Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage

Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance r...

Full description

Saved in:
Bibliographic Details
Published inNeuroImage (Orlando, Fla.) Vol. 172; pp. 478 - 491
Main Authors Mejia, Amanda F., Nebel, Mary Beth, Barber, Anita D., Choe, Ann S., Pekar, James J., Caffo, Brian S., Lindquist, Martin A.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.05.2018
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. •Empirical Bayes shrinkage methods for functional connectivity are proposed.•A novel reliability measure analogous to intraclass correlation is proposed.•Shrinkage significantly improves reliability of full and partial correlations.•Partial correlation reliability is highly sensitive to ridge regression penalty.•Partial correlation reliability is worse overall but better for some connections.
AbstractList Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICCMSE) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations. •Empirical Bayes shrinkage methods for functional connectivity are proposed.•A novel reliability measure analogous to intraclass correlation is proposed.•Shrinkage significantly improves reliability of full and partial correlations.•Partial correlation reliability is highly sensitive to ridge regression penalty.•Partial correlation reliability is worse overall but better for some connections.
Reliability of sub ject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods that pool information across subjects to inform estimation of subject-level effects (e.g., Bayesian approaches) have been shown to enhance reliability of subject-level FC. However, fully Bayesian approaches are computationally demanding, while empirical Bayesian approaches typically rely on using repeated measures to estimate the variance components in the model. Here, we avoid the need for repeated measures by proposing a novel measurement error model for FC describing the different sources of variance and error, which we use to perform empirical Bayes shrinkage of subject-level FC towards the group average. In addition, since the traditional intra-class correlation coefficient (ICC) is inappropriate for biased estimates, we propose a new reliability measure denoted the mean squared error intra-class correlation coefficient (ICC MSE ) to properly assess the reliability of the resulting (biased) estimates. We apply the proposed techniques to test-retest resting-state fMRI data on 461 subjects from the Human Connectome Project to estimate connectivity between 100 regions identified through independent components analysis (ICA). We consider both correlation and partial correlation as the measure of FC and assess the benefit of shrinkage for each measure, as well as the effects of scan duration. We find that shrinkage estimates of subject-level FC exhibit substantially greater reliability than traditional estimates across various scan durations, even for the most reliable connections and regardless of connectivity measure. Additionally, we find partial correlation reliability to be highly sensitive to the choice of penalty term, and to be generally worse than that of full correlations except for certain connections and a narrow range of penalty values. This suggests that the penalty needs to be chosen carefully when using partial correlations.
Author Lindquist, Martin A.
Nebel, Mary Beth
Caffo, Brian S.
Barber, Anita D.
Pekar, James J.
Mejia, Amanda F.
Choe, Ann S.
AuthorAffiliation c Department of Neurology, Johns Hopkins University, USA
d Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA
f F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
g Department of Biostatistics, Johns Hopkins University, USA
b Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA
a Department of Statistics, Indiana University, USA
e Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
AuthorAffiliation_xml – name: a Department of Statistics, Indiana University, USA
– name: d Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA
– name: b Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA
– name: g Department of Biostatistics, Johns Hopkins University, USA
– name: c Department of Neurology, Johns Hopkins University, USA
– name: f F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, USA
– name: e Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
Author_xml – sequence: 1
  givenname: Amanda F.
  surname: Mejia
  fullname: Mejia, Amanda F.
  email: afmejia@iu.edu
  organization: Department of Statistics, Indiana University, USA
– sequence: 2
  givenname: Mary Beth
  surname: Nebel
  fullname: Nebel, Mary Beth
  organization: Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA
– sequence: 3
  givenname: Anita D.
  surname: Barber
  fullname: Barber, Anita D.
  organization: Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, USA
– sequence: 4
  givenname: Ann S.
  surname: Choe
  fullname: Choe, Ann S.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
– sequence: 5
  givenname: James J.
  surname: Pekar
  fullname: Pekar, James J.
  organization: Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, USA
– sequence: 6
  givenname: Brian S.
  surname: Caffo
  fullname: Caffo, Brian S.
  organization: Department of Biostatistics, Johns Hopkins University, USA
– sequence: 7
  givenname: Martin A.
  surname: Lindquist
  fullname: Lindquist, Martin A.
  organization: Department of Biostatistics, Johns Hopkins University, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29391241$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNURH_gFZAlNmwS7CRO7A2CVrRUqsQG1pbj3Mw4dexgJ0Gz4dlxOmUKXc0qkc7xp3vPPefJiXUWkgQRnBFMqg99ZmH2Tg9yA1mOCcswyXDOXyRnBHOaclrnJ-s_LVJGCD9NzkPoMcaclOxVcprzgpO8JGfJ79th9G6BFkGYIm_SziLXoTA3PagpNbCAQd1s1apIg5SzNgp60dMOzUHbTVSNQdK2aJR-0g8e78HsWb_0tEUwjNprFaVLuYOAwtZrex-Hf5287KQJ8Obxe5H8uP7y_eprevft5vbq812qKCmntKSsZKwjVcUJ0K5kVVPkWFWylVICbYC0ZVPVmNakrWoOFQZOVNtQCTVvi6K4SD7uuePcDNAqsJOXRow-rux3wkkt_les3oqNWwSNUdaUR8D7R4B3P-eYlRh0UGCMtODmIAiPkfIir6tofffM2rvZx-yCyHFO64KxikXX238nOozy9zTRwPYG5V0IHrqDhWCxtkD04qkFYm2BwETEFjxte3iq9PRwjribNscALvcAiDdZNHgRlAaroNU-Hl-0Th8D-fQMooy2awvuYXcc4g88Bu9X
CitedBy_id crossref_primary_10_1007_s42113_018_0021_5
crossref_primary_10_1109_TBME_2019_2958333
crossref_primary_10_1016_j_neuroimage_2022_119296
crossref_primary_10_3389_fnins_2023_934138
crossref_primary_10_1016_j_neuroimage_2019_116157
crossref_primary_10_3389_fnins_2022_1000863
crossref_primary_10_1002_brb3_70386
crossref_primary_10_1093_biostatistics_kxab015
crossref_primary_10_1016_j_biopsych_2022_01_008
crossref_primary_10_1016_j_neuroimage_2019_03_053
crossref_primary_10_1038_s42003_023_05396_8
crossref_primary_10_1016_j_neuroimage_2022_119229
crossref_primary_10_1093_jrsssc_qlae015
crossref_primary_10_1016_j_neuroimage_2021_117926
crossref_primary_10_3389_fnins_2022_937172
crossref_primary_10_1016_j_neuroimage_2018_04_077
crossref_primary_10_1016_j_neuroimage_2021_118635
crossref_primary_10_1016_j_neuroimage_2024_120806
crossref_primary_10_1016_j_neuroimage_2021_117842
crossref_primary_10_1016_j_neuroimage_2021_118423
crossref_primary_10_1016_j_jneumeth_2021_109424
crossref_primary_10_1016_j_neuroimage_2021_118284
crossref_primary_10_1016_j_cobeha_2020_12_012
Cites_doi 10.1109/TMI.2003.822821
10.1016/j.neuroimage.2013.05.099
10.1016/j.neuroimage.2017.04.054
10.1038/nrn3475
10.1093/biostatistics/kxn028
10.1016/j.neuroimage.2016.10.045
10.1016/j.neuron.2017.07.011
10.1080/10618600.2015.1044092
10.3174/ajnr.A2330
10.1002/mrm.22361
10.1016/j.neuroimage.2013.07.058
10.3758/s13415-013-0196-0
10.3389/fnins.2016.00123
10.1016/j.neuroimage.2012.10.017
10.1016/j.neuroimage.2013.04.127
10.1002/hbm.22231
10.1016/j.neuroimage.2014.03.034
10.1016/j.neuroimage.2013.04.007
10.1016/j.neuroimage.2013.11.046
10.1080/00031305.1998.10480547
10.1016/j.neuroimage.2015.02.042
10.1016/j.neuroimage.2016.10.020
10.1038/mp.2013.78
10.1002/hbm.22947
10.1016/j.neuroimage.2010.08.063
10.1016/j.neuroimage.2017.07.005
10.1371/journal.pone.0015710
10.1080/01621459.1983.10477920
10.1080/01621459.1975.10479864
10.1038/nn.4135
10.1016/j.neuron.2015.06.037
10.1016/j.neuroimage.2016.11.048
10.1016/j.neuroimage.2012.11.006
10.1093/cercor/bhn256
10.1016/j.neuroimage.2013.05.012
10.1002/hbm.23150
10.1080/00401706.1979.10489751
10.1111/biom.12186
10.1152/jn.00783.2009
10.1016/j.neuroimage.2013.05.041
10.1093/cercor/bhs352
10.1016/j.neuroimage.2006.09.032
10.1016/j.neuroimage.2014.05.043
10.1002/mrm.23097
10.1038/nn.4125
10.1137/1034115
10.1038/nbt.3004
ContentType Journal Article
Copyright 2018
Copyright © 2018. Published by Elsevier Inc.
Copyright Elsevier Limited May 15, 2018
Copyright_xml – notice: 2018
– notice: Copyright © 2018. Published by Elsevier Inc.
– notice: Copyright Elsevier Limited May 15, 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7TK
7X7
7XB
88E
88G
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2M
M7P
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
RC3
7X8
5PM
DOI 10.1016/j.neuroimage.2018.01.029
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database ProQuest
Psychology Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology
MEDLINE - Academic
MEDLINE



Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1095-9572
EndPage 491
ExternalDocumentID PMC5957759
29391241
10_1016_j_neuroimage_2018_01_029
S1053811918300296
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIMH NIH HHS
  grantid: K01 MH109766
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
– fundername: NIBIB NIH HHS
  grantid: R01 EB016061
– fundername: NIA NIH HHS
  grantid: P50 AG005146
– fundername: NIMH NIH HHS
  grantid: R01 MH095836
– fundername: NIBIB NIH HHS
  grantid: R01 EB012547
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5RE
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFO
ACGFS
ACIEU
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGWIK
AGYEJ
AHHHB
AHMBA
AIEXJ
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DM4
DU5
DWQXO
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
IHE
J1W
KOM
LG5
LK8
LX8
M1P
M29
M2M
M2V
M41
M7P
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PUEGO
Q38
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SSH
SSN
SSZ
T5K
TEORI
UKHRP
UV1
YK3
Z5R
ZU3
~G-
3V.
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
C45
EFLBG
HMQ
LCYCR
RIG
SNS
ZA5
29N
53G
AAFWJ
AAQXK
AAYXX
ABXDB
ACRPL
ADFGL
ADMUD
ADNMO
ADVLN
ADXHL
AFPKN
AGHFR
AGQPQ
AGRNS
AIGII
AKRLJ
ALIPV
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
FEDTE
FGOYB
G-2
HDW
HEI
HMK
HMO
HVGLF
HZ~
OK1
R2-
SEW
WUQ
XPP
ZMT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FD
8FK
FR3
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c514t-458488f16691e5f486b320c6adaaae5be1d4b670571d679e60e91cdb5ae79d333
IEDL.DBID 7X7
ISSN 1053-8119
1095-9572
IngestDate Thu Aug 21 14:31:08 EDT 2025
Thu Jul 10 22:44:26 EDT 2025
Wed Aug 13 06:11:50 EDT 2025
Mon Jul 21 05:53:27 EDT 2025
Tue Jul 01 03:01:56 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Fri Feb 23 02:47:27 EST 2024
Tue Aug 26 20:08:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Functional connectivity
Bayesian statistics
Resting-state fMRI
Connectome
Shrinkage
Reliability
Measurement error
Partial correlation
Language English
License Copyright © 2018. Published by Elsevier Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-458488f16691e5f486b320c6adaaae5be1d4b670571d679e60e91cdb5ae79d333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 29391241
PQID 2025738868
PQPubID 2031077
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5957759
proquest_miscellaneous_1993993276
proquest_journals_2025738868
pubmed_primary_29391241
crossref_primary_10_1016_j_neuroimage_2018_01_029
crossref_citationtrail_10_1016_j_neuroimage_2018_01_029
elsevier_sciencedirect_doi_10_1016_j_neuroimage_2018_01_029
elsevier_clinicalkey_doi_10_1016_j_neuroimage_2018_01_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-15
PublicationDateYYYYMMDD 2018-05-15
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Amsterdam
PublicationTitle NeuroImage (Orlando, Fla.)
PublicationTitleAlternate Neuroimage
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: Elsevier Limited
References Hansen (bib24) 1992; 34
Xu, Moeller, Strupp, Auerbach, Chen, Feinberg, Ugurbil, Yacoub (bib57) 2012; vol 2306
Murphy, Bodurka, Bandettini (bib35) 2007; 34
Morozov (bib31) 1984
Choe, Nebel, Barber, Cohen, Xu, Pekar, Caffo, Lindquist (bib9) 2017; 158
Kass, Carlin, Gelman, Neal (bib26) 1998; 52
Glasser, Sotiropoulos, Wilson, Coalson, Fischl, Andersson, Xu, Jbabdi, Webster, Polimeni (bib18) 2013; 80
Efron, Morris (bib15) 1975; 70
Warnick, Guindani, Erhardt, Allen, Calhoun, Vannucci (bib56) 2017
Shou, Eloyan, Nebel, Mejia, Pekar, Mostofsky, Caffo, Lindquist, Crainiceanu (bib43) 2014; 102
Wang, Kang, Kemmer, Guo (bib55) 2016; 10
Shehzad, Kelly, Reiss, Gee, Gotimer, Uddin, Lee, Margulies, Roy, Biswal (bib41) 2009; 19
Di Martino, Yan, Li, Denio, Castellanos, Alaerts, Anderson, Assaf, Bookheimer, Dapretto (bib14) 2014; 19
Beckmann, Smith (bib6) 2004; 23
Munafò, Noble, Browne, Brunner, Button, Ferreira, Holmans, Langbehn, Lewis, Lindquist (bib34) 2014; 32
Gordon, Laumann, Gilmore, Newbold, Greene, Berg, Ortega, Hoyt-Drazen, Gratton, Sun (bib21) 2017; 95
Mejia, Nebel, Shou, Crainiceanu, Pekar, Mostofsky, Caffo, Lindquist (bib29) 2015; 112
Golub, Heath, Wahba (bib19) 1979; 21
Ha, Sun (bib23) 2014; 70
Shou, Eloyan, Lee, Zipunnikov, Crainiceanu, Nebel, Caffo, Lindquist, Crainiceanu (bib42) 2013; 13
Noble, Scheinost, Finn, Shen, Papademetris, McEwen, Bearden, Addington, Goodyear, Cadenhead (bib36) 2017; 146
Noble, Spann, Tokoglu, Shen, Constable, Scheinost (bib37) 2017
Uğurbil, Xu, Auerbach, Moeller, Vu, Duarte-Carvajalino, Lenglet, Wu, Schmitter, Van de Moortele (bib50) 2013; 80
Varoquaux, Gramfort, Poline, Thirion (bib54) 2010
Feinberg, Moeller, Smith, Auerbach, Ramanna, Gunther, Glasser, Miller, Ugurbil, Yacoub (bib16) 2010; 5
Thompson (bib47) 2011
Su, Caffo, Garrett-Mayer, Bassett (bib46) 2008; 10
Laumann, Gordon, Adeyemo, Snyder, Joo, Chen, Gilmore, McDermott, Nelson, Dosenbach (bib27) 2015; 87
Tie, Rigolo, Norton, Huang, Wu, Orringer, Mukundan, Golby (bib48) 2014; 35
Tomasi, Shokri-Kojori, Volkow (bib49) 2016
Finn, Shen, Scheinost, Rosenberg, Huang, Chun, Papademetris, Constable (bib17) 2015; 18
Griffanti, Salimi-Khorshidi, Beckmann, Auerbach, Douaud, Sexton, Zsoldos, Ebmeier, Filippini, Mackay (bib22) 2014; 95
Salimi-Khorshidi, Douaud, Beckmann, Glasser, Griffanti, Smith (bib39) 2014; 90
Van Essen, Smith, Barch, Behrens, Yacoub, Ugurbil (bib52) 2013; 80
Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (bib40) 2012; 67
Birn, Molloy, Patriat, Parker, Meier, Kirk, Nair, Meyerand, Prabhakaran (bib7) 2013; 83
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, Munafò (bib8) 2013; 14
Dai, Guo, Initiative (bib12) 2016; 147
Liao, Xia, Xu, Dai, Cao, Niu, Zuo, Zang, He (bib28) 2013; 83
Beckmann, Mackay, Filippini, Smith (bib5) 2009; 47
Van Dijk, Hedden, Venkataraman, Evans, Lazar, Buckner (bib51) 2010; 103
Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Uğurbil (bib30) 2010; 63
James, Stein (bib25) 1961; vol. 1
Smith, Nichols, Vidaurre, Winkler, Behrens, Glasser, Ugurbil, Barch, Van Essen, Miller (bib45) 2015; 18
Varoquaux, Craddock (bib53) 2013; 80
Allen, Damaraju, Plis, Erhardt, Eichele, Calhoun (bib3) 2014; 24
Zuo, Xu, Jiang, Yang, Cao, He, Zang, Castellanos, Milham (bib58) 2013; 65
Mueller, Wang, Fox, Pan, Lu, Li, Sun, Buckner, Liu (bib33) 2015; 36
Dawson, Cha, Lewis, Mendola, Shmuel (bib13) 2013; 67
Abraham, Milham, Di Martino, Craddock, Samaras, Thirion, Varoquaux (bib1) 2017; 147
Morris (bib32) 1983; 78
Collaboration (bib11) 2015; 349
Rahim, Thirion, Varoquaux (bib38) 2017
Chong, Bhushan, Joshi, Choi, Haldar, Shattuck, Spreng, Leahy (bib10) 2017; 156
Smith, Miller, Salimi-Khorshidi, Webster, Beckmann, Nichols, Ramsey, Woolrich (bib44) 2011; 54
Airan, Vogelstein, Pillai, Caffo, Pekar, Sair (bib2) 2016; 37
Gong, Flegal (bib20) 2016; 25
Anderson, Ferguson, Lopez-Larson, Yurgelun-Todd (bib4) 2011; 32
Griffanti (10.1016/j.neuroimage.2018.01.029_bib22) 2014; 95
Setsompop (10.1016/j.neuroimage.2018.01.029_bib40) 2012; 67
Birn (10.1016/j.neuroimage.2018.01.029_bib7) 2013; 83
Button (10.1016/j.neuroimage.2018.01.029_bib8) 2013; 14
Beckmann (10.1016/j.neuroimage.2018.01.029_bib5) 2009; 47
Varoquaux (10.1016/j.neuroimage.2018.01.029_bib54) 2010
Shou (10.1016/j.neuroimage.2018.01.029_bib42) 2013; 13
Varoquaux (10.1016/j.neuroimage.2018.01.029_bib53) 2013; 80
Laumann (10.1016/j.neuroimage.2018.01.029_bib27) 2015; 87
Allen (10.1016/j.neuroimage.2018.01.029_bib3) 2014; 24
Dawson (10.1016/j.neuroimage.2018.01.029_bib13) 2013; 67
Kass (10.1016/j.neuroimage.2018.01.029_bib26) 1998; 52
Choe (10.1016/j.neuroimage.2018.01.029_bib9) 2017; 158
Van Dijk (10.1016/j.neuroimage.2018.01.029_bib51) 2010; 103
Warnick (10.1016/j.neuroimage.2018.01.029_bib56) 2017
Morris (10.1016/j.neuroimage.2018.01.029_bib32) 1983; 78
Hansen (10.1016/j.neuroimage.2018.01.029_bib24) 1992; 34
Anderson (10.1016/j.neuroimage.2018.01.029_bib4) 2011; 32
Salimi-Khorshidi (10.1016/j.neuroimage.2018.01.029_bib39) 2014; 90
Shehzad (10.1016/j.neuroimage.2018.01.029_bib41) 2009; 19
Shou (10.1016/j.neuroimage.2018.01.029_bib43) 2014; 102
Airan (10.1016/j.neuroimage.2018.01.029_bib2) 2016; 37
Glasser (10.1016/j.neuroimage.2018.01.029_bib18) 2013; 80
Chong (10.1016/j.neuroimage.2018.01.029_bib10) 2017; 156
Su (10.1016/j.neuroimage.2018.01.029_bib46) 2008; 10
Abraham (10.1016/j.neuroimage.2018.01.029_bib1) 2017; 147
Feinberg (10.1016/j.neuroimage.2018.01.029_bib16) 2010; 5
James (10.1016/j.neuroimage.2018.01.029_bib25) 1961; vol. 1
Finn (10.1016/j.neuroimage.2018.01.029_bib17) 2015; 18
Dai (10.1016/j.neuroimage.2018.01.029_bib12) 2016; 147
Smith (10.1016/j.neuroimage.2018.01.029_bib45) 2015; 18
Golub (10.1016/j.neuroimage.2018.01.029_bib19) 1979; 21
Gordon (10.1016/j.neuroimage.2018.01.029_bib21) 2017; 95
Ha (10.1016/j.neuroimage.2018.01.029_bib23) 2014; 70
Collaboration (10.1016/j.neuroimage.2018.01.029_bib11) 2015; 349
Murphy (10.1016/j.neuroimage.2018.01.029_bib35) 2007; 34
Mejia (10.1016/j.neuroimage.2018.01.029_bib29) 2015; 112
Moeller (10.1016/j.neuroimage.2018.01.029_bib30) 2010; 63
Noble (10.1016/j.neuroimage.2018.01.029_bib36) 2017; 146
Wang (10.1016/j.neuroimage.2018.01.029_bib55) 2016; 10
Zuo (10.1016/j.neuroimage.2018.01.029_bib58) 2013; 65
Di Martino (10.1016/j.neuroimage.2018.01.029_bib14) 2014; 19
Rahim (10.1016/j.neuroimage.2018.01.029_bib38) 2017
Munafò (10.1016/j.neuroimage.2018.01.029_bib34) 2014; 32
Gong (10.1016/j.neuroimage.2018.01.029_bib20) 2016; 25
Efron (10.1016/j.neuroimage.2018.01.029_bib15) 1975; 70
Morozov (10.1016/j.neuroimage.2018.01.029_bib31) 1984
Noble (10.1016/j.neuroimage.2018.01.029_bib37) 2017
Mueller (10.1016/j.neuroimage.2018.01.029_bib33) 2015; 36
Tie (10.1016/j.neuroimage.2018.01.029_bib48) 2014; 35
Liao (10.1016/j.neuroimage.2018.01.029_bib28) 2013; 83
Xu (10.1016/j.neuroimage.2018.01.029_bib57) 2012; vol 2306
Uğurbil (10.1016/j.neuroimage.2018.01.029_bib50) 2013; 80
Beckmann (10.1016/j.neuroimage.2018.01.029_bib6) 2004; 23
Smith (10.1016/j.neuroimage.2018.01.029_bib44) 2011; 54
Tomasi (10.1016/j.neuroimage.2018.01.029_bib49) 2016
Van Essen (10.1016/j.neuroimage.2018.01.029_bib52) 2013; 80
Thompson (10.1016/j.neuroimage.2018.01.029_bib47) 2011
References_xml – volume: 19
  start-page: 2209
  year: 2009
  end-page: 2229
  ident: bib41
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebr. Cortex
– start-page: 1
  year: 2016
  end-page: 13
  ident: bib49
  article-title: Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough?
  publication-title: Cerebr. Cortex
– volume: 158
  start-page: 155
  year: 2017
  end-page: 175
  ident: bib9
  article-title: Comparing test-retest reliability of dynamic functional connectivity methods
  publication-title: NeuroImage
– start-page: 460
  year: 2017
  end-page: 468
  ident: bib38
  article-title: Population-shrinkage of covariance to estimate better brain functional connectivity
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 25
  start-page: 684
  year: 2016
  end-page: 700
  ident: bib20
  article-title: A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo
  publication-title: J. Comput. Graph Stat.
– start-page: 2334
  year: 2010
  end-page: 2342
  ident: bib54
  article-title: Brain covariance selection: better individual functional connectivity models using population prior
  publication-title: Advances in Neural Information Processing Systems
– volume: 83
  start-page: 969
  year: 2013
  end-page: 982
  ident: bib28
  article-title: Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study
  publication-title: NeuroImage
– volume: 37
  start-page: 1986
  year: 2016
  end-page: 1997
  ident: bib2
  article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI
  publication-title: Hum. Brain Mapp.
– volume: 102
  start-page: 938
  year: 2014
  end-page: 944
  ident: bib43
  article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI
  publication-title: NeuroImage
– volume: 146
  start-page: 959
  year: 2017
  end-page: 970
  ident: bib36
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: NeuroImage
– volume: 156
  start-page: 87
  year: 2017
  end-page: 100
  ident: bib10
  article-title: Individual parcellation of resting fMRI with a group functional connectivity prior
  publication-title: NeuroImage
– volume: 36
  start-page: 4664
  year: 2015
  end-page: 4680
  ident: bib33
  article-title: Reliability correction for functional connectivity: theory and implementation
  publication-title: Hum. Brain Mapp.
– start-page: 65
  year: 1984
  end-page: 122
  ident: bib31
  article-title: Regular methods for solving linear and nonlinear ill-posed problems
  publication-title: Methods for Solving Incorrectly Posed Problems
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: bib18
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
– volume: 95
  start-page: 791
  year: 2017
  end-page: 807
  ident: bib21
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
– volume: 63
  start-page: 1144
  year: 2010
  end-page: 1153
  ident: bib30
  article-title: Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
– volume: 5
  year: 2010
  ident: bib16
  article-title: Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging
  publication-title: PLoS One
– volume: 87
  start-page: 657
  year: 2015
  end-page: 670
  ident: bib27
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
– volume: 147
  start-page: 736
  year: 2017
  end-page: 745
  ident: bib1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
– volume: 23
  start-page: 137
  year: 2004
  end-page: 152
  ident: bib6
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: Med. Imaging IEEE Trans.
– volume: 35
  start-page: 1018
  year: 2014
  end-page: 1030
  ident: bib48
  article-title: Defining language networks from resting-state fMRI for surgical planning–a feasibility study
  publication-title: Hum. Brain Mapp.
– volume: 103
  start-page: 297
  year: 2010
  end-page: 321
  ident: bib51
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
– volume: 67
  start-page: 331
  year: 2013
  end-page: 343
  ident: bib13
  article-title: Evaluation and calibration of functional network modeling methods based on known anatomical connections
  publication-title: NeuroImage
– start-page: 1
  year: 2017
  end-page: 15
  ident: bib37
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebr. Cortex
– volume: 13
  start-page: 714
  year: 2013
  end-page: 724
  ident: bib42
  article-title: Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2)
  publication-title: Cognit. Affect Behav. Neurosci.
– volume: 78
  start-page: 47
  year: 1983
  end-page: 55
  ident: bib32
  article-title: Parametric empirical Bayes inference: theory and applications
  publication-title: J. Am. Stat. Assoc.
– volume: 34
  start-page: 561
  year: 1992
  end-page: 580
  ident: bib24
  article-title: Analysis of discrete ill-posed problems by means of the L-curve
  publication-title: SIAM Rev.
– volume: 65
  start-page: 374
  year: 2013
  end-page: 386
  ident: bib58
  article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space
  publication-title: NeuroImage
– volume: 32
  start-page: 548
  year: 2011
  end-page: 555
  ident: bib4
  article-title: Reproducibility of single-subject functional connectivity measurements
  publication-title: Am. J. Neuroradiol.
– volume: 70
  start-page: 311
  year: 1975
  end-page: 319
  ident: bib15
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J. Am. Stat. Assoc.
– year: 2017
  ident: bib56
  article-title: A Bayesian approach for estimating dynamic functional network connectivity in fMRI data
  publication-title: J. Am. Stat. Assoc.
– volume: 19
  start-page: 659
  year: 2014
  ident: bib14
  article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
– volume: 54
  start-page: 875
  year: 2011
  end-page: 891
  ident: bib44
  article-title: Network modelling methods for fMRI
  publication-title: NeuroImage
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: bib52
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
– volume: 67
  start-page: 1210
  year: 2012
  end-page: 1224
  ident: bib40
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
– volume: 52
  start-page: 93
  year: 1998
  end-page: 100
  ident: bib26
  article-title: Markov chain Monte Carlo in practice: a roundtable discussion
  publication-title: Am. Statistician
– volume: 147
  start-page: 772
  year: 2016
  end-page: 787
  ident: bib12
  article-title: Predicting individual brain functional connectivity using a Bayesian hierarchical model
  publication-title: NeuroImage
– volume: 32
  start-page: 871
  year: 2014
  end-page: 873
  ident: bib34
  article-title: Scientific rigor and the art of motorcycle maintenance
  publication-title: Nat. Biotechnol.
– volume: 83
  start-page: 550
  year: 2013
  end-page: 558
  ident: bib7
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: NeuroImage
– volume: 112
  start-page: 14
  year: 2015
  end-page: 29
  ident: bib29
  article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators
  publication-title: NeuroImage
– volume: 47
  year: 2009
  ident: bib5
  article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression
  publication-title: NeuroImage
– volume: 24
  start-page: 663
  year: 2014
  end-page: 676
  ident: bib3
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
– volume: 18
  start-page: 1664
  year: 2015
  end-page: 1671
  ident: bib17
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
– volume: 80
  start-page: 405
  year: 2013
  end-page: 415
  ident: bib53
  article-title: Learning and comparing functional connectomes across subjects
  publication-title: NeuroImage
– volume: 10
  year: 2016
  ident: bib55
  article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation
  publication-title: Front. Neurosci.
– volume: 70
  start-page: 762
  year: 2014
  end-page: 770
  ident: bib23
  article-title: Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation
  publication-title: Biometrics
– volume: vol. 1
  start-page: 361
  year: 1961
  end-page: 379
  ident: bib25
  article-title: Estimation with quadratic loss
  publication-title: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 90
  start-page: 449
  year: 2014
  end-page: 468
  ident: bib39
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
– volume: vol 2306
  year: 2012
  ident: bib57
  article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI
  publication-title: Proceedings of the 20th Annual Meeting of ISMRM
– volume: 14
  start-page: 365
  year: 2013
  end-page: 376
  ident: bib8
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
– volume: 18
  start-page: 1565
  year: 2015
  end-page: 1567
  ident: bib45
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
– year: 2011
  ident: bib47
  article-title: Slice Sampling with Multivariate Steps
– volume: 80
  start-page: 80
  year: 2013
  end-page: 104
  ident: bib50
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: NeuroImage
– volume: 349
  year: 2015
  ident: bib11
  article-title: Estimating the reproducibility of psychological science
  publication-title: Science
– volume: 10
  start-page: 219
  year: 2008
  end-page: 227
  ident: bib46
  article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
  publication-title: Biostatistics
– volume: 21
  start-page: 215
  year: 1979
  end-page: 223
  ident: bib19
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
– volume: 34
  start-page: 565
  year: 2007
  end-page: 574
  ident: bib35
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
– volume: 95
  start-page: 232
  year: 2014
  end-page: 247
  ident: bib22
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
– volume: 23
  start-page: 137
  issue: 2
  year: 2004
  ident: 10.1016/j.neuroimage.2018.01.029_bib6
  article-title: Probabilistic independent component analysis for functional magnetic resonance imaging
  publication-title: Med. Imaging IEEE Trans.
  doi: 10.1109/TMI.2003.822821
– volume: 83
  start-page: 550
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib7
  article-title: The effect of scan length on the reliability of resting-state fMRI connectivity estimates
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.099
– volume: 349
  issue: 6251
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib11
  article-title: Estimating the reproducibility of psychological science
  publication-title: Science
– volume: 156
  start-page: 87
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib10
  article-title: Individual parcellation of resting fMRI with a group functional connectivity prior
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.054
– volume: 14
  start-page: 365
  issue: 5
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib8
  article-title: Power failure: why small sample size undermines the reliability of neuroscience
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
– volume: 10
  start-page: 219
  issue: 2
  year: 2008
  ident: 10.1016/j.neuroimage.2018.01.029_bib46
  article-title: Modified test statistics by inter-voxel variance shrinkage with an application to fMRI
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxn028
– volume: 147
  start-page: 736
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib1
  article-title: Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.045
– volume: 95
  start-page: 791
  issue: 4
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib21
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.011
– volume: 25
  start-page: 684
  issue: 3
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.029_bib20
  article-title: A practical sequential stopping rule for high-dimensional Markov chain Monte Carlo
  publication-title: J. Comput. Graph Stat.
  doi: 10.1080/10618600.2015.1044092
– volume: 32
  start-page: 548
  issue: 3
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.029_bib4
  article-title: Reproducibility of single-subject functional connectivity measurements
  publication-title: Am. J. Neuroradiol.
  doi: 10.3174/ajnr.A2330
– volume: 63
  start-page: 1144
  issue: 5
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.029_bib30
  article-title: Multiband multislice GE-EPI at 7 Tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22361
– volume: 83
  start-page: 969
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib28
  article-title: Functional brain hubs and their test–retest reliability: a multiband resting-state functional MRI study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.07.058
– start-page: 65
  year: 1984
  ident: 10.1016/j.neuroimage.2018.01.029_bib31
  article-title: Regular methods for solving linear and nonlinear ill-posed problems
– volume: 13
  start-page: 714
  issue: 4
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib42
  article-title: Quantifying the reliability of image replication studies: the image intraclass correlation coefficient (I2C2)
  publication-title: Cognit. Affect Behav. Neurosci.
  doi: 10.3758/s13415-013-0196-0
– volume: 10
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.029_bib55
  article-title: An efficient and reliable statistical method for estimating functional connectivity in large scale brain networks using partial correlation
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2016.00123
– volume: 65
  start-page: 374
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib58
  article-title: Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.10.017
– volume: 80
  start-page: 105
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib18
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 35
  start-page: 1018
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib48
  article-title: Defining language networks from resting-state fMRI for surgical planning–a feasibility study
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22231
– volume: 95
  start-page: 232
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib22
  article-title: ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.03.034
– volume: 80
  start-page: 405
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib53
  article-title: Learning and comparing functional connectomes across subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.007
– volume: 90
  start-page: 449
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib39
  article-title: Automatic denoising of functional MRI data: combining independent component analysis and hierarchical fusion of classifiers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.11.046
– volume: 52
  start-page: 93
  issue: 2
  year: 1998
  ident: 10.1016/j.neuroimage.2018.01.029_bib26
  article-title: Markov chain Monte Carlo in practice: a roundtable discussion
  publication-title: Am. Statistician
  doi: 10.1080/00031305.1998.10480547
– volume: 112
  start-page: 14
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib29
  article-title: Improving reliability of subject-level resting-state fMRI parcellation with shrinkage estimators
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.042
– volume: vol 2306
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.029_bib57
  article-title: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI
– start-page: 2334
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.029_bib54
  article-title: Brain covariance selection: better individual functional connectivity models using population prior
– volume: 146
  start-page: 959
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib36
  article-title: Multisite reliability of MR-based functional connectivity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.10.020
– start-page: 1
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib37
  article-title: Influences on the test–retest reliability of functional connectivity MRI and its relationship with behavioral utility
  publication-title: Cerebr. Cortex
– volume: 47
  issue: Suppl. 1
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.029_bib5
  article-title: Group comparison of resting-state fMRI data using multi-subject ICA and dual regression
  publication-title: NeuroImage
– volume: 19
  start-page: 659
  issue: 6
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib14
  article-title: The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2013.78
– volume: 36
  start-page: 4664
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib33
  article-title: Reliability correction for functional connectivity: theory and implementation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22947
– volume: 54
  start-page: 875
  issue: 2
  year: 2011
  ident: 10.1016/j.neuroimage.2018.01.029_bib44
  article-title: Network modelling methods for fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.08.063
– volume: 158
  start-page: 155
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib9
  article-title: Comparing test-retest reliability of dynamic functional connectivity methods
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.07.005
– volume: 5
  issue: 12
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.029_bib16
  article-title: Multiplexed echo planar imaging for sub-second whole brain fMRI and fast diffusion imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0015710
– volume: 78
  start-page: 47
  issue: 381
  year: 1983
  ident: 10.1016/j.neuroimage.2018.01.029_bib32
  article-title: Parametric empirical Bayes inference: theory and applications
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1983.10477920
– volume: 70
  start-page: 311
  issue: 350
  year: 1975
  ident: 10.1016/j.neuroimage.2018.01.029_bib15
  article-title: Data analysis using Stein's estimator and its generalizations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1975.10479864
– year: 2011
  ident: 10.1016/j.neuroimage.2018.01.029_bib47
– volume: 18
  start-page: 1664
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib17
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 87
  start-page: 657
  issue: 3
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib27
  article-title: Functional system and areal organization of a highly sampled individual human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.06.037
– volume: 147
  start-page: 772
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.029_bib12
  article-title: Predicting individual brain functional connectivity using a Bayesian hierarchical model
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.048
– volume: 67
  start-page: 331
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib13
  article-title: Evaluation and calibration of functional network modeling methods based on known anatomical connections
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2012.11.006
– volume: 19
  start-page: 2209
  issue: 10
  year: 2009
  ident: 10.1016/j.neuroimage.2018.01.029_bib41
  article-title: The resting brain: unconstrained yet reliable
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhn256
– volume: 80
  start-page: 80
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib50
  article-title: Pushing spatial and temporal resolution for functional and diffusion MRI in the Human Connectome Project
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.012
– volume: 37
  start-page: 1986
  issue: 5
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.029_bib2
  article-title: Factors affecting characterization and localization of interindividual differences in functional connectivity using MRI
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23150
– volume: 21
  start-page: 215
  issue: 2
  year: 1979
  ident: 10.1016/j.neuroimage.2018.01.029_bib19
  article-title: Generalized cross-validation as a method for choosing a good ridge parameter
  publication-title: Technometrics
  doi: 10.1080/00401706.1979.10489751
– volume: 70
  start-page: 762
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib23
  article-title: Partial correlation matrix estimation using ridge penalty followed by thresholding and re-estimation
  publication-title: Biometrics
  doi: 10.1111/biom.12186
– volume: 103
  start-page: 297
  issue: 1
  year: 2010
  ident: 10.1016/j.neuroimage.2018.01.029_bib51
  article-title: Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00783.2009
– volume: 80
  start-page: 62
  year: 2013
  ident: 10.1016/j.neuroimage.2018.01.029_bib52
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 24
  start-page: 663
  issue: 3
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib3
  article-title: Tracking whole-brain connectivity dynamics in the resting state
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhs352
– year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib56
  article-title: A Bayesian approach for estimating dynamic functional network connectivity in fMRI data
  publication-title: J. Am. Stat. Assoc.
– volume: 34
  start-page: 565
  issue: 2
  year: 2007
  ident: 10.1016/j.neuroimage.2018.01.029_bib35
  article-title: How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2006.09.032
– volume: 102
  start-page: 938
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib43
  article-title: Shrinkage prediction of seed-voxel brain connectivity using resting state fMRI
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.05.043
– volume: vol. 1
  start-page: 361
  year: 1961
  ident: 10.1016/j.neuroimage.2018.01.029_bib25
  article-title: Estimation with quadratic loss
– volume: 67
  start-page: 1210
  issue: 5
  year: 2012
  ident: 10.1016/j.neuroimage.2018.01.029_bib40
  article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.23097
– volume: 18
  start-page: 1565
  issue: 11
  year: 2015
  ident: 10.1016/j.neuroimage.2018.01.029_bib45
  article-title: A positive-negative mode of population covariation links brain connectivity, demographics and behavior
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4125
– volume: 34
  start-page: 561
  issue: 4
  year: 1992
  ident: 10.1016/j.neuroimage.2018.01.029_bib24
  article-title: Analysis of discrete ill-posed problems by means of the L-curve
  publication-title: SIAM Rev.
  doi: 10.1137/1034115
– start-page: 1
  year: 2016
  ident: 10.1016/j.neuroimage.2018.01.029_bib49
  article-title: Temporal evolution of brain functional connectivity metrics: could 7 min of rest be enough?
  publication-title: Cerebr. Cortex
– volume: 32
  start-page: 871
  issue: 9
  year: 2014
  ident: 10.1016/j.neuroimage.2018.01.029_bib34
  article-title: Scientific rigor and the art of motorcycle maintenance
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3004
– start-page: 460
  year: 2017
  ident: 10.1016/j.neuroimage.2018.01.029_bib38
  article-title: Population-shrinkage of covariance to estimate better brain functional connectivity
SSID ssj0009148
Score 2.3980806
Snippet Reliability of subject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation. Methods...
Reliability of sub ject-level resting-state functional connectivity (FC) is determined in part by the statistical techniques employed in its estimation....
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 478
SubjectTerms Bayes Theorem
Bayesian analysis
Bayesian statistics
Brain - anatomy & histology
Brain - physiology
Connectome
Connectome - methods
Economic models
Estimates
Functional connectivity
Functional magnetic resonance imaging
Humans
Image Processing, Computer-Assisted - methods
Magnetic Resonance Imaging - methods
Measurement error
Nerve Net - anatomy & histology
Nerve Net - physiology
Neurosciences
Partial correlation
Reliability
Resting-state fMRI
Shrinkage
Statistical analysis
Time series
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqHhAXBJRHSqmMxNVkHb_FCapWVaVygUq9Wbtrhy5qN1E2OXDpb2dm7d0SEFIkpFwSe6TYY48_z3wzJuR9EZVSs7lkArAAk7bmzIJNZHWFUSCFCBlzhy-_6PMreXGtrvfIyZALg7TKbPuTTe-tdf5lmmdzumya6VdABnDcwH3DCowtYdltKQ2u8g_3DzQPx2VKh1OCYe_M5kkcr75mZHMHOxdJXjYV8HT_OqL-hqB_Mil_O5rOnpInGVPST-lvPyN7sX1OHl3mqPkBuU-egxgoltRIuYp0MafdpkIvDLtF4hDFEy45BmmN7Jc6vStBkRn_naKbnpZtoEucnb7PapWJdBSduTTeLZu-3gj9XP6MHe1uVnDPhUG_IFdnp99Ozll-d4HVAJ_WDEOn1s651o5HNZdWV2JW1LoMZVlGVUUeZKUNID0etHFRF9HxOlSqjMYFIcRLst8u2viaUHx4IhijTGWdLGQEOKZcIeAapWRdqTAhZphqX-ei5Pg2xq0f2Gc__IOSPCrJF9yDkiaEj5LLVJhjBxk3aNMPiadgKj2cHjvIfhxltxbojtJHw-Lx2Uh00A72Ulir7YS8G5the2PMpmzjYtN55FfCZ2b0hLxKa20cLiA1B_CMwyRurcKxA5YO325pm5u-hLhyCrTiDv9rUG_IY_yGXAqujsj-erWJbwGiravjfg_-Aj0rPoE
  priority: 102
  providerName: Elsevier
Title Improved estimation of subject-level functional connectivity using full and partial correlation with empirical Bayes shrinkage
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1053811918300296
https://dx.doi.org/10.1016/j.neuroimage.2018.01.029
https://www.ncbi.nlm.nih.gov/pubmed/29391241
https://www.proquest.com/docview/2025738868
https://www.proquest.com/docview/1993993276
https://pubmed.ncbi.nlm.nih.gov/PMC5957759
Volume 172
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfYJiFeEN8URmUkXo3iJv4SD2hDmwpoFUJM6puV2C7rtKWlaR942d_OXeykDASqVCkP8Ul17nz--e7nO0LeZEEIMZoVLAcswArtONPgE5mrMAskECHj3eGziRyfF5-mYpoCbk2iVXY-sXXUfuEwRo6HdKFyraV-v_zBsGsUZldTC409coCly5DSpaZqW3SXF_EqnMiZhgGJyRP5XW29yPk1rFokeOlYvNP8a3v6G37-yaL8bVs6fUDuJzxJj6IBPCR3Qv2I3D1LGfPH5CZGDYKnWE4j3lOkixltNhVGYNgVkoYo7m4xKEgdMl9c7ClBkRX_nWKInpa1p0u0s3bMapVIdBQDuTRcL-dtrRF6XP4MDW0uVnDGhUk_IeenJ98-jFnqucAcQKc1w7Sp1jMupeFBzAotq3yUOVn6siyDqAL3RSUVoDzupTJBZsFw5ytRBmV8nudPyX69qMNzQrHphFdKqEqbIisCQDFhshyOUKJwlfADorpPbV0qSI59Ma5sxzy7tFslWVSSzbgFJQ0I7yWXsSjHDjKm06btLp2Cm7Swc-wg-66XTcAkAo4dpQ8747HJQTR2a84D8rp_DUsb8zVlHRabxiK3En4jJQfkWbS1frqA0gxAMw4f8ZYV9gOwbPjtN_X8oi0fLowArZgX__9bL8k9nAMSJbg4JPvr1Sa8Avy1roZk7-0NH7ZLbUgOjj5-Hk_geXwy-fL1FzpxN1E
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELamTgJeEL_pGGAkeLQUJ3ZiCyHEYFPH1gqhTdqbSWyXFW1p17RCe-FP4m_kLk5SBgL1ZVLfkpPq3Pn8-e67O0JeRl5KGY8FSwALMKEsZwp8IrMFZoEkImSsHR6O0sGx-HgiTzbIz7YWBmmVrU-sHbWbWoyR4yVdZolSqXo7u2A4NQqzq-0IjWAWB_7yO1zZqjf7H0C_r-J4b_fo_YA1UwWYBXCwYJgYVGrM01RzL8dCpUUSRzbNXZ7nXhaeO1GkGeAY7tJM-zTymltXyNxn2iUYAAWXvykSuMr0yObO7ujT51WbXy5C8Z1MmOJcN9yhwCirO1ROzsFPIKVMhXah-l8H4t-A90_e5m8H4d4dcrtBsPRdMLm7ZMOX98iNYZOjv09-hDiFdxQbeITKSDod02pZYMyHnSFNieJ5GsKQ1CLXxoYpFhR5-F8pJgVoXjo6Q8uu35nPG9oexdAx9eezSd3dhO7kl76i1ekcbtWw6Afk-Fr08ZD0ymnpHxOKYy5clsmsUFpEwgP4kzpK4NImhS2k65Os_dTGNi3QcRLHmWm5bt_MSkkGlWQibkBJfcI7yVloA7KGjG61adoyV3DMBs6qNWRfd7INFAoQZ03p7dZ4TOOSKrPaQH3yonsMzgQzRHnpp8vKIJsTfnGW9smjYGvdcgEXagCDHD7iFSvsXsBG5VeflJPTumG51BK0orf-_7eek5uDo-GhOdwfHTwht3A9SNPgcpv0FvOlfwrob1E8a7YcJV-ue5f_AqC0cUo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELemIU28IL4pG2AkeLSIm_hLCCFgVBtjEw9M6ptJbIcVbWnXtEJ74Q_jr-MuTlIGAvVlUt-Sk-rc-fzz3e_uCHmWBCHEsMxYCliAZdpxpsEnMldgFkggQsba4cMjuXecfRiL8Qb52dXCIK2y84mNo_ZThzFyvKQLlWot9YuypUV82h29np0znCCFmdZunEY0kYNw8R2ub_Wr_V3Q9fPhcPT-87s91k4YYA6AwoJhklDrkktpeBBlpmWRDhMnc5_neRBF4D4rpAJMw71UJsgkGO58IfKgjE8xGAru_5pKBcc9psZq1fCXZ7EMT6RMc25aFlHkljW9Kidn4DGQXKZj41Dzr6Pxb-j7J4PztyNxdJPcaLEsfRON7xbZCNVtsnXYZuvvkB8xYhE8xVYesUaSTktaLwuM_rBTJCxRPFljQJI6ZN24OM-CIiP_K0Ut0LzydIY23rwzn7cEPopBZBrOZpOmzwl9m1-EmtYnc7hfw6LvkuMr0cY9sllNq_CAUBx44ZUSqtAmS7IAMFCYJIXrm8hcIfyAqO5TW9c2Q8eZHKe2Y719syslWVSSTbgFJQ0I7yVnsSHIGjKm06btCl7BRVs4tdaQfdnLtqAogp01pXc647Gtc6rtaisNyNP-MbgVzBXlVZgua4u8TvgNlRyQ-9HW-uUCQjQACzl8xEtW2L-ALcsvP6kmJ03rcmEEaMU8_P_fekK2YG_bj_tHB9vkOi4H-Rpc7JDNxXwZHgEMXBSPm_1GyZer3uC_AGjKdBo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+estimation+of+subject-level+functional+connectivity+using+full+and+partial+correlation+with+empirical+Bayes+shrinkage&rft.jtitle=NeuroImage+%28Orlando%2C+Fla.%29&rft.au=Mejia%2C+Amanda+F&rft.au=Nebel%2C+Mary+Beth&rft.au=Barber%2C+Anita+D&rft.au=Choe%2C+Ann+S&rft.date=2018-05-15&rft.pub=Elsevier+Limited&rft.issn=1053-8119&rft.eissn=1095-9572&rft.volume=172&rft.spage=478&rft_id=info:doi/10.1016%2Fj.neuroimage.2018.01.029&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8119&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8119&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8119&client=summon