Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance r...
Saved in:
Published in | NeuroImage (Orlando, Fla.) Vol. 172; pp. 478 - 491 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.05.2018
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
•Empirical Bayes shrinkage methods for functional connectivity are proposed.•A novel reliability measure analogous to intraclass correlation is proposed.•Shrinkage significantly improves reliability of full and partial correlations.•Partial correlation reliability is highly sensitive to ridge regression penalty.•Partial correlation reliability is worse overall but better for some connections. |
---|---|
AbstractList | Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. •Empirical Bayes shrinkage methods for functional connectivity are proposed.•A novel reliability measure analogous to intraclass correlation is proposed.•Shrinkage significantly improves reliability of full and partial correlations.•Partial correlation reliability is highly sensitive to ridge regression penalty.•Partial correlation reliability is worse overall but better for some connections. Reliability of sub ject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. |
Author | Lindquist, Martin A. Nebel, Mary Beth Caffo, Brian S. Barber, Anita D. Pekar, James J. Mejia, Amanda F. Choe, Ann S. |
AuthorAffiliation | c Department of Neurology, Johns Hopkins University, USA d Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA f F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA g Department of Biostatistics, Johns Hopkins University, USA b Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA a Department of Statistics, Indiana University, USA e Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA |
AuthorAffiliation_xml | – name: a Department of Statistics, Indiana University, USA – name: d Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA – name: b Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA – name: g Department of Biostatistics, Johns Hopkins University, USA – name: c Department of Neurology, Johns Hopkins University, USA – name: f F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA – name: e Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA |
Author_xml | – sequence: 1 givenname: Amanda F. surname: Mejia fullname: Mejia, Amanda F. email: afmejia@iu.edu organization: Department of Statistics, Indiana University, USA – sequence: 2 givenname: Mary Beth surname: Nebel fullname: Nebel, Mary Beth organization: Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA – sequence: 3 givenname: Anita D. surname: Barber fullname: Barber, Anita D. organization: Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA – sequence: 4 givenname: Ann S. surname: Choe fullname: Choe, Ann S. organization: Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA – sequence: 5 givenname: James J. surname: Pekar fullname: Pekar, James J. organization: Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA – sequence: 6 givenname: Brian S. surname: Caffo fullname: Caffo, Brian S. organization: Department of Biostatistics, Johns Hopkins University, USA – sequence: 7 givenname: Martin A. surname: Lindquist fullname: Lindquist, Martin A. organization: Department of Biostatistics, Johns Hopkins University, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29391241$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1u1DAUhSNURH_gFZAlNmwS7CRO7A2CVrRUqsQG1pbj3Mw4dexgJ0Gz4dlxOmUKXc0qkc7xp3vPPefJiXUWkgQRnBFMqg99ZmH2Tg9yA1mOCcswyXDOXyRnBHOaclrnJ-s_LVJGCD9NzkPoMcaclOxVcprzgpO8JGfJ79th9G6BFkGYIm_SziLXoTA3PagpNbCAQd1s1apIg5SzNgp60dMOzUHbTVSNQdK2aJR-0g8e78HsWb_0tEUwjNprFaVLuYOAwtZrex-Hf5287KQJ8Obxe5H8uP7y_eprevft5vbq812qKCmntKSsZKwjVcUJ0K5kVVPkWFWylVICbYC0ZVPVmNakrWoOFQZOVNtQCTVvi6K4SD7uuePcDNAqsJOXRow-rux3wkkt_les3oqNWwSNUdaUR8D7R4B3P-eYlRh0UGCMtODmIAiPkfIir6tofffM2rvZx-yCyHFO64KxikXX238nOozy9zTRwPYG5V0IHrqDhWCxtkD04qkFYm2BwETEFjxte3iq9PRwjribNscALvcAiDdZNHgRlAaroNU-Hl-0Th8D-fQMooy2awvuYXcc4g88Bu9X |
CitedBy_id | crossref_primary_10_1007_s42113_018_0021_5 crossref_primary_10_1109_TBME_2019_2958333 crossref_primary_10_1016_j_neuroimage_2022_119296 crossref_primary_10_3389_fnins_2023_934138 crossref_primary_10_1016_j_neuroimage_2019_116157 crossref_primary_10_3389_fnins_2022_1000863 crossref_primary_10_1002_brb3_70386 crossref_primary_10_1093_biostatistics_kxab015 crossref_primary_10_1016_j_biopsych_2022_01_008 crossref_primary_10_1016_j_neuroimage_2019_03_053 crossref_primary_10_1038_s42003_023_05396_8 crossref_primary_10_1016_j_neuroimage_2022_119229 crossref_primary_10_1093_jrsssc_qlae015 crossref_primary_10_1016_j_neuroimage_2021_117926 crossref_primary_10_3389_fnins_2022_937172 crossref_primary_10_1016_j_neuroimage_2018_04_077 crossref_primary_10_1016_j_neuroimage_2021_118635 crossref_primary_10_1016_j_neuroimage_2024_120806 crossref_primary_10_1016_j_neuroimage_2021_117842 crossref_primary_10_1016_j_neuroimage_2021_118423 crossref_primary_10_1016_j_jneumeth_2021_109424 crossref_primary_10_1016_j_neuroimage_2021_118284 crossref_primary_10_1016_j_cobeha_2020_12_012 |
Cites_doi | 10.1109/TMI.2003.822821 10.1016/j.neuroimage.2013.05.099 10.1016/j.neuroimage.2017.04.054 10.1038/nrn3475 10.1093/biostatistics/kxn028 10.1016/j.neuroimage.2016.10.045 10.1016/j.neuron.2017.07.011 10.1080/10618600.2015.1044092 10.3174/ajnr.A2330 10.1002/mrm.22361 10.1016/j.neuroimage.2013.07.058 10.3758/s13415-013-0196-0 10.3389/fnins.2016.00123 10.1016/j.neuroimage.2012.10.017 10.1016/j.neuroimage.2013.04.127 10.1002/hbm.22231 10.1016/j.neuroimage.2014.03.034 10.1016/j.neuroimage.2013.04.007 10.1016/j.neuroimage.2013.11.046 10.1080/00031305.1998.10480547 10.1016/j.neuroimage.2015.02.042 10.1016/j.neuroimage.2016.10.020 10.1038/mp.2013.78 10.1002/hbm.22947 10.1016/j.neuroimage.2010.08.063 10.1016/j.neuroimage.2017.07.005 10.1371/journal.pone.0015710 10.1080/01621459.1983.10477920 10.1080/01621459.1975.10479864 10.1038/nn.4135 10.1016/j.neuron.2015.06.037 10.1016/j.neuroimage.2016.11.048 10.1016/j.neuroimage.2012.11.006 10.1093/cercor/bhn256 10.1016/j.neuroimage.2013.05.012 10.1002/hbm.23150 10.1080/00401706.1979.10489751 10.1111/biom.12186 10.1152/jn.00783.2009 10.1016/j.neuroimage.2013.05.041 10.1093/cercor/bhs352 10.1016/j.neuroimage.2006.09.032 10.1016/j.neuroimage.2014.05.043 10.1002/mrm.23097 10.1038/nn.4125 10.1137/1034115 10.1038/nbt.3004 |
ContentType | Journal Article |
Copyright | 2018 Copyright © 2018. Published by Elsevier Inc. Copyright Elsevier Limited May 15, 2018 |
Copyright_xml | – notice: 2018 – notice: Copyright © 2018. Published by Elsevier Inc. – notice: Copyright Elsevier Limited May 15, 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88E 88G 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2M M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U RC3 7X8 5PM |
DOI | 10.1016/j.neuroimage.2018.01.029 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database ProQuest Psychology Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1095-9572 |
EndPage | 491 |
ExternalDocumentID | PMC5957759 29391241 10_1016_j_neuroimage_2018_01_029 S1053811918300296 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIMH NIH HHS grantid: K01 MH109766 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NIBIB NIH HHS grantid: P41 EB015909 – fundername: NIBIB NIH HHS grantid: R01 EB016061 – fundername: NIA NIH HHS grantid: P50 AG005146 – fundername: NIMH NIH HHS grantid: R01 MH095836 – fundername: NIBIB NIH HHS grantid: R01 EB012547 |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFO ACGFS ACIEU ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADFRT AEBSH AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGWIK AGYEJ AHHHB AHMBA AIEXJ AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DM4 DU5 DWQXO EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GROUPED_DOAJ HCIFZ HMCUK IHE J1W KOM LG5 LK8 LX8 M1P M29 M2M M2V M41 M7P MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PUEGO Q38 ROL RPZ SAE SCC SDF SDG SDP SES SSH SSN SSZ T5K TEORI UKHRP UV1 YK3 Z5R ZU3 ~G- 3V. AACTN AADPK AAIAV ABLVK ABYKQ AFKWA AJBFU AJOXV AMFUW C45 EFLBG HMQ LCYCR RIG SNS ZA5 29N 53G AAFWJ AAQXK AAYXX ABXDB ACRPL ADFGL ADMUD ADNMO ADVLN ADXHL AFPKN AGHFR AGQPQ AGRNS AIGII AKRLJ ALIPV ASPBG AVWKF AZFZN CAG CITATION COF FEDTE FGOYB G-2 HDW HEI HMK HMO HVGLF HZ~ OK1 R2- SEW WUQ XPP ZMT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK FR3 K9. P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c514t-458488f16691e5f486b320c6adaaae5be1d4b670571d679e60e91cdb5ae79d333 |
IEDL.DBID | 7X7 |
ISSN | 1053-8119 1095-9572 |
IngestDate | Thu Aug 21 14:31:08 EDT 2025 Thu Jul 10 22:44:26 EDT 2025 Wed Aug 13 06:11:50 EDT 2025 Mon Jul 21 05:53:27 EDT 2025 Tue Jul 01 03:01:56 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Fri Feb 23 02:47:27 EST 2024 Tue Aug 26 20:08:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Functional connectivity Bayesian statistics Resting-state fMRI Connectome Shrinkage Reliability Measurement error Partial correlation |
Language | English |
License | Copyright © 2018. Published by Elsevier Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-458488f16691e5f486b320c6adaaae5be1d4b670571d679e60e91cdb5ae79d333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 29391241 |
PQID | 2025738868 |
PQPubID | 2031077 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5957759 proquest_miscellaneous_1993993276 proquest_journals_2025738868 pubmed_primary_29391241 crossref_primary_10_1016_j_neuroimage_2018_01_029 crossref_citationtrail_10_1016_j_neuroimage_2018_01_029 elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_029 elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-15 |
PublicationDateYYYYMMDD | 2018-05-15 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Amsterdam |
PublicationTitle | NeuroImage (Orlando, Fla.) |
PublicationTitleAlternate | Neuroimage |
PublicationYear | 2018 |
Publisher | Elsevier Inc Elsevier Limited |
Publisher_xml | – name: Elsevier Inc – name: Elsevier Limited |
References | Hansen (bib24) 1992; 34 Xu, Moeller, Strupp, Auerbach, Chen, Feinberg, Ugurbil, Yacoub (bib57) 2012; vol 2306 Murphy, Bodurka, Bandettini (bib35) 2007; 34 Morozov (bib31) 1984 Choe, Nebel, Barber, Cohen, Xu, Pekar, Caffo, Lindquist (bib9) 2017; 158 Kass, Carlin, Gelman, Neal (bib26) 1998; 52 Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib18) 2013; 80 Efron, Morris (bib15) 1975; 70 Warnick, Guindani, Erhardt, Allen, Calhoun, Vannucci (bib56) 2017 Shou, Eloyan, Nebel, Mejia, Pekar, Mostofsky, Caffo, Lindquist, Crainiceanu (bib43) 2014; 102 Wang, Kang, Kemmer, Guo (bib55) 2016; 10 Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal (bib41) 2009; 19 Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib14) 2014; 19 Beckmann, Smith (bib6) 2004; 23 Munafò, Noble, Browne, Brunner, Button, Ferreira, Holmans, Langbehn, Lewis, Lindquist (bib34) 2014; 32 Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun (bib21) 2017; 95 Mejia, Nebel, Shou, Crainiceanu, Pekar, Mostofsky, Caffo, Lindquist (bib29) 2015; 112 Golub, Heath, Wahba (bib19) 1979; 21 Ha, Sun (bib23) 2014; 70 Shou, Eloyan, Lee, Zipunnikov, Crainiceanu, Nebel, Caffo, Lindquist, Crainiceanu (bib42) 2013; 13 Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead (bib36) 2017; 146 Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib37) 2017 Uğurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, Van de Moortele (bib50) 2013; 80 Varoquaux, Gramfort, Poline, Thirion (bib54) 2010 Feinberg, Moeller, Smith, Auerbach, Ramanna, Gunther, Glasser, Miller, Ugurbil, Yacoub (bib16) 2010; 5 Thompson (bib47) 2011 Su, Caffo, Garrett-Mayer, Bassett (bib46) 2008; 10 Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach (bib27) 2015; 87 Tie, Rigolo, Norton, Huang, Wu, Orringer, Mukundan, Golby (bib48) 2014; 35 Tomasi, Shokri-Kojori, Volkow (bib49) 2016 Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib17) 2015; 18 Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib22) 2014; 95 Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib39) 2014; 90 Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib52) 2013; 80 Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bib40) 2012; 67 Birn, Molloy, Patriat, Parker, Meier, Kirk, Nair, Meyerand, Prabhakaran (bib7) 2013; 83 Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib8) 2013; 14 Dai, Guo, Initiative (bib12) 2016; 147 Liao, Xia, Xu, Dai, Cao, Niu, Zuo, Zang, He (bib28) 2013; 83 Beckmann, Mackay, Filippini, Smith (bib5) 2009; 47 Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib51) 2010; 103 Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bib30) 2010; 63 James, Stein (bib25) 1961; vol. 1 Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib45) 2015; 18 Varoquaux, Craddock (bib53) 2013; 80 Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib3) 2014; 24 Zuo, Xu, Jiang, Yang, Cao, He, Zang, Castellanos, Milham (bib58) 2013; 65 Mueller, Wang, Fox, Pan, Lu, Li, Sun, Buckner, Liu (bib33) 2015; 36 Dawson, Cha, Lewis, Mendola, Shmuel (bib13) 2013; 67 Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib1) 2017; 147 Morris (bib32) 1983; 78 Collaboration (bib11) 2015; 349 Rahim, Thirion, Varoquaux (bib38) 2017 Chong, Bhushan, Joshi, Choi, Haldar, Shattuck, Spreng, Leahy (bib10) 2017; 156 Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib44) 2011; 54 Airan, Vogelstein, Pillai, Caffo, Pekar, Sair (bib2) 2016; 37 Gong, Flegal (bib20) 2016; 25 Anderson, Ferguson, Lopez-Larson, Yurgelun-Todd (bib4) 2011; 32 Griffanti (10.1016/j.neuroimage.2018.01.029_bib22) 2014; 95 Setsompop (10.1016/j.neuroimage.2018.01.029_bib40) 2012; 67 Birn (10.1016/j.neuroimage.2018.01.029_bib7) 2013; 83 Button (10.1016/j.neuroimage.2018.01.029_bib8) 2013; 14 Beckmann (10.1016/j.neuroimage.2018.01.029_bib5) 2009; 47 Varoquaux (10.1016/j.neuroimage.2018.01.029_bib54) 2010 Shou (10.1016/j.neuroimage.2018.01.029_bib42) 2013; 13 Varoquaux (10.1016/j.neuroimage.2018.01.029_bib53) 2013; 80 Laumann (10.1016/j.neuroimage.2018.01.029_bib27) 2015; 87 Allen (10.1016/j.neuroimage.2018.01.029_bib3) 2014; 24 Dawson (10.1016/j.neuroimage.2018.01.029_bib13) 2013; 67 Kass (10.1016/j.neuroimage.2018.01.029_bib26) 1998; 52 Choe (10.1016/j.neuroimage.2018.01.029_bib9) 2017; 158 Van Dijk (10.1016/j.neuroimage.2018.01.029_bib51) 2010; 103 Warnick (10.1016/j.neuroimage.2018.01.029_bib56) 2017 Morris (10.1016/j.neuroimage.2018.01.029_bib32) 1983; 78 Hansen (10.1016/j.neuroimage.2018.01.029_bib24) 1992; 34 Anderson (10.1016/j.neuroimage.2018.01.029_bib4) 2011; 32 Salimi-Khorshidi (10.1016/j.neuroimage.2018.01.029_bib39) 2014; 90 Shehzad (10.1016/j.neuroimage.2018.01.029_bib41) 2009; 19 Shou (10.1016/j.neuroimage.2018.01.029_bib43) 2014; 102 Airan (10.1016/j.neuroimage.2018.01.029_bib2) 2016; 37 Glasser (10.1016/j.neuroimage.2018.01.029_bib18) 2013; 80 Chong (10.1016/j.neuroimage.2018.01.029_bib10) 2017; 156 Su (10.1016/j.neuroimage.2018.01.029_bib46) 2008; 10 Abraham (10.1016/j.neuroimage.2018.01.029_bib1) 2017; 147 Feinberg (10.1016/j.neuroimage.2018.01.029_bib16) 2010; 5 James (10.1016/j.neuroimage.2018.01.029_bib25) 1961; vol. 1 Finn (10.1016/j.neuroimage.2018.01.029_bib17) 2015; 18 Dai (10.1016/j.neuroimage.2018.01.029_bib12) 2016; 147 Smith (10.1016/j.neuroimage.2018.01.029_bib45) 2015; 18 Golub (10.1016/j.neuroimage.2018.01.029_bib19) 1979; 21 Gordon (10.1016/j.neuroimage.2018.01.029_bib21) 2017; 95 Ha (10.1016/j.neuroimage.2018.01.029_bib23) 2014; 70 Collaboration (10.1016/j.neuroimage.2018.01.029_bib11) 2015; 349 Murphy (10.1016/j.neuroimage.2018.01.029_bib35) 2007; 34 Mejia (10.1016/j.neuroimage.2018.01.029_bib29) 2015; 112 Moeller (10.1016/j.neuroimage.2018.01.029_bib30) 2010; 63 Noble (10.1016/j.neuroimage.2018.01.029_bib36) 2017; 146 Wang (10.1016/j.neuroimage.2018.01.029_bib55) 2016; 10 Zuo (10.1016/j.neuroimage.2018.01.029_bib58) 2013; 65 Di Martino (10.1016/j.neuroimage.2018.01.029_bib14) 2014; 19 Rahim (10.1016/j.neuroimage.2018.01.029_bib38) 2017 Munafò (10.1016/j.neuroimage.2018.01.029_bib34) 2014; 32 Gong (10.1016/j.neuroimage.2018.01.029_bib20) 2016; 25 Efron (10.1016/j.neuroimage.2018.01.029_bib15) 1975; 70 Morozov (10.1016/j.neuroimage.2018.01.029_bib31) 1984 Noble (10.1016/j.neuroimage.2018.01.029_bib37) 2017 Mueller (10.1016/j.neuroimage.2018.01.029_bib33) 2015; 36 Tie (10.1016/j.neuroimage.2018.01.029_bib48) 2014; 35 Liao (10.1016/j.neuroimage.2018.01.029_bib28) 2013; 83 Xu (10.1016/j.neuroimage.2018.01.029_bib57) 2012; vol 2306 Uğurbil (10.1016/j.neuroimage.2018.01.029_bib50) 2013; 80 Beckmann (10.1016/j.neuroimage.2018.01.029_bib6) 2004; 23 Smith (10.1016/j.neuroimage.2018.01.029_bib44) 2011; 54 Tomasi (10.1016/j.neuroimage.2018.01.029_bib49) 2016 Van Essen (10.1016/j.neuroimage.2018.01.029_bib52) 2013; 80 Thompson (10.1016/j.neuroimage.2018.01.029_bib47) 2011 |
References_xml | – volume: 19 start-page: 2209 year: 2009 end-page: 2229 ident: bib41 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebr. Cortex – start-page: 1 year: 2016 end-page: 13 ident: bib49 article-title: Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough? publication-title: Cerebr. Cortex – volume: 158 start-page: 155 year: 2017 end-page: 175 ident: bib9 article-title: Comparing test-retest reliability of dynamic functional connectivity methods publication-title: NeuroImage – start-page: 460 year: 2017 end-page: 468 ident: bib38 article-title: Population-shrinkage of covariance to estimate better brain functional connectivity publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention – volume: 25 start-page: 684 year: 2016 end-page: 700 ident: bib20 article-title: A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo publication-title: J. Comput. Graph Stat. – start-page: 2334 year: 2010 end-page: 2342 ident: bib54 article-title: Brain covariance selection: better individual functional connectivity models using population prior publication-title: Advances in Neural Information Processing Systems – volume: 83 start-page: 969 year: 2013 end-page: 982 ident: bib28 article-title: Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study publication-title: NeuroImage – volume: 37 start-page: 1986 year: 2016 end-page: 1997 ident: bib2 article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI publication-title: Hum. Brain Mapp. – volume: 102 start-page: 938 year: 2014 end-page: 944 ident: bib43 article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI publication-title: NeuroImage – volume: 146 start-page: 959 year: 2017 end-page: 970 ident: bib36 article-title: Multisite reliability of MR-based functional connectivity publication-title: NeuroImage – volume: 156 start-page: 87 year: 2017 end-page: 100 ident: bib10 article-title: Individual parcellation of resting fMRI with a group functional connectivity prior publication-title: NeuroImage – volume: 36 start-page: 4664 year: 2015 end-page: 4680 ident: bib33 article-title: Reliability correction for functional connectivity: theory and implementation publication-title: Hum. Brain Mapp. – start-page: 65 year: 1984 end-page: 122 ident: bib31 article-title: Regular methods for solving linear and nonlinear ill-posed problems publication-title: Methods for Solving Incorrectly Posed Problems – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: bib18 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage – volume: 95 start-page: 791 year: 2017 end-page: 807 ident: bib21 article-title: Precision functional mapping of individual human brains publication-title: Neuron – volume: 63 start-page: 1144 year: 2010 end-page: 1153 ident: bib30 article-title: Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. – volume: 5 year: 2010 ident: bib16 article-title: Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging publication-title: PLoS One – volume: 87 start-page: 657 year: 2015 end-page: 670 ident: bib27 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron – volume: 147 start-page: 736 year: 2017 end-page: 745 ident: bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage – volume: 23 start-page: 137 year: 2004 end-page: 152 ident: bib6 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: Med. Imaging IEEE Trans. – volume: 35 start-page: 1018 year: 2014 end-page: 1030 ident: bib48 article-title: Defining language networks from resting-state fMRI for surgical planning–a feasibility study publication-title: Hum. Brain Mapp. – volume: 103 start-page: 297 year: 2010 end-page: 321 ident: bib51 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. – volume: 67 start-page: 331 year: 2013 end-page: 343 ident: bib13 article-title: Evaluation and calibration of functional network modeling methods based on known anatomical connections publication-title: NeuroImage – start-page: 1 year: 2017 end-page: 15 ident: bib37 article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex – volume: 13 start-page: 714 year: 2013 end-page: 724 ident: bib42 article-title: Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2) publication-title: Cognit. Affect Behav. Neurosci. – volume: 78 start-page: 47 year: 1983 end-page: 55 ident: bib32 article-title: Parametric empirical Bayes inference: theory and applications publication-title: J. Am. Stat. Assoc. – volume: 34 start-page: 561 year: 1992 end-page: 580 ident: bib24 article-title: Analysis of discrete ill-posed problems by means of the L-curve publication-title: SIAM Rev. – volume: 65 start-page: 374 year: 2013 end-page: 386 ident: bib58 article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space publication-title: NeuroImage – volume: 32 start-page: 548 year: 2011 end-page: 555 ident: bib4 article-title: Reproducibility of single-subject functional connectivity measurements publication-title: Am. J. Neuroradiol. – volume: 70 start-page: 311 year: 1975 end-page: 319 ident: bib15 article-title: Data analysis using Stein's estimator and its generalizations publication-title: J. Am. Stat. Assoc. – year: 2017 ident: bib56 article-title: A Bayesian approach for estimating dynamic functional network connectivity in fMRI data publication-title: J. Am. Stat. Assoc. – volume: 19 start-page: 659 year: 2014 ident: bib14 article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. – volume: 54 start-page: 875 year: 2011 end-page: 891 ident: bib44 article-title: Network modelling methods for fMRI publication-title: NeuroImage – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: bib52 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage – volume: 67 start-page: 1210 year: 2012 end-page: 1224 ident: bib40 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn. Reson. Med. – volume: 52 start-page: 93 year: 1998 end-page: 100 ident: bib26 article-title: Markov chain Monte Carlo in practice: a roundtable discussion publication-title: Am. Statistician – volume: 147 start-page: 772 year: 2016 end-page: 787 ident: bib12 article-title: Predicting individual brain functional connectivity using a Bayesian hierarchical model publication-title: NeuroImage – volume: 32 start-page: 871 year: 2014 end-page: 873 ident: bib34 article-title: Scientific rigor and the art of motorcycle maintenance publication-title: Nat. Biotechnol. – volume: 83 start-page: 550 year: 2013 end-page: 558 ident: bib7 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: NeuroImage – volume: 112 start-page: 14 year: 2015 end-page: 29 ident: bib29 article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators publication-title: NeuroImage – volume: 47 year: 2009 ident: bib5 article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression publication-title: NeuroImage – volume: 24 start-page: 663 year: 2014 end-page: 676 ident: bib3 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex – volume: 18 start-page: 1664 year: 2015 end-page: 1671 ident: bib17 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. – volume: 80 start-page: 405 year: 2013 end-page: 415 ident: bib53 article-title: Learning and comparing functional connectomes across subjects publication-title: NeuroImage – volume: 10 year: 2016 ident: bib55 article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation publication-title: Front. Neurosci. – volume: 70 start-page: 762 year: 2014 end-page: 770 ident: bib23 article-title: Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation publication-title: Biometrics – volume: vol. 1 start-page: 361 year: 1961 end-page: 379 ident: bib25 article-title: Estimation with quadratic loss publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability – volume: 90 start-page: 449 year: 2014 end-page: 468 ident: bib39 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage – volume: vol 2306 year: 2012 ident: bib57 article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI publication-title: Proceedings of the 20th Annual Meeting of ISMRM – volume: 14 start-page: 365 year: 2013 end-page: 376 ident: bib8 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. – volume: 18 start-page: 1565 year: 2015 end-page: 1567 ident: bib45 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. – year: 2011 ident: bib47 article-title: Slice Sampling with Multivariate Steps – volume: 80 start-page: 80 year: 2013 end-page: 104 ident: bib50 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: NeuroImage – volume: 349 year: 2015 ident: bib11 article-title: Estimating the reproducibility of psychological science publication-title: Science – volume: 10 start-page: 219 year: 2008 end-page: 227 ident: bib46 article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI publication-title: Biostatistics – volume: 21 start-page: 215 year: 1979 end-page: 223 ident: bib19 article-title: Generalized cross-validation as a method for choosing a good ridge parameter publication-title: Technometrics – volume: 34 start-page: 565 year: 2007 end-page: 574 ident: bib35 article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration publication-title: NeuroImage – volume: 95 start-page: 232 year: 2014 end-page: 247 ident: bib22 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage – volume: 23 start-page: 137 issue: 2 year: 2004 ident: 10.1016/j.neuroimage.2018.01.029_bib6 article-title: Probabilistic independent component analysis for functional magnetic resonance imaging publication-title: Med. Imaging IEEE Trans. doi: 10.1109/TMI.2003.822821 – volume: 83 start-page: 550 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib7 article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.099 – volume: 349 issue: 6251 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib11 article-title: Estimating the reproducibility of psychological science publication-title: Science – volume: 156 start-page: 87 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib10 article-title: Individual parcellation of resting fMRI with a group functional connectivity prior publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.054 – volume: 14 start-page: 365 issue: 5 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib8 article-title: Power failure: why small sample size undermines the reliability of neuroscience publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 – volume: 10 start-page: 219 issue: 2 year: 2008 ident: 10.1016/j.neuroimage.2018.01.029_bib46 article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI publication-title: Biostatistics doi: 10.1093/biostatistics/kxn028 – volume: 147 start-page: 736 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib1 article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.045 – volume: 95 start-page: 791 issue: 4 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib21 article-title: Precision functional mapping of individual human brains publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – volume: 25 start-page: 684 issue: 3 year: 2016 ident: 10.1016/j.neuroimage.2018.01.029_bib20 article-title: A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo publication-title: J. Comput. Graph Stat. doi: 10.1080/10618600.2015.1044092 – volume: 32 start-page: 548 issue: 3 year: 2011 ident: 10.1016/j.neuroimage.2018.01.029_bib4 article-title: Reproducibility of single-subject functional connectivity measurements publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A2330 – volume: 63 start-page: 1144 issue: 5 year: 2010 ident: 10.1016/j.neuroimage.2018.01.029_bib30 article-title: Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22361 – volume: 83 start-page: 969 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib28 article-title: Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.07.058 – start-page: 65 year: 1984 ident: 10.1016/j.neuroimage.2018.01.029_bib31 article-title: Regular methods for solving linear and nonlinear ill-posed problems – volume: 13 start-page: 714 issue: 4 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib42 article-title: Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2) publication-title: Cognit. Affect Behav. Neurosci. doi: 10.3758/s13415-013-0196-0 – volume: 10 year: 2016 ident: 10.1016/j.neuroimage.2018.01.029_bib55 article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation publication-title: Front. Neurosci. doi: 10.3389/fnins.2016.00123 – volume: 65 start-page: 374 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib58 article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.10.017 – volume: 80 start-page: 105 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib18 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 35 start-page: 1018 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib48 article-title: Defining language networks from resting-state fMRI for surgical planning–a feasibility study publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22231 – volume: 95 start-page: 232 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib22 article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.03.034 – volume: 80 start-page: 405 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib53 article-title: Learning and comparing functional connectomes across subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.007 – volume: 90 start-page: 449 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib39 article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.11.046 – volume: 52 start-page: 93 issue: 2 year: 1998 ident: 10.1016/j.neuroimage.2018.01.029_bib26 article-title: Markov chain Monte Carlo in practice: a roundtable discussion publication-title: Am. Statistician doi: 10.1080/00031305.1998.10480547 – volume: 112 start-page: 14 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib29 article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.042 – volume: vol 2306 year: 2012 ident: 10.1016/j.neuroimage.2018.01.029_bib57 article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI – start-page: 2334 year: 2010 ident: 10.1016/j.neuroimage.2018.01.029_bib54 article-title: Brain covariance selection: better individual functional connectivity models using population prior – volume: 146 start-page: 959 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib36 article-title: Multisite reliability of MR-based functional connectivity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.10.020 – start-page: 1 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib37 article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility publication-title: Cerebr. Cortex – volume: 47 issue: Suppl. 1 year: 2009 ident: 10.1016/j.neuroimage.2018.01.029_bib5 article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression publication-title: NeuroImage – volume: 19 start-page: 659 issue: 6 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib14 article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism publication-title: Mol. Psychiatr. doi: 10.1038/mp.2013.78 – volume: 36 start-page: 4664 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib33 article-title: Reliability correction for functional connectivity: theory and implementation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22947 – volume: 54 start-page: 875 issue: 2 year: 2011 ident: 10.1016/j.neuroimage.2018.01.029_bib44 article-title: Network modelling methods for fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.08.063 – volume: 158 start-page: 155 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib9 article-title: Comparing test-retest reliability of dynamic functional connectivity methods publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.07.005 – volume: 5 issue: 12 year: 2010 ident: 10.1016/j.neuroimage.2018.01.029_bib16 article-title: Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging publication-title: PLoS One doi: 10.1371/journal.pone.0015710 – volume: 78 start-page: 47 issue: 381 year: 1983 ident: 10.1016/j.neuroimage.2018.01.029_bib32 article-title: Parametric empirical Bayes inference: theory and applications publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1983.10477920 – volume: 70 start-page: 311 issue: 350 year: 1975 ident: 10.1016/j.neuroimage.2018.01.029_bib15 article-title: Data analysis using Stein's estimator and its generalizations publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1975.10479864 – year: 2011 ident: 10.1016/j.neuroimage.2018.01.029_bib47 – volume: 18 start-page: 1664 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib17 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 87 start-page: 657 issue: 3 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib27 article-title: Functional system and areal organization of a highly sampled individual human brain publication-title: Neuron doi: 10.1016/j.neuron.2015.06.037 – volume: 147 start-page: 772 year: 2016 ident: 10.1016/j.neuroimage.2018.01.029_bib12 article-title: Predicting individual brain functional connectivity using a Bayesian hierarchical model publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.048 – volume: 67 start-page: 331 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib13 article-title: Evaluation and calibration of functional network modeling methods based on known anatomical connections publication-title: NeuroImage doi: 10.1016/j.neuroimage.2012.11.006 – volume: 19 start-page: 2209 issue: 10 year: 2009 ident: 10.1016/j.neuroimage.2018.01.029_bib41 article-title: The resting brain: unconstrained yet reliable publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhn256 – volume: 80 start-page: 80 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib50 article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.012 – volume: 37 start-page: 1986 issue: 5 year: 2016 ident: 10.1016/j.neuroimage.2018.01.029_bib2 article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23150 – volume: 21 start-page: 215 issue: 2 year: 1979 ident: 10.1016/j.neuroimage.2018.01.029_bib19 article-title: Generalized cross-validation as a method for choosing a good ridge parameter publication-title: Technometrics doi: 10.1080/00401706.1979.10489751 – volume: 70 start-page: 762 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib23 article-title: Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation publication-title: Biometrics doi: 10.1111/biom.12186 – volume: 103 start-page: 297 issue: 1 year: 2010 ident: 10.1016/j.neuroimage.2018.01.029_bib51 article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization publication-title: J. Neurophysiol. doi: 10.1152/jn.00783.2009 – volume: 80 start-page: 62 year: 2013 ident: 10.1016/j.neuroimage.2018.01.029_bib52 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 24 start-page: 663 issue: 3 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib3 article-title: Tracking whole-brain connectivity dynamics in the resting state publication-title: Cerebr. Cortex doi: 10.1093/cercor/bhs352 – year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib56 article-title: A Bayesian approach for estimating dynamic functional network connectivity in fMRI data publication-title: J. Am. Stat. Assoc. – volume: 34 start-page: 565 issue: 2 year: 2007 ident: 10.1016/j.neuroimage.2018.01.029_bib35 article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2006.09.032 – volume: 102 start-page: 938 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib43 article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.05.043 – volume: vol. 1 start-page: 361 year: 1961 ident: 10.1016/j.neuroimage.2018.01.029_bib25 article-title: Estimation with quadratic loss – volume: 67 start-page: 1210 issue: 5 year: 2012 ident: 10.1016/j.neuroimage.2018.01.029_bib40 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magn. Reson. Med. doi: 10.1002/mrm.23097 – volume: 18 start-page: 1565 issue: 11 year: 2015 ident: 10.1016/j.neuroimage.2018.01.029_bib45 article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nat. Neurosci. doi: 10.1038/nn.4125 – volume: 34 start-page: 561 issue: 4 year: 1992 ident: 10.1016/j.neuroimage.2018.01.029_bib24 article-title: Analysis of discrete ill-posed problems by means of the L-curve publication-title: SIAM Rev. doi: 10.1137/1034115 – start-page: 1 year: 2016 ident: 10.1016/j.neuroimage.2018.01.029_bib49 article-title: Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough? publication-title: Cerebr. Cortex – volume: 32 start-page: 871 issue: 9 year: 2014 ident: 10.1016/j.neuroimage.2018.01.029_bib34 article-title: Scientific rigor and the art of motorcycle maintenance publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3004 – start-page: 460 year: 2017 ident: 10.1016/j.neuroimage.2018.01.029_bib38 article-title: Population-shrinkage of covariance to estimate better brain functional connectivity |
SSID | ssj0009148 |
Score | 2.3980806 |
Snippet | Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods... Reliability of sub ject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation.... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 478 |
SubjectTerms | Bayes Theorem Bayesian analysis Bayesian statistics Brain - anatomy & histology Brain - physiology Connectome Connectome - methods Economic models Estimates Functional connectivity Functional magnetic resonance imaging Humans Image Processing, Computer-Assisted - methods Magnetic Resonance Imaging - methods Measurement error Nerve Net - anatomy & histology Nerve Net - physiology Neurosciences Partial correlation Reliability Resting-state fMRI Shrinkage Statistical analysis Time series |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqHhAXBJRHSqmMxNVkHb_FCapWVaVygUq9Wbtrhy5qN1E2OXDpb2dm7d0SEFIkpFwSe6TYY48_z3wzJuR9EZVSs7lkArAAk7bmzIJNZHWFUSCFCBlzhy-_6PMreXGtrvfIyZALg7TKbPuTTe-tdf5lmmdzumya6VdABnDcwH3DCowtYdltKQ2u8g_3DzQPx2VKh1OCYe_M5kkcr75mZHMHOxdJXjYV8HT_OqL-hqB_Mil_O5rOnpInGVPST-lvPyN7sX1OHl3mqPkBuU-egxgoltRIuYp0MafdpkIvDLtF4hDFEy45BmmN7Jc6vStBkRn_naKbnpZtoEucnb7PapWJdBSduTTeLZu-3gj9XP6MHe1uVnDPhUG_IFdnp99Ozll-d4HVAJ_WDEOn1s651o5HNZdWV2JW1LoMZVlGVUUeZKUNID0etHFRF9HxOlSqjMYFIcRLst8u2viaUHx4IhijTGWdLGQEOKZcIeAapWRdqTAhZphqX-ei5Pg2xq0f2Gc__IOSPCrJF9yDkiaEj5LLVJhjBxk3aNMPiadgKj2cHjvIfhxltxbojtJHw-Lx2Uh00A72Ulir7YS8G5the2PMpmzjYtN55FfCZ2b0hLxKa20cLiA1B_CMwyRurcKxA5YO325pm5u-hLhyCrTiDv9rUG_IY_yGXAqujsj-erWJbwGiravjfg_-Aj0rPoE priority: 102 providerName: Elsevier |
Title | Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918300296 https://dx.doi.org/10.1016/j.neuroimage.2018.01.029 https://www.ncbi.nlm.nih.gov/pubmed/29391241 https://www.proquest.com/docview/2025738868 https://www.proquest.com/docview/1993993276 https://pubmed.ncbi.nlm.nih.gov/PMC5957759 |
Volume | 172 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN8URmUkXo3iJv4SD2hDmwpoFUJM6puV2C7rtKWlaR942d_OXeykDASqVCkP8Ul17nz--e7nO0LeZEEIMZoVLAcswArtONPgE5mrMAskECHj3eGziRyfF5-mYpoCbk2iVXY-sXXUfuEwRo6HdKFyraV-v_zBsGsUZldTC409coCly5DSpaZqW3SXF_EqnMiZhgGJyRP5XW29yPk1rFokeOlYvNP8a3v6G37-yaL8bVs6fUDuJzxJj6IBPCR3Qv2I3D1LGfPH5CZGDYKnWE4j3lOkixltNhVGYNgVkoYo7m4xKEgdMl9c7ClBkRX_nWKInpa1p0u0s3bMapVIdBQDuTRcL-dtrRF6XP4MDW0uVnDGhUk_IeenJ98-jFnqucAcQKc1w7Sp1jMupeFBzAotq3yUOVn6siyDqAL3RSUVoDzupTJBZsFw5ytRBmV8nudPyX69qMNzQrHphFdKqEqbIisCQDFhshyOUKJwlfADorpPbV0qSI59Ma5sxzy7tFslWVSSzbgFJQ0I7yWXsSjHDjKm06btLp2Cm7Swc-wg-66XTcAkAo4dpQ8747HJQTR2a84D8rp_DUsb8zVlHRabxiK3En4jJQfkWbS1frqA0gxAMw4f8ZYV9gOwbPjtN_X8oi0fLowArZgX__9bL8k9nAMSJbg4JPvr1Sa8Avy1roZk7-0NH7ZLbUgOjj5-Hk_geXwy-fL1FzpxN1E |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTgJeEL_pGGAkeLQUJ3ZiCyHEYFPH1gqhTdqbSWyXFW1p17RCe-FP4m_kLk5SBgL1ZVLfkpPq3Pn8-e67O0JeRl5KGY8FSwALMKEsZwp8IrMFZoEkImSsHR6O0sGx-HgiTzbIz7YWBmmVrU-sHbWbWoyR4yVdZolSqXo7u2A4NQqzq-0IjWAWB_7yO1zZqjf7H0C_r-J4b_fo_YA1UwWYBXCwYJgYVGrM01RzL8dCpUUSRzbNXZ7nXhaeO1GkGeAY7tJM-zTymltXyNxn2iUYAAWXvykSuMr0yObO7ujT51WbXy5C8Z1MmOJcN9yhwCirO1ROzsFPIKVMhXah-l8H4t-A90_e5m8H4d4dcrtBsPRdMLm7ZMOX98iNYZOjv09-hDiFdxQbeITKSDod02pZYMyHnSFNieJ5GsKQ1CLXxoYpFhR5-F8pJgVoXjo6Q8uu35nPG9oexdAx9eezSd3dhO7kl76i1ekcbtWw6Afk-Fr08ZD0ymnpHxOKYy5clsmsUFpEwgP4kzpK4NImhS2k65Os_dTGNi3QcRLHmWm5bt_MSkkGlWQibkBJfcI7yVloA7KGjG61adoyV3DMBs6qNWRfd7INFAoQZ03p7dZ4TOOSKrPaQH3yonsMzgQzRHnpp8vKIJsTfnGW9smjYGvdcgEXagCDHD7iFSvsXsBG5VeflJPTumG51BK0orf-_7eek5uDo-GhOdwfHTwht3A9SNPgcpv0FvOlfwrob1E8a7YcJV-ue5f_AqC0cUo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IL4pG2AkeLSIm_hLCCFgVBtjEw9M6ptJbIcVbWnXtEJ74Q_jr-MuTlIGAvVlUt-Sk-rc-fzz3e_uCHmWBCHEsMxYCliAZdpxpsEnMldgFkggQsba4cMjuXecfRiL8Qb52dXCIK2y84mNo_ZThzFyvKQLlWot9YuypUV82h29np0znCCFmdZunEY0kYNw8R2ub_Wr_V3Q9fPhcPT-87s91k4YYA6AwoJhklDrkktpeBBlpmWRDhMnc5_neRBF4D4rpAJMw71UJsgkGO58IfKgjE8xGAru_5pKBcc9psZq1fCXZ7EMT6RMc25aFlHkljW9Kidn4DGQXKZj41Dzr6Pxb-j7J4PztyNxdJPcaLEsfRON7xbZCNVtsnXYZuvvkB8xYhE8xVYesUaSTktaLwuM_rBTJCxRPFljQJI6ZN24OM-CIiP_K0Ut0LzydIY23rwzn7cEPopBZBrOZpOmzwl9m1-EmtYnc7hfw6LvkuMr0cY9sllNq_CAUBx44ZUSqtAmS7IAMFCYJIXrm8hcIfyAqO5TW9c2Q8eZHKe2Y719syslWVSSTbgFJQ0I7yVnsSHIGjKm06btCl7BRVs4tdaQfdnLtqAogp01pXc647Gtc6rtaisNyNP-MbgVzBXlVZgua4u8TvgNlRyQ-9HW-uUCQjQACzl8xEtW2L-ALcsvP6kmJ03rcmEEaMU8_P_fekK2YG_bj_tHB9vkOi4H-Rpc7JDNxXwZHgEMXBSPm_1GyZer3uC_AGjKdBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+estimation+of+subject-level+functional+connectivity+using+full+and+partial+correlation+with+empirical+Bayes+shrinkage&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Mejia%2C+Amanda+F&rft.au=Nebel%2C+Mary+Beth&rft.au=Barber%2C+Anita+D&rft.au=Choe%2C+Ann+S&rft.date=2018-05-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=172&rft.spage=478&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.029&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon |