Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative

Abstract Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC...

Full description

Saved in:
Bibliographic Details
Published inG3 : genes - genomes - genetics Vol. 10; no. 10; pp. 3651 - 3661
Main Authors Nyine, Moses, Adhikari, Elina, Clinesmith, Marshall, Jordan, Katherine W, Fritz, Allan K, Akhunov, Eduard
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.10.2020
Genetics Society of America
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
AbstractList Abstract Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg. These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from , the diploid ancestor of the wheat D genome, into winter wheat ( ) cultivars. The population of 351 BC F : lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat- octoploids. SNP markers developed for this population and a diverse panel of 116 accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of , controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii , the diploid ancestor of the wheat D genome, into winter wheat ( Triticum aestivum ) cultivars. The population of 351 BC 1 F 3 : 5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat- Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg , controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg . These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from Aegilops tauschii, the diploid ancestor of the wheat D genome, into winter wheat (Triticum aestivum) cultivars. The population of 351 BC1F3:5 lines was selected based on phenology from crosses between six hexaploid wheat lines and 21 wheat-Ae. tauschii octoploids. SNP markers developed for this population and a diverse panel of 116 Ae. tauschii accessions by complexity-reduced genome sequencing were used to detect introgression based on the identity-by-descent analysis. Overall, introgression frequency positively correlated with recombination rate, with a high incidence of introgression at the ends of chromosomes and low in the pericentromeric regions, and was negatively related to sequence divergence between the parental genomes. Reduced introgression in the pericentromeric low-recombining regions spans nearly 2/3 of each chromosome arm, suggestive of the polygenic nature of introgression barriers that could be associated with multilocus negative epistasis between the alleles of wild and cultivated wheat. On the contrary, negative selection against the wild allele of Tg, controlling free-threshing trait and located in the high-recombining chromosomal region, led to reduced introgression only within ∼10 Mbp region around Tg These results are consistent with the effect of selection on linked variation described by the Hill-Robertson effect, and offer insights into the introgression population development for crop improvement to maximize retention of introgressed diversity across entire genome.
Author Akhunov, Eduard
Nyine, Moses
Adhikari, Elina
Clinesmith, Marshall
Jordan, Katherine W
Fritz, Allan K
Author_xml – sequence: 1
  givenname: Moses
  surname: Nyine
  fullname: Nyine, Moses
  organization: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
– sequence: 2
  givenname: Elina
  surname: Adhikari
  fullname: Adhikari, Elina
  organization: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
– sequence: 3
  givenname: Marshall
  surname: Clinesmith
  fullname: Clinesmith, Marshall
  organization: Department of Agronomy, Kansas State University, Manhattan, KS 66506
– sequence: 4
  givenname: Katherine W
  surname: Jordan
  fullname: Jordan, Katherine W
  organization: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
– sequence: 5
  givenname: Allan K
  surname: Fritz
  fullname: Fritz, Allan K
  email: eakhunov@ksu.edu, akf@ksu.edu
  organization: Department of Agronomy, Kansas State University, Manhattan, KS 66506
– sequence: 6
  givenname: Eduard
  surname: Akhunov
  fullname: Akhunov, Eduard
  email: eakhunov@ksu.edu
  organization: Department of Plant Pathology, Kansas State University, Manhattan, KS 66506
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32737066$$D View this record in MEDLINE/PubMed
BookMark eNqFUk1v1DAQjVARLaVHrsgSFy5Z_BUnviChFZSVKoEQqEfLcSZZr7J2sJ2i_nuc7lK1lRC-eDTz5s3Hm5fFifMOiuI1wStSMf5-YCtC8Ypjwmv5rDijROCSNEycPLBPi4sYdzi_qhKCixfFKaM1q7EQZ4W_BOf31qBvOiUILiLfo41LwQ8BYrTeIesWB4Q4gbH9AvXTPOqUYxGtA-gEHWpvs-lzghvQ9Tb70G-btmiTIrq2Y4e-w5JxA6-K570eI1wc__Pi5-dPP9Zfyquvl5v1x6vSVISnUkggNcaMg-RaaCGppg3uJan7TmuGcdc1QAXHnWBN1RvKheyhoxQL3lakZufF5sDbeb1TU7B7HW6V11bdOXwYlA7JmhEUENlWpsFa8lzP0FY3mOlKaMBCc04z14cD1zS3e-gM5PXo8RHp44izWzX4G1VnjThbCN4dCYL_NUNMam-jgXHUDvwcFeVU1g3jVZOhb59Ad34OLq9KMSJkzYikC-Gbhx3dt_JX1wwoDwCziBKgv4cQrJbTUQNT-XTU4XQynj3BG5vuJM4D2fGfWce5_Dz9p8Af_xfSBA
CitedBy_id crossref_primary_10_3390_biology10100982
crossref_primary_10_1186_s13059_025_03500_1
crossref_primary_10_3390_agronomy11091782
crossref_primary_10_3389_fpls_2023_1223148
crossref_primary_10_1007_s42994_021_00047_0
crossref_primary_10_1111_pbi_13859
crossref_primary_10_1134_S1022795424040069
crossref_primary_10_3390_plants9121696
crossref_primary_10_3389_fpls_2021_716955
crossref_primary_10_1016_j_molp_2024_09_007
crossref_primary_10_1038_s41467_022_31581_0
crossref_primary_10_1038_s41467_023_38915_6
crossref_primary_10_1038_s41477_023_01367_3
Cites_doi 10.7554/eLife.03708
10.1126/science.aan0032
10.2135/cropsci2019.06.0378
10.1534/genetics.113.150029
10.1371/journal.pone.0090346
10.1186/gb-2011-12-9-r88
10.1186/s13059-017-1346-4
10.1007/s00122-006-0474-0
10.1139/g77-063
10.1002/9781118497869.ch2
10.1371/journal.pone.0032253
10.1126/science.1133649
10.1534/g3.113.005819
10.1186/s13059-015-0606-4
10.1111/tpj.14009
10.2135/cropsci1987.0011183X002700030004x
10.1111/j.1365-3040.2005.01259.x
10.1007/s11738-014-1713-7
10.1007/s00122-003-1432-8
10.1038/nature11997
10.1126/science.1239022
10.1007/s001220100699
10.1534/genetics.105.044727
10.1038/nature24486
10.1186/s13059-019-1675-6
10.1093/bioinformatics/bts277
10.1007/s00122-014-2380-1
10.1093/nar/gkr1293
10.1126/science.1239028
10.1534/genetics.104.032896
10.1007/s10681-017-2040-z
10.1093/jxb/erl250
10.1007/s00122-009-1043-0
10.1186/1471-2164-11-702
10.1016/j.gde.2017.08.007
10.1017/S0016672300010156
10.1093/genetics/164.2.655
10.3389/fpls.2019.00009
10.1534/g3.118.200664
10.1270/jsbbs.61.347
10.1111/nph.12164
10.3389/fpls.2014.00692
10.1071/AR07225
10.1093/jhered/esr152
10.3835/plantgenome2017.10.0090
10.1038/s41588-019-0382-2
10.1007/s001220050942
10.1371/journal.pbio.2006288
10.1038/s41588-019-0393-z
10.1093/genetics/141.3.1163
10.1007/s10577-006-1108-8
10.1126/sciadv.aav0536
10.1007/s00122-015-2460-x
10.2135/cropsci2011.07.0382
10.1038/ng.2309
10.1093/genetics/152.2.713
10.1038/nbt.2050
10.3389/fpls.2017.02123
10.1007/s10722-010-9581-5
10.1371/journal.pone.0019379
10.1007/s00412-010-0302-9
10.1146/annurev-genet-110711-155534
ContentType Journal Article
Copyright Copyright © 2020 Nyine et al. 2020
Copyright © 2020 Nyine et al.
Copyright © 2020 Nyine et al..
Copyright © 2020 Nyine 2020
Copyright_xml – notice: Copyright © 2020 Nyine et al. 2020
– notice: Copyright © 2020 Nyine et al.
– notice: Copyright © 2020 Nyine et al..
– notice: Copyright © 2020 Nyine 2020
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1534/g3.120.401479
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
PubMed


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2160-1836
EndPage 3661
ExternalDocumentID oai_doaj_org_article_e19b5c80a9434ec2ba803a56ae06a442
PMC7534432
32737066
10_1534_g3_120_401479
10.1534/g3.120.401479
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 0R~
53G
5VS
6~0
6~1
AAPXW
AAVAP
ABDBF
ABEJV
ABPTD
ABXVV
ACGFO
ACUHS
ADBBV
ADRAZ
AFULF
AIPOO
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
BTFSW
DIK
EBS
EE-
EJD
FRP
GROUPED_DOAJ
GX1
H13
HYE
IAO
IHR
INH
INIJC
IPNFZ
ITC
KQ8
KSI
M48
M~E
OK1
R0Z
RHF
RHI
RIG
RNS
ROX
RPM
TGS
TOX
W8F
AAYXX
ABGNP
AMNDL
CITATION
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
K9.
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c514t-69e170034e94a6a692a280f917fdaa300dd8e2640d6385fc2469fed22064b5173
IEDL.DBID M48
ISSN 2160-1836
IngestDate Wed Aug 27 01:03:49 EDT 2025
Thu Aug 21 13:57:39 EDT 2025
Fri Jul 11 00:33:48 EDT 2025
Tue Jul 01 10:43:40 EDT 2025
Thu Apr 03 06:53:58 EDT 2025
Thu Apr 24 22:52:32 EDT 2025
Tue Jul 01 03:31:28 EDT 2025
Mon Dec 16 07:45:55 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords wild relative
hexaploid wheat
recombination
introgression
tenacious glume
Aegilops tauschii
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
Copyright © 2020 Nyine et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-69e170034e94a6a692a280f917fdaa300dd8e2640d6385fc2469fed22064b5173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8409-7588
0000-0002-0416-5211
OpenAccessLink https://www.proquest.com/docview/3169731922?pq-origsite=%requestingapplication%
PMID 32737066
PQID 3169731922
PQPubID 7098412
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e19b5c80a9434ec2ba803a56ae06a442
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7534432
proquest_miscellaneous_2429783458
proquest_journals_3169731922
pubmed_primary_32737066
crossref_primary_10_1534_g3_120_401479
crossref_citationtrail_10_1534_g3_120_401479
oup_primary_10_1534_g3_120_401479
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle G3 : genes - genomes - genetics
PublicationTitleAlternate G3 (Bethesda)
PublicationYear 2020
Publisher Oxford University Press
Genetics Society of America
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
– name: Genetics Society of America
References Huang (2021042107445313300_bib21) 2003; 164
Özkan (2021042107445313300_bib38) 2011; 58
Sears (2021042107445313300_bib54) 1977; 19
Saintenac (2021042107445313300_bib53) 2013; 341
Chen (2021042107445313300_bib6) 2015; 128
Browning (2021042107445313300_bib5) 2013; 194
Qi (2021042107445313300_bib43) 2007; 15
He (2021042107445313300_bib19) 2019; 51
Nyine (2021042107445313300_bib35) 2019; 9
Singh (2021042107445313300_bib57) 2019; 10
Gill (2021042107445313300_bib15) 1987; 27
Akhunov (2021042107445313300_bib1) 2010; 11
Xu (2021042107445313300_bib67) 2012; 30
Hufford (2021042107445313300_bib22) 2012; 44
Jantasuriyarat (2021042107445313300_bib23) 2004; 108
Ogbonnaya (2021042107445313300_bib36) 2013; 37
Ziolkowski (2021042107445313300_bib68) 2015; 4
Wang (2021042107445313300_bib64) 2013; 198
Avni (2021042107445313300_bib2) 2017; 357
Uauy (2021042107445313300_bib62) 2006; 314
Guttieri (2021042107445313300_bib17) 2019
Martin (2021042107445313300_bib32) 2017; 47
Saintenac (2021042107445313300_bib50) 2011; 120
Ling (2021042107445313300_bib28) 2013; 496
Hill (2021042107445313300_bib20) 1966; 8
Luo (2021042107445313300_bib29) 2017; 551
Qi (2021042107445313300_bib44) 2001; 103
Peleg (2021042107445313300_bib39) 2005; 28
Rieseberg (2021042107445313300_bib49) 1999; 152
Su (2021042107445313300_bib60) 2019
Simons (2021042107445313300_bib55) 2006; 172
Gardiner (2021042107445313300_bib14) 2019; 20
Pont (2021042107445313300_bib42) 2019; 51
Martin (2021042107445313300_bib31) 2019; 17
Periyannan (2021042107445313300_bib40) 2013; 341
Poland (2021042107445313300_bib41) 2012; 7
Wang (2021042107445313300_bib63) 2017; 18
(2021042107445313300_bib18) 2007
Saintenac (2021042107445313300_bib52) 2013; 3
Jordan (2021042107445313300_bib26) 2015; 16
Glaubitz (2021042107445313300_bib16) 2014; 9
Dreisigacker (2021042107445313300_bib9) 2008; 59
Faris (2021042107445313300_bib13) 2014; 127
Wang (2021042107445313300_bib65) 2012; 40
Dvorak (2021042107445313300_bib11) 1998; 97
Rieseberg (2021042107445313300_bib48) 1995; 141
Dale (2021042107445313300_bib8) 2017; 8
Browning (2021042107445313300_bib4) 2012; 46
Neph (2021042107445313300_bib33) 2012; 28
Reynolds (2021042107445313300_bib47) 2017; 213
Wulff (2021042107445313300_bib66) 2014; 5
Sohail (2021042107445313300_bib58) 2011; 61
Balfourier (2021042107445313300_bib3) 2019; 5
Opperman (2021042107445313300_bib37) 2004; 168
Singh (2021042107445313300_bib56) 2015; 37
Jiang (2021042107445313300_bib24) 2000; 54
R Development Core Team (2021042107445313300_bib45) 2011
Cooper (2021042107445313300_bib7) 2012; 52
Jordan (2021042107445313300_bib25) 2018; 95
Luo (2021042107445313300_bib30) 2007; 114
Nyine (2021042107445313300_bib34) 2018; 11
Kihara (2021042107445313300_bib27) 1944; 19
Reynolds (2021042107445313300_bib46) 2007; 58
Dvorak (2021042107445313300_bib10) 2012; 103
2021042107445313300_bib61
Saintenac (2021042107445313300_bib51) 2011; 12
Elshire (2021042107445313300_bib12) 2011; 6
Sood (2021042107445313300_bib59) 2009; 119
References_xml – volume: 4
  start-page: e03708
  year: 2015
  ident: 2021042107445313300_bib68
  article-title: Juxtaposition of heterozygous and homozygous regions causes reciprocal crossover remodelling via interference during Arabidopsis meiosis.
  publication-title: eLife
  doi: 10.7554/eLife.03708
– volume: 357
  start-page: 93
  year: 2017
  ident: 2021042107445313300_bib2
  article-title: Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.
  publication-title: Science
  doi: 10.1126/science.aan0032
– year: 2019
  ident: 2021042107445313300_bib17
  article-title: Ms3 dominant genetic male sterility for wheat improvement with molecular breeding.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2019.06.0378
– volume: 194
  start-page: 459
  year: 2013
  ident: 2021042107445313300_bib5
  article-title: Improving the accuracy and efficiency of identity-by-descent detection in population data.
  publication-title: Genetics
  doi: 10.1534/genetics.113.150029
– volume: 9
  start-page: e90346
  year: 2014
  ident: 2021042107445313300_bib16
  article-title: TASSEL-GBS: A High Capacity Genotyping by Sequencing Analysis Pipeline.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0090346
– volume: 19
  start-page: 889
  year: 1944
  ident: 2021042107445313300_bib27
  article-title: Discovery of the DD-analyser, one of the ancestors of Triticum vulgare.
  publication-title: Agricuture Hortic.
– volume: 12
  start-page: R88
  year: 2011
  ident: 2021042107445313300_bib51
  article-title: Targeted analysis of nucleotide and copy number variation by exon capture in allotetraploid wheat genome.
  publication-title: Genome Biol.
  doi: 10.1186/gb-2011-12-9-r88
– volume: 18
  start-page: 215
  year: 2017
  ident: 2021042107445313300_bib63
  article-title: The interplay of demography and selection during maize domestication and expansion.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1346-4
– volume: 114
  start-page: 947
  year: 2007
  ident: 2021042107445313300_bib30
  article-title: The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-006-0474-0
– ident: 2021042107445313300_bib61
– volume: 19
  start-page: 585
  year: 1977
  ident: 2021042107445313300_bib54
  article-title: An induced mutant with homoeologous pairing in common wheat.
  publication-title: Can. J. Genet. Cytol.
  doi: 10.1139/g77-063
– volume: 37
  start-page: 35
  year: 2013
  ident: 2021042107445313300_bib36
  article-title: Synthetic Hexaploids: Harnessing Species of the Primary Gene Pool for Wheat Improvement.
  publication-title: Plant Breed. Rev.
  doi: 10.1002/9781118497869.ch2
– volume: 7
  start-page: e32253
  year: 2012
  ident: 2021042107445313300_bib41
  article-title: Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0032253
– volume: 314
  start-page: 1298
  year: 2006
  ident: 2021042107445313300_bib62
  article-title: A NAC Gene Regulating Senescence Improves Grain Protein, Zinc, and Iron Content in Wheat.
  publication-title: Science
  doi: 10.1126/science.1133649
– volume: 3
  start-page: 1105
  year: 2013
  ident: 2021042107445313300_bib52
  article-title: Sequence-based mapping of the polyploid wheat genome.
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.113.005819
– volume: 16
  start-page: 48
  year: 2015
  ident: 2021042107445313300_bib26
  article-title: A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0606-4
– volume: 95
  start-page: 1039
  year: 2018
  ident: 2021042107445313300_bib25
  article-title: The genetic architecture of genome-wide recombination rate variation in allopolyploid wheat revealed by nested association mapping.
  publication-title: Plant J.
  doi: 10.1111/tpj.14009
– volume: 27
  start-page: 445
  year: 1987
  ident: 2021042107445313300_bib15
  article-title: Direct Genetic Transfers from Aegilops squarrosa L. to Hexaploid Wheat.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci1987.0011183X002700030004x
– volume: 28
  start-page: 176
  year: 2005
  ident: 2021042107445313300_bib39
  article-title: Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations.
  publication-title: Plant Cell Environ.
  doi: 10.1111/j.1365-3040.2005.01259.x
– volume: 37
  start-page: 1713
  year: 2015
  ident: 2021042107445313300_bib56
  article-title: Male sterility systems in wheat and opportunities for hybrid wheat development.
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-014-1713-7
– volume: 108
  start-page: 261
  year: 2004
  ident: 2021042107445313300_bib23
  article-title: Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.).
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-003-1432-8
– volume: 496
  start-page: 87
  year: 2013
  ident: 2021042107445313300_bib28
  article-title: Draft genome of the wheat A-genome progenitor Triticum urartu.
  publication-title: Nature
  doi: 10.1038/nature11997
– volume: 341
  start-page: 783
  year: 2013
  ident: 2021042107445313300_bib53
  article-title: Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group.
  publication-title: Science
  doi: 10.1126/science.1239022
– volume: 103
  start-page: 998
  year: 2001
  ident: 2021042107445313300_bib44
  article-title: High-density physical maps reveal that the dominant male-sterile gene Ms3 is located in a genomic region of low recombination in wheat and is not amenable to map-based cloning.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220100699
– volume: 172
  start-page: 547
  year: 2006
  ident: 2021042107445313300_bib55
  article-title: Molecular characterization of the major wheat domestication gene Q.
  publication-title: Genetics
  doi: 10.1534/genetics.105.044727
– volume: 551
  start-page: 498
  year: 2017
  ident: 2021042107445313300_bib29
  article-title: Genome sequence of the progenitor of the wheat D genome Aegilops tauschii.
  publication-title: Nature
  doi: 10.1038/nature24486
– volume: 20
  start-page: 69
  year: 2019
  ident: 2021042107445313300_bib14
  article-title: Analysis of the recombination landscape of hexaploid bread wheat reveals genes controlling recombination and gene conversion frequency.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1675-6
– volume: 54
  start-page: 798
  year: 2000
  ident: 2021042107445313300_bib24
  article-title: Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton).
  publication-title: Evolution (N. Y.)
– volume: 28
  start-page: 1919
  year: 2012
  ident: 2021042107445313300_bib33
  article-title: BEDOPS: High-performance genomic feature operations.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts277
– volume: 127
  start-page: 2333
  year: 2014
  ident: 2021042107445313300_bib13
  article-title: Analysis of agronomic and domestication traits in a durum × cultivated emmer wheat population using a high-density single nucleotide polymorphism-based linkage map.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-014-2380-1
– volume: 40
  start-page: e49
  year: 2012
  ident: 2021042107445313300_bib65
  article-title: MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1293
– volume: 341
  start-page: 786
  year: 2013
  ident: 2021042107445313300_bib40
  article-title: The Gene Sr33, an Ortholog of Barley Mla Genes, Encodes Resistance to Wheat Stem Rust Race Ug99.
  publication-title: Science
  doi: 10.1126/science.1239028
– start-page: 409
  volume-title: R: A Language and Environment for Statistical Computing (R. D. C. Team, Ed.).
  year: 2011
  ident: 2021042107445313300_bib45
– volume: 168
  start-page: 2207
  year: 2004
  ident: 2021042107445313300_bib37
  article-title: The effect of sequence divergence on recombination between direct repeats in arabidopsis.
  publication-title: Genetics
  doi: 10.1534/genetics.104.032896
– volume: 213
  start-page: 213
  year: 2017
  ident: 2021042107445313300_bib47
  article-title: Strategic crossing of biomass and harvest index—source and sink—achieves genetic gains in wheat.
  publication-title: Euphytica
  doi: 10.1007/s10681-017-2040-z
– volume: 58
  start-page: 177
  year: 2007
  ident: 2021042107445313300_bib46
  article-title: Drought-adaptive traits derived from wheat wild relatives and landraces.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erl250
– volume: 119
  start-page: 341
  year: 2009
  ident: 2021042107445313300_bib59
  article-title: The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-009-1043-0
– volume: 11
  start-page: 702
  year: 2010
  ident: 2021042107445313300_bib1
  article-title: Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes.
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-11-702
– volume: 47
  start-page: 69
  year: 2017
  ident: 2021042107445313300_bib32
  article-title: Interpreting the genomic landscape of introgression.
  publication-title: Curr. Opin. Genet. Dev.
  doi: 10.1016/j.gde.2017.08.007
– year: 2019
  ident: 2021042107445313300_bib60
– volume: 8
  start-page: 269
  year: 1966
  ident: 2021042107445313300_bib20
  article-title: The effect of linkage on limits to artificial selection.
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300010156
– volume: 164
  start-page: 655
  year: 2003
  ident: 2021042107445313300_bib21
  article-title: Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat.
  publication-title: Genetics
  doi: 10.1093/genetics/164.2.655
– volume: 10
  start-page: 9
  year: 2019
  ident: 2021042107445313300_bib57
  article-title: Genomic analysis confirms population structure and identifies inter-lineage hybrids in Aegilops tauschii.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00009
– volume: 9
  start-page: 125
  year: 2019
  ident: 2021042107445313300_bib35
  article-title: Genotype Imputation in Winter Wheat Using First-Generation Haplotype Map SNPs Improves Genome-Wide Association Mapping and Genomic Prediction of Traits.
  publication-title: G3 (Bethesda)
  doi: 10.1534/g3.118.200664
– year: 2007
  ident: 2021042107445313300_bib18
– volume: 61
  start-page: 347
  year: 2011
  ident: 2021042107445313300_bib58
  article-title: Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat.
  publication-title: Breed. Sci.
  doi: 10.1270/jsbbs.61.347
– volume: 198
  start-page: 925
  year: 2013
  ident: 2021042107445313300_bib64
  article-title: Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat.
  publication-title: New Phytol.
  doi: 10.1111/nph.12164
– volume: 5
  start-page: 692
  year: 2014
  ident: 2021042107445313300_bib66
  article-title: Strategies for transferring resistance into wheat: from wide crosses to GM cassettes.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2014.00692
– volume: 59
  start-page: 413
  year: 2008
  ident: 2021042107445313300_bib9
  article-title: Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement.
  publication-title: Aust. J. Agric. Res.
  doi: 10.1071/AR07225
– volume: 103
  start-page: 426
  year: 2012
  ident: 2021042107445313300_bib10
  article-title: The origin of spelt and free-threshing hexaploid wheat.
  publication-title: J. Hered.
  doi: 10.1093/jhered/esr152
– volume: 11
  start-page: 170090
  year: 2018
  ident: 2021042107445313300_bib34
  article-title: Genomic Prediction in a Multiploid Crop: Genotype by Environment Interaction and Allele Dosage Effects on Predictive Ability in Banana.
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2017.10.0090
– volume: 51
  start-page: 896
  year: 2019
  ident: 2021042107445313300_bib19
  article-title: Exome sequencing highlights the role of wild relative introgression in shaping the adaptive landscape of the wheat genome.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0382-2
– volume: 97
  start-page: 657
  year: 1998
  ident: 2021042107445313300_bib11
  article-title: The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s001220050942
– volume: 17
  start-page: e2006288
  year: 2019
  ident: 2021042107445313300_bib31
  article-title: Recombination rate variation shapes barriers to introgression across butterfly genomes.
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2006288
– volume: 51
  start-page: 905
  year: 2019
  ident: 2021042107445313300_bib42
  article-title: Tracing the ancestry of modern bread wheats.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0393-z
– volume: 141
  start-page: 1163
  year: 1995
  ident: 2021042107445313300_bib48
  article-title: Chromosomal and genic barriers to introgression in helianthus.
  publication-title: Genetics
  doi: 10.1093/genetics/141.3.1163
– volume: 15
  start-page: 3
  year: 2007
  ident: 2021042107445313300_bib43
  article-title: Homoeologous recombination, chromosome engineering and crop improvement.
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-006-1108-8
– volume: 5
  start-page: eaav0536
  year: 2019
  ident: 2021042107445313300_bib3
  article-title: Worldwide phylogeography and history of wheat genetic diversity.
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aav0536
– volume: 128
  start-page: 645
  year: 2015
  ident: 2021042107445313300_bib6
  article-title: Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-015-2460-x
– volume: 52
  start-page: 2014
  year: 2012
  ident: 2021042107445313300_bib7
  article-title: Increasing hard winter wheat yield potential via synthetic wheat: I. path-coefficient analysis of yield and its components.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2011.07.0382
– volume: 44
  start-page: 808
  year: 2012
  ident: 2021042107445313300_bib22
  article-title: Comparative population genomics of maize domestication and improvement.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.2309
– volume: 152
  start-page: 713
  year: 1999
  ident: 2021042107445313300_bib49
  article-title: Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species.
  publication-title: Genetics
  doi: 10.1093/genetics/152.2.713
– volume: 30
  start-page: 105
  year: 2012
  ident: 2021042107445313300_bib67
  article-title: Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes.
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2050
– volume: 8
  start-page: 2123
  year: 2017
  ident: 2021042107445313300_bib8
  article-title: An advanced backcross population through synthetic octaploid wheat as a “Bridge”: Development and QTL detection for seed dormancy.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02123
– volume: 58
  start-page: 11
  year: 2011
  ident: 2021042107445313300_bib38
  article-title: Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides).
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/s10722-010-9581-5
– volume: 6
  start-page: e19379
  year: 2011
  ident: 2021042107445313300_bib12
  article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019379
– volume: 120
  start-page: 185
  year: 2011
  ident: 2021042107445313300_bib50
  article-title: Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot.
  publication-title: Chromosoma
  doi: 10.1007/s00412-010-0302-9
– volume: 46
  start-page: 617
  year: 2012
  ident: 2021042107445313300_bib4
  article-title: Identity by descent between distant relatives: detection and applications.
  publication-title: Annu. Rev. Genet.
  doi: 10.1146/annurev-genet-110711-155534
SSID ssj0000556646
Score 2.30333
Snippet Abstract Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression...
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from...
Introgression from wild relatives is a valuable source of novel allelic diversity for breeding. We investigated the genomic patterns of introgression from ,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3651
SubjectTerms aegilops tauschii
Chromosomes
Genomes
hexaploid wheat
introgression
Investigations
recombination
tenacious glume
Wheat
Whole genome sequencing
wild relative
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBUlUOil9Ltu06JC6alOrE9bxzY0TQotOTSQm5AsaRso3lJvAvn3mZEc4w2UXHpbr7VrWzPSvJGf3hDy3psuOS9TzZHaKCHG1MY7WbM29Kp1HUAE3Jz8_Yc-OpXfztTZotQXcsKKPHDpuP3IjFd91zgUMos99_B74ZR2sdFOyjz7QsxbJFNF1RtgitSTqKYScn8l9hhv9iCdkEjbWgShrNV_a3_bAmbeZksuws_hI_Jwwo30U7nfx-ReHJ6Q-6WS5NVTsv4a8_5iepL1MoeRrhM9Rhb6qhBdB3o-0Lz8h3srkR9ET-baXSM9QOwYA_VX8BFuGQIazfM0xYVaerwZKcwfgRbu3GV8Rk4Pv_w8OKqnWgp1D5BoU2sTUYkPutBIp5023PGuSZCspeCcaJoQugjgqAkwIFXqOaTNKQbOAbJ4xVrxnOwM6yG-JLTXbct8SEokKY0QxgEEZEz0LMKxTBX5eNO5tp-ExrHexW-LCQfYwq6EBVvYYouKfJib_ykKG_9q-BktNTdCYez8BbiLndzF3uUuFXkHdr7rQrs3XmCnET1awTRW-TIc_2I-DWMRX7C4Ia4vRgtwB1fSpOoq8qI4zXwlATixBXxXkXbLnbYeZ_vMcP4r631DRiml4K_-x_O_Jg84rhhkOuIu2dn8vYhvAFZt_Ns8gq4B_D8c7g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9QwELagCIkL4k2gICMhTqSNH3HiE4KK0iKBeqDS3iw_l0ooKc0Wqf-eGScbdisBt83GSrI7M_Y3k8_fEPLa6TZZJ1PJkdooYY0ptbOyZE3wdWNbgAi4OfnLV3V0Kj8v6sVUcBsmWuV6TswTdeg91sj3BVPYZUlz_u78Z4ldo_Dt6tRC4ya5hdJlSOlqFs1cY0GhGCXVJK1ZC7m_FHuMV3uQVEgkb20sRVmx_9outw2weZ0zubEIHd4jdyf0SN-P5r5PbsTuAbk99pO8ekj6TzHvMqYnWTWzG2if6DFy0Zcj3bWjZx3NRUDcYYksIXoyd_Aa6AEiyBiou4KP8MiwrNE8W1Ms19Lj1UBhFgl0ZND9io_I6eHHbwdH5dRRofQAjFal0hH1-ISMWlplleaWt1WClC0Fa0VVhdBGgEhVgLCsk-eQPKcYOAfg4mrWiMdkp-u7-JRQr5qGuZBqkaTUQmgLQJAx4VmEY5kK8nb95xo_yY1j14sfBtMOsIVZCgO2MKMtCvJmHn4-6mz8beAHtNQ8COWx8xf9xdJM0WYi0672bWVR_S567sDphK2VjZWyUvKCvAI7_-9Gu2svMFNcD-aPF8Il5tMQkfiaxXaxvxwMgB6sp8m6LciT0WnmOwlAiw2gvII0W-609XO2z3Rn37PqN-SVUgr-7N-P9Zzc4VgRyHTDXbKzuriMLwA2rdzLHBu_ATIrFH0
  priority: 102
  providerName: ProQuest
Title Genomic Patterns of Introgression in Interspecific Populations Created by Crossing Wheat with Its Wild Relative
URI https://www.ncbi.nlm.nih.gov/pubmed/32737066
https://www.proquest.com/docview/3169731922
https://www.proquest.com/docview/2429783458
https://pubmed.ncbi.nlm.nih.gov/PMC7534432
https://doaj.org/article/e19b5c80a9434ec2ba803a56ae06a442
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEB7RVqBeEM8SKNEiIU44eB_2eg8I0aovpFYRIlJuq7W9GypVdhuniPx7ZteO2xQqLpYdr58z4_lmMvsNwPtcZc7kwkXMlzYK9DGRyo2IqCyLRJoMIYKfnHx6lh5PxLdpMr2hFOpeYPPP0M73k5rML0a_r5Zf0OA_h-49XHya8RFl8QgjBSHVBmyhU5LeRk87pN_SfCNuEWnHsvnXUdvwiKMjl3FgS7xxUIHH_87ct1sQ9G4l5S3XdPgEHneYknxtleApPLDVM3jYdplcPof6yIa5x2QcuDSrhtSOnPgK9VlbBFuR84qE1KCfd-lrh8i47-vVkH2PK21J8iWu4i2jsyPhG058EpecLBqC35aStHV1v-wLmBwe_Ng_jro-C1GBcGkRpcp6lj4urBImNalihmWxw0DOlcbwOC7LzCJwiks01sQVDENqZ0vGEM7kCZX8JWxWdWVfASlSKWleuoQ7IRTnyiA8pJQX1OK2cAP4uHq5uuhIyH0vjAvtgxEUi55xjWLRrVgG8KEfftmyb9w3cM9Lqh_kSbPDD_V8pjsb1JaqPCmy2HhOPFuwHFWRmyQ1Nk6NEGwA71DO_7vQ7koL9EpZNaep7wCmmD9Fvxvt1P_5YipbXzcaoZDPsokkG8BOqzT9lVaqNwC5pk5rj7O-pzr_GbjAMdoUgrPX957zDWwznyII9Ye7sLmYX9u3iKMW-RA25FQOYWvv4Gz8fRiyEbg8mtJhsJ0_rwEa0w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVAguiDeGAosEnHBr765fB4RoaUloG0WolXpb1t7dUAnZpU5B-VP8RmZsxySVgFNvSbyyHc_szDfjb2YAXuZZ6nQunc-J2ijRx_hZrqUfJqaIEp0iRKDi5MNxPDyWn06ikzX4taiFIVrlwiY2htpUBeXIt0QY05SljPN3Z999mhpFb1cXIzRatdi3858YstVvRx9Qvq8439s92hn63VQBv0BwMPPjzFJPOiFtJnWs44xrngYOwxZntBZBYExqESYEBlUzcgXHANJZwzk67zwKE4HnvQbrUmAoM4D17d3x5HOf1aHWNLGMu2aekZBbU7EZ8mATwxhJdLEl59fMCLhUV7cEby-zNJfc3t5tuNXhVfa-VbA7sGbLu3C9nWA5vwfVR9vUNbNJ06ezrFnl2IjY79OWYFuy05I1aUeq6SReEpv0M8NqtkOY1RqWz_Ej3jI6Utb4B0YJYjaa1QztlmEtZ--HvQ_HV_K0H8CgrEr7CFgRJ0mYGxcJJ2UmRKYReoahKEKL36Xz4M3i4aqia3BOcza-KQp0UBZqKhTKQrWy8OB1v_ys7ezxt4XbJKl-ETXkbn6ozqeq29_KhlkeFWmgqd-eLXiOai50FGsbxFpK7sELlPP_LrSx0ALVWZJa_dF7PEV_GG0AvdjRpa0uaoUwizJ4Mko9eNgqTX8lgfg0QVzpQbKiTit_Z_VIefq16TOOkayUgj_-9209hxvDo8MDdTAa7z-Bm5zyEQ3ZcQMGs_ML-xRB2yx_1u0UBl-uenP-BqM6UPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genomic+Patterns+of+Introgression+in+Interspecific+Populations+Created+by+Crossing+Wheat+with+Its+Wild+Relative&rft.jtitle=G3+%3A+genes+-+genomes+-+genetics&rft.au=Nyine%2C+Moses&rft.au=Adhikari%2C+Elina&rft.au=Clinesmith%2C+Marshall&rft.au=Jordan%2C+Katherine+W&rft.date=2020-10-01&rft.eissn=2160-1836&rft.volume=10&rft.issue=10&rft.spage=3651&rft_id=info:doi/10.1534%2Fg3.120.401479&rft_id=info%3Apmid%2F32737066&rft.externalDocID=32737066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2160-1836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2160-1836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2160-1836&client=summon