BTMF-GAN: A multi-modal MRI fusion generative adversarial network for brain tumors

Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROI...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 157; p. 106769
Main Authors Liu, Xiao, Chen, Hongyi, Yao, Chong, Xiang, Rui, Zhou, Kun, Du, Peng, Liu, Weifan, Liu, Jie, Yu, Zekuan
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.05.2023
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods. •The BTMF-GAN is proposed for the multi-modal MRI fusion of brain tumors.•Uses a generator with a U-shaped nested structure to improve multi-scale feature extraction.•Uses MRF-AFTE to enhance and calibrate the features of the encoder.•Proposes a novel salient loss function to preserve tissue contrasts and textural details.
AbstractList Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.
Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.
Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods. •The BTMF-GAN is proposed for the multi-modal MRI fusion of brain tumors.•Uses a generator with a U-shaped nested structure to improve multi-scale feature extraction.•Uses MRF-AFTE to enhance and calibrate the features of the encoder.•Proposes a novel salient loss function to preserve tissue contrasts and textural details.
AbstractImage fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused image and do not focus on the more important textural details and contrast between the tissues of the lesion in the regions of interest (ROIs). This can lead to the distortion of important tumor ROIs information and thus limits the applicability of the fused images in clinical practice. To improve the fusion quality of ROIs relevant to medical implications, we propose a multi-modal MRI fusion generative adversarial network (BTMF-GAN) for the task of multi-modal MRI fusion of brain tumors. Unlike existing deep learning approaches which focus on improving the global quality of the fused image, the proposed BTMF-GAN aims to achieve a balance between tissue details and structural contrasts in brain tumor, which is the region of interest crucial to many medical applications. Specifically, we employ a generator with a U-shaped nested structure and residual U-blocks (RSU) to enhance multi-scale feature extraction. To enhance and recalibrate features of the encoder, the multi-perceptual field adaptive transformer feature enhancement module (MRF-ATFE) is used between the encoder and the decoder instead of a skip connection. To increase contrast between tumor tissues of the fused image, a mask-part block is introduced to fragment the source image and the fused image, based on which, we propose a novel salient loss function. Qualitative and quantitative analysis of the results on the public and clinical datasets demonstrate the superiority of the proposed approach to many other commonly used fusion methods.
ArticleNumber 106769
Author Liu, Jie
Chen, Hongyi
Yu, Zekuan
Zhou, Kun
Du, Peng
Xiang, Rui
Liu, Weifan
Liu, Xiao
Yao, Chong
Author_xml – sequence: 1
  givenname: Xiao
  surname: Liu
  fullname: Liu, Xiao
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 2
  givenname: Hongyi
  orcidid: 0000-0003-2458-6854
  surname: Chen
  fullname: Chen, Hongyi
  organization: Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
– sequence: 3
  givenname: Chong
  surname: Yao
  fullname: Yao, Chong
  organization: College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China
– sequence: 4
  givenname: Rui
  surname: Xiang
  fullname: Xiang, Rui
  organization: Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
– sequence: 5
  givenname: Kun
  orcidid: 0000-0002-9247-2691
  surname: Zhou
  fullname: Zhou, Kun
  organization: Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
– sequence: 6
  givenname: Peng
  surname: Du
  fullname: Du, Peng
  organization: Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
– sequence: 7
  givenname: Weifan
  orcidid: 0000-0002-0710-9311
  surname: Liu
  fullname: Liu, Weifan
  email: weifanliu@bjfu.edu.cn
  organization: College of Science, Beijing Forestry University, Beijing, 100083, China
– sequence: 8
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: jieliu@bjtu.edu.cn
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, 100044, China
– sequence: 9
  givenname: Zekuan
  orcidid: 0000-0003-3655-872X
  surname: Yu
  fullname: Yu, Zekuan
  organization: Academy for Engineering and Technology, Fudan University, Shanghai, 200433, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36947904$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1r3DAQhkVJaTZJ_0IR9NKLtyPJ1to9hG5CkwaSFpL0LGxpXLSxpa1kb8m_r8zmAxYKexKIZx5p3pkjcuC8Q0IogzkDJj-v5tr368b6Hs2cAxfpWi5k9YbMWLmoMihEfkBmAAyyvOTFITmKcQUAOQh4Rw6FrPJFBfmM3J7d31xkl8sfX-iS9mM32Kz3pu7oze0VbcdovaO_0WGoB7tBWpsNhlgHmwiHw18fHmjrA21CbR0dxt6HeELetnUX8f3TeUx-XXy7P_-eXf-8vDpfXme6YPmQ5ZrnZVFCpcFI0LXE0nBTIm-FyJuFFpXhrBItIhalFI1kVSMNK7mQYJqGi2PyaetdB_9nxDio3kaNXVc79GNUPHUIBeNcJPTjDrryY3DpdxPFJj-DRH14osYmBavWwfZ1eFTPaSXgdAvo4GMM2CpthxSMd0Pqv1MM1DQetVKv41HTeNR2PElQ7gie39ij9GxbiinSjcWgorboNBobUA_KeLuP5HRHojvrrK67B3zE-BIKU5ErUHfTAk37wwUkSz5l_vX_gv3-8A80XNh2
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106571
crossref_primary_10_1016_j_compbiomed_2023_107181
crossref_primary_10_1109_ACCESS_2024_3370848
crossref_primary_10_1016_j_compbiomed_2024_108046
crossref_primary_10_1109_ACCESS_2024_3434714
crossref_primary_10_1016_j_wneu_2025_123768
crossref_primary_10_3390_app142411822
crossref_primary_10_1016_j_jksuci_2024_102090
crossref_primary_10_1007_s10462_024_10712_7
crossref_primary_10_1016_j_bspc_2023_105289
Cites_doi 10.1016/j.inffus.2018.02.004
10.1016/j.patrec.2011.06.002
10.1016/j.inffus.2021.02.023
10.1016/j.inffus.2012.03.002
10.23919/ICIF.2017.8009769
10.1016/j.image.2019.06.002
10.1109/TIM.2009.2026612
10.1109/TIP.2018.2887342
10.1016/j.neucom.2018.07.030
10.1049/el:20000267
10.1016/j.inffus.2011.08.002
10.1109/WACV45572.2020.9093526
10.1109/JSTSP.2011.2112332
10.1016/j.neuroimage.2017.10.052
10.1109/LSP.2016.2618776
10.1016/j.infrared.2017.02.005
10.1109/TIP.2020.2977573
10.1109/ACCESS.2019.2898111
10.1016/j.neucom.2016.02.047
10.1016/j.inffus.2019.07.011
10.1109/TIM.2019.2962849
10.1109/TMM.2019.2895292
10.1016/j.optcom.2014.12.032
10.1007/s00034-019-01131-z
10.1006/gmip.1995.1022
10.1109/CVPR.2017.632
10.1016/j.image.2005.04.001
10.1109/CCDC.2019.8833211
10.1007/s11042-019-08070-6
10.1109/ICCV.2017.505
10.1016/j.inffus.2021.12.004
10.3390/s20082169
10.1109/TPAMI.2020.3012548
10.1016/S1566-2535(01)00020-3
10.1016/j.infrared.2014.07.019
10.1002/cncr.23741
10.1109/ACCESS.2017.2735019
10.1016/j.inffus.2021.06.001
10.1016/j.inffus.2011.01.002
10.1016/j.ins.2017.09.010
10.1049/el:20020212
10.1109/TIP.2003.819861
10.3390/e23121692
10.1016/j.inffus.2018.09.004
10.1016/j.inffus.2017.10.007
10.1109/TIP.2022.3193288
10.1016/j.inffus.2006.02.001
10.1007/s11760-013-0556-9
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Elsevier Ltd
Copyright © 2023 Elsevier Ltd. All rights reserved.
2023. Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Elsevier Ltd
– notice: Copyright © 2023 Elsevier Ltd. All rights reserved.
– notice: 2023. Elsevier Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
DOI 10.1016/j.compbiomed.2023.106769
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Research Library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Research Library
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Biochemistry Abstracts 1
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Research Library Prep



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 106769
ExternalDocumentID 36947904
10_1016_j_compbiomed_2023_106769
S0010482523002342
1_s2_0_S0010482523002342
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: KKA309004533; 81571836
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Guangxi Key Laboratory of Automatic Detecting Technology and Instruments
  grantid: YQ21208
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
3V.
AACTN
AFCTW
AFKWA
AJOXV
ALIPV
AMFUW
M0N
RIG
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
ID FETCH-LOGICAL-c514t-4c2485809c0d60ca6e8d2d8e2f334b7c39d2193feee5863b619b6d182360dbb23
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Mon Jul 21 11:38:34 EDT 2025
Wed Aug 13 09:07:58 EDT 2025
Wed Feb 19 02:24:49 EST 2025
Tue Jul 01 03:28:59 EDT 2025
Thu Apr 24 22:57:16 EDT 2025
Fri Feb 23 02:36:34 EST 2024
Tue Feb 25 20:08:37 EST 2025
Tue Aug 26 20:14:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Adaptive transformer
Multi-modal MRI
Salient loss
Image fusion
Language English
License Copyright © 2023 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-4c2485809c0d60ca6e8d2d8e2f334b7c39d2193feee5863b619b6d182360dbb23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3655-872X
0000-0002-9247-2691
0000-0002-0710-9311
0000-0003-2458-6854
PMID 36947904
PQID 2791586310
PQPubID 1226355
PageCount 1
ParticipantIDs proquest_miscellaneous_2790051223
proquest_journals_2791586310
pubmed_primary_36947904
crossref_citationtrail_10_1016_j_compbiomed_2023_106769
crossref_primary_10_1016_j_compbiomed_2023_106769
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2023_106769
elsevier_clinicalkeyesjournals_1_s2_0_S0010482523002342
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2023_106769
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Wang, Mingyao, Wei, Qi, Li (b36) 2020; 20
Ma, Hu, Liu, Fang, Xu (b31) 2019; 78
Xydeas, Petrovic (b56) 2000; 36
Pan, Jing, Qiao, Li (b27) 2018; 61
K. Ram Prabhakar, V. Sai Srikar, R. Venkatesh Babu, Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4714–4722.
Guo, Nie, Cao, Zhou, Mei, He (b43) 2019; 21
Cercignani, Bouyagoub (b2) 2018; 182
Du, Gao (b34) 2017; 5
Du, Li, Xiao, Nawaz (b19) 2016; 194
Hu, Li (b28) 2012; 13
Zhang, Liu, Sun, Yan, Zhao, Zhang (b14) 2020; 54
Zhu, Yin, Chai, Li, Qi (b30) 2018; 432
Wang, Li, Duan, Zhang, Wang (b35) 2019; 78
Yang, Ling, Lu, Ong, Yao (b58) 2005; 20
Liu, Chen, Wang, Wang, Ward, Wang (b4) 2018; 42
Li, Manjunath, Mitra (b20) 1995; 57
Yang, Li (b7) 2010; 59
Zhu, He, Qi, Li, Cong, Liu (b41) 2022; 91
Tang, Yuan, Ma (b50) 2022; 82
Zhang, Wang, Li, Ma (b40) 2011; 32
Zhang, Blum (b8) 2001; 2
Cui, Feng, Xu, Li, Chen (b52) 2015; 341
Wang, Li, fang Tian (b5) 2014; 19
Bavirisetti, Xiao, Zhao, Dhuli, Liu (b48) 2019; 38
Yang, Li (b29) 2009; 59
Wang, Li, Tian (b24) 2014; 19
F. Huang, A. Zeng, M. Liu, Q. Lai, Q. Xu, DeepFuse: An IMU-Aware Network for Real-Time 3D Human Pose Estimation from Multi-View Image, in: 2020 IEEE Winter Conference on Applications of Computer Vision, WACV, 2020, pp. 418–427.
P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.
A.R. Alankrita, A. Shrivastava, V. Bhateja, Contrast improvement of cerebral mri features using combination of non-linear enhancement operator and morphological filter, in: Proc. of (IEEE) International Conference on Network and Computational Intelligence (ICNCI 2011), Zhengzhou, China, Vol. 4, 2011, pp. 182–187.
Shreyamsha Kumar (b25) 2015; 9
Ma, Ma, Li (b3) 2019; 45
Xu, Ma, Jiang, Guo, Ling (b38) 2020; 44
Y. Liu, X. Chen, J. Cheng, H. Peng, A medical image fusion method based on convolutional neural networks, in: 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1–7.
P. Li, H. Wang, X. Li, H. Hu, H. Wei, Y. Yuan, Z. Zhang, G. Qi, A novel Image Fusion Framework based on Non-Subsampled Shearlet Transform (NSST) Domain, in: 2019 Chinese Control and Decision Conference (CCDC), 2019, pp. 1409–1414.
Rao, Wu, Xu (b45) 2022
Ma, Zhang, Shao, Liang, Xu (b42) 2020; 70
Kong, Lei, Zhao (b16) 2014; 67
Ma, Yu, Liang, Li, Jiang (b13) 2019; 48
Roberts, Van Aardt, Ahmed (b54) 2008; 2
Li, Qu, Dong, Zheng (b17) 2018; 315
Ma, Xu, Jiang, Mei, Zhang (b51) 2020; 29
Li, Wu, Kittler (b10) 2021; 73
Nencini, Garzelli, Baronti, Alparone (b21) 2007; 8
Cui, Zhang, Wu (b18) 2009
Zhao, Zhang, Ding, Cui (b39) 2021; 23
Tang, He, Liu, Duan (b44) 2022; 31
Han, Cai, Cao, Xu (b57) 2013; 14
Zhu, Zheng, Qi, Wang, Xiang (b22) 2019; 7
Wang, Bovik, Sheikh, Simoncelli (b15) 2004; 13
Liu, Chen, Ward, Wang (b32) 2016; 23
Jin, Jiang, Chu, Lang, Yao, Li, Zhou (b6) 2019; 69
Xu, Ma (b49) 2021; 76
Ma, Zhou, Wang, Zong (b26) 2017; 82
Yu, Qiu, Bi, Wang (b53) 2011; 5
Qu, Zhang, Yan (b55) 2002; 38
Bondy, Scheurer, Malmer, Barnholtz-Sloan, Davis, Il’Yasova, Kruchko, McCarthy, Rajaraman, Schwartzbaum (b1) 2008; 113
Li, Wu (b9) 2019; 28
Du (10.1016/j.compbiomed.2023.106769_b19) 2016; 194
10.1016/j.compbiomed.2023.106769_b37
10.1016/j.compbiomed.2023.106769_b33
Wang (10.1016/j.compbiomed.2023.106769_b15) 2004; 13
Ma (10.1016/j.compbiomed.2023.106769_b51) 2020; 29
Li (10.1016/j.compbiomed.2023.106769_b20) 1995; 57
Zhu (10.1016/j.compbiomed.2023.106769_b22) 2019; 7
Yang (10.1016/j.compbiomed.2023.106769_b29) 2009; 59
Bondy (10.1016/j.compbiomed.2023.106769_b1) 2008; 113
Yang (10.1016/j.compbiomed.2023.106769_b58) 2005; 20
Guo (10.1016/j.compbiomed.2023.106769_b43) 2019; 21
Xu (10.1016/j.compbiomed.2023.106769_b49) 2021; 76
Wang (10.1016/j.compbiomed.2023.106769_b5) 2014; 19
Cercignani (10.1016/j.compbiomed.2023.106769_b2) 2018; 182
10.1016/j.compbiomed.2023.106769_b23
Rao (10.1016/j.compbiomed.2023.106769_b45) 2022
Zhu (10.1016/j.compbiomed.2023.106769_b41) 2022; 91
Cui (10.1016/j.compbiomed.2023.106769_b18) 2009
Bavirisetti (10.1016/j.compbiomed.2023.106769_b48) 2019; 38
Du (10.1016/j.compbiomed.2023.106769_b34) 2017; 5
Roberts (10.1016/j.compbiomed.2023.106769_b54) 2008; 2
Zhang (10.1016/j.compbiomed.2023.106769_b14) 2020; 54
Xu (10.1016/j.compbiomed.2023.106769_b38) 2020; 44
Yu (10.1016/j.compbiomed.2023.106769_b53) 2011; 5
Qu (10.1016/j.compbiomed.2023.106769_b55) 2002; 38
Zhao (10.1016/j.compbiomed.2023.106769_b39) 2021; 23
10.1016/j.compbiomed.2023.106769_b11
10.1016/j.compbiomed.2023.106769_b12
Shreyamsha Kumar (10.1016/j.compbiomed.2023.106769_b25) 2015; 9
Wang (10.1016/j.compbiomed.2023.106769_b35) 2019; 78
Ma (10.1016/j.compbiomed.2023.106769_b42) 2020; 70
Zhang (10.1016/j.compbiomed.2023.106769_b40) 2011; 32
Li (10.1016/j.compbiomed.2023.106769_b17) 2018; 315
Wang (10.1016/j.compbiomed.2023.106769_b24) 2014; 19
Xydeas (10.1016/j.compbiomed.2023.106769_b56) 2000; 36
Han (10.1016/j.compbiomed.2023.106769_b57) 2013; 14
Ma (10.1016/j.compbiomed.2023.106769_b31) 2019; 78
Ma (10.1016/j.compbiomed.2023.106769_b13) 2019; 48
Li (10.1016/j.compbiomed.2023.106769_b9) 2019; 28
Yang (10.1016/j.compbiomed.2023.106769_b7) 2010; 59
10.1016/j.compbiomed.2023.106769_b46
Jin (10.1016/j.compbiomed.2023.106769_b6) 2019; 69
10.1016/j.compbiomed.2023.106769_b47
Tang (10.1016/j.compbiomed.2023.106769_b50) 2022; 82
Wang (10.1016/j.compbiomed.2023.106769_b36) 2020; 20
Nencini (10.1016/j.compbiomed.2023.106769_b21) 2007; 8
Zhang (10.1016/j.compbiomed.2023.106769_b8) 2001; 2
Hu (10.1016/j.compbiomed.2023.106769_b28) 2012; 13
Kong (10.1016/j.compbiomed.2023.106769_b16) 2014; 67
Liu (10.1016/j.compbiomed.2023.106769_b32) 2016; 23
Li (10.1016/j.compbiomed.2023.106769_b10) 2021; 73
Zhu (10.1016/j.compbiomed.2023.106769_b30) 2018; 432
Tang (10.1016/j.compbiomed.2023.106769_b44) 2022; 31
Liu (10.1016/j.compbiomed.2023.106769_b4) 2018; 42
Pan (10.1016/j.compbiomed.2023.106769_b27) 2018; 61
Cui (10.1016/j.compbiomed.2023.106769_b52) 2015; 341
Ma (10.1016/j.compbiomed.2023.106769_b26) 2017; 82
Ma (10.1016/j.compbiomed.2023.106769_b3) 2019; 45
References_xml – volume: 70
  start-page: 1
  year: 2020
  end-page: 14
  ident: b42
  article-title: Ganmcc: A generative adversarial network with multiclassification constraints for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 19
  start-page: 20
  year: 2014
  end-page: 28
  ident: b24
  article-title: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients
  publication-title: Inf. Fusion
– volume: 23
  start-page: 1692
  year: 2021
  ident: b39
  article-title: MFF-net: deepfake detection network based on multi-feature fusion
  publication-title: Entropy
– volume: 5
  start-page: 1074
  year: 2011
  end-page: 1082
  ident: b53
  article-title: Image features extraction and fusion based on joint sparse representation
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 45
  start-page: 153
  year: 2019
  end-page: 178
  ident: b3
  article-title: Infrared and visible image fusion methods and applications: A survey
  publication-title: Inf. Fusion
– volume: 82
  start-page: 8
  year: 2017
  end-page: 17
  ident: b26
  article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization
  publication-title: Infrared Phys. Technol.
– volume: 194
  start-page: 326
  year: 2016
  end-page: 339
  ident: b19
  article-title: Union Laplacian pyramid with multiple features for medical image fusion
  publication-title: Neurocomputing
– volume: 44
  start-page: 502
  year: 2020
  end-page: 518
  ident: b38
  article-title: U2fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 1
  year: 2002
  ident: b55
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
– volume: 432
  start-page: 516
  year: 2018
  end-page: 529
  ident: b30
  article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation
  publication-title: Inform. Sci.
– volume: 5
  start-page: 15750
  year: 2017
  end-page: 15761
  ident: b34
  article-title: Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network
  publication-title: IEEE Access
– volume: 13
  start-page: 196
  year: 2012
  end-page: 206
  ident: b28
  article-title: The multiscale directional bilateral filter and its application to multisensor image fusion
  publication-title: Inf. Fusion
– volume: 57
  start-page: 235
  year: 1995
  end-page: 245
  ident: b20
  article-title: Multisensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
– volume: 78
  start-page: 125
  year: 2019
  end-page: 134
  ident: b31
  article-title: Multi-focus image fusion based on joint sparse representation and optimum theory
  publication-title: Signal Process., Image Commun.
– volume: 73
  start-page: 72
  year: 2021
  end-page: 86
  ident: b10
  article-title: RFN-nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
– volume: 315
  start-page: 371
  year: 2018
  end-page: 380
  ident: b17
  article-title: Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy
  publication-title: Neurocomputing
– volume: 8
  start-page: 143
  year: 2007
  end-page: 156
  ident: b21
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
– volume: 29
  start-page: 4980
  year: 2020
  end-page: 4995
  ident: b51
  article-title: Ddcgan: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
– volume: 31
  start-page: 5134
  year: 2022
  end-page: 5149
  ident: b44
  article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer
  publication-title: IEEE Trans. Image Process.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b15
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
– volume: 59
  start-page: 884
  year: 2009
  end-page: 892
  ident: b29
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 20
  start-page: 2169
  year: 2020
  ident: b36
  article-title: Multi-modality medical image fusion using convolutional neural network and contrast pyramid
  publication-title: Sensors
– volume: 341
  start-page: 199
  year: 2015
  end-page: 209
  ident: b52
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
– reference: Y. Liu, X. Chen, J. Cheng, H. Peng, A medical image fusion method based on convolutional neural networks, in: 2017 20th International Conference on Information Fusion (Fusion), 2017, pp. 1–7.
– volume: 91
  year: 2022
  ident: b41
  article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI
  publication-title: Inf. Fusion
– volume: 23
  start-page: 1882
  year: 2016
  end-page: 1886
  ident: b32
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process. Lett.
– volume: 113
  start-page: 1953
  year: 2008
  end-page: 1968
  ident: b1
  article-title: Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium
  publication-title: Cancer
– volume: 21
  start-page: 1982
  year: 2019
  end-page: 1996
  ident: b43
  article-title: FuseGAN: Learning to fuse multi-focus image via conditional generative adversarial network
  publication-title: IEEE Trans. Multimed.
– start-page: 480
  year: 2009
  end-page: 483
  ident: b18
  article-title: Medical image fusion based on wavelet transform and independent component analysis
  publication-title: 2009 International Joint Conference on Artificial Intelligence
– volume: 67
  start-page: 161
  year: 2014
  end-page: 172
  ident: b16
  article-title: Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization
  publication-title: Infrared Phys. Technol.
– volume: 78
  start-page: 34483
  year: 2019
  end-page: 34512
  ident: b35
  article-title: Multifocus image fusion using convolutional neural networks in the discrete wavelet transform domain
  publication-title: Multimedia Tools Appl.
– reference: F. Huang, A. Zeng, M. Liu, Q. Lai, Q. Xu, DeepFuse: An IMU-Aware Network for Real-Time 3D Human Pose Estimation from Multi-View Image, in: 2020 IEEE Winter Conference on Applications of Computer Vision, WACV, 2020, pp. 418–427.
– volume: 14
  start-page: 127
  year: 2013
  end-page: 135
  ident: b57
  article-title: A new image fusion performance metric based on visual information fidelity
  publication-title: Inf. Fusion
– volume: 7
  start-page: 20811
  year: 2019
  end-page: 20824
  ident: b22
  article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain
  publication-title: IEEE Access
– volume: 32
  start-page: 1544
  year: 2011
  end-page: 1553
  ident: b40
  article-title: Similarity-based multimodality image fusion with shiftable complex directional pyramid
  publication-title: Pattern Recognit. Lett.
– volume: 28
  start-page: 2614
  year: 2019
  end-page: 2623
  ident: b9
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
– reference: K. Ram Prabhakar, V. Sai Srikar, R. Venkatesh Babu, Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4714–4722.
– volume: 54
  start-page: 99
  year: 2020
  end-page: 118
  ident: b14
  article-title: IFCNN: A general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
– reference: P. Li, H. Wang, X. Li, H. Hu, H. Wei, Y. Yuan, Z. Zhang, G. Qi, A novel Image Fusion Framework based on Non-Subsampled Shearlet Transform (NSST) Domain, in: 2019 Chinese Control and Decision Conference (CCDC), 2019, pp. 1409–1414.
– volume: 9
  start-page: 1193
  year: 2015
  end-page: 1204
  ident: b25
  article-title: Image fusion based on pixel significance using cross bilateral filter
  publication-title: Signal, Image Video Process.
– volume: 182
  start-page: 117
  year: 2018
  end-page: 127
  ident: b2
  article-title: Brain microstructure by multi-modal MRI: Is the whole greater than the sum of its parts?
  publication-title: NeuroImage
– volume: 69
  start-page: 5900
  year: 2019
  end-page: 5913
  ident: b6
  article-title: Brain medical image fusion using L2-norm-based features and fuzzy-weighted measurements in 2-D littlewood–Paley EWT domain
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 82
  start-page: 28
  year: 2022
  end-page: 42
  ident: b50
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Inf. Fusion
– volume: 59
  start-page: 884
  year: 2010
  end-page: 892
  ident: b7
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 2
  year: 2008
  ident: b54
  article-title: Assessment of image fusion procedures using entropy, image quality, and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 36
  start-page: 308
  year: 2000
  end-page: 309
  ident: b56
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
– volume: 48
  start-page: 11
  year: 2019
  end-page: 26
  ident: b13
  article-title: Fusiongan: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
– year: 2022
  ident: b45
  article-title: Tgfuse: An infrared and visible image fusion approach based on transformer and generative adversarial network
– reference: A.R. Alankrita, A. Shrivastava, V. Bhateja, Contrast improvement of cerebral mri features using combination of non-linear enhancement operator and morphological filter, in: Proc. of (IEEE) International Conference on Network and Computational Intelligence (ICNCI 2011), Zhengzhou, China, Vol. 4, 2011, pp. 182–187.
– volume: 76
  start-page: 177
  year: 2021
  end-page: 186
  ident: b49
  article-title: Emfusion: An unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
– volume: 20
  start-page: 662
  year: 2005
  end-page: 680
  ident: b58
  article-title: Just noticeable distortion model and its applications in video coding
  publication-title: Signal Process., Image Commun.
– volume: 38
  start-page: 5576
  year: 2019
  end-page: 5605
  ident: b48
  article-title: Multi-scale guided image and video fusion: A fast and efficient approach
  publication-title: Circuits Systems Signal Process.
– reference: P. Isola, J.-Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 1125–1134.
– volume: 2
  start-page: 135
  year: 2001
  end-page: 149
  ident: b8
  article-title: A hybrid image registration technique for a digital camera image fusion application
  publication-title: Inf. Fusion
– volume: 19
  start-page: 20
  year: 2014
  end-page: 28
  ident: b5
  article-title: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients
  publication-title: Inf. Fusion
– volume: 42
  start-page: 158
  year: 2018
  end-page: 173
  ident: b4
  article-title: Deep learning for pixel-level image fusion: Recent advances and future prospects
  publication-title: Inf. Fusion
– volume: 61
  start-page: 1
  year: 2018
  end-page: 049103
  ident: b27
  article-title: Visible and infrared image fusion using l0-generalized total variation model
  publication-title: Inform. Sci.
– volume: 45
  start-page: 153
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b3
  article-title: Infrared and visible image fusion methods and applications: A survey
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.02.004
– volume: 32
  start-page: 1544
  issue: 13
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106769_b40
  article-title: Similarity-based multimodality image fusion with shiftable complex directional pyramid
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2011.06.002
– volume: 73
  start-page: 72
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106769_b10
  article-title: RFN-nest: An end-to-end residual fusion network for infrared and visible images
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.023
– volume: 19
  start-page: 20
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106769_b5
  article-title: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.03.002
– ident: 10.1016/j.compbiomed.2023.106769_b33
  doi: 10.23919/ICIF.2017.8009769
– volume: 78
  start-page: 125
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b31
  article-title: Multi-focus image fusion based on joint sparse representation and optimum theory
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2019.06.002
– ident: 10.1016/j.compbiomed.2023.106769_b47
– volume: 59
  start-page: 884
  issue: 4
  year: 2009
  ident: 10.1016/j.compbiomed.2023.106769_b29
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– volume: 28
  start-page: 2614
  issue: 5
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b9
  article-title: DenseFuse: A fusion approach to infrared and visible images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2887342
– volume: 315
  start-page: 371
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106769_b17
  article-title: Hyperspectral pansharpening via improved PCA approach and optimal weighted fusion strategy
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.030
– volume: 36
  start-page: 308
  issue: 4
  year: 2000
  ident: 10.1016/j.compbiomed.2023.106769_b56
  article-title: Objective image fusion performance measure
  publication-title: Electron. Lett.
  doi: 10.1049/el:20000267
– volume: 14
  start-page: 127
  issue: 2
  year: 2013
  ident: 10.1016/j.compbiomed.2023.106769_b57
  article-title: A new image fusion performance metric based on visual information fidelity
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.08.002
– ident: 10.1016/j.compbiomed.2023.106769_b12
  doi: 10.1109/WACV45572.2020.9093526
– volume: 5
  start-page: 1074
  issue: 5
  year: 2011
  ident: 10.1016/j.compbiomed.2023.106769_b53
  article-title: Image features extraction and fusion based on joint sparse representation
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2011.2112332
– volume: 182
  start-page: 117
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106769_b2
  article-title: Brain microstructure by multi-modal MRI: Is the whole greater than the sum of its parts?
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.10.052
– volume: 23
  start-page: 1882
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106769_b32
  article-title: Image fusion with convolutional sparse representation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2618776
– year: 2022
  ident: 10.1016/j.compbiomed.2023.106769_b45
– volume: 82
  start-page: 8
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106769_b26
  article-title: Infrared and visible image fusion based on visual saliency map and weighted least square optimization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2017.02.005
– volume: 29
  start-page: 4980
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106769_b51
  article-title: Ddcgan: A dual-discriminator conditional generative adversarial network for multi-resolution image fusion
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2977573
– volume: 7
  start-page: 20811
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b22
  article-title: A phase congruency and local Laplacian energy based multi-modality medical image fusion method in NSCT domain
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2898111
– volume: 194
  start-page: 326
  year: 2016
  ident: 10.1016/j.compbiomed.2023.106769_b19
  article-title: Union Laplacian pyramid with multiple features for medical image fusion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.047
– volume: 54
  start-page: 99
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106769_b14
  article-title: IFCNN: A general image fusion framework based on convolutional neural network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.07.011
– volume: 69
  start-page: 5900
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b6
  article-title: Brain medical image fusion using L2-norm-based features and fuzzy-weighted measurements in 2-D littlewood–Paley EWT domain
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2019.2962849
– volume: 21
  start-page: 1982
  issue: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b43
  article-title: FuseGAN: Learning to fuse multi-focus image via conditional generative adversarial network
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2019.2895292
– volume: 341
  start-page: 199
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106769_b52
  article-title: Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2014.12.032
– volume: 2
  issue: 1
  year: 2008
  ident: 10.1016/j.compbiomed.2023.106769_b54
  article-title: Assessment of image fusion procedures using entropy, image quality, and multispectral classification
  publication-title: J. Appl. Remote Sens.
– volume: 38
  start-page: 5576
  issue: 12
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b48
  article-title: Multi-scale guided image and video fusion: A fast and efficient approach
  publication-title: Circuits Systems Signal Process.
  doi: 10.1007/s00034-019-01131-z
– volume: 57
  start-page: 235
  issue: 3
  year: 1995
  ident: 10.1016/j.compbiomed.2023.106769_b20
  article-title: Multisensor image fusion using the wavelet transform
  publication-title: Graph. Models Image Process.
  doi: 10.1006/gmip.1995.1022
– ident: 10.1016/j.compbiomed.2023.106769_b46
  doi: 10.1109/CVPR.2017.632
– volume: 20
  start-page: 662
  issue: 7
  year: 2005
  ident: 10.1016/j.compbiomed.2023.106769_b58
  article-title: Just noticeable distortion model and its applications in video coding
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2005.04.001
– ident: 10.1016/j.compbiomed.2023.106769_b23
  doi: 10.1109/CCDC.2019.8833211
– volume: 78
  start-page: 34483
  issue: 24
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b35
  article-title: Multifocus image fusion using convolutional neural networks in the discrete wavelet transform domain
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-08070-6
– ident: 10.1016/j.compbiomed.2023.106769_b37
  doi: 10.1109/ICCV.2017.505
– volume: 82
  start-page: 28
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106769_b50
  article-title: Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.12.004
– volume: 20
  start-page: 2169
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106769_b36
  article-title: Multi-modality medical image fusion using convolutional neural network and contrast pyramid
  publication-title: Sensors
  doi: 10.3390/s20082169
– volume: 44
  start-page: 502
  issue: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106769_b38
  article-title: U2fusion: A unified unsupervised image fusion network
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.3012548
– volume: 61
  start-page: 1
  issue: 049103
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106769_b27
  article-title: Visible and infrared image fusion using l0-generalized total variation model
  publication-title: Inform. Sci.
– start-page: 480
  year: 2009
  ident: 10.1016/j.compbiomed.2023.106769_b18
  article-title: Medical image fusion based on wavelet transform and independent component analysis
– volume: 2
  start-page: 135
  issue: 2
  year: 2001
  ident: 10.1016/j.compbiomed.2023.106769_b8
  article-title: A hybrid image registration technique for a digital camera image fusion application
  publication-title: Inf. Fusion
  doi: 10.1016/S1566-2535(01)00020-3
– volume: 67
  start-page: 161
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106769_b16
  article-title: Adaptive fusion method of visible light and infrared images based on non-subsampled shearlet transform and fast non-negative matrix factorization
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2014.07.019
– ident: 10.1016/j.compbiomed.2023.106769_b11
  doi: 10.23919/ICIF.2017.8009769
– volume: 19
  start-page: 20
  year: 2014
  ident: 10.1016/j.compbiomed.2023.106769_b24
  article-title: Multi-modal medical image fusion using the inter-scale and intra-scale dependencies between image shift-invariant shearlet coefficients
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2012.03.002
– volume: 113
  start-page: 1953
  issue: S7
  year: 2008
  ident: 10.1016/j.compbiomed.2023.106769_b1
  article-title: Brain tumor epidemiology: consensus from the brain tumor epidemiology consortium
  publication-title: Cancer
  doi: 10.1002/cncr.23741
– volume: 5
  start-page: 15750
  year: 2017
  ident: 10.1016/j.compbiomed.2023.106769_b34
  article-title: Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2735019
– volume: 76
  start-page: 177
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106769_b49
  article-title: Emfusion: An unsupervised enhanced medical image fusion network
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.001
– volume: 91
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106769_b41
  article-title: Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI
  publication-title: Inf. Fusion
– volume: 13
  start-page: 196
  issue: 3
  year: 2012
  ident: 10.1016/j.compbiomed.2023.106769_b28
  article-title: The multiscale directional bilateral filter and its application to multisensor image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2011.01.002
– volume: 70
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2023.106769_b42
  article-title: Ganmcc: A generative adversarial network with multiclassification constraints for infrared and visible image fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 432
  start-page: 516
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106769_b30
  article-title: A novel multi-modality image fusion method based on image decomposition and sparse representation
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.09.010
– volume: 38
  start-page: 1
  issue: 7
  year: 2002
  ident: 10.1016/j.compbiomed.2023.106769_b55
  article-title: Information measure for performance of image fusion
  publication-title: Electron. Lett.
  doi: 10.1049/el:20020212
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  ident: 10.1016/j.compbiomed.2023.106769_b15
  article-title: Image quality assessment: from error visibility to structural similarity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2003.819861
– volume: 23
  start-page: 1692
  issue: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2023.106769_b39
  article-title: MFF-net: deepfake detection network based on multi-feature fusion
  publication-title: Entropy
  doi: 10.3390/e23121692
– volume: 48
  start-page: 11
  year: 2019
  ident: 10.1016/j.compbiomed.2023.106769_b13
  article-title: Fusiongan: A generative adversarial network for infrared and visible image fusion
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.004
– volume: 42
  start-page: 158
  year: 2018
  ident: 10.1016/j.compbiomed.2023.106769_b4
  article-title: Deep learning for pixel-level image fusion: Recent advances and future prospects
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.007
– volume: 59
  start-page: 884
  issue: 4
  year: 2010
  ident: 10.1016/j.compbiomed.2023.106769_b7
  article-title: Multifocus image fusion and restoration with sparse representation
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2009.2026612
– volume: 31
  start-page: 5134
  year: 2022
  ident: 10.1016/j.compbiomed.2023.106769_b44
  article-title: MATR: Multimodal medical image fusion via multiscale adaptive transformer
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3193288
– volume: 8
  start-page: 143
  issue: 2
  year: 2007
  ident: 10.1016/j.compbiomed.2023.106769_b21
  article-title: Remote sensing image fusion using the curvelet transform
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2006.02.001
– volume: 9
  start-page: 1193
  issue: 5
  year: 2015
  ident: 10.1016/j.compbiomed.2023.106769_b25
  article-title: Image fusion based on pixel significance using cross bilateral filter
  publication-title: Signal, Image Video Process.
  doi: 10.1007/s11760-013-0556-9
SSID ssj0004030
Score 2.416836
Snippet Image fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of the fused...
AbstractImage fusion techniques have been widely used for multi-modal medical image fusion tasks. Most existing methods aim to improve the overall quality of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 106769
SubjectTerms Adaptive transformer
Brain
Brain cancer
Brain Neoplasms - diagnostic imaging
Brain tumors
Computer vision
Deep learning
Generative adversarial networks
Humans
Image contrast
Image fusion
Image Processing, Computer-Assisted
Image quality
Internal Medicine
Machine learning
Magnetic Resonance Imaging
Medical imaging
Multi-modal MRI
Neuroimaging
Other
Qualitative analysis
Salient loss
Tumors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUKlRAXRD-AUFoZqVeDN3aSdTmgpeqWIi0HCtLeLMf2IiFIgOz-f2ZiJ3sBtOdknGg8Hj_bz_MI-SmEcDDNSaYybphUM8uMNTkrvUuFkdanrcbS5DI_v5EX02waN9yaSKvscmKbqF1tcY_8OC3UIBvmgEZOH58Yqkbh6WqU0FgjH7F0GVK6immxvBfJRbiCArlGwlIoMnkCvwsp2-GK-xFKiB9hLTWkPb8-Pb0FP9tpaLxNtiJ-pKPQ4Z_IB199JhuTeEL-hVydXU_G7O_o8hcd0ZYtyB5qBxaTq390tsC9MXrblprGPEcN6jE3BqOQVoERTgHG0hKVI-h88VA_N1_JzfjP9e9zFnUTmAX4M2fSYp2yIVeWu5yD5_3QpW7o05kQsiysUA56QMy89-jREtZQZe4GKH3OXVmmYoesV3Xl98BdSmSOWwsoEdYdJlPOFFZax6EZI5xPSNG5S9tYVBy1Le51xx6700tHa3S0Do5OyKC3fAyFNVawUV2P6O7iKKQ6Ddl_BdviNVvfxDHb6IFuUs31_7ZkEUQLLM7AXKYJOektIywJcGPF7x50oaP7Ty2DOSGH_WMY2HhaYypfL9p3MGMCfEvIbgi53lEiVxIey_33G_9GNvFPAj_zgKzPnxf-O2CoefmjHSgveLwZKA
  priority: 102
  providerName: ProQuest
Title BTMF-GAN: A multi-modal MRI fusion generative adversarial network for brain tumors
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482523002342
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482523002342
https://dx.doi.org/10.1016/j.compbiomed.2023.106769
https://www.ncbi.nlm.nih.gov/pubmed/36947904
https://www.proquest.com/docview/2791586310
https://www.proquest.com/docview/2790051223
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelg7GXse9564oGe1UqW_KHtqe0NE03EkZoIW9ClpTSsTqlTl73t-_Okl3GOgjsxcYfZ5ufT3cn-3d3hHwSQjhwc5KpnBsm1coyY03Bau8yYaT1WddjaTYvppfy6zJf7pGTPhcGaZXR9geb3lnruOcoonl0e32NOb4wlYAJDgTR4Hgk2mEpS9Ty0a97mofkIqShgL3BsyObJ3C8kLYd0txH2EZ8hPXUkPr8sIv6VwjauaLJM_I0xpB0HB7zOdnzzQvyeBb_kr8ki-OL2YSdjeef6Zh2jEF2s3YgMVuc09UWv4_Rq67cNNo6arAnc2tQE2kTWOEUQllaY_cIutnerO_aV-RycnpxMmWxdwKzEAJtmLRYq6ziynJXcEDfVy5zlc9WQsi6tEI5eAti5b3Pq0LUMI-qC5di-3Pu6joTr8l-s278W4BLidxxayFShLmHyZUzpZXWcbiMEc4npOzh0jYWFsf-Fj91zyD7oe-B1gi0DkAnJB0kb0NxjR1kVP9GdJ88CuZOgwfYQbZ8SNa3cdy2OtVtprn-S7cS8mWQ_EM9d7zvQa86erhVVqoUoU95Qj4Oh2Fw4x8b0_j1tjsHrSaEcAl5E1RuAEoUSsJh-e6_Hu09eYJbgcJ5QPY3d1v_AcKsTX3YjSNYlssSltXk7JA8Gp9_m85hfXw6_774DebmKT0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgEXRHmmLWAkOLpkY-dhEKqWx3aXNnsoW6k317G9SKhN2mZXiD_Fb2QmTrKXgvbSczKxNR6Pv4m_mSHkDefcwjEnmIxDzYScG6aNTljhbMS1MC5qeizl02R8Ir6dxqcb5E-XC4O0ys4nNo7aVgb_kb-LUjmIswTQyP7lFcOuUXi72rXQ8GZx6H7_gpCt_jj5Auv7NopGX2efx6ztKsAMgIMFEwareGWhNKFNQpiXy2xkMxfNORdFari0MD8-d87heAVEGEViB9gYPLRFgYUOwOXfEZxL3FHZ6GCVhxlyn_ICvk1A6NUyhzyfDCniPqV-D1uW72HtNqRZ33wc_gvuNsfe6CF50OJVOvQGtkU2XPmI3M3bG_nH5PjTLB-xg-H0PR3Shp3ILioLEvnxhM6X-C-O_mhKW6NfpRr7P9carZ6WnoFOATbTAjtV0MXyorqun5CTW9HoU7JZVqV7DuqSPLahMYBKIc7RsbQ6NcLYED6juXUBSTt1KdMWMcdeGueqY6v9VCtFK1S08ooOyKCXvPSFPNaQkd2KqC5RFVyrgtNmDdn0JllXtz6iVgNVRypU35sSSWAtEAyCuIgC8qGXbGGQhzdrjrvbmY7qh1ptnoC87h-DI8HbIV26atm8gx4a4GJAnnmT6xXFEyngsdj-_8dfkXvjWX6kjibTwx1yH2fluaG7ZHNxvXQvAL8tipfNpqHk7LZ36V9fMVV2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIlVcEN8EChgJjm6d2EnWIIQWytKl7AqVVtqbcWwHCdGkNLtC_DV-HTNxkr0UtJeek4mt8cz4OX4zQ8hzIYSDbU4ylXLDpCotM9ZkrPAuEUZan7Q9lmbz7PBUflykiy3yp8-FQVplHxPbQO1qi__I95NcxekoAzSyX3a0iM8HkzfnPxl2kMKb1r6dRjCRI__7FxzfmtfTA1jrF0kyeX_y7pB1HQaYBaCwZNJiRa8RV5a7jMMc_cglbuSTUghZ5FYoB3MVpfcexy7gtFFkLsYm4dwVBRY9gPB_LRdpjD6WL_J1TiYXIf0F4pyEY1jHIgrcMqSLh_T6PWxfvod13JByffnW-C_o226Bk5vkRodd6TgY2y2y5avbZGfW3c7fIcdvT2YT9mE8f0nHtGUqsrPagcTseErLFf6Xo9_aMtcYY6nBXtCNQQ-gVWCjU4DQtMCuFXS5Oqsvmrvk9Eo0eo9sV3XlH4C6lEgdtxYQKpx5TKqcya20jsNnjHA-InmvLm27gubYV-OH7plr3_Va0RoVrYOiIxIPkuehqMcGMqpfEd0nrUKY1bDzbCCbXybrmy5eNDrWTaK5_tKWSwJrgYMhiMskIq8GyQ4SBaiz4bi7venoYai1I0Xk2fAYggreFJnK16v2HYzWAB0jcj-Y3KAokSkJj-XD_3_8KdkB_9SfpvOjR-Q6TirQRHfJ9vJi5R8DlFsWT1qfoeTrVTvpX0PoWaM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BTMF-GAN%3A+A+multi-modal+MRI+fusion+generative+adversarial+network+for+brain+tumors&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Liu%2C+Xiao&rft.au=Chen%2C+Hongyi&rft.au=Yao%2C+Chong&rft.au=Xiang%2C+Rui&rft.date=2023-05-01&rft.issn=1879-0534&rft.eissn=1879-0534&rft.volume=157&rft.spage=106769&rft_id=info:doi/10.1016%2Fj.compbiomed.2023.106769&rft.externalDBID=NO_FULL_TEXT
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2Fcov200h.gif