, 1997, pp. 375–384.
– reference: SinghVDashS KSunithaJ SAjmaniiSDasA KISIJ Int.20064621021810.2355/isijinternational.46.210
– volume: 43
  start-page: 271
  year: 2003
  ident: 2104403_CR2
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.43.271
– volume-title: Modeling for Casting and Solidification Processing
  year: 2001
  ident: 2104403_CR1
  doi: 10.1201/9781482277333
– volume: 44
  start-page: 556
  year: 2004
  ident: 2104403_CR10
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.44.556
– volume: 25
  start-page: 527
  year: 1994
  ident: 2104403_CR3
  publication-title: Metall. Mater. Trans. B
  doi: 10.1007/BF02650074
– ident: 2104403_CR4
– volume: 413–414
  start-page: 115
  year: 2005
  ident: 2104403_CR5
  publication-title: Model. Simul. Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2005.08.178
– volume: 41
  start-page: 1252
  year: 2001
  ident: 2104403_CR6
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.41.1252
– volume: 42
  start-page: 1251
  year: 2002
  ident: 2104403_CR7
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.42.1251
– volume: 41
  start-page: 1245
  year: 2001
  ident: 2104403_CR9
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.41.1245
– volume: 46
  start-page: 210
  year: 2006
  ident: 2104403_CR8
  publication-title: ISIJ Int.
  doi: 10.2355/isijinternational.46.210
SSID ssj0000096328
Score 2.0831819
Snippet The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting...
The 3D turbulence k-ε model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous casting...
The 3D turbulence k-e model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles ( dispersed phase) in a continuous casting...
The 3D turbulence k- epsilon model flow of the steel melt (continuous phase) and the trajectories of individual gas bubbles (dispersed phase) in a continuous...
SourceID proquest
crossref
springer
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 403
SubjectTerms Applied and Technical Physics
bubble
Bubbles
Continuous casting
dispersed phase
Engineering
Iron and steel industry
Machines
Manufacturing
Materials Engineering
Materials Science
Mathematical models
Metallic Materials
Molds
multi-sized distribution
Physical Chemistry
Processes
Steels
Turbulent flow
void fraction
Walls
拉格朗日方法
数学模型
气泡尺寸分布
气泡运动
浸入式水口
熔体流动性
连铸结晶器
钢水
Title Mathematical Modeling of Multi-sized Argon Gas Bubbles Motion and Its Impact on Melt Flow in Continuous Casting Mold of Steel
URI http://lib.cqvip.com/qk/86787X/201404/49546100.html
https://dx.doi.org/10.1016/S1006-706X(14)60062-5
https://link.springer.com/article/10.1016/S1006-706X(14)60062-5
https://www.proquest.com/docview/1567090341
https://www.proquest.com/docview/1677922334
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgAOCAqILVAZiQMc0l0njp0cy4pll9X2QKnYm2XHTokUJYVkhYQEv50Z54OCRCtximJlJpHHHr9x5o0JeZm4SFhh08BichhP8zxITCoDLhjTsxyCMZ_yvzkVy3P-fhtv98h84MJgWmXv-zuf7r113zLte3N6WRTTM-Y5JmILcx2ZgEg051ziKD_-ycZ9FsToUdgx4iB4RoHfRJ5OiW98xfhrryeIsczC57q6-AKLx7-Wqytw9K8_qH5hWtwn93pESU-6j35A9lx1QG4PhOPmgNy9UnPwIfmxGQu1ghQehYaEdFrn1HNxg6b47ixou6gr-k439M3OmNI18CSakOrK0lXb0JVnV1Jo2biypYuy_kaLimKxq6La1buGznWDKdUgWFpUf9Y6Vz4i54u3H-fLoD-DIcgASrWBDCPJdOSYCV2kjY1zwDvWZk6aTCQWow-YxQkHzyBYDsGWDo2TjDMnQ6u1jB6T_aqu3BNCEx3BPQAkrSEsS8MkEdxwM8tkJJ2Okwk5HLtdXXa1NhTEb1gRfjYhfLCDyvrq5XiIRqnGNDU0pUJTQjijvClVPCHHo9ig8gaBZDCy-mMcKlhibhJ9MQwKBXMUf7zoykGHK4iRJe6HcXbNM0LKFLBaxCdkOowo1TuU5vo3H_7_Rz8ldwAC9rlIz8h--3XnngPMas2Rn0dH5NbJar08xev6w6f1L8uBHmc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQFBAbHkZiQMcwq4TJ06OZcWyS7t7aSvtzbLXTokUJYVkhYTEf2cmLwoSrcQxlmdieezxN8l8Y4A3sQsiG9nEs5QcJpI09WKTSE9EnOtpisFYk_K_WkeLC_F5E272YNZzYSitsvP9rU9vvHXXMulmc3KVZZMz3nBMog3udWIChndgn6pThSPYP16eLNbDpxaC6YHfkuIwfiaZ31yeVk_T-JaLd40qL6RKC1_K4vIrnh__OrGuIdK_fqI2Z9P8AdzvQCU7bsf9EPZccQgHPee4OoR718oOPoKfq6FWK0rRbWjESWdlyho6rldlP5xFbZdlwT7pin3YGZO7CnuSFZkuLFvWFVs2BEuGLSuX12yel99ZVjCqd5UVu3JXsZmuKKsaBXNL6s9q5_LHcDH_eD5beN01DN4W0VTtST-QXAeOG98F2tgwRchj7dZJs41iSwEIbuRYoHOIeIrxlvaNk1xwJ32rtQyewKgoC_cUWKwDfEaMpDVGZokfx5Ewwky3MpBOh_EYjoZpV1dtuQ2FIRwVhZ-OQfR2UNuugDndo5GrIVONTKnIlBjRqMaUKhzD-0GsV3mLQNwbWf2xFBWeMreJvu4XhcJtSv9edOFwwhWGyZI-iQl-Q59IygThWiDGMOlXlOp8SnXzm4_-f9Cv4GBxvjpVp8v1yTO4i4iwS016DqP62869QNRVm5fdrvoFpmQfdQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mathematical+Modeling+of+Multi-sized+Argon+Gas+Bubbles+Motion+and+Its+Impact+on+Melt+Flow+in+Continuous+Casting+Mold+of+Steel&rft.jtitle=Journal+of+iron+and+steel+research%2C+international&rft.au=LIU%2C+Chong-lin&rft.au=LUO%2C+Zhi-guo&rft.au=ZHANG%2C+Tao&rft.au=DENG%2C+Shen&rft.date=2014-04-01&rft.issn=1006-706X&rft.volume=21&rft.issue=4&rft.spage=403&rft.epage=407&rft_id=info:doi/10.1016%2Fs1006-706x%2814%2960062-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86787X%2F86787X.jpg