A multi-head residual connection GCN for EEG emotion recognition
Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model...
Saved in:
Published in | Computers in biology and medicine Vol. 163; p. 107126 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.09.2023
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0010-4825 1879-0534 1879-0534 |
DOI | 10.1016/j.compbiomed.2023.107126 |
Cover
Loading…
Abstract | Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.
•MRGCN model incorporates complex brain networks and graph neural networks (GNN) for profound EEG emotion recognition.•Use differential entropy to extract the complexity of EEG signals and to analyze the inner workings of emotion generation.•We designed a long-distance and short-distance brain network to explore complex topological characteristics.•Add residual-based architecture enhances performance and classification stability.•Visual optimal solution model was used to study connection mechanism among brain regions during production of emotions. |
---|---|
AbstractList | AbstractElectroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. •MRGCN model incorporates complex brain networks and graph neural networks (GNN) for profound EEG emotion recognition.•Use differential entropy to extract the complexity of EEG signals and to analyze the inner workings of emotion generation.•We designed a long-distance and short-distance brain network to explore complex topological characteristics.•Add residual-based architecture enhances performance and classification stability.•Visual optimal solution model was used to study connection mechanism among brain regions during production of emotions. Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness.Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in extracting profound EEG emotional features. This paper introduces a novel multi-head residual graph convolutional neural network (MRGCN) model that incorporates complex brain networks and graph convolution networks. The decomposition of multi-band differential entropy (DE) features exposes the temporal intricacy of emotion-linked brain activity, and the combination of short and long-distance brain networks can explore complex topological characteristics. Moreover, the residual-based architecture not only enhances performance but also augments classification stability across subjects. The visualization of brain network connectivity offers a practical technique for investigating emotional regulation mechanisms. The MRGCN model exhibits average classification accuracies of 95.8% and 98.9% for the DEAP and SEED datasets, respectively, highlighting its excellent performance and robustness. |
ArticleNumber | 107126 |
Author | Zhang, Yiling Wang, Shenglin Qiu, Xiangkai Huang, Liya Wang, Ruqing |
Author_xml | – sequence: 1 givenname: Xiangkai orcidid: 0000-0002-6175-9729 surname: Qiu fullname: Qiu, Xiangkai organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 2 givenname: Shenglin surname: Wang fullname: Wang, Shenglin organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 3 givenname: Ruqing surname: Wang fullname: Wang, Ruqing organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 4 givenname: Yiling surname: Zhang fullname: Zhang, Yiling organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China – sequence: 5 givenname: Liya surname: Huang fullname: Huang, Liya email: huangly@njupt.edu.cn organization: College of Electronic and Optical Engineering & College of Flexible Electronics, Nanjing University of Posts and Telecommunications, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37327757$$D View this record in MEDLINE/PubMed |
BookMark | eNqVkkFv1DAQhS1URLcLfwFF4sIly9iOY-eCWlbLFqmCA3C2HGcWvCT2YidI_fc43bJIlZDKyfbozdPM93xBznzwSEhBYUWB1m_2KxuGQ-vCgN2KAeO5LCmrn5AFVbIpQfDqjCwAKJSVYuKcXKS0B4AKODwj51xyJqWQC3J5VQxTP7ryO5quiJhcN5m-sMF7tKMLvtiuPxa7EIvNZlvgEO5qEW345t18f06e7kyf8MX9uSRf32--rK_Lm0_bD-urm9IKWo1lLVqLAnhN2_xWrDFMUN5IBqqpKqgp1LWVtkW7a5WUnCoQomqN4Qy47Gq-JK-PvocYfk6YRj24ZLHvjccwJc0UkyyvnVdfklcPpPswRZ-ny6qqaYRouMqql_eqqc0Y9SG6wcRb_YdNFqijwMaQUsTdSUJBzzHovf4bg55j0McYcuvbB63WjWbGNUbj-scYvDsaYEb6y2HUyTr0FjuX2Y-6C-4_pjiZ2N55Z03_A28xnaBQnZgG_Xn-LvNvYRxANHQmcPlvg8fN8Bv_btCk |
CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107674 crossref_primary_10_1016_j_inffus_2023_102220 crossref_primary_10_1088_1741_2552_ad7060 crossref_primary_10_1007_s11517_025_03295_0 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1016_j_compbiomed_2024_108857 crossref_primary_10_1109_TIM_2024_3428607 crossref_primary_10_1016_j_compbiomed_2024_108808 crossref_primary_10_1007_s00521_024_09550_z crossref_primary_10_3390_brainsci14080820 crossref_primary_10_3389_fncom_2024_1416494 crossref_primary_10_1016_j_measurement_2024_116046 crossref_primary_10_3390_jmse12122342 |
Cites_doi | 10.3390/s18051383 10.1109/TCBB.2020.3018137 10.1109/JBHI.2023.3346205 10.1111/psyp.12283 10.1109/JBHI.2021.3083525 10.1016/j.jksuci.2020.10.007 10.1007/s11071-022-07207-x 10.1016/j.compbiomed.2020.103927 10.1016/j.compbiomed.2022.105519 10.1002/wcs.1335 10.1109/TAMD.2015.2431497 10.1007/s10044-019-00860-w 10.1109/ACCESS.2019.2927768 10.3390/s18082739 10.3389/fnsys.2020.00043 10.3389/fninf.2022.844667 10.14569/IJACSA.2017.081046 10.1073/pnas.1302982110 10.3390/s21144758 10.1016/j.procs.2017.12.003 10.1016/j.pneurobio.2014.09.003 10.1109/TCDS.2021.3071170 10.1109/T-AFFC.2011.15 10.1016/j.compbiomed.2023.106537 10.3390/math10040582 10.1016/j.neunet.2021.10.023 10.1097/WNP.0000000000000316 10.1007/s11042-020-09354-y 10.3389/fncom.2021.743426 10.1109/JBHI.2020.2995767 10.1109/TAFFC.2017.2714671 10.1007/s10489-021-03070-2 10.1002/hbm.24393 10.1016/j.neulet.2021.136153 10.1007/s10462-022-10183-8 10.3390/s19214736 10.1016/j.neuroimage.2012.09.036 10.1007/s11063-016-9506-1 10.1016/j.compbiomed.2022.106463 10.1016/j.knosys.2023.110372 |
ContentType | Journal Article |
Copyright | 2023 Elsevier Ltd Copyright © 2023 Elsevier Ltd. All rights reserved. 2023. Elsevier Ltd |
Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Copyright © 2023 Elsevier Ltd. All rights reserved. – notice: 2023. Elsevier Ltd |
DBID | AAYXX CITATION NPM 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 |
DOI | 10.1016/j.compbiomed.2023.107126 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Biological Science Collection Computing Database Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Research Library Prep Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Research Library ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Biochemistry Abstracts 1 ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 107126 |
ExternalDocumentID | 37327757 10_1016_j_compbiomed_2023_107126 S0010482523005917 1_s2_0_S0010482523005917 |
Genre | Journal Article |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABOCM ABUWG ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACIWK ACNNM ACPRK ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFKRA AFPUW AFRAH AFRHN AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHMBA AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LK8 LX9 M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 R2- ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- 3V. AACTN AFCTW AFKWA AJOXV ALIPV AMFUW M0N RIG AAYXX AGRNS CITATION NPM 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U 77I 7X8 EFLBG |
ID | FETCH-LOGICAL-c514t-65bce50361b514829a251397208944061066c7cbecfb8773180554baa32037d63 |
IEDL.DBID | BENPR |
ISSN | 0010-4825 1879-0534 |
IngestDate | Fri Sep 05 14:37:38 EDT 2025 Wed Aug 13 05:57:10 EDT 2025 Wed Feb 19 02:24:25 EST 2025 Thu Apr 24 23:05:27 EDT 2025 Tue Jul 01 03:29:01 EDT 2025 Tue Dec 03 03:44:34 EST 2024 Tue Feb 25 20:03:26 EST 2025 Tue Aug 26 20:14:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Emotion recognition Complex brain network Graph convolutional neural network EEG |
Language | English |
License | Copyright © 2023 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-65bce50361b514829a251397208944061066c7cbecfb8773180554baa32037d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6175-9729 |
PMID | 37327757 |
PQID | 2849955938 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2827253405 proquest_journals_2849955938 pubmed_primary_37327757 crossref_primary_10_1016_j_compbiomed_2023_107126 crossref_citationtrail_10_1016_j_compbiomed_2023_107126 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_107126 elsevier_clinicalkeyesjournals_1_s2_0_S0010482523005917 elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_107126 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Peng, Zhao, Zhang, Xu, Kong (bib55) 2023; 154 Tao, Li, Song, Cheng, Liu, Wan, Chen (bib10) 2020 Haufe, Nikulin, Müller, Nolte (bib23) 2013; 64 Acharya, Hani, Cheek, Thirumala, Tsuchida (bib49) 2016; 33 Shovon, Nandagopal, Vijayalakshmi, Du, Cocks (bib26) 2017; 45 Wei, Liu, Li, Cheng, Song, Chen, Tc-Net (bib40) 2023; 152 Li, Chen, Jin (bib30) 2022 Zheng, Lu (bib50) 2015; 7 Liu, Ding, Li, Cheng, Song, Wan, Chen (bib38) 2020; 123 Zheng, Hu, Zhang, Li, Zheng (bib46) 2021 Avramidis, Zlatintsi, Garoufis, Maragos (bib8) 2021 Liu, Wang, Zhao, Li, Hu, Yu, Zhang (bib33) 2022; 26 Gao, Wang, Wang, Song, Dong, Song (bib6) 2020; 79 Li, Hua, Xu, Shu, Xu, Kuang, Wu (bib32) 2022; 145 Gómez-Tapia, Bozic, Longo (bib47) 2022; 16 S, Kumar (bib51) 2019 Liu, Wang, An, Zhao, Zhao, Zhang (bib41) 2023; 265 Yean, Khairunizam, Omar, Murugappan, Zheng, Bakar, Razlan, Ibrahim (bib16) 2018 Ahmedt-Aristizabal, Armin, Denman, Fookes, Petersson (bib27) 2021; 21 Jackson, Bolger (bib22) 2014; 51 Alarcao, Fonseca (bib54) 2019; 10 de Gelder, de Borst, Watson (bib3) 2015; 6 Liu, Wei, Li, Cheng, Song, Chen, Bi-CapsNet (bib39) 2023 Liu, Qiu, Zheng, Lu (bib37) 2022; 14 Sadeghijam, Talebian, Mohsen, Akbari, Pourbakht (bib11) 2021; 762 An, Hu, Duan, Zhao, Xie, Zhao (bib35) 2021; 15 Godwin, Schaarschmidt, Gaunt, Sanchez-Gonzalez, Rubanova, Veličković, Kirkpatrick, Battaglia (bib43) 2022 Alhagry, Aly, A (bib53) 2017; 8 Frühholz, Trost, Grandjean (bib2) 2014; 123 Cui, Wang, Ding, Chen, Huang (bib20) 2022; 10 Joshi, Ghongade (bib14) 2022; 34 Hwang, Hong, Son, Byun (bib15) 2020; 23 George, Shaikat, Ferdawoos, Parvez, Uddin (bib17) 2019 Demir, Koike-Akino, Wang, Haruna, Erdogmus (bib28) 2021 Zhang, Li (bib31) 2022; 108 Asadzadeh, Rezaii, Beheshti, Meshgini (bib44) 2022 Liu, Zhang, Liu, Cao (bib45) 2022; 145 Kwon, Shin, Kim (bib52) 2018; 18 Alazrai, Homoud, Alwanni, Daoud (bib7) 2018; 18 Liu, Wang, Zhao, Zhao, Xin, Wang (bib34) 2021; 18 Chen, Zhang, Ding, Cui, Huang (bib21) 2022; 2022 Cheng, Chen, Li, Liu, Song, Liu, Chen (bib36) 2021; 25 Cui, Liu, Zhang, Chen, Liu, Chen (bib4) 2022 Wang, Tong, Heng (bib25) 2019; 7 Wang, Zhang, He, Zhang (bib12) 2022; 52 Abrams, Lynch, Cheng, Phillips, Supekar, Ryali, Uddin, Menon (bib24) 2013; 110 Liu, Wu, Luo, Qiu, Yang, Li, Bi (bib19) 2020; 14 Liu, Zeng, Wang, Song, Zhou (bib42) 2021 Miskovic, MacDonald, Rhodes, Cote (bib13) 2018; 40 Koelstra, Muhl, Soleymani, Lee, Yazdani, Ebrahimi, Pun, Nijholt, Patras (bib48) 2012; 3 Chan, Bea, Leow, Phoong, Cheng (bib56) 2023; 56 Yang, Alsadoon, Prasad, Singh, Elchouemi (bib1) 2018; 125 Yang, Han, Min (bib5) 2019; 19 Kipf, Welling (bib29) 2017 Chalupnik, Bialas, Majewska, Kedziora (bib18) 2022 Islam, Ahmad (bib9) 2019 Tao (10.1016/j.compbiomed.2023.107126_bib10) 2020 Li (10.1016/j.compbiomed.2023.107126_bib30) 2022 George (10.1016/j.compbiomed.2023.107126_bib17) 2019 Wang (10.1016/j.compbiomed.2023.107126_bib25) 2019; 7 Alazrai (10.1016/j.compbiomed.2023.107126_bib7) 2018; 18 Liu (10.1016/j.compbiomed.2023.107126_bib33) 2022; 26 Shovon (10.1016/j.compbiomed.2023.107126_bib26) 2017; 45 Cui (10.1016/j.compbiomed.2023.107126_bib20) 2022; 10 Liu (10.1016/j.compbiomed.2023.107126_bib41) 2023; 265 Kipf (10.1016/j.compbiomed.2023.107126_bib29) 2017 Li (10.1016/j.compbiomed.2023.107126_bib32) 2022; 145 Yean (10.1016/j.compbiomed.2023.107126_bib16) 2018 Acharya (10.1016/j.compbiomed.2023.107126_bib49) 2016; 33 Peng (10.1016/j.compbiomed.2023.107126_bib55) 2023; 154 Jackson (10.1016/j.compbiomed.2023.107126_bib22) 2014; 51 Frühholz (10.1016/j.compbiomed.2023.107126_bib2) 2014; 123 Zhang (10.1016/j.compbiomed.2023.107126_bib31) 2022; 108 Islam (10.1016/j.compbiomed.2023.107126_bib9) 2019 An (10.1016/j.compbiomed.2023.107126_bib35) 2021; 15 de Gelder (10.1016/j.compbiomed.2023.107126_bib3) 2015; 6 Yang (10.1016/j.compbiomed.2023.107126_bib5) 2019; 19 Yang (10.1016/j.compbiomed.2023.107126_bib1) 2018; 125 Cui (10.1016/j.compbiomed.2023.107126_bib4) 2022 Koelstra (10.1016/j.compbiomed.2023.107126_bib48) 2012; 3 Miskovic (10.1016/j.compbiomed.2023.107126_bib13) 2018; 40 Chalupnik (10.1016/j.compbiomed.2023.107126_bib18) 2022 Liu (10.1016/j.compbiomed.2023.107126_bib45) 2022; 145 Liu (10.1016/j.compbiomed.2023.107126_bib42) 2021 Joshi (10.1016/j.compbiomed.2023.107126_bib14) 2022; 34 Avramidis (10.1016/j.compbiomed.2023.107126_bib8) 2021 Alhagry (10.1016/j.compbiomed.2023.107126_bib53) 2017; 8 Alarcao (10.1016/j.compbiomed.2023.107126_bib54) 2019; 10 Abrams (10.1016/j.compbiomed.2023.107126_bib24) 2013; 110 Chan (10.1016/j.compbiomed.2023.107126_bib56) 2023; 56 Chen (10.1016/j.compbiomed.2023.107126_bib21) 2022; 2022 Liu (10.1016/j.compbiomed.2023.107126_bib39) 2023 Liu (10.1016/j.compbiomed.2023.107126_bib19) 2020; 14 Wang (10.1016/j.compbiomed.2023.107126_bib12) 2022; 52 Kwon (10.1016/j.compbiomed.2023.107126_bib52) 2018; 18 Sadeghijam (10.1016/j.compbiomed.2023.107126_bib11) 2021; 762 Godwin (10.1016/j.compbiomed.2023.107126_bib43) 2022 Liu (10.1016/j.compbiomed.2023.107126_bib38) 2020; 123 Hwang (10.1016/j.compbiomed.2023.107126_bib15) 2020; 23 Ahmedt-Aristizabal (10.1016/j.compbiomed.2023.107126_bib27) 2021; 21 Wei (10.1016/j.compbiomed.2023.107126_bib40) 2023; 152 S (10.1016/j.compbiomed.2023.107126_bib51) 2019 Gao (10.1016/j.compbiomed.2023.107126_bib6) 2020; 79 Cheng (10.1016/j.compbiomed.2023.107126_bib36) 2021; 25 Haufe (10.1016/j.compbiomed.2023.107126_bib23) 2013; 64 Gómez-Tapia (10.1016/j.compbiomed.2023.107126_bib47) 2022; 16 Demir (10.1016/j.compbiomed.2023.107126_bib28) 2021 Liu (10.1016/j.compbiomed.2023.107126_bib34) 2021; 18 Liu (10.1016/j.compbiomed.2023.107126_bib37) 2022; 14 Zheng (10.1016/j.compbiomed.2023.107126_bib50) 2015; 7 Asadzadeh (10.1016/j.compbiomed.2023.107126_bib44) 2022 Zheng (10.1016/j.compbiomed.2023.107126_bib46) 2021 |
References_xml | – volume: 79 start-page: 27057 year: 2020 end-page: 27074 ident: bib6 article-title: EEG based emotion recognition using fusion feature extraction method publication-title: Multimed. Tool. Appl. – start-page: 15 year: 2022 ident: bib30 article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN publication-title: J. Neural. Eng. – volume: 15 year: 2021 ident: bib35 article-title: Electroencephalogram emotion recognition based on 3D feature fusion and convolutional autoencoder publication-title: Front. Comput. Neurosci. – volume: 14 year: 2020 ident: bib19 article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder publication-title: Front. Syst. Neurosci. – volume: 18 start-page: 1710 year: 2021 end-page: 1721 ident: bib34 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE ACM Trans. Comput. Biol. Bioinf – year: 2019 ident: bib51 article-title: Nataraj, Analysis of EEG Based Emotion Detection of DEAP and SEED-IV Databases Using SVM – volume: 145 start-page: 308 year: 2022 end-page: 318 ident: bib45 article-title: Minimum spanning tree based graph neural network for emotion classification using EEG publication-title: Neural Network. – volume: 64 start-page: 120 year: 2013 end-page: 133 ident: bib23 article-title: A critical assessment of connectivity measures for EEG data: a simulation study publication-title: Neuroimage – volume: 2022 start-page: 1 year: 2022 end-page: 10 ident: bib21 article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective publication-title: J. Sens. – year: 2022 ident: bib4 article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion publication-title: IEEE Trans. Affective Comput – volume: 145 year: 2022 ident: bib32 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Comput. Biol. Med. – year: 2022 ident: bib43 article-title: Simple GNN Regularisation for 3D Molecular Property Prediction & beyond – volume: 34 start-page: 4433 year: 2022 end-page: 4447 ident: bib14 article-title: IDEA: intellect database for emotion analysis using EEG signal publication-title: Journal of King Saud University - Computer and Information Sciences – volume: 762 year: 2021 ident: bib11 article-title: Shannon entropy measures for EEG signals in tinnitus publication-title: Neurosci. Lett. – volume: 51 start-page: 1061 year: 2014 end-page: 1071 ident: bib22 article-title: The neurophysiological bases of EEG and EEG measurement: a review for the rest of us: neurophysiological bases of EEG publication-title: Psychophysiology – start-page: 728 year: 2021 end-page: 740 ident: bib42 article-title: Content matters: a GNN-based model combined with text semantics for social network cascade prediction publication-title: Advances in Knowledge Discovery and Data Mining – volume: 6 start-page: 149 year: 2015 end-page: 158 ident: bib3 article-title: The perception of emotion in body expressions publication-title: WIREs Cognitive Science – volume: 40 start-page: 538 year: 2018 end-page: 551 ident: bib13 article-title: Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle publication-title: Hum. Brain Mapp. – volume: 23 start-page: 1323 year: 2020 end-page: 1335 ident: bib15 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. – start-page: 306 year: 2022 end-page: 316 ident: bib18 article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions detection publication-title: Advanced Information Networking and Applications – start-page: 1628 year: 2021 end-page: 1632 ident: bib46 article-title: EEG emotion recognition based on hierarchy graph convolution network publication-title: 2021 IEEE International Conference on Bioinformatics and Biomedicine – volume: 33 start-page: 308 year: 2016 end-page: 311 ident: bib49 article-title: American clinical neurophysiology society guideline 2: guidelines for standard electrode position nomenclature publication-title: J. Clin. Neurophysiol. – volume: 19 start-page: 4736 year: 2019 ident: bib5 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors – start-page: 1 year: 2019 end-page: 6 ident: bib9 article-title: Wavelet analysis based classification of emotion from EEG signal publication-title: 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) – volume: 16 year: 2022 ident: bib47 article-title: On the minimal amount of EEG data required for learning distinctive human features for task-dependent biometric applications publication-title: Front. Neuroinf. – volume: 7 start-page: 162 year: 2015 end-page: 175 ident: bib50 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. – volume: 56 start-page: 749 year: 2023 end-page: 780 ident: bib56 article-title: State of the art: a review of sentiment analysis based on sequential transfer learning publication-title: Artif. Intell. Rev. – volume: 10 start-page: 374 year: 2019 end-page: 393 ident: bib54 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affective Comput. – volume: 154 year: 2023 ident: bib55 article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis publication-title: Comput. Biol. Med. – start-page: 1 year: 2018 end-page: 4 ident: bib16 article-title: Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients publication-title: 2018 International Conference on Computational Approach in Smart Systems Design and Applications – start-page: 1 year: 2023 end-page: 13 ident: bib39 article-title: A binary capsule network for EEG-based emotion recognition publication-title: IEEE J. Biomed. Health Inform. – year: 2022 ident: bib44 article-title: Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes publication-title: Cogn Comput – volume: 18 start-page: 2739 year: 2018 ident: bib7 article-title: EEG-based emotion recognition using quadratic time-frequency distribution publication-title: Sensors – year: 2020 ident: bib10 article-title: EEG-Based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affective Comput – volume: 10 start-page: 582 year: 2022 ident: bib20 article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition publication-title: Mathematics – volume: 3 start-page: 18 year: 2012 end-page: 31 ident: bib48 article-title: DEAP: a database for emotion analysis ;using physiological signals publication-title: IEEE Transactions on Affective Computing – volume: 108 start-page: 521 year: 2022 end-page: 531 ident: bib31 article-title: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations publication-title: Nonlinear Dynam. – volume: 152 year: 2023 ident: bib40 article-title: A transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. – start-page: 1061 year: 2021 end-page: 1067 ident: bib28 article-title: EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals publication-title: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society – volume: 21 start-page: 4758 year: 2021 ident: bib27 article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future publication-title: Sensors – volume: 7 start-page: 93711 year: 2019 end-page: 93722 ident: bib25 article-title: Phase-locking value based graph convolutional neural networks for emotion recognition publication-title: IEEE Access – volume: 25 start-page: 453 year: 2021 end-page: 464 ident: bib36 article-title: Emotion recognition from multi-channelchannel EEG via deep forest publication-title: IEEE J. Biomed. Health Inform. – volume: 265 year: 2023 ident: bib41 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl. Base Syst. – volume: 52 start-page: 12064 year: 2022 end-page: 12076 ident: bib12 article-title: EEG emotion recognition using multichannel weighted multiscale permutation entropy publication-title: Appl. Intell. – volume: 45 start-page: 807 year: 2017 end-page: 824 ident: bib26 article-title: Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy publication-title: Neural Process. Lett. – volume: 8 year: 2017 ident: bib53 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Ijacsa – volume: 123 start-page: 1 year: 2014 end-page: 17 ident: bib2 article-title: The role of the medial temporal limbic system in processing emotions in voice and music publication-title: Prog. Neurobiol. – volume: 110 start-page: 12060 year: 2013 end-page: 12065 ident: bib24 article-title: Underconnectivity between voice-selective cortex and reward circuitry in children with autism publication-title: Proc. Natl. Acad. Sci. USA – volume: 123 year: 2020 ident: bib38 article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network publication-title: Comput. Biol. Med. – year: 2017 ident: bib29 article-title: Semi-Supervised Classification with Graph Convolutional Networks – volume: 14 start-page: 715 year: 2022 end-page: 729 ident: bib37 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 18 start-page: 1383 year: 2018 ident: bib52 article-title: Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (CNN) model for emotion recognition system publication-title: Sensors – volume: 26 start-page: 5321 year: 2022 end-page: 5331 ident: bib33 article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inform. – volume: 125 start-page: 2 year: 2018 end-page: 10 ident: bib1 article-title: An emotion recognition model based on facial recognition in virtual learning environment publication-title: Procedia Comput. Sci. – start-page: 9 year: 2019 ident: bib17 article-title: Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier publication-title: Int. J. Electr. Comput. Eng. – start-page: 1316 year: 2021 end-page: 1320 ident: bib8 article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition publication-title: 2021 29th European Signal Processing Conference – volume: 18 start-page: 1383 year: 2018 ident: 10.1016/j.compbiomed.2023.107126_bib52 article-title: Electroencephalography based fusion two-dimensional (2d)-convolution neural networks (CNN) model for emotion recognition system publication-title: Sensors doi: 10.3390/s18051383 – volume: 18 start-page: 1710 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib34 article-title: Subject-independent emotion recognition of EEG signals based on dynamic empirical convolutional neural network publication-title: IEEE ACM Trans. Comput. Biol. Bioinf doi: 10.1109/TCBB.2020.3018137 – start-page: 1 year: 2023 ident: 10.1016/j.compbiomed.2023.107126_bib39 article-title: A binary capsule network for EEG-based emotion recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2023.3346205 – volume: 51 start-page: 1061 year: 2014 ident: 10.1016/j.compbiomed.2023.107126_bib22 article-title: The neurophysiological bases of EEG and EEG measurement: a review for the rest of us: neurophysiological bases of EEG publication-title: Psychophysiology doi: 10.1111/psyp.12283 – volume: 26 start-page: 5321 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib33 article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3083525 – volume: 34 start-page: 4433 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib14 article-title: IDEA: intellect database for emotion analysis using EEG signal publication-title: Journal of King Saud University - Computer and Information Sciences doi: 10.1016/j.jksuci.2020.10.007 – year: 2017 ident: 10.1016/j.compbiomed.2023.107126_bib29 – volume: 108 start-page: 521 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib31 article-title: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations publication-title: Nonlinear Dynam. doi: 10.1007/s11071-022-07207-x – year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib44 article-title: Accurate emotion recognition utilizing extracted EEG sources as graph neural network nodes publication-title: Cogn Comput – volume: 123 year: 2020 ident: 10.1016/j.compbiomed.2023.107126_bib38 article-title: Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2020.103927 – year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib43 – volume: 145 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib32 article-title: Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.105519 – start-page: 1316 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib8 article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition – volume: 6 start-page: 149 year: 2015 ident: 10.1016/j.compbiomed.2023.107126_bib3 article-title: The perception of emotion in body expressions publication-title: WIREs Cognitive Science doi: 10.1002/wcs.1335 – start-page: 9 year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib17 article-title: Recognition of emotional states using EEG signals based on time-frequency analysis and SVM classifier publication-title: Int. J. Electr. Comput. Eng. – volume: 7 start-page: 162 year: 2015 ident: 10.1016/j.compbiomed.2023.107126_bib50 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. doi: 10.1109/TAMD.2015.2431497 – start-page: 15 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib30 article-title: Semi-supervised EEG emotion recognition model based on enhanced graph fusion and GCN publication-title: J. Neural. Eng. – start-page: 728 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib42 article-title: Content matters: a GNN-based model combined with text semantics for social network cascade prediction – volume: 23 start-page: 1323 year: 2020 ident: 10.1016/j.compbiomed.2023.107126_bib15 article-title: Learning CNN features from DE features for EEG-based emotion recognition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00860-w – volume: 7 start-page: 93711 year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib25 article-title: Phase-locking value based graph convolutional neural networks for emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927768 – year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib51 – volume: 18 start-page: 2739 year: 2018 ident: 10.1016/j.compbiomed.2023.107126_bib7 article-title: EEG-based emotion recognition using quadratic time-frequency distribution publication-title: Sensors doi: 10.3390/s18082739 – volume: 14 year: 2020 ident: 10.1016/j.compbiomed.2023.107126_bib19 article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2020.00043 – volume: 16 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib47 article-title: On the minimal amount of EEG data required for learning distinctive human features for task-dependent biometric applications publication-title: Front. Neuroinf. doi: 10.3389/fninf.2022.844667 – start-page: 306 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib18 article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions detection – volume: 8 year: 2017 ident: 10.1016/j.compbiomed.2023.107126_bib53 article-title: Emotion recognition based on EEG using LSTM recurrent neural network publication-title: Ijacsa doi: 10.14569/IJACSA.2017.081046 – start-page: 1 year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib9 article-title: Wavelet analysis based classification of emotion from EEG signal – volume: 110 start-page: 12060 year: 2013 ident: 10.1016/j.compbiomed.2023.107126_bib24 article-title: Underconnectivity between voice-selective cortex and reward circuitry in children with autism publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302982110 – volume: 21 start-page: 4758 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib27 article-title: Graph-based deep learning for medical diagnosis and analysis: past, present and future publication-title: Sensors doi: 10.3390/s21144758 – volume: 125 start-page: 2 year: 2018 ident: 10.1016/j.compbiomed.2023.107126_bib1 article-title: An emotion recognition model based on facial recognition in virtual learning environment publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.12.003 – volume: 123 start-page: 1 year: 2014 ident: 10.1016/j.compbiomed.2023.107126_bib2 article-title: The role of the medial temporal limbic system in processing emotions in voice and music publication-title: Prog. Neurobiol. doi: 10.1016/j.pneurobio.2014.09.003 – volume: 14 start-page: 715 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib37 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3071170 – volume: 3 start-page: 18 year: 2012 ident: 10.1016/j.compbiomed.2023.107126_bib48 article-title: DEAP: a database for emotion analysis ;using physiological signals publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2011.15 – start-page: 1061 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib28 article-title: EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals – volume: 154 year: 2023 ident: 10.1016/j.compbiomed.2023.107126_bib55 article-title: Temporal relative transformer encoding cooperating with channel attention for EEG emotion analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.106537 – volume: 10 start-page: 582 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib20 article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition publication-title: Mathematics doi: 10.3390/math10040582 – volume: 145 start-page: 308 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib45 article-title: Minimum spanning tree based graph neural network for emotion classification using EEG publication-title: Neural Network. doi: 10.1016/j.neunet.2021.10.023 – volume: 33 start-page: 308 year: 2016 ident: 10.1016/j.compbiomed.2023.107126_bib49 article-title: American clinical neurophysiology society guideline 2: guidelines for standard electrode position nomenclature publication-title: J. Clin. Neurophysiol. doi: 10.1097/WNP.0000000000000316 – start-page: 1628 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib46 article-title: EEG emotion recognition based on hierarchy graph convolution network – volume: 79 start-page: 27057 year: 2020 ident: 10.1016/j.compbiomed.2023.107126_bib6 article-title: EEG based emotion recognition using fusion feature extraction method publication-title: Multimed. Tool. Appl. doi: 10.1007/s11042-020-09354-y – volume: 15 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib35 article-title: Electroencephalogram emotion recognition based on 3D feature fusion and convolutional autoencoder publication-title: Front. Comput. Neurosci. doi: 10.3389/fncom.2021.743426 – volume: 25 start-page: 453 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib36 article-title: Emotion recognition from multi-channelchannel EEG via deep forest publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2020.2995767 – volume: 10 start-page: 374 year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib54 article-title: Emotions recognition using EEG signals: a survey publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2017.2714671 – volume: 2022 start-page: 1 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib21 article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective publication-title: J. Sens. – start-page: 1 year: 2018 ident: 10.1016/j.compbiomed.2023.107126_bib16 article-title: Analysis of the distance metrics of KNN classifier for EEG signal in stroke patients – volume: 52 start-page: 12064 year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib12 article-title: EEG emotion recognition using multichannel weighted multiscale permutation entropy publication-title: Appl. Intell. doi: 10.1007/s10489-021-03070-2 – volume: 40 start-page: 538 year: 2018 ident: 10.1016/j.compbiomed.2023.107126_bib13 article-title: Changes in EEG multiscale entropy and power‐law frequency scaling during the human sleep cycle publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24393 – volume: 762 year: 2021 ident: 10.1016/j.compbiomed.2023.107126_bib11 article-title: Shannon entropy measures for EEG signals in tinnitus publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2021.136153 – volume: 56 start-page: 749 year: 2023 ident: 10.1016/j.compbiomed.2023.107126_bib56 article-title: State of the art: a review of sentiment analysis based on sequential transfer learning publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10183-8 – volume: 19 start-page: 4736 year: 2019 ident: 10.1016/j.compbiomed.2023.107126_bib5 article-title: A multi-column CNN model for emotion recognition from EEG signals publication-title: Sensors doi: 10.3390/s19214736 – year: 2022 ident: 10.1016/j.compbiomed.2023.107126_bib4 article-title: EEG-based subject-independent emotion recognition using gated recurrent unit and minimum class confusion publication-title: IEEE Trans. Affective Comput – volume: 64 start-page: 120 year: 2013 ident: 10.1016/j.compbiomed.2023.107126_bib23 article-title: A critical assessment of connectivity measures for EEG data: a simulation study publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.09.036 – volume: 45 start-page: 807 year: 2017 ident: 10.1016/j.compbiomed.2023.107126_bib26 article-title: Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy publication-title: Neural Process. Lett. doi: 10.1007/s11063-016-9506-1 – volume: 152 year: 2023 ident: 10.1016/j.compbiomed.2023.107126_bib40 article-title: A transformer capsule network for EEG-based emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2022.106463 – volume: 265 year: 2023 ident: 10.1016/j.compbiomed.2023.107126_bib41 article-title: EEG emotion recognition based on the attention mechanism and pre-trained convolution capsule network publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2023.110372 – year: 2020 ident: 10.1016/j.compbiomed.2023.107126_bib10 article-title: EEG-Based emotion recognition via channel-wise attention and self attention publication-title: IEEE Trans. Affective Comput |
SSID | ssj0004030 |
Score | 2.4447834 |
Snippet | Electroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have limitations in... AbstractElectroencephalography (EEG) emotion recognition is a crucial aspect of human-computer interaction. However, conventional neural networks have... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 107126 |
SubjectTerms | Accuracy Artificial neural networks Brain Classification Complex brain network EEG Electrodes Electroencephalography Emotion recognition Emotions Entropy Graph convolutional neural network Graph neural networks Internal Medicine Neural networks Other Stability augmentation |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KD-JFfButsoLXtMkmm23wYil9ILQnC70t2U0CFUmLba_-dmeymxSxQsFjHpOEL7uz3yTfzBDypBPP1zxkbppp5YY8x0buoXBTlnZV5MOL1vi9YzKNxrPwdc7nDdKvcmFQVml9v_Hppbe2ezoWzc5qscAcXwglIMBhWHEdog7MYA8F1s9vf-1kHqEXmDQU8Dd4tlXzGI0XyrZNmnsb24jDbuFjmYX9S9RfFLRcioan5MRySNozj3lGGllxTo4m9i_5BXnp0VIn6IKjTSnE02XCFdWoaSnTGOioP6XAVulgMKKZaeRDaynRsrgks-HgrT92bacEVwPh2bgRVzrjsBj5imNhzzgB2gJMg3ldQB6WbCAWWmh4X7nqCgHz2AMaoZIkYF4g0ii4Is1iWWQ3AE6cJ0LlwISYhisxFUfYlDqPWQTBcqQcIipwpLZlxLGbxYes9GLvcgerRFilgdUhfm25MqU0DrCJK_xllSoKzk2Cvz_AVuyzzdZ2lq6lL9dMevLXSHLIc235YzAeeN9WNVBkfStgATEW-wu6DnmsD8NUxv8zSZEtt3gOE4wHQKEdcm0GWA1UIAImBBe3_3q0O3KMW0Yj1yLNzec2uwdStVEP5az5Bn8zG14 priority: 102 providerName: Elsevier |
Title | A multi-head residual connection GCN for EEG emotion recognition |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523005917 https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523005917 https://dx.doi.org/10.1016/j.compbiomed.2023.107126 https://www.ncbi.nlm.nih.gov/pubmed/37327757 https://www.proquest.com/docview/2849955938 https://www.proquest.com/docview/2827253405 |
Volume | 163 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6VXQlxQX0ADaUrV-o1kDhxnKiHsqB9FMQK8ZD2ZsVOckBVFtjlym9nJnayF1rtxYckY0dje_zZ_mYG4KfJg9CImPtFabQfi4oSucfSL3iR6iTEjjZ03nE1S6b38cVczN2B29LRKlub2BjqYmHojPwEzWhG0dKi9Pfjk09Zo-h21aXQ2II-muBU9KB_Nppd36w9I4PIOqGgtYlxM-S4PJbhRaRt6-R-TEnE8bEMKcjC-wvUvwBosxCNP8KuQ5BsaLv8E3wo68-wfeXuyL_A6ZA1LEEfzWzBcDfduFsxQ4yWxomBTc5nDLEqG40mrLRpfFhHJFrUe3A_Ht2dT32XJ8E3CHdWfiK0KQUuRaEWFNYzyxG0IM7gQYp6xwUbYYWRBnur0qmUOIsDBBE6zyMeRLJIon3o1Yu6_IrKyapc6gpxEDdYE9dZQimpq4wnuFVOtAeyVY4yLog45bL4q1q22INaq1WRWpVVqwdhJ_loA2lsIJO1-letoyiaNoXWfgNZ-Z5suXRzdKlCteQqULdNiCIcG5wi9-Pu1YNfnaSDIRZebNjuUTtQVNfUevB68KN7jROZbmfyuly80DdcchEhgPbgwA6wTlGRjLiUQh7-v_JvsEN_YilwR9BbPb-U3xEzrfQAto5fQyzlXGKZjicD6A__XE5nAzdl3gAD2BYi |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0BlQoXRCkfpmm7SOVosNdZbyyEWkQDoZBcACm3xbteHxBygCRC_Kn-Rma8tnOhVS5cbc_aHs_OvPW-mQH4YdIgNKLN_cwa7bdFTo3c29LPeNbRcYgf2tD_jv4g7t20_wzFcAH-1rkwRKusfWLpqLORoX_kB-hGE6qWFnV-Pjz61DWKdlfrFhrOLC7syzMu2cZH57_x--5xftq9Pun5VVcB3yA4mPix0MYKdNyhFlQEM0kxxGNU5kEHnxLDGwZhIw2-W647UqLNBxhydZpGPIhkFkc47iJ8wMAbUK1-OZSzPMwgcikv6NtwZFExhxyfjCjiLqV-n1qW42EZUkmHt8Phv-BuGfZO12C1wqvs2BnYJ1iwxTp87Fc78p_h1zErOYk-OvWM4dq9TO5ihvgzZcoEOzsZMETGrNs9Y9Y1DWINbWlUbMDNu-hvE5aKUWG3UTlJnkqdI-riBkfiOompAXae8BgX5rH2QNbKUaYqWU6dM-5VzU27UzO1KlKrcmr1IGwkH1zZjjlkklr_qk5LRUeqMLbMISvfkrXjyiOMVajGXAXqqiyIhLbBqU8ArpU9OGwkK9DjwMyc923VhqKaW82mige7zWl0G7QXlBZ2NKVruOQiQrjuwZYzsEZRkYy4lELu_H_w77Dcu-5fqsvzwcUXWKGncuS7FixNnqb2K6K1if5WThEGt-89J18B4BBJ6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRUK9VNBneBRXao8pibOOEyHU8tgFSlmhtkjcTOw4h6rKArsI8df4dZ2JneyFVnvhmmScZDKeGcffzAfw0RRRbESfh6U1OuyLiojc-zIseZnpNMYPbeh_x-koPTrvf7sQFwvw0NbCEKyy9YmNoy7Hhv6Rb6EbzalbWpJtVR4WcXYw_HJ1HRKDFO20tnQazkRO7P0dLt8mO8cH-K0_cT4c_No_Cj3DQGgwUZiGqdDGCnTisRbUEDMvMNxjhOZRhk-MoQ4DspEG37PSmZRo_xGGX10UCY8SWaYJjvsMFiVemvVgcW8wOvsxq8qMElcAg54OxxYeR-TQZQQYdwX2n4nAHA_LmBo8PB4c_5X8NkFwuAwvfPbKdp25rcCCrV_C0qnfn38FX3dZg1AM0cWXDFfyTakXM4SmaQoo2OH-iGGezAaDQ2YdhRDrQEzj-jWcP4kG30CvHtf2HSonrwqpK8zBuMGRuM5TosOucp7iMj3VAchWOcr4BubEo_FHtUi132qmVkVqVU6tAcSd5JVr4jGHTN7qX7VFquhWFUaaOWTlY7J24v3DRMVqwlWkfjbtkdA2OLEG4Mo5gO1O0qdALrWZ877rraGo7laziRPAh-40OhHaGSpqO76la7jkIsHkPYC3zsA6RSUy4VIKufr_wTdhCeej-n48OlmD5_RQDom3Dr3pza3dwNRtqt_7OcLg8qmn5V93_E-O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-head+residual+connection+GCN+for+EEG+emotion+recognition&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Qiu%2C+Xiangkai&rft.au=Wang%2C+Shenglin&rft.au=Wang%2C+Ruqing&rft.au=Zhang%2C+Yiling&rft.date=2023-09-01&rft.eissn=1879-0534&rft.volume=163&rft.spage=107126&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.107126&rft_id=info%3Apmid%2F37327757&rft.externalDocID=37327757 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |