A multi-head residual connection GCN for EEG emotion recognition

Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 163; p. 107126
Main Authors Qiu, Xiangkai, Wang, Shenglin, Wang, Ruqing, Zhang, Yiling, Huang, Liya
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.09.2023
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2023.107126

Cover

Loading…
Abstract Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. •MRGCN model incorporates complex brain networks and graph neural networks (GNN) for profound EEG emotion recognition.•Use differential entropy to extract the complexity of EEG signals and to analyze the inner workings of emotion generation.•We designed a long-distance and short-distance brain network to explore complex topological characteristics.•Add residual-based architecture enhances performance and classification stability.•Visual optimal solution model was used to study connection mechanism among brain regions during production of emotions.
AbstractList AbstractElectroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.
Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. •MRGCN model incorporates complex brain networks and graph neural networks (GNN) for profound EEG emotion recognition.•Use differential entropy to extract the complexity of EEG signals and to analyze the inner workings of emotion generation.•We designed a long-distance and short-distance brain network to explore complex topological characteristics.•Add residual-based architecture enhances performance and classification stability.•Visual optimal solution model was used to study connection mechanism among brain regions during production of emotions.
Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.
Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.
ArticleNumber 107126
Author Zhang, Yiling
Wang, Shenglin
Qiu, Xiangkai
Huang, Liya
Wang, Ruqing
Author_xml – sequence: 1
  givenname: Xiangkai
  orcidid: 0000-0002-6175-9729
  surname: Qiu
  fullname: Qiu, Xiangkai
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 2
  givenname: Shenglin
  surname: Wang
  fullname: Wang, Shenglin
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 3
  givenname: Ruqing
  surname: Wang
  fullname: Wang, Ruqing
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 4
  givenname: Yiling
  surname: Zhang
  fullname: Zhang, Yiling
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 5
  givenname: Liya
  surname: Huang
  fullname: Huang, Liya
  email: huangly@njupt.edu.cn
  organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37327757$$D View this record in MEDLINE/PubMed
BookMark eNqVkkFv1DAQhS1URLcLfwFF4sIly9iOY-eCWlbLFqmCA3C2HGcWvCT2YidI_fc43bJIlZDKyfbozdPM93xBznzwSEhBYUWB1m_2KxuGQ-vCgN2KAeO5LCmrn5AFVbIpQfDqjCwAKJSVYuKcXKS0B4AKODwj51xyJqWQC3J5VQxTP7ryO5quiJhcN5m-sMF7tKMLvtiuPxa7EIvNZlvgEO5qEW345t18f06e7kyf8MX9uSRf32--rK_Lm0_bD-urm9IKWo1lLVqLAnhN2_xWrDFMUN5IBqqpKqgp1LWVtkW7a5WUnCoQomqN4Qy47Gq-JK-PvocYfk6YRj24ZLHvjccwJc0UkyyvnVdfklcPpPswRZ-ny6qqaYRouMqql_eqqc0Y9SG6wcRb_YdNFqijwMaQUsTdSUJBzzHovf4bg55j0McYcuvbB63WjWbGNUbj-scYvDsaYEb6y2HUyTr0FjuX2Y-6C-4_pjiZ2N55Z03_A28xnaBQnZgG_Xn-LvNvYRxANHQmcPlvg8fN8Bv_btCk
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107674
crossref_primary_10_1016_j_inffus_2023_102220
crossref_primary_10_1088_1741_2552_ad7060
crossref_primary_10_1007_s11517_025_03295_0
crossref_primary_10_1007_s00521_024_10821_y
crossref_primary_10_1016_j_compbiomed_2024_108857
crossref_primary_10_1109_TIM_2024_3428607
crossref_primary_10_1016_j_compbiomed_2024_108808
crossref_primary_10_1007_s00521_024_09550_z
crossref_primary_10_3390_brainsci14080820
crossref_primary_10_3389_fncom_2024_1416494
crossref_primary_10_1016_j_measurement_2024_116046
crossref_primary_10_3390_jmse12122342
Cites_doi 10.3390/s18051383
10.1109/TCBB.2020.3018137
10.1109/JBHI.2023.3346205
10.1111/psyp.12283
10.1109/JBHI.2021.3083525
10.1016/j.jksuci.2020.10.007
10.1007/s11071-022-07207-x
10.1016/j.compbiomed.2020.103927
10.1016/j.compbiomed.2022.105519
10.1002/wcs.1335
10.1109/TAMD.2015.2431497
10.1007/s10044-019-00860-w
10.1109/ACCESS.2019.2927768
10.3390/s18082739
10.3389/fnsys.2020.00043
10.3389/fninf.2022.844667
10.14569/IJACSA.2017.081046
10.1073/pnas.1302982110
10.3390/s21144758
10.1016/j.procs.2017.12.003
10.1016/j.pneurobio.2014.09.003
10.1109/TCDS.2021.3071170
10.1109/T-AFFC.2011.15
10.1016/j.compbiomed.2023.106537
10.3390/math10040582
10.1016/j.neunet.2021.10.023
10.1097/WNP.0000000000000316
10.1007/s11042-020-09354-y
10.3389/fncom.2021.743426
10.1109/JBHI.2020.2995767
10.1109/TAFFC.2017.2714671
10.1007/s10489-021-03070-2
10.1002/hbm.24393
10.1016/j.neulet.2021.136153
10.1007/s10462-022-10183-8
10.3390/s19214736
10.1016/j.neuroimage.2012.09.036
10.1007/s11063-016-9506-1
10.1016/j.compbiomed.2022.106463
10.1016/j.knosys.2023.110372
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.107126
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Computing Database
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 107126
ExternalDocumentID 37327757
10_1016_j_compbiomed_2023_107126
S0010482523005917
1_s2_0_S0010482523005917
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAYXX
AGRNS
CITATION
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
77I
7X8
EFLBG
ID FETCH-LOGICAL-c514t-65bce50361b514829a251397208944061066c7cbecfb8773180554baa32037d63
IEDL.DBID BENPR
ISSN 0010-4825
1879-0534
IngestDate Fri Sep 05 14:37:38 EDT 2025
Wed Aug 13 05:57:10 EDT 2025
Wed Feb 19 02:24:25 EST 2025
Thu Apr 24 23:05:27 EDT 2025
Tue Jul 01 03:29:01 EDT 2025
Tue Dec 03 03:44:34 EST 2024
Tue Feb 25 20:03:26 EST 2025
Tue Aug 26 20:14:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Emotion recognition
Complex brain network
Graph convolutional neural network
EEG
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-65bce50361b514829a251397208944061066c7cbecfb8773180554baa32037d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6175-9729
PMID 37327757
PQID 2849955938
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2827253405
proquest_journals_2849955938
pubmed_primary_37327757
crossref_primary_10_1016_j_compbiomed_2023_107126
crossref_citationtrail_10_1016_j_compbiomed_2023_107126
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107126
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523005917
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107126
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Peng, Zhao, Zhang, Xu, Kong (bib55) 2023; 154
Tao, Li, Song, Cheng, Liu, Wan, Chen (bib10) 2020
Haufe, Nikulin, Müller, Nolte (bib23) 2013; 64
Acharya, Hani, Cheek, Thirumala, Tsuchida (bib49) 2016; 33
Shovon, Nandagopal, Vijayalakshmi, Du, Cocks (bib26) 2017; 45
Wei, Liu, Li, Cheng, Song, Chen, Tc-Net (bib40) 2023; 152
Li, Chen, Jin (bib30) 2022
Zheng, Lu (bib50) 2015; 7
Liu, Ding, Li, Cheng, Song, Wan, Chen (bib38) 2020; 123
Zheng, Hu, Zhang, Li, Zheng (bib46) 2021
Avramidis, Zlatintsi, Garoufis, Maragos (bib8) 2021
Liu, Wang, Zhao, Li, Hu, Yu, Zhang (bib33) 2022; 26
Gao, Wang, Wang, Song, Dong, Song (bib6) 2020; 79
Li, Hua, Xu, Shu, Xu, Kuang, Wu (bib32) 2022; 145
Gómez-Tapia, Bozic, Longo (bib47) 2022; 16
S, Kumar (bib51) 2019
Liu, Wang, An, Zhao, Zhao, Zhang (bib41) 2023; 265
Yean, Khairunizam, Omar, Murugappan, Zheng, Bakar, Razlan, Ibrahim (bib16) 2018
Ahmedt-Aristizabal, Armin, Denman, Fookes, Petersson (bib27) 2021; 21
Jackson, Bolger (bib22) 2014; 51
Alarcao, Fonseca (bib54) 2019; 10
de Gelder, de Borst, Watson (bib3) 2015; 6
Liu, Wei, Li, Cheng, Song, Chen, Bi-CapsNet (bib39) 2023
Liu, Qiu, Zheng, Lu (bib37) 2022; 14
Sadeghijam, Talebian, Mohsen, Akbari, Pourbakht (bib11) 2021; 762
An, Hu, Duan, Zhao, Xie, Zhao (bib35) 2021; 15
Godwin, Schaarschmidt, Gaunt, Sanchez-Gonzalez, Rubanova, Veličković, Kirkpatrick, Battaglia (bib43) 2022
Alhagry, Aly, A (bib53) 2017; 8
Frühholz, Trost, Grandjean (bib2) 2014; 123
Cui, Wang, Ding, Chen, Huang (bib20) 2022; 10
Joshi, Ghongade (bib14) 2022; 34
Hwang, Hong, Son, Byun (bib15) 2020; 23
George, Shaikat, Ferdawoos, Parvez, Uddin (bib17) 2019
Demir, Koike-Akino, Wang, Haruna, Erdogmus (bib28) 2021
Zhang, Li (bib31) 2022; 108
Asadzadeh, Rezaii, Beheshti, Meshgini (bib44) 2022
Liu, Zhang, Liu, Cao (bib45) 2022; 145
Kwon, Shin, Kim (bib52) 2018; 18
Alazrai, Homoud, Alwanni, Daoud (bib7) 2018; 18
Liu, Wang, Zhao, Zhao, Xin, Wang (bib34) 2021; 18
Chen, Zhang, Ding, Cui, Huang (bib21) 2022; 2022
Cheng, Chen, Li, Liu, Song, Liu, Chen (bib36) 2021; 25
Cui, Liu, Zhang, Chen, Liu, Chen (bib4) 2022
Wang, Tong, Heng (bib25) 2019; 7
Wang, Zhang, He, Zhang (bib12) 2022; 52
Abrams, Lynch, Cheng, Phillips, Supekar, Ryali, Uddin, Menon (bib24) 2013; 110
Liu, Wu, Luo, Qiu, Yang, Li, Bi (bib19) 2020; 14
Liu, Zeng, Wang, Song, Zhou (bib42) 2021
Miskovic, MacDonald, Rhodes, Cote (bib13) 2018; 40
Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib48) 2012; 3
Chan, Bea, Leow, Phoong, Cheng (bib56) 2023; 56
Yang, Alsadoon, Prasad, Singh, Elchouemi (bib1) 2018; 125
Yang, Han, Min (bib5) 2019; 19
Kipf, Welling (bib29) 2017
Chalupnik, Bialas, Majewska, Kedziora (bib18) 2022
Islam, Ahmad (bib9) 2019
Tao (10.1016/j.compbiomed.2023.107126_bib10) 2020
Li (10.1016/j.compbiomed.2023.107126_bib30) 2022
George (10.1016/j.compbiomed.2023.107126_bib17) 2019
Wang (10.1016/j.compbiomed.2023.107126_bib25) 2019; 7
Alazrai (10.1016/j.compbiomed.2023.107126_bib7) 2018; 18
Liu (10.1016/j.compbiomed.2023.107126_bib33) 2022; 26
Shovon (10.1016/j.compbiomed.2023.107126_bib26) 2017; 45
Cui (10.1016/j.compbiomed.2023.107126_bib20) 2022; 10
Liu (10.1016/j.compbiomed.2023.107126_bib41) 2023; 265
Kipf (10.1016/j.compbiomed.2023.107126_bib29) 2017
Li (10.1016/j.compbiomed.2023.107126_bib32) 2022; 145
Yean (10.1016/j.compbiomed.2023.107126_bib16) 2018
Acharya (10.1016/j.compbiomed.2023.107126_bib49) 2016; 33
Peng (10.1016/j.compbiomed.2023.107126_bib55) 2023; 154
Jackson (10.1016/j.compbiomed.2023.107126_bib22) 2014; 51
Frühholz (10.1016/j.compbiomed.2023.107126_bib2) 2014; 123
Zhang (10.1016/j.compbiomed.2023.107126_bib31) 2022; 108
Islam (10.1016/j.compbiomed.2023.107126_bib9) 2019
An (10.1016/j.compbiomed.2023.107126_bib35) 2021; 15
de Gelder (10.1016/j.compbiomed.2023.107126_bib3) 2015; 6
Yang (10.1016/j.compbiomed.2023.107126_bib5) 2019; 19
Yang (10.1016/j.compbiomed.2023.107126_bib1) 2018; 125
Cui (10.1016/j.compbiomed.2023.107126_bib4) 2022
Koelstra (10.1016/j.compbiomed.2023.107126_bib48) 2012; 3
Miskovic (10.1016/j.compbiomed.2023.107126_bib13) 2018; 40
Chalupnik (10.1016/j.compbiomed.2023.107126_bib18) 2022
Liu (10.1016/j.compbiomed.2023.107126_bib45) 2022; 145
Liu (10.1016/j.compbiomed.2023.107126_bib42) 2021
Joshi (10.1016/j.compbiomed.2023.107126_bib14) 2022; 34
Avramidis (10.1016/j.compbiomed.2023.107126_bib8) 2021
Alhagry (10.1016/j.compbiomed.2023.107126_bib53) 2017; 8
Alarcao (10.1016/j.compbiomed.2023.107126_bib54) 2019; 10
Abrams (10.1016/j.compbiomed.2023.107126_bib24) 2013; 110
Chan (10.1016/j.compbiomed.2023.107126_bib56) 2023; 56
Chen (10.1016/j.compbiomed.2023.107126_bib21) 2022; 2022
Liu (10.1016/j.compbiomed.2023.107126_bib39) 2023
Liu (10.1016/j.compbiomed.2023.107126_bib19) 2020; 14
Wang (10.1016/j.compbiomed.2023.107126_bib12) 2022; 52
Kwon (10.1016/j.compbiomed.2023.107126_bib52) 2018; 18
Sadeghijam (10.1016/j.compbiomed.2023.107126_bib11) 2021; 762
Godwin (10.1016/j.compbiomed.2023.107126_bib43) 2022
Liu (10.1016/j.compbiomed.2023.107126_bib38) 2020; 123
Hwang (10.1016/j.compbiomed.2023.107126_bib15) 2020; 23
Ahmedt-Aristizabal (10.1016/j.compbiomed.2023.107126_bib27) 2021; 21
Wei (10.1016/j.compbiomed.2023.107126_bib40) 2023; 152
S (10.1016/j.compbiomed.2023.107126_bib51) 2019
Gao (10.1016/j.compbiomed.2023.107126_bib6) 2020; 79
Cheng (10.1016/j.compbiomed.2023.107126_bib36) 2021; 25
Haufe (10.1016/j.compbiomed.2023.107126_bib23) 2013; 64
Gómez-Tapia (10.1016/j.compbiomed.2023.107126_bib47) 2022; 16
Demir (10.1016/j.compbiomed.2023.107126_bib28) 2021
Liu (10.1016/j.compbiomed.2023.107126_bib34) 2021; 18
Liu (10.1016/j.compbiomed.2023.107126_bib37) 2022; 14
Zheng (10.1016/j.compbiomed.2023.107126_bib50) 2015; 7
Asadzadeh (10.1016/j.compbiomed.2023.107126_bib44) 2022
Zheng (10.1016/j.compbiomed.2023.107126_bib46) 2021
References_xml – volume: 79
  start-page: 27057
  year: 2020
  end-page: 27074
  ident: bib6
  article-title: EEG based emotion recognition using fusion feature extraction method
  publication-title: Multimed. Tool. Appl.
– start-page: 15
  year: 2022
  ident: bib30
  article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN
  publication-title: J. Neural. Eng.
– volume: 15
  year: 2021
  ident: bib35
  article-title: Electroencephalogram emotion recognition based on 3D feature fusion and convolutional autoencoder
  publication-title: Front. Comput. Neurosci.
– volume: 14
  year: 2020
  ident: bib19
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
– volume: 18
  start-page: 1710
  year: 2021
  end-page: 1721
  ident: bib34
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
– year: 2019
  ident: bib51
  article-title: Nataraj, Analysis of EEG Based Emotion Detection of DEAP and SEED-IV Databases Using SVM
– volume: 145
  start-page: 308
  year: 2022
  end-page: 318
  ident: bib45
  article-title: Minimum spanning tree based graph neural network for emotion classification using EEG
  publication-title: Neural Network.
– volume: 64
  start-page: 120
  year: 2013
  end-page: 133
  ident: bib23
  article-title: A critical assessment of connectivity measures for EEG data: a simulation study
  publication-title: Neuroimage
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 10
  ident: bib21
  article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective
  publication-title: J. Sens.
– year: 2022
  ident: bib4
  article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion
  publication-title: IEEE Trans. Affective Comput
– volume: 145
  year: 2022
  ident: bib32
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Comput. Biol. Med.
– year: 2022
  ident: bib43
  article-title: Simple GNN Regularisation for 3D Molecular Property Prediction & beyond
– volume: 34
  start-page: 4433
  year: 2022
  end-page: 4447
  ident: bib14
  article-title: IDEA: intellect database for emotion analysis using EEG signal
  publication-title: Journal of King Saud University - Computer and Information Sciences
– volume: 762
  year: 2021
  ident: bib11
  article-title: Shannon entropy measures for EEG signals in tinnitus
  publication-title: Neurosci. Lett.
– volume: 51
  start-page: 1061
  year: 2014
  end-page: 1071
  ident: bib22
  article-title: The neurophysiological bases of EEG and EEG measurement: a review for the rest of us: neurophysiological bases of EEG
  publication-title: Psychophysiology
– start-page: 728
  year: 2021
  end-page: 740
  ident: bib42
  article-title: Content matters: a GNN-based model combined with text semantics for social network cascade prediction
  publication-title: Advances in Knowledge Discovery and Data Mining
– volume: 6
  start-page: 149
  year: 2015
  end-page: 158
  ident: bib3
  article-title: The perception of emotion in body expressions
  publication-title: WIREs Cognitive Science
– volume: 40
  start-page: 538
  year: 2018
  end-page: 551
  ident: bib13
  article-title: Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle
  publication-title: Hum. Brain Mapp.
– volume: 23
  start-page: 1323
  year: 2020
  end-page: 1335
  ident: bib15
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
– start-page: 306
  year: 2022
  end-page: 316
  ident: bib18
  article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions detection
  publication-title: Advanced Information Networking and Applications
– start-page: 1628
  year: 2021
  end-page: 1632
  ident: bib46
  article-title: EEG emotion recognition based on hierarchy graph convolution network
  publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine
– volume: 33
  start-page: 308
  year: 2016
  end-page: 311
  ident: bib49
  article-title: American clinical neurophysiology society guideline 2: guidelines for standard electrode position nomenclature
  publication-title: J. Clin. Neurophysiol.
– volume: 19
  start-page: 4736
  year: 2019
  ident: bib5
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib9
  article-title: Wavelet analysis based classification of emotion from EEG signal
  publication-title: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE)
– volume: 16
  year: 2022
  ident: bib47
  article-title: On the minimal amount of EEG data required for learning distinctive human features for task-dependent biometric applications
  publication-title: Front. Neuroinf.
– volume: 7
  start-page: 162
  year: 2015
  end-page: 175
  ident: bib50
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
– volume: 56
  start-page: 749
  year: 2023
  end-page: 780
  ident: bib56
  article-title: State of the art: a review of sentiment analysis based on sequential transfer learning
  publication-title: Artif. Intell. Rev.
– volume: 10
  start-page: 374
  year: 2019
  end-page: 393
  ident: bib54
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans. Affective Comput.
– volume: 154
  year: 2023
  ident: bib55
  article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis
  publication-title: Comput. Biol. Med.
– start-page: 1
  year: 2018
  end-page: 4
  ident: bib16
  article-title: Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients
  publication-title: 2018 International Conference on Computational Approach in Smart Systems Design and Applications
– start-page: 1
  year: 2023
  end-page: 13
  ident: bib39
  article-title: A binary capsule network for EEG-based emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
– year: 2022
  ident: bib44
  article-title: Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes
  publication-title: Cogn Comput
– volume: 18
  start-page: 2739
  year: 2018
  ident: bib7
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
– year: 2020
  ident: bib10
  article-title: EEG-Based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affective Comput
– volume: 10
  start-page: 582
  year: 2022
  ident: bib20
  article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition
  publication-title: Mathematics
– volume: 3
  start-page: 18
  year: 2012
  end-page: 31
  ident: bib48
  article-title: DEAP: a database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
– volume: 108
  start-page: 521
  year: 2022
  end-page: 531
  ident: bib31
  article-title: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations
  publication-title: Nonlinear Dynam.
– volume: 152
  year: 2023
  ident: bib40
  article-title: A transformer capsule network for EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
– start-page: 1061
  year: 2021
  end-page: 1067
  ident: bib28
  article-title: EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals
  publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– volume: 21
  start-page: 4758
  year: 2021
  ident: bib27
  article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future
  publication-title: Sensors
– volume: 7
  start-page: 93711
  year: 2019
  end-page: 93722
  ident: bib25
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
– volume: 25
  start-page: 453
  year: 2021
  end-page: 464
  ident: bib36
  article-title: Emotion recognition from multi-channelchannel EEG via deep forest
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 265
  year: 2023
  ident: bib41
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl. Base Syst.
– volume: 52
  start-page: 12064
  year: 2022
  end-page: 12076
  ident: bib12
  article-title: EEG emotion recognition using multichannel weighted multiscale permutation entropy
  publication-title: Appl. Intell.
– volume: 45
  start-page: 807
  year: 2017
  end-page: 824
  ident: bib26
  article-title: Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy
  publication-title: Neural Process. Lett.
– volume: 8
  year: 2017
  ident: bib53
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Ijacsa
– volume: 123
  start-page: 1
  year: 2014
  end-page: 17
  ident: bib2
  article-title: The role of the medial temporal limbic system in processing emotions in voice and music
  publication-title: Prog. Neurobiol.
– volume: 110
  start-page: 12060
  year: 2013
  end-page: 12065
  ident: bib24
  article-title: Underconnectivity between voice-selective cortex and reward circuitry in children with autism
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 123
  year: 2020
  ident: bib38
  article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network
  publication-title: Comput. Biol. Med.
– year: 2017
  ident: bib29
  article-title: Semi-Supervised Classification with Graph Convolutional Networks
– volume: 14
  start-page: 715
  year: 2022
  end-page: 729
  ident: bib37
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 18
  start-page: 1383
  year: 2018
  ident: bib52
  article-title: Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (CNN) model for emotion recognition system
  publication-title: Sensors
– volume: 26
  start-page: 5321
  year: 2022
  end-page: 5331
  ident: bib33
  article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 125
  start-page: 2
  year: 2018
  end-page: 10
  ident: bib1
  article-title: An emotion recognition model based on facial recognition in virtual learning environment
  publication-title: Procedia Comput. Sci.
– start-page: 9
  year: 2019
  ident: bib17
  article-title: Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier
  publication-title: Int. J. Electr. Comput. Eng.
– start-page: 1316
  year: 2021
  end-page: 1320
  ident: bib8
  article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition
  publication-title: 2021 29th European Signal Processing Conference
– volume: 18
  start-page: 1383
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107126_bib52
  article-title: Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (CNN) model for emotion recognition system
  publication-title: Sensors
  doi: 10.3390/s18051383
– volume: 18
  start-page: 1710
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib34
  article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network
  publication-title: IEEE ACM Trans. Comput. Biol. Bioinf
  doi: 10.1109/TCBB.2020.3018137
– start-page: 1
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107126_bib39
  article-title: A binary capsule network for EEG-based emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2023.3346205
– volume: 51
  start-page: 1061
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107126_bib22
  article-title: The neurophysiological bases of EEG and EEG measurement: a review for the rest of us: neurophysiological bases of EEG
  publication-title: Psychophysiology
  doi: 10.1111/psyp.12283
– volume: 26
  start-page: 5321
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib33
  article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3083525
– volume: 34
  start-page: 4433
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib14
  article-title: IDEA: intellect database for emotion analysis using EEG signal
  publication-title: Journal of King Saud University - Computer and Information Sciences
  doi: 10.1016/j.jksuci.2020.10.007
– year: 2017
  ident: 10.1016/j.compbiomed.2023.107126_bib29
– volume: 108
  start-page: 521
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib31
  article-title: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-022-07207-x
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib44
  article-title: Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes
  publication-title: Cogn Comput
– volume: 123
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107126_bib38
  article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103927
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib43
– volume: 145
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib32
  article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105519
– start-page: 1316
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib8
  article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition
– volume: 6
  start-page: 149
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107126_bib3
  article-title: The perception of emotion in body expressions
  publication-title: WIREs Cognitive Science
  doi: 10.1002/wcs.1335
– start-page: 9
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib17
  article-title: Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier
  publication-title: Int. J. Electr. Comput. Eng.
– volume: 7
  start-page: 162
  year: 2015
  ident: 10.1016/j.compbiomed.2023.107126_bib50
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– start-page: 15
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib30
  article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN
  publication-title: J. Neural. Eng.
– start-page: 728
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib42
  article-title: Content matters: a GNN-based model combined with text semantics for social network cascade prediction
– volume: 23
  start-page: 1323
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107126_bib15
  article-title: Learning CNN features from DE features for EEG-based emotion recognition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-019-00860-w
– volume: 7
  start-page: 93711
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib25
  article-title: Phase-locking value based graph convolutional neural networks for emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927768
– year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib51
– volume: 18
  start-page: 2739
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107126_bib7
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
  doi: 10.3390/s18082739
– volume: 14
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107126_bib19
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.00043
– volume: 16
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib47
  article-title: On the minimal amount of EEG data required for learning distinctive human features for task-dependent biometric applications
  publication-title: Front. Neuroinf.
  doi: 10.3389/fninf.2022.844667
– start-page: 306
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib18
  article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions detection
– volume: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107126_bib53
  article-title: Emotion recognition based on EEG using LSTM recurrent neural network
  publication-title: Ijacsa
  doi: 10.14569/IJACSA.2017.081046
– start-page: 1
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib9
  article-title: Wavelet analysis based classification of emotion from EEG signal
– volume: 110
  start-page: 12060
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107126_bib24
  article-title: Underconnectivity between voice-selective cortex and reward circuitry in children with autism
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1302982110
– volume: 21
  start-page: 4758
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib27
  article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future
  publication-title: Sensors
  doi: 10.3390/s21144758
– volume: 125
  start-page: 2
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107126_bib1
  article-title: An emotion recognition model based on facial recognition in virtual learning environment
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.12.003
– volume: 123
  start-page: 1
  year: 2014
  ident: 10.1016/j.compbiomed.2023.107126_bib2
  article-title: The role of the medial temporal limbic system in processing emotions in voice and music
  publication-title: Prog. Neurobiol.
  doi: 10.1016/j.pneurobio.2014.09.003
– volume: 14
  start-page: 715
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib37
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3071170
– volume: 3
  start-page: 18
  year: 2012
  ident: 10.1016/j.compbiomed.2023.107126_bib48
  article-title: DEAP: a database for emotion analysis ;using physiological signals
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2011.15
– start-page: 1061
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib28
  article-title: EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals
– volume: 154
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107126_bib55
  article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106537
– volume: 10
  start-page: 582
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib20
  article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition
  publication-title: Mathematics
  doi: 10.3390/math10040582
– volume: 145
  start-page: 308
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib45
  article-title: Minimum spanning tree based graph neural network for emotion classification using EEG
  publication-title: Neural Network.
  doi: 10.1016/j.neunet.2021.10.023
– volume: 33
  start-page: 308
  year: 2016
  ident: 10.1016/j.compbiomed.2023.107126_bib49
  article-title: American clinical neurophysiology society guideline 2: guidelines for standard electrode position nomenclature
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0000000000000316
– start-page: 1628
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib46
  article-title: EEG emotion recognition based on hierarchy graph convolution network
– volume: 79
  start-page: 27057
  year: 2020
  ident: 10.1016/j.compbiomed.2023.107126_bib6
  article-title: EEG based emotion recognition using fusion feature extraction method
  publication-title: Multimed. Tool. Appl.
  doi: 10.1007/s11042-020-09354-y
– volume: 15
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib35
  article-title: Electroencephalogram emotion recognition based on 3D feature fusion and convolutional autoencoder
  publication-title: Front. Comput. Neurosci.
  doi: 10.3389/fncom.2021.743426
– volume: 25
  start-page: 453
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib36
  article-title: Emotion recognition from multi-channelchannel EEG via deep forest
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2020.2995767
– volume: 10
  start-page: 374
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib54
  article-title: Emotions recognition using EEG signals: a survey
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2017.2714671
– volume: 2022
  start-page: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib21
  article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective
  publication-title: J. Sens.
– start-page: 1
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107126_bib16
  article-title: Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients
– volume: 52
  start-page: 12064
  year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib12
  article-title: EEG emotion recognition using multichannel weighted multiscale permutation entropy
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-03070-2
– volume: 40
  start-page: 538
  year: 2018
  ident: 10.1016/j.compbiomed.2023.107126_bib13
  article-title: Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24393
– volume: 762
  year: 2021
  ident: 10.1016/j.compbiomed.2023.107126_bib11
  article-title: Shannon entropy measures for EEG signals in tinnitus
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2021.136153
– volume: 56
  start-page: 749
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107126_bib56
  article-title: State of the art: a review of sentiment analysis based on sequential transfer learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10183-8
– volume: 19
  start-page: 4736
  year: 2019
  ident: 10.1016/j.compbiomed.2023.107126_bib5
  article-title: A multi-column CNN model for emotion recognition from EEG signals
  publication-title: Sensors
  doi: 10.3390/s19214736
– year: 2022
  ident: 10.1016/j.compbiomed.2023.107126_bib4
  article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion
  publication-title: IEEE Trans. Affective Comput
– volume: 64
  start-page: 120
  year: 2013
  ident: 10.1016/j.compbiomed.2023.107126_bib23
  article-title: A critical assessment of connectivity measures for EEG data: a simulation study
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.09.036
– volume: 45
  start-page: 807
  year: 2017
  ident: 10.1016/j.compbiomed.2023.107126_bib26
  article-title: Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-016-9506-1
– volume: 152
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107126_bib40
  article-title: A transformer capsule network for EEG-based emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106463
– volume: 265
  year: 2023
  ident: 10.1016/j.compbiomed.2023.107126_bib41
  article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2023.110372
– year: 2020
  ident: 10.1016/j.compbiomed.2023.107126_bib10
  article-title: EEG-Based emotion recognition via channel-wise attention and self attention
  publication-title: IEEE Trans. Affective Comput
SSID ssj0004030
Score 2.4447834
Snippet Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in...
AbstractElectroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 107126
SubjectTerms Accuracy
Artificial neural networks
Brain
Classification
Complex brain network
EEG
Electrodes
Electroencephalography
Emotion recognition
Emotions
Entropy
Graph convolutional neural network
Graph neural networks
Internal Medicine
Neural networks
Other
Stability augmentation
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KD-JFfButsoLXtMkmm23wYil9ILQnC70t2U0CFUmLba_-dmeymxSxQsFjHpOEL7uz3yTfzBDypBPP1zxkbppp5YY8x0buoXBTlnZV5MOL1vi9YzKNxrPwdc7nDdKvcmFQVml9v_Hppbe2ezoWzc5qscAcXwglIMBhWHEdog7MYA8F1s9vf-1kHqEXmDQU8Dd4tlXzGI0XyrZNmnsb24jDbuFjmYX9S9RfFLRcioan5MRySNozj3lGGllxTo4m9i_5BXnp0VIn6IKjTSnE02XCFdWoaSnTGOioP6XAVulgMKKZaeRDaynRsrgks-HgrT92bacEVwPh2bgRVzrjsBj5imNhzzgB2gJMg3ldQB6WbCAWWmh4X7nqCgHz2AMaoZIkYF4g0ii4Is1iWWQ3AE6cJ0LlwISYhisxFUfYlDqPWQTBcqQcIipwpLZlxLGbxYes9GLvcgerRFilgdUhfm25MqU0DrCJK_xllSoKzk2Cvz_AVuyzzdZ2lq6lL9dMevLXSHLIc235YzAeeN9WNVBkfStgATEW-wu6DnmsD8NUxv8zSZEtt3gOE4wHQKEdcm0GWA1UIAImBBe3_3q0O3KMW0Yj1yLNzec2uwdStVEP5az5Bn8zG14
  priority: 102
  providerName: Elsevier
Title A multi-head residual connection GCN for EEG emotion recognition
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523005917
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523005917
https://dx.doi.org/10.1016/j.compbiomed.2023.107126
https://www.ncbi.nlm.nih.gov/pubmed/37327757
https://www.proquest.com/docview/2849955938
https://www.proquest.com/docview/2827253405
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6VXQlxQX0ADaUrV-o1kDhxnKiHsqB9FMQK8ZD2ZsVOckBVFtjlym9nJnayF1rtxYckY0dje_zZ_mYG4KfJg9CImPtFabQfi4oSucfSL3iR6iTEjjZ03nE1S6b38cVczN2B29LRKlub2BjqYmHojPwEzWhG0dKi9Pfjk09Zo-h21aXQ2II-muBU9KB_Nppd36w9I4PIOqGgtYlxM-S4PJbhRaRt6-R-TEnE8bEMKcjC-wvUvwBosxCNP8KuQ5BsaLv8E3wo68-wfeXuyL_A6ZA1LEEfzWzBcDfduFsxQ4yWxomBTc5nDLEqG40mrLRpfFhHJFrUe3A_Ht2dT32XJ8E3CHdWfiK0KQUuRaEWFNYzyxG0IM7gQYp6xwUbYYWRBnur0qmUOIsDBBE6zyMeRLJIon3o1Yu6_IrKyapc6gpxEDdYE9dZQimpq4wnuFVOtAeyVY4yLog45bL4q1q22INaq1WRWpVVqwdhJ_loA2lsIJO1-letoyiaNoXWfgNZ-Z5suXRzdKlCteQqULdNiCIcG5wi9-Pu1YNfnaSDIRZebNjuUTtQVNfUevB68KN7jROZbmfyuly80DdcchEhgPbgwA6wTlGRjLiUQh7-v_JvsEN_YilwR9BbPb-U3xEzrfQAto5fQyzlXGKZjicD6A__XE5nAzdl3gAD2BYi
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0BlQoXRCkfpmm7SOVosNdZbyyEWkQDoZBcACm3xbteHxBygCRC_Kn-Rma8tnOhVS5cbc_aHs_OvPW-mQH4YdIgNKLN_cwa7bdFTo3c29LPeNbRcYgf2tD_jv4g7t20_wzFcAH-1rkwRKusfWLpqLORoX_kB-hGE6qWFnV-Pjz61DWKdlfrFhrOLC7syzMu2cZH57_x--5xftq9Pun5VVcB3yA4mPix0MYKdNyhFlQEM0kxxGNU5kEHnxLDGwZhIw2-W647UqLNBxhydZpGPIhkFkc47iJ8wMAbUK1-OZSzPMwgcikv6NtwZFExhxyfjCjiLqV-n1qW42EZUkmHt8Phv-BuGfZO12C1wqvs2BnYJ1iwxTp87Fc78p_h1zErOYk-OvWM4dq9TO5ihvgzZcoEOzsZMETGrNs9Y9Y1DWINbWlUbMDNu-hvE5aKUWG3UTlJnkqdI-riBkfiOompAXae8BgX5rH2QNbKUaYqWU6dM-5VzU27UzO1KlKrcmr1IGwkH1zZjjlkklr_qk5LRUeqMLbMISvfkrXjyiOMVajGXAXqqiyIhLbBqU8ArpU9OGwkK9DjwMyc923VhqKaW82mige7zWl0G7QXlBZ2NKVruOQiQrjuwZYzsEZRkYy4lELu_H_w77Dcu-5fqsvzwcUXWKGncuS7FixNnqb2K6K1if5WThEGt-89J18B4BBJ6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRUK9VNBneBRXao8pibOOEyHU8tgFSlmhtkjcTOw4h6rKArsI8df4dZ2JneyFVnvhmmScZDKeGcffzAfw0RRRbESfh6U1OuyLiojc-zIseZnpNMYPbeh_x-koPTrvf7sQFwvw0NbCEKyy9YmNoy7Hhv6Rb6EbzalbWpJtVR4WcXYw_HJ1HRKDFO20tnQazkRO7P0dLt8mO8cH-K0_cT4c_No_Cj3DQGgwUZiGqdDGCnTisRbUEDMvMNxjhOZRhk-MoQ4DspEG37PSmZRo_xGGX10UCY8SWaYJjvsMFiVemvVgcW8wOvsxq8qMElcAg54OxxYeR-TQZQQYdwX2n4nAHA_LmBo8PB4c_5X8NkFwuAwvfPbKdp25rcCCrV_C0qnfn38FX3dZg1AM0cWXDFfyTakXM4SmaQoo2OH-iGGezAaDQ2YdhRDrQEzj-jWcP4kG30CvHtf2HSonrwqpK8zBuMGRuM5TosOucp7iMj3VAchWOcr4BubEo_FHtUi132qmVkVqVU6tAcSd5JVr4jGHTN7qX7VFquhWFUaaOWTlY7J24v3DRMVqwlWkfjbtkdA2OLEG4Mo5gO1O0qdALrWZ877rraGo7laziRPAh-40OhHaGSpqO76la7jkIsHkPYC3zsA6RSUy4VIKufr_wTdhCeej-n48OlmD5_RQDom3Dr3pza3dwNRtqt_7OcLg8qmn5V93_E-O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-head+residual+connection+GCN+for+EEG+emotion+recognition&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Qiu%2C+Xiangkai&rft.au=Wang%2C+Shenglin&rft.au=Wang%2C+Ruqing&rft.au=Zhang%2C+Yiling&rft.date=2023-09-01&rft.eissn=1879-0534&rft.volume=163&rft.spage=107126&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107126&rft_id=info%3Apmid%2F37327757&rft.externalDocID=37327757
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon