High-Resolution DNA Copy Number Profiling of Malignant Peripheral Nerve Sheath Tumors Using Targeted Microarray-Based Comparative Genomic Hybridization

Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We repo...

Full description

Saved in:
Bibliographic Details
Published inClinical cancer research Vol. 14; no. 4; pp. 1015 - 1024
Main Authors Mantripragada, Kiran K., Spurlock, Gillian, Kluwe, Lan, Chuzhanova, Nadia, Ferner, Rosalie E., Frayling, Ian M., Dumanski, Jan P., Guha, Abhijit, Mautner, Victor, Upadhyaya, Meena
Format Journal Article
LanguageEnglish
Published Philadelphia, PA American Association for Cancer Research 15.02.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73 , and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A , and TP53 . Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A , and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET , and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
AbstractList Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73 , and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A , and TP53 . Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A , and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET , and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors.PURPOSENeurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is approximately 10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors.We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors.EXPERIMENTAL DESIGNWe constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors.The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.RESULTSThe array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression.This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.CONCLUSIONSThis study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is ∼10%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. Results: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. Conclusions: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral nerve sheath tumor (MPNST) in NF1 is 610%. These tumors have a poor survival rate and their molecular basis remains unclear. We report the first comprehensive investigation of DNA copy number across multitude of genes in NF1 tumors using high-resolution array comparative genomic hybridization (CGH), with the aim to identify molecular signatures that delineate malignant from benign NF1 tumors. Experimental Design: We constructed an exon-level resolution microarray encompassing 57 selected genes and profiled DNA from 35 MPNSTs, 16 plexiform, and 8 dermal neurofibromas. Bioinformatic analysis was done on array CGH data to identify concurrent aberrations in malignant tumors. RESULTS: The array CGH profiles of MPNSTs and neurofibromas were markedly different. A number of MPNST-specific alterations were identified, including amplifications of ITGB4, PDGFRA, MET, TP73, and HGF plus deletions in NF1, HMMR/RHAMM, MMP13, L1CAM2, p16INK4A/CDKN2A, and TP53. Copy number changes of HMMR/RHAMM, MMP13, p16INK4A/CDKN2A, and ITGB4 were observed in 46%, 43%, 39%, and 32%, respectively of the malignant tumors, implicating these genes in MPNST pathogenesis. Concomitant amplifications of HGF, MET, and PDGFRA genes were also revealed in MPNSTs, suggesting the putative role of p70S6K pathway in NF1 tumor progression. CONCLUSIONS: This study highlights the potential of array CGH in identifying novel diagnostic markers for MPNSTs.
Author Meena Upadhyaya
Jan P. Dumanski
Nadia Chuzhanova
Lan Kluwe
Abhijit Guha
Gillian Spurlock
Victor Mautner
Rosalie E. Ferner
Kiran K. Mantripragada
Ian M. Frayling
Author_xml – sequence: 1
  givenname: Kiran K.
  surname: Mantripragada
  fullname: Mantripragada, Kiran K.
– sequence: 2
  givenname: Gillian
  surname: Spurlock
  fullname: Spurlock, Gillian
– sequence: 3
  givenname: Lan
  surname: Kluwe
  fullname: Kluwe, Lan
– sequence: 4
  givenname: Nadia
  surname: Chuzhanova
  fullname: Chuzhanova, Nadia
– sequence: 5
  givenname: Rosalie E.
  surname: Ferner
  fullname: Ferner, Rosalie E.
– sequence: 6
  givenname: Ian M.
  surname: Frayling
  fullname: Frayling, Ian M.
– sequence: 7
  givenname: Jan P.
  surname: Dumanski
  fullname: Dumanski, Jan P.
– sequence: 8
  givenname: Abhijit
  surname: Guha
  fullname: Guha, Abhijit
– sequence: 9
  givenname: Victor
  surname: Mautner
  fullname: Mautner, Victor
– sequence: 10
  givenname: Meena
  surname: Upadhyaya
  fullname: Upadhyaya, Meena
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20157704$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18281533$$D View this record in MEDLINE/PubMed
BookMark eNqFksFu1DAQhiNURNuFRwD5AuolxU7sOBGnkkIXqV2qsj1bE2eyMUrixU5Ay4vwujjsFiQuPdmyvm80nvlPo6PBDhhFLxk9Z0zkbxmVeUx5mpyX5V1MZcxSKp5EJ0wIGadJJo7C_YE5jk69_0op44zyZ9Exy5OciTQ9iX4tzaaN79DbbhqNHcjl6oKUdrsjq6mv0JFbZxvTmWFDbENuoDObAYaR3KIz2xYddGSF7juSLy3C2JL11Fvnyb2fjTW4DY5YkxujnQXnYBe_Bx8eSttvwcFognmFg-2NJstd5UxtfsLcx_PoaQOdxxeHcxHdf_ywLpfx9eerT-XFdawF42Ms8rpmBdAKUfCk0Ilo8iLXsqpAQ5VKFEWNstBQFynTSVbUnDUi4QnIjNdcpIvozb7u1tlvE_pR9cZr7DoY0E5eSZoUecrlo2BCZcZYlgXw1QGcqh5rtXWmB7dTDzMPwOsDAF5D1zgYtPF_uYQyIWXY2iISey7MznuHzb9SVM0ZUPN-1bxfFTKgqFRzBoL37j9Pm_HPUEcHpnvUPtvbbQjGD-NQ6dAfOocewelWMa54cMNXfgMx3sZY
CitedBy_id crossref_primary_10_1016_j_ajpath_2014_04_006
crossref_primary_10_1002_humu_23552
crossref_primary_10_1186_1479_7364_6_18
crossref_primary_10_1186_s40246_015_0025_3
crossref_primary_10_1158_1078_0432_CCR_11_0193
crossref_primary_10_1186_1756_8722_6_93
crossref_primary_10_1002_gcc_20921
crossref_primary_10_1038_ejhg_2011_207
crossref_primary_10_1002_path_2494
crossref_primary_10_1158_1078_0432_CCR_14_3049
crossref_primary_10_18632_oncotarget_793
crossref_primary_10_1007_s00401_011_0928_6
crossref_primary_10_1073_pnas_1011548107
crossref_primary_10_1093_neuonc_noae235
crossref_primary_10_1016_j_celrep_2015_08_015
crossref_primary_10_3390_genes11060691
crossref_primary_10_1093_neuonc_noz028
crossref_primary_10_18632_oncotarget_15004
crossref_primary_10_1007_s11912_009_0045_z
crossref_primary_10_1007_s12094_013_1061_x
crossref_primary_10_1038_nrc3911
crossref_primary_10_1080_14789450_2023_2218035
crossref_primary_10_3390_cells9040819
crossref_primary_10_1007_s00432_010_0846_3
crossref_primary_10_1158_1078_0432_CCR_10_1551
crossref_primary_10_1158_1078_0432_CCR_18_3224
crossref_primary_10_1007_s10048_010_0240_y
crossref_primary_10_1186_1746_1596_5_2
crossref_primary_10_1158_1541_7786_MCR_14_0182
crossref_primary_10_1002_gcc_20695
crossref_primary_10_1016_j_ajpath_2015_10_023
crossref_primary_10_1093_noajnl_vdz049
crossref_primary_10_3389_pore_2022_1610481
crossref_primary_10_1007_s00428_009_0853_4
crossref_primary_10_1016_j_expneurol_2017_08_014
crossref_primary_10_1016_j_wneu_2018_10_087
crossref_primary_10_1007_s00428_009_0736_8
crossref_primary_10_1038_onc_2016_269
crossref_primary_10_4161_cbt_10_8_12878
crossref_primary_10_1111_j_1440_1827_2009_02401_x
crossref_primary_10_3389_fonc_2018_00475
crossref_primary_10_1038_s41416_018_0073_2
crossref_primary_10_1002_adbi_202300693
crossref_primary_10_1016_j_ejcped_2023_100013
crossref_primary_10_1186_s12885_023_10596_w
crossref_primary_10_1186_1479_5876_11_213
crossref_primary_10_1016_j_cell_2013_01_053
crossref_primary_10_1158_0008_5472_CAN_15_3114
crossref_primary_10_1371_journal_pone_0115916
crossref_primary_10_1155_2014_103923
crossref_primary_10_1038_ng_2641
crossref_primary_10_1158_1535_7163_MCT_08_1008
crossref_primary_10_1016_j_semcdb_2016_02_007
crossref_primary_10_3892_ijo_2012_1751
crossref_primary_10_1002_humu_22044
crossref_primary_10_1038_hdy_2008_132
crossref_primary_10_1097_PAP_0000000000000197
crossref_primary_10_3390_genes11030331
crossref_primary_10_1016_j_suronc_2013_06_003
crossref_primary_10_3389_fimmu_2015_00201
crossref_primary_10_1186_1471_2164_14_473
crossref_primary_10_1017_S1462399409001227
crossref_primary_10_1158_0008_5472_CAN_16_0179
crossref_primary_10_1002_cncr_30455
crossref_primary_10_1002_emmm_200900027
crossref_primary_10_1007_s11060_010_0328_0
crossref_primary_10_1517_17530059_2010_494660
crossref_primary_10_1016_j_gene_2014_12_064
crossref_primary_10_1038_s41388_024_03000_9
crossref_primary_10_1158_1078_0432_CCR_11_1707
crossref_primary_10_1186_1479_7364_5_6_623
crossref_primary_10_18632_oncotarget_8669
crossref_primary_10_4199_C00101ED1V01Y201312GMM005
crossref_primary_10_1158_1078_0432_CCR_10_2393
crossref_primary_10_3389_fcell_2021_660069
crossref_primary_10_15252_emmm_201404430
crossref_primary_10_1002_glia_20776
crossref_primary_10_1186_s13072_020_00380_6
crossref_primary_10_1016_j_ebiom_2023_104829
crossref_primary_10_1158_1538_7445_AM2013_LB_214
crossref_primary_10_1038_s41388_022_02290_1
crossref_primary_10_3389_fonc_2021_666199
crossref_primary_10_1016_j_ajpath_2012_11_017
crossref_primary_10_1002_humu_21387
crossref_primary_10_1158_0008_5472_CAN_17_3167
crossref_primary_10_1158_0008_5472_CAN_20_1992
crossref_primary_10_1177_0300985811429813
crossref_primary_10_18632_oncotarget_16981
Cites_doi 10.1158/1078-0432.CCR-06-0818
10.1016/S0002-9440(10)65504-6
10.1158/1078-0432.CCR-06-0182
10.1111/j.1750-3639.2003.tb00034.x
10.1136/jmg.2005.033795
10.1017/S1740925X04000274
10.1073/pnas.0503224102
10.1038/sj.onc.1208730
10.1158/0008-5472.CAN-04-2921
10.1111/j.1750-3639.2004.tb00067.x
10.1136/jcp.2004.019026
10.1016/j.ygeno.2004.11.011
10.1038/nrc968
10.1002/path.1998
10.1161/01.RES.0000126925.66005.39
10.1097/00000478-200310000-00006
10.1016/0092-8674(95)90048-9
10.1038/sj.onc.1210094
10.1002/jnr.20648
10.1002/(SICI)1096-9896(200001)190:1<31::AID-PATH505>3.0.CO;2-#
10.1158/0008-5472.CAN-05-3330
10.1074/jbc.273.18.11342
10.1016/S0046-8177(97)90060-5
10.1136/jmg.39.5.311
10.1016/S0140-6736(02)07990-4
10.1158/0008-5472.850.65.3
10.1007/s00109-003-0458-3
10.1002/gcc.20343
10.1016/0165-4608(94)90081-7
10.1038/sj.onc.1205291
10.1038/83751
10.1016/S0165-4608(02)00527-7
10.1016/S0002-9440(10)61673-2
10.1023/A:1012297132047
10.1523/JNEUROSCI.14-12-07284.1994
10.1038/nrc861
10.1038/nrc1299
10.1093/jnen/64.1.1
10.1111/j.1750-3639.2004.tb00062.x
10.1038/sj.onc.1206811
10.1086/374821
10.1136/jmg.2006.045906
10.1007/s10689-007-9149-5
10.1007/s00428-001-0550-4
10.1093/jnen/64.1.74
10.1136/jcp.2004.023598
10.1158/1078-0432.CCR-03-0712
10.1016/S0304-3835(00)00426-2
10.1006/scbi.2000.0379
10.1038/ng1307
10.1002/humu.20601
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright_xml – notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7X8
DOI 10.1158/1078-0432.CCR-07-1305
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1557-3265
EndPage 1024
ExternalDocumentID 18281533
20157704
10_1158_1078_0432_CCR_07_1305
14_4_1015
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
08R
29B
2WC
34G
39C
3O-
4H-
53G
55
5GY
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AETEA
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FH7
FRP
GX1
H13
H~9
IH2
KQ8
L7B
LSO
MVM
O0-
OHT
OK1
P0W
P2P
RCR
RHF
RHI
RNS
SJN
UDS
VH1
W2D
WOQ
X7M
XFK
XJT
ZA5
ZCG
---
.55
18M
2FS
6J9
AAFWJ
AAJMC
AAYXX
ACGFO
ACSVP
ADCOW
AFHIN
AFOSN
AFUMD
AI.
BR6
BTFSW
CITATION
QTD
TR2
W8F
WHG
YKV
.GJ
1CY
ADNWM
IQODW
J5H
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TM
8FD
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c514t-58dd19a0bee5429c25f898c7bbacab37e59de79cad931c269d41f5242a764d453
ISSN 1078-0432
IngestDate Fri Jul 11 07:12:44 EDT 2025
Thu Jul 10 22:27:33 EDT 2025
Thu Apr 03 07:06:46 EDT 2025
Mon Jul 21 09:11:38 EDT 2025
Tue Jul 01 03:06:12 EDT 2025
Thu Apr 24 23:05:39 EDT 2025
Fri Jan 15 20:06:55 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Peripheral nerve
Nervous system diseases
High resolution
Targeting
Copy number
Neurinoma
Malignant tumor
Gene expression
Target
Comparative genomic hybridization
DNA
Benign neoplasm
Cancer
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c514t-58dd19a0bee5429c25f898c7bbacab37e59de79cad931c269d41f5242a764d453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/clincancerres/article-pdf/14/4/1015/1979891/1015.pdf
PMID 18281533
PQID 20761166
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_70298347
proquest_miscellaneous_20761166
pubmed_primary_18281533
pascalfrancis_primary_20157704
crossref_primary_10_1158_1078_0432_CCR_07_1305
crossref_citationtrail_10_1158_1078_0432_CCR_07_1305
highwire_cancerresearch_14_4_1015
ProviderPackageCode RHF
RHI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-15
PublicationDateYYYYMMDD 2008-02-15
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-15
  day: 15
PublicationDecade 2000
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
– name: United States
PublicationTitle Clinical cancer research
PublicationTitleAlternate Clin Cancer Res
PublicationYear 2008
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022061022035288100_B30
2022061022035288100_B31
2022061022035288100_B34
2022061022035288100_B35
2022061022035288100_B32
2022061022035288100_B33
2022061022035288100_B38
2022061022035288100_B39
2022061022035288100_B36
2022061022035288100_B37
2022061022035288100_B20
2022061022035288100_B29
2022061022035288100_B23
2022061022035288100_B24
2022061022035288100_B21
2022061022035288100_B22
2022061022035288100_B27
2022061022035288100_B28
2022061022035288100_B25
2022061022035288100_B26
2022061022035288100_B52
2022061022035288100_B53
2022061022035288100_B50
2022061022035288100_B51
2022061022035288100_B18
2022061022035288100_B19
2022061022035288100_B12
2022061022035288100_B13
2022061022035288100_B10
2022061022035288100_B54
2022061022035288100_B11
2022061022035288100_B16
2022061022035288100_B17
2022061022035288100_B14
2022061022035288100_B15
2022061022035288100_B41
2022061022035288100_B42
2022061022035288100_B40
2022061022035288100_B9
2022061022035288100_B8
2022061022035288100_B45
2022061022035288100_B7
2022061022035288100_B46
2022061022035288100_B6
2022061022035288100_B43
2022061022035288100_B5
2022061022035288100_B44
2022061022035288100_B4
2022061022035288100_B49
2022061022035288100_B3
2022061022035288100_B2
2022061022035288100_B47
2022061022035288100_B1
2022061022035288100_B48
References_xml – ident: 2022061022035288100_B38
  doi: 10.1158/1078-0432.CCR-06-0818
– ident: 2022061022035288100_B6
  doi: 10.1016/S0002-9440(10)65504-6
– ident: 2022061022035288100_B51
  doi: 10.1158/1078-0432.CCR-06-0182
– ident: 2022061022035288100_B37
  doi: 10.1111/j.1750-3639.2003.tb00034.x
– ident: 2022061022035288100_B22
  doi: 10.1136/jmg.2005.033795
– ident: 2022061022035288100_B8
  doi: 10.1017/S1740925X04000274
– ident: 2022061022035288100_B26
  doi: 10.1073/pnas.0503224102
– ident: 2022061022035288100_B13
  doi: 10.1038/sj.onc.1208730
– ident: 2022061022035288100_B19
  doi: 10.1158/0008-5472.CAN-04-2921
– ident: 2022061022035288100_B10
  doi: 10.1111/j.1750-3639.2004.tb00067.x
– ident: 2022061022035288100_B17
  doi: 10.1136/jcp.2004.019026
– ident: 2022061022035288100_B20
  doi: 10.1016/j.ygeno.2004.11.011
– ident: 2022061022035288100_B44
  doi: 10.1038/nrc968
– ident: 2022061022035288100_B18
  doi: 10.1002/path.1998
– ident: 2022061022035288100_B41
  doi: 10.1161/01.RES.0000126925.66005.39
– ident: 2022061022035288100_B48
  doi: 10.1097/00000478-200310000-00006
– ident: 2022061022035288100_B30
  doi: 10.1016/0092-8674(95)90048-9
– ident: 2022061022035288100_B42
  doi: 10.1038/sj.onc.1210094
– ident: 2022061022035288100_B12
  doi: 10.1002/jnr.20648
– ident: 2022061022035288100_B50
  doi: 10.1002/(SICI)1096-9896(200001)190:1<31::AID-PATH505>3.0.CO;2-#
– ident: 2022061022035288100_B1
  doi: 10.1158/0008-5472.CAN-05-3330
– ident: 2022061022035288100_B31
  doi: 10.1074/jbc.273.18.11342
– ident: 2022061022035288100_B40
  doi: 10.1016/S0046-8177(97)90060-5
– ident: 2022061022035288100_B3
  doi: 10.1136/jmg.39.5.311
– ident: 2022061022035288100_B15
– ident: 2022061022035288100_B43
  doi: 10.1016/S0140-6736(02)07990-4
– ident: 2022061022035288100_B32
  doi: 10.1158/0008-5472.850.65.3
– ident: 2022061022035288100_B21
  doi: 10.1007/s00109-003-0458-3
– ident: 2022061022035288100_B52
  doi: 10.1002/gcc.20343
– ident: 2022061022035288100_B23
  doi: 10.1016/0165-4608(94)90081-7
– ident: 2022061022035288100_B35
  doi: 10.1038/sj.onc.1205291
– ident: 2022061022035288100_B29
  doi: 10.1038/83751
– ident: 2022061022035288100_B27
  doi: 10.1016/S0165-4608(02)00527-7
– ident: 2022061022035288100_B4
  doi: 10.1016/S0002-9440(10)61673-2
– ident: 2022061022035288100_B33
  doi: 10.1023/A:1012297132047
– ident: 2022061022035288100_B39
  doi: 10.1523/JNEUROSCI.14-12-07284.1994
– ident: 2022061022035288100_B45
  doi: 10.1038/nrc861
– ident: 2022061022035288100_B53
  doi: 10.1038/nrc1299
– ident: 2022061022035288100_B49
  doi: 10.1093/jnen/64.1.1
– ident: 2022061022035288100_B7
  doi: 10.1111/j.1750-3639.2004.tb00062.x
– ident: 2022061022035288100_B34
  doi: 10.1038/sj.onc.1206811
– ident: 2022061022035288100_B5
– ident: 2022061022035288100_B24
  doi: 10.1086/374821
– ident: 2022061022035288100_B2
  doi: 10.1136/jmg.2006.045906
– ident: 2022061022035288100_B25
  doi: 10.1007/s10689-007-9149-5
– ident: 2022061022035288100_B46
  doi: 10.1007/s00428-001-0550-4
– ident: 2022061022035288100_B11
  doi: 10.1093/jnen/64.1.74
– ident: 2022061022035288100_B14
  doi: 10.1136/jcp.2004.023598
– ident: 2022061022035288100_B47
– ident: 2022061022035288100_B9
  doi: 10.1158/1078-0432.CCR-03-0712
– ident: 2022061022035288100_B16
  doi: 10.1016/S0304-3835(00)00426-2
– ident: 2022061022035288100_B36
  doi: 10.1006/scbi.2000.0379
– ident: 2022061022035288100_B54
  doi: 10.1038/ng1307
– ident: 2022061022035288100_B28
  doi: 10.1002/humu.20601
SSID ssj0014104
Score 2.2643661
Snippet Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant...
Purpose: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant...
Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant peripheral...
PURPOSE: Neurofibromatosis type 1 (NF1) is an autosomal dominant condition that predisposes to benign and malignant tumors. The lifetime risk of a malignant...
SourceID proquest
pubmed
pascalfrancis
crossref
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1015
SubjectTerms Antineoplastic agents
array CGH
Biological and medical sciences
Biomarkers, Tumor - genetics
Gene Dosage
Gene Expression Profiling
Humans
Image Processing, Computer-Assisted
Medical sciences
microarray
MPNST
Nerve Sheath Neoplasms - genetics
Neurofibroma - genetics
neurofibromatosis
Neurofibromatosis 1 - complications
Neurofibromatosis 1 - genetics
Neurology
NF1
Oligonucleotide Array Sequence Analysis
Pharmacology. Drug treatments
Reverse Transcriptase Polymerase Chain Reaction
Sequence Analysis, DNA
Tumors of the nervous system. Phacomatoses
Title High-Resolution DNA Copy Number Profiling of Malignant Peripheral Nerve Sheath Tumors Using Targeted Microarray-Based Comparative Genomic Hybridization
URI http://clincancerres.aacrjournals.org/content/14/4/1015.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18281533
https://www.proquest.com/docview/20761166
https://www.proquest.com/docview/70298347
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKIiEuiDflsRiJW5TSNHbiHKFAK1B7QF2pt8hOnG2l0q6yDVL3j_Dz-CvMxM6jVRdYLlEVJY6r-TwP-5sZQt5GWmVCZYErfa1dJjzpqr6vXc14JqWQgSqL-kymwfiMfZnzeafzq8VaKraql1wdzSv5H6nCPZArZsneQLL1oHADfoN84QoShus_yRhJGi5uwJuPOB-nmGR-sXOmZZ8PzALIlivLa56Ax32OtBdkvS_LagIr0HH5D-1gW-vtwpkV37H1jmERzEqKOLijE6TsyTyXO_cDmLzUqBBbMHyky7RmZ7zDzC-b09l2eIdV5mWC8ModW1yo3oSewIRgNrk8l6nJTluC9XS-9ppj_SJfWaU9KjeHGt4AUvxNcnd9b7gorhYSO70a25Eu5d7GhkAutEnttLq4j8V_md3-1FY_c9CJA9NeolbgrAVU1tLGoG54y7KDL8WOWw0uyg0M-73ecPgNt2_BvPPGTFbUgAPrWXMay2iKixiHiXGYGIaJ-yEeGPJb5PYA4hhssTGa1xwk5NgyQ4o1X7YpZjDMu6Oz2XeeqoLWyOeVlyDKzPRiuT5YKp2m2X1yz0Y79L2B7gPS0euH5M7E8jkekZ8HCKaAYIoIpgbBtEYw3WS0RjBtEExLBFODYGoQTEsE0wrB9BDBtIVgahFM9xD8mJx9_jQbjl3bKsRNwOPfulykqRfJvtIaG7AlA56JSCShUjKRyg81j1IdRolMI99LBkGUMi_j4J7KMGAp4_4TcrLerPUzQiMMEZhUOgPXV3tKRIHuB4mXehC8R8zrElbJIE5sHX1s57KK_4iALunVr12YQjJ_e-FNJeDYLNFqhUK4HjPkZsIzp3uSr0cGt56HYZ91yesKCjHYDTwMlGu9KS7hiTDwvCC4_okQuzP4LOySpwZDzbzFQGCc-Pym_-kFudus9JfkZJsX-hU49Vt1Wi6M3wLM9cA
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Resolution+DNA+Copy+Number+Profiling+of+Malignant+Peripheral+Nerve+Sheath+Tumors+Using+Targeted+Microarray-Based+Comparative+Genomic+Hybridization&rft.jtitle=Clinical+cancer+research&rft.au=Mantripragada%2C+Kiran+K.&rft.au=Spurlock%2C+Gillian&rft.au=Kluwe%2C+Lan&rft.au=Chuzhanova%2C+Nadia&rft.date=2008-02-15&rft.issn=1078-0432&rft.eissn=1557-3265&rft.volume=14&rft.issue=4&rft.spage=1015&rft.epage=1024&rft_id=info:doi/10.1158%2F1078-0432.CCR-07-1305&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1078_0432_CCR_07_1305
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1078-0432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1078-0432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1078-0432&client=summon