High-Resolution DNA Copy Number Profiling of Malignant Peripheral Nerve Sheath Tumors Using Targeted Microarray-Based Comparative Genomic Hybridization
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We repo...
Saved in:
Published in | Clinical cancer research Vol. 14; no. 4; pp. 1015 - 1024 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia, PA
American Association for Cancer Research
15.02.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime
risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their
molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes
in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures
that delineate malignant from benign NF1 tumors.
Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform,
and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant
tumors.
Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified,
including amplifications of ITGB4, PDGFRA, MET, TP73 , and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A , and TP53 . Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A , and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis.
Concomitant amplifications of HGF, MET , and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.
Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. |
---|---|
AbstractList | Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors.
We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors.
The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.
This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73 , and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A , and TP53 . Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A , and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET , and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors.PURPOSENeurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors.We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors.EXPERIMENTAL DESIGNWe constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors.The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.RESULTSThe array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.CONCLUSIONSThis study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is 610%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. RESULTS: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. CONCLUSIONS: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs. |
Author | Meena Upadhyaya Jan P. Dumanski Nadia Chuzhanova Lan Kluwe Abhijit Guha Gillian Spurlock Victor Mautner Rosalie E. Ferner Kiran K. Mantripragada Ian M. Frayling |
Author_xml | – sequence: 1 givenname: Kiran K. surname: Mantripragada fullname: Mantripragada, Kiran K. – sequence: 2 givenname: Gillian surname: Spurlock fullname: Spurlock, Gillian – sequence: 3 givenname: Lan surname: Kluwe fullname: Kluwe, Lan – sequence: 4 givenname: Nadia surname: Chuzhanova fullname: Chuzhanova, Nadia – sequence: 5 givenname: Rosalie E. surname: Ferner fullname: Ferner, Rosalie E. – sequence: 6 givenname: Ian M. surname: Frayling fullname: Frayling, Ian M. – sequence: 7 givenname: Jan P. surname: Dumanski fullname: Dumanski, Jan P. – sequence: 8 givenname: Abhijit surname: Guha fullname: Guha, Abhijit – sequence: 9 givenname: Victor surname: Mautner fullname: Mautner, Victor – sequence: 10 givenname: Meena surname: Upadhyaya fullname: Upadhyaya, Meena |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20157704$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18281533$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFu1DAQhiNURNuFRwD5AuolxU7sOBGnkkIXqV2qsj1bE2eyMUrixU5Ay4vwujjsFiQuPdmyvm80nvlPo6PBDhhFLxk9Z0zkbxmVeUx5mpyX5V1MZcxSKp5EJ0wIGadJJo7C_YE5jk69_0op44zyZ9Exy5OciTQ9iX4tzaaN79DbbhqNHcjl6oKUdrsjq6mv0JFbZxvTmWFDbENuoDObAYaR3KIz2xYddGSF7juSLy3C2JL11Fvnyb2fjTW4DY5YkxujnQXnYBe_Bx8eSttvwcFognmFg-2NJstd5UxtfsLcx_PoaQOdxxeHcxHdf_ywLpfx9eerT-XFdawF42Ms8rpmBdAKUfCk0Ilo8iLXsqpAQ5VKFEWNstBQFynTSVbUnDUi4QnIjNdcpIvozb7u1tlvE_pR9cZr7DoY0E5eSZoUecrlo2BCZcZYlgXw1QGcqh5rtXWmB7dTDzMPwOsDAF5D1zgYtPF_uYQyIWXY2iISey7MznuHzb9SVM0ZUPN-1bxfFTKgqFRzBoL37j9Pm_HPUEcHpnvUPtvbbQjGD-NQ6dAfOocewelWMa54cMNXfgMx3sZY |
CitedBy_id | crossref_primary_10_1016_j_ajpath_2014_04_006 crossref_primary_10_1002_humu_23552 crossref_primary_10_1186_1479_7364_6_18 crossref_primary_10_1186_s40246_015_0025_3 crossref_primary_10_1158_1078_0432_CCR_11_0193 crossref_primary_10_1186_1756_8722_6_93 crossref_primary_10_1002_gcc_20921 crossref_primary_10_1038_ejhg_2011_207 crossref_primary_10_1002_path_2494 crossref_primary_10_1158_1078_0432_CCR_14_3049 crossref_primary_10_18632_oncotarget_793 crossref_primary_10_1007_s00401_011_0928_6 crossref_primary_10_1073_pnas_1011548107 crossref_primary_10_1093_neuonc_noae235 crossref_primary_10_1016_j_celrep_2015_08_015 crossref_primary_10_3390_genes11060691 crossref_primary_10_1093_neuonc_noz028 crossref_primary_10_18632_oncotarget_15004 crossref_primary_10_1007_s11912_009_0045_z crossref_primary_10_1007_s12094_013_1061_x crossref_primary_10_1038_nrc3911 crossref_primary_10_1080_14789450_2023_2218035 crossref_primary_10_3390_cells9040819 crossref_primary_10_1007_s00432_010_0846_3 crossref_primary_10_1158_1078_0432_CCR_10_1551 crossref_primary_10_1158_1078_0432_CCR_18_3224 crossref_primary_10_1007_s10048_010_0240_y crossref_primary_10_1186_1746_1596_5_2 crossref_primary_10_1158_1541_7786_MCR_14_0182 crossref_primary_10_1002_gcc_20695 crossref_primary_10_1016_j_ajpath_2015_10_023 crossref_primary_10_1093_noajnl_vdz049 crossref_primary_10_3389_pore_2022_1610481 crossref_primary_10_1007_s00428_009_0853_4 crossref_primary_10_1016_j_expneurol_2017_08_014 crossref_primary_10_1016_j_wneu_2018_10_087 crossref_primary_10_1007_s00428_009_0736_8 crossref_primary_10_1038_onc_2016_269 crossref_primary_10_4161_cbt_10_8_12878 crossref_primary_10_1111_j_1440_1827_2009_02401_x crossref_primary_10_3389_fonc_2018_00475 crossref_primary_10_1038_s41416_018_0073_2 crossref_primary_10_1002_adbi_202300693 crossref_primary_10_1016_j_ejcped_2023_100013 crossref_primary_10_1186_s12885_023_10596_w crossref_primary_10_1186_1479_5876_11_213 crossref_primary_10_1016_j_cell_2013_01_053 crossref_primary_10_1158_0008_5472_CAN_15_3114 crossref_primary_10_1371_journal_pone_0115916 crossref_primary_10_1155_2014_103923 crossref_primary_10_1038_ng_2641 crossref_primary_10_1158_1535_7163_MCT_08_1008 crossref_primary_10_1016_j_semcdb_2016_02_007 crossref_primary_10_3892_ijo_2012_1751 crossref_primary_10_1002_humu_22044 crossref_primary_10_1038_hdy_2008_132 crossref_primary_10_1097_PAP_0000000000000197 crossref_primary_10_3390_genes11030331 crossref_primary_10_1016_j_suronc_2013_06_003 crossref_primary_10_3389_fimmu_2015_00201 crossref_primary_10_1186_1471_2164_14_473 crossref_primary_10_1017_S1462399409001227 crossref_primary_10_1158_0008_5472_CAN_16_0179 crossref_primary_10_1002_cncr_30455 crossref_primary_10_1002_emmm_200900027 crossref_primary_10_1007_s11060_010_0328_0 crossref_primary_10_1517_17530059_2010_494660 crossref_primary_10_1016_j_gene_2014_12_064 crossref_primary_10_1038_s41388_024_03000_9 crossref_primary_10_1158_1078_0432_CCR_11_1707 crossref_primary_10_1186_1479_7364_5_6_623 crossref_primary_10_18632_oncotarget_8669 crossref_primary_10_4199_C00101ED1V01Y201312GMM005 crossref_primary_10_1158_1078_0432_CCR_10_2393 crossref_primary_10_3389_fcell_2021_660069 crossref_primary_10_15252_emmm_201404430 crossref_primary_10_1002_glia_20776 crossref_primary_10_1186_s13072_020_00380_6 crossref_primary_10_1016_j_ebiom_2023_104829 crossref_primary_10_1158_1538_7445_AM2013_LB_214 crossref_primary_10_1038_s41388_022_02290_1 crossref_primary_10_3389_fonc_2021_666199 crossref_primary_10_1016_j_ajpath_2012_11_017 crossref_primary_10_1002_humu_21387 crossref_primary_10_1158_0008_5472_CAN_17_3167 crossref_primary_10_1158_0008_5472_CAN_20_1992 crossref_primary_10_1177_0300985811429813 crossref_primary_10_18632_oncotarget_16981 |
Cites_doi | 10.1158/1078-0432.CCR-06-0818 10.1016/S0002-9440(10)65504-6 10.1158/1078-0432.CCR-06-0182 10.1111/j.1750-3639.2003.tb00034.x 10.1136/jmg.2005.033795 10.1017/S1740925X04000274 10.1073/pnas.0503224102 10.1038/sj.onc.1208730 10.1158/0008-5472.CAN-04-2921 10.1111/j.1750-3639.2004.tb00067.x 10.1136/jcp.2004.019026 10.1016/j.ygeno.2004.11.011 10.1038/nrc968 10.1002/path.1998 10.1161/01.RES.0000126925.66005.39 10.1097/00000478-200310000-00006 10.1016/0092-8674(95)90048-9 10.1038/sj.onc.1210094 10.1002/jnr.20648 10.1002/(SICI)1096-9896(200001)190:1<31::AID-PATH505>3.0.CO;2-# 10.1158/0008-5472.CAN-05-3330 10.1074/jbc.273.18.11342 10.1016/S0046-8177(97)90060-5 10.1136/jmg.39.5.311 10.1016/S0140-6736(02)07990-4 10.1158/0008-5472.850.65.3 10.1007/s00109-003-0458-3 10.1002/gcc.20343 10.1016/0165-4608(94)90081-7 10.1038/sj.onc.1205291 10.1038/83751 10.1016/S0165-4608(02)00527-7 10.1016/S0002-9440(10)61673-2 10.1023/A:1012297132047 10.1523/JNEUROSCI.14-12-07284.1994 10.1038/nrc861 10.1038/nrc1299 10.1093/jnen/64.1.1 10.1111/j.1750-3639.2004.tb00062.x 10.1038/sj.onc.1206811 10.1086/374821 10.1136/jmg.2006.045906 10.1007/s10689-007-9149-5 10.1007/s00428-001-0550-4 10.1093/jnen/64.1.74 10.1136/jcp.2004.023598 10.1158/1078-0432.CCR-03-0712 10.1016/S0304-3835(00)00426-2 10.1006/scbi.2000.0379 10.1038/ng1307 10.1002/humu.20601 |
ContentType | Journal Article |
Copyright | 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 RC3 7X8 |
DOI | 10.1158/1078-0432.CCR-07-1305 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1557-3265 |
EndPage | 1024 |
ExternalDocumentID | 18281533 20157704 10_1158_1078_0432_CCR_07_1305 14_4_1015 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | - 08R 29B 2WC 34G 39C 3O- 4H- 53G 55 5GY 5RE 5VS AAPBV ABFLS ABOCM ACIWK ACPRK ADACO ADBBV ADBIT AENEX AETEA AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FH7 FRP GX1 H13 H~9 IH2 KQ8 L7B LSO MVM O0- OHT OK1 P0W P2P RCR RHF RHI RNS SJN UDS VH1 W2D WOQ X7M XFK XJT ZA5 ZCG --- .55 18M 2FS 6J9 AAFWJ AAJMC AAYXX ACGFO ACSVP ADCOW AFHIN AFOSN AFUMD AI. BR6 BTFSW CITATION QTD TR2 W8F WHG YKV .GJ 1CY ADNWM IQODW J5H ZGI CGR CUY CVF ECM EIF NPM 7QO 7TM 8FD FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c514t-58dd19a0bee5429c25f898c7bbacab37e59de79cad931c269d41f5242a764d453 |
ISSN | 1078-0432 |
IngestDate | Fri Jul 11 07:12:44 EDT 2025 Thu Jul 10 22:27:33 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Mon Jul 21 09:11:38 EDT 2025 Tue Jul 01 03:06:12 EDT 2025 Thu Apr 24 23:05:39 EDT 2025 Fri Jan 15 20:06:55 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Peripheral nerve Nervous system diseases High resolution Targeting Copy number Neurinoma Malignant tumor Gene expression Target Comparative genomic hybridization DNA Benign neoplasm Cancer |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c514t-58dd19a0bee5429c25f898c7bbacab37e59de79cad931c269d41f5242a764d453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://aacrjournals.org/clincancerres/article-pdf/14/4/1015/1979891/1015.pdf |
PMID | 18281533 |
PQID | 20761166 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_70298347 proquest_miscellaneous_20761166 pubmed_primary_18281533 pascalfrancis_primary_20157704 crossref_primary_10_1158_1078_0432_CCR_07_1305 crossref_citationtrail_10_1158_1078_0432_CCR_07_1305 highwire_cancerresearch_14_4_1015 |
ProviderPackageCode | RHF RHI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-02-15 |
PublicationDateYYYYMMDD | 2008-02-15 |
PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Philadelphia, PA |
PublicationPlace_xml | – name: Philadelphia, PA – name: United States |
PublicationTitle | Clinical cancer research |
PublicationTitleAlternate | Clin Cancer Res |
PublicationYear | 2008 |
Publisher | American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research |
References | 2022061022035288100_B30 2022061022035288100_B31 2022061022035288100_B34 2022061022035288100_B35 2022061022035288100_B32 2022061022035288100_B33 2022061022035288100_B38 2022061022035288100_B39 2022061022035288100_B36 2022061022035288100_B37 2022061022035288100_B20 2022061022035288100_B29 2022061022035288100_B23 2022061022035288100_B24 2022061022035288100_B21 2022061022035288100_B22 2022061022035288100_B27 2022061022035288100_B28 2022061022035288100_B25 2022061022035288100_B26 2022061022035288100_B52 2022061022035288100_B53 2022061022035288100_B50 2022061022035288100_B51 2022061022035288100_B18 2022061022035288100_B19 2022061022035288100_B12 2022061022035288100_B13 2022061022035288100_B10 2022061022035288100_B54 2022061022035288100_B11 2022061022035288100_B16 2022061022035288100_B17 2022061022035288100_B14 2022061022035288100_B15 2022061022035288100_B41 2022061022035288100_B42 2022061022035288100_B40 2022061022035288100_B9 2022061022035288100_B8 2022061022035288100_B45 2022061022035288100_B7 2022061022035288100_B46 2022061022035288100_B6 2022061022035288100_B43 2022061022035288100_B5 2022061022035288100_B44 2022061022035288100_B4 2022061022035288100_B49 2022061022035288100_B3 2022061022035288100_B2 2022061022035288100_B47 2022061022035288100_B1 2022061022035288100_B48 |
References_xml | – ident: 2022061022035288100_B38 doi: 10.1158/1078-0432.CCR-06-0818 – ident: 2022061022035288100_B6 doi: 10.1016/S0002-9440(10)65504-6 – ident: 2022061022035288100_B51 doi: 10.1158/1078-0432.CCR-06-0182 – ident: 2022061022035288100_B37 doi: 10.1111/j.1750-3639.2003.tb00034.x – ident: 2022061022035288100_B22 doi: 10.1136/jmg.2005.033795 – ident: 2022061022035288100_B8 doi: 10.1017/S1740925X04000274 – ident: 2022061022035288100_B26 doi: 10.1073/pnas.0503224102 – ident: 2022061022035288100_B13 doi: 10.1038/sj.onc.1208730 – ident: 2022061022035288100_B19 doi: 10.1158/0008-5472.CAN-04-2921 – ident: 2022061022035288100_B10 doi: 10.1111/j.1750-3639.2004.tb00067.x – ident: 2022061022035288100_B17 doi: 10.1136/jcp.2004.019026 – ident: 2022061022035288100_B20 doi: 10.1016/j.ygeno.2004.11.011 – ident: 2022061022035288100_B44 doi: 10.1038/nrc968 – ident: 2022061022035288100_B18 doi: 10.1002/path.1998 – ident: 2022061022035288100_B41 doi: 10.1161/01.RES.0000126925.66005.39 – ident: 2022061022035288100_B48 doi: 10.1097/00000478-200310000-00006 – ident: 2022061022035288100_B30 doi: 10.1016/0092-8674(95)90048-9 – ident: 2022061022035288100_B42 doi: 10.1038/sj.onc.1210094 – ident: 2022061022035288100_B12 doi: 10.1002/jnr.20648 – ident: 2022061022035288100_B50 doi: 10.1002/(SICI)1096-9896(200001)190:1<31::AID-PATH505>3.0.CO;2-# – ident: 2022061022035288100_B1 doi: 10.1158/0008-5472.CAN-05-3330 – ident: 2022061022035288100_B31 doi: 10.1074/jbc.273.18.11342 – ident: 2022061022035288100_B40 doi: 10.1016/S0046-8177(97)90060-5 – ident: 2022061022035288100_B3 doi: 10.1136/jmg.39.5.311 – ident: 2022061022035288100_B15 – ident: 2022061022035288100_B43 doi: 10.1016/S0140-6736(02)07990-4 – ident: 2022061022035288100_B32 doi: 10.1158/0008-5472.850.65.3 – ident: 2022061022035288100_B21 doi: 10.1007/s00109-003-0458-3 – ident: 2022061022035288100_B52 doi: 10.1002/gcc.20343 – ident: 2022061022035288100_B23 doi: 10.1016/0165-4608(94)90081-7 – ident: 2022061022035288100_B35 doi: 10.1038/sj.onc.1205291 – ident: 2022061022035288100_B29 doi: 10.1038/83751 – ident: 2022061022035288100_B27 doi: 10.1016/S0165-4608(02)00527-7 – ident: 2022061022035288100_B4 doi: 10.1016/S0002-9440(10)61673-2 – ident: 2022061022035288100_B33 doi: 10.1023/A:1012297132047 – ident: 2022061022035288100_B39 doi: 10.1523/JNEUROSCI.14-12-07284.1994 – ident: 2022061022035288100_B45 doi: 10.1038/nrc861 – ident: 2022061022035288100_B53 doi: 10.1038/nrc1299 – ident: 2022061022035288100_B49 doi: 10.1093/jnen/64.1.1 – ident: 2022061022035288100_B7 doi: 10.1111/j.1750-3639.2004.tb00062.x – ident: 2022061022035288100_B34 doi: 10.1038/sj.onc.1206811 – ident: 2022061022035288100_B5 – ident: 2022061022035288100_B24 doi: 10.1086/374821 – ident: 2022061022035288100_B2 doi: 10.1136/jmg.2006.045906 – ident: 2022061022035288100_B25 doi: 10.1007/s10689-007-9149-5 – ident: 2022061022035288100_B46 doi: 10.1007/s00428-001-0550-4 – ident: 2022061022035288100_B11 doi: 10.1093/jnen/64.1.74 – ident: 2022061022035288100_B14 doi: 10.1136/jcp.2004.023598 – ident: 2022061022035288100_B47 – ident: 2022061022035288100_B9 doi: 10.1158/1078-0432.CCR-03-0712 – ident: 2022061022035288100_B16 doi: 10.1016/S0304-3835(00)00426-2 – ident: 2022061022035288100_B36 doi: 10.1006/scbi.2000.0379 – ident: 2022061022035288100_B54 doi: 10.1038/ng1307 – ident: 2022061022035288100_B28 doi: 10.1002/humu.20601 |
SSID | ssj0014104 |
Score | 2.2643661 |
Snippet | Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime
risk of a malignant... Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant... Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral... PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant... |
SourceID | proquest pubmed pascalfrancis crossref highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1015 |
SubjectTerms | Antineoplastic agents array CGH Biological and medical sciences Biomarkers, Tumor - genetics Gene Dosage Gene Expression Profiling Humans Image Processing, Computer-Assisted Medical sciences microarray MPNST Nerve Sheath Neoplasms - genetics Neurofibroma - genetics neurofibromatosis Neurofibromatosis 1 - complications Neurofibromatosis 1 - genetics Neurology NF1 Oligonucleotide Array Sequence Analysis Pharmacology. Drug treatments Reverse Transcriptase Polymerase Chain Reaction Sequence Analysis, DNA Tumors of the nervous system. Phacomatoses |
Title | High-Resolution DNA Copy Number Profiling of Malignant Peripheral Nerve Sheath Tumors Using Targeted Microarray-Based Comparative Genomic Hybridization |
URI | http://clincancerres.aacrjournals.org/content/14/4/1015.abstract https://www.ncbi.nlm.nih.gov/pubmed/18281533 https://www.proquest.com/docview/20761166 https://www.proquest.com/docview/70298347 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflsRiJW5TSNHbiHKFAK1B7QF2pt8hOnG2l0q6yDVL3j_Dz-CvMxM6jVRdYLlEVJY6r-TwP-5sZQt5GWmVCZYErfa1dJjzpqr6vXc14JqWQgSqL-kymwfiMfZnzeafzq8VaKraql1wdzSv5H6nCPZArZsneQLL1oHADfoN84QoShus_yRhJGi5uwJuPOB-nmGR-sXOmZZ8PzALIlivLa56Ax32OtBdkvS_LagIr0HH5D-1gW-vtwpkV37H1jmERzEqKOLijE6TsyTyXO_cDmLzUqBBbMHyky7RmZ7zDzC-b09l2eIdV5mWC8ModW1yo3oSewIRgNrk8l6nJTluC9XS-9ppj_SJfWaU9KjeHGt4AUvxNcnd9b7gorhYSO70a25Eu5d7GhkAutEnttLq4j8V_md3-1FY_c9CJA9NeolbgrAVU1tLGoG54y7KDL8WOWw0uyg0M-73ecPgNt2_BvPPGTFbUgAPrWXMay2iKixiHiXGYGIaJ-yEeGPJb5PYA4hhssTGa1xwk5NgyQ4o1X7YpZjDMu6Oz2XeeqoLWyOeVlyDKzPRiuT5YKp2m2X1yz0Y79L2B7gPS0euH5M7E8jkekZ8HCKaAYIoIpgbBtEYw3WS0RjBtEExLBFODYGoQTEsE0wrB9BDBtIVgahFM9xD8mJx9_jQbjl3bKsRNwOPfulykqRfJvtIaG7AlA56JSCShUjKRyg81j1IdRolMI99LBkGUMi_j4J7KMGAp4_4TcrLerPUzQiMMEZhUOgPXV3tKRIHuB4mXehC8R8zrElbJIE5sHX1s57KK_4iALunVr12YQjJ_e-FNJeDYLNFqhUK4HjPkZsIzp3uSr0cGt56HYZ91yesKCjHYDTwMlGu9KS7hiTDwvCC4_okQuzP4LOySpwZDzbzFQGCc-Pym_-kFudus9JfkZJsX-hU49Vt1Wi6M3wLM9cA |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+DNA+Copy+Number+Profiling+of+Malignant+Peripheral+Nerve+Sheath+Tumors+Using+Targeted+Microarray-Based+Comparative+Genomic+Hybridization&rft.jtitle=Clinical+cancer+research&rft.au=Mantripragada%2C+Kiran+K.&rft.au=Spurlock%2C+Gillian&rft.au=Kluwe%2C+Lan&rft.au=Chuzhanova%2C+Nadia&rft.date=2008-02-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=14&rft.issue=4&rft.spage=1015&rft.epage=1024&rft_id=info:doi/10.1158%2F1078-0432.CCR-07-1305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_07_1305 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon |