Entangling two magnon modes via magnetostrictive interaction

We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activ...

Full description

Saved in:
Bibliographic Details
Published inNew journal of physics Vol. 21; no. 8; pp. 85001 - 85008
Main Authors Li, Jie, Zhu, Shi-Yao
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 06.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activating the nonlinear magnetostrictive interaction in one ferrimagnet, realized by driving the magnon mode with a strong red-detuned microwave field, the two magnon modes can be prepared in an entangled state. The entanglement is achieved by exploiting the nonlinear magnon-phonon coupling and the linear magnon-cavity coupling, and is in the steady state and robust against temperature. The entangled magnon modes in two massive ferrimagnets represent genuinely macroscopic quantum states, and may find applications in the study of macroscopic quantum mechanics and quantum information processing based on magnonics.
AbstractList We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activating the nonlinear magnetostrictive interaction in one ferrimagnet, realized by driving the magnon mode with a strong red-detuned microwave field, the two magnon modes can be prepared in an entangled state. The entanglement is achieved by exploiting the nonlinear magnon-phonon coupling and the linear magnon-cavity coupling, and is in the steady state and robust against temperature. The entangled magnon modes in two massive ferrimagnets represent genuinely macroscopic quantum states, and may find applications in the study of macroscopic quantum mechanics and quantum information processing based on magnonics.
Author Zhu, Shi-Yao
Li, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  email: jieli6677@hotmail.com
  organization: Zhejiang University Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang, People's Republic of China
– sequence: 2
  givenname: Shi-Yao
  surname: Zhu
  fullname: Zhu, Shi-Yao
  organization: Zhejiang University Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang, People's Republic of China
BookMark eNp9kUtLxDAUhYMoqKN7lwUXbhzNs6bgRmR8gOBG15fbNBkyzCQ1jYr_3tb6QtRVLod7vpycbJP1EIMlZI_RI0a1PmaiPJnyUtBjrIWieo1sfUrr3-ZNst11C0oZ05xvkdNZyBjmSx_mRX6OxQrnPbhYxcZ2xZPHN8Hm2OXkTfZPtvAh24T9HMMO2XC47Ozu-zkh9xezu_Or6c3t5fX52c3UKCbzVDinlGuYEKLmkhnjWOWMkrJqtEOlTrBmdSVkJdHVuhKaC-ss19SglhYrMSHXI7eJuIA2-RWmF4jo4U2IaQ6YsjdLC06gMZLqxmItheGIxkqmlVSyEhZdz9ofWW2KD4-2y7CIjyn08YELxkVZDvdPSDlumRS7LlkHxmcc3pwT-iUwCkPrMNQKQ60wtt4b6Q_jR9x_LAejxcf2K0xYtMAZaKBa9b8FbTNkP_xl80_wKzMkoVQ
CODEN NJOPFM
CitedBy_id crossref_primary_10_1016_j_rinp_2024_107762
crossref_primary_10_1088_1674_1056_acaf2b
crossref_primary_10_1103_PhysRevA_101_042331
crossref_primary_10_1103_PhysRevA_107_063714
crossref_primary_10_1364_OE_500912
crossref_primary_10_1103_PhysRevApplied_19_034035
crossref_primary_10_1016_j_cjph_2024_05_043
crossref_primary_10_1088_1402_4896_adb8ab
crossref_primary_10_1103_PhysRevB_104_224302
crossref_primary_10_1103_PhysRevResearch_3_013192
crossref_primary_10_1088_1361_6463_ac9b68
crossref_primary_10_1103_PhysRevA_105_033507
crossref_primary_10_1002_andp_202200660
crossref_primary_10_1140_epjp_s13360_022_03042_6
crossref_primary_10_1016_j_fmre_2025_02_012
crossref_primary_10_1088_1361_6455_ac8e3c
crossref_primary_10_1088_1361_6455_ad5896
crossref_primary_10_1103_PhysRevA_105_063704
crossref_primary_10_1002_andp_202100493
crossref_primary_10_1103_PhysRevLett_129_123601
crossref_primary_10_1103_PhysRevA_103_063708
crossref_primary_10_1103_PhysRevA_108_063704
crossref_primary_10_1364_JOSAB_481012
crossref_primary_10_1364_JOSAB_430462
crossref_primary_10_1103_PhysRevA_108_063703
crossref_primary_10_1016_j_optcom_2021_126903
crossref_primary_10_1103_PhysRevApplied_21_034061
crossref_primary_10_1103_PhysRevB_103_224416
crossref_primary_10_1103_PhysRevResearch_1_023021
crossref_primary_10_3390_photonics10080886
crossref_primary_10_1103_PhysRevA_109_022601
crossref_primary_10_1364_OE_536838
crossref_primary_10_1103_PhysRevApplied_15_024056
crossref_primary_10_1002_qute_202400654
crossref_primary_10_1103_PhysRevA_109_022442
crossref_primary_10_1103_PhysRevA_104_023711
crossref_primary_10_1103_PhysRevApplied_22_044081
crossref_primary_10_1364_OE_453787
crossref_primary_10_1088_1367_2630_ac8699
crossref_primary_10_1103_PhysRevA_110_063715
crossref_primary_10_1016_j_chaos_2024_115629
crossref_primary_10_1103_PhysRevA_111_023710
crossref_primary_10_1007_s11128_021_03305_8
crossref_primary_10_1103_PhysRevB_106_184426
crossref_primary_10_1103_PhysRevApplied_19_054069
crossref_primary_10_1103_PhysRevB_109_064412
crossref_primary_10_1103_PhysRevA_109_013719
crossref_primary_10_1063_5_0121314
crossref_primary_10_1103_PhysRevB_106_224404
crossref_primary_10_1103_PhysRevB_107_L140405
crossref_primary_10_1364_OE_551766
crossref_primary_10_1364_JOSAB_414600
crossref_primary_10_1007_s11433_024_2432_9
crossref_primary_10_1103_PhysRevA_102_033721
crossref_primary_10_1140_epjd_s10053_022_00377_8
crossref_primary_10_1103_PhysRevApplied_15_024042
crossref_primary_10_1002_qute_202400224
crossref_primary_10_1063_5_0015195
crossref_primary_10_1103_PhysRevApplied_16_024047
crossref_primary_10_1063_5_0138391
crossref_primary_10_1063_5_0209005
crossref_primary_10_1140_epjp_s13360_022_03064_0
crossref_primary_10_1364_OE_468400
crossref_primary_10_7498_aps_74_20241801
crossref_primary_10_1002_andp_202200603
crossref_primary_10_1364_OE_546225
crossref_primary_10_1140_epjqt_s40507_023_00172_3
crossref_primary_10_1088_1674_1056_ad8cbb
crossref_primary_10_1103_PhysRevApplied_17_034024
crossref_primary_10_1103_PhysRevB_102_224418
crossref_primary_10_1103_PhysRevResearch_5_043197
crossref_primary_10_1103_PhysRevA_106_012419
crossref_primary_10_1140_epjp_s13360_024_05954_x
crossref_primary_10_1016_j_fmre_2022_07_006
crossref_primary_10_1088_1361_6455_ad717e
crossref_primary_10_1140_epjqt_s40507_024_00218_0
crossref_primary_10_1103_PhysRevB_108_094430
crossref_primary_10_1140_epjp_s13360_024_05386_7
crossref_primary_10_1063_5_0152543
crossref_primary_10_1103_PhysRevResearch_1_033161
crossref_primary_10_1140_epjqt_s40507_024_00301_6
crossref_primary_10_1364_JOSAB_492470
crossref_primary_10_1088_2058_9565_abd982
crossref_primary_10_1364_OE_478963
crossref_primary_10_1002_andp_202300095
crossref_primary_10_1080_09500340_2023_2219778
crossref_primary_10_1002_andp_202200315
crossref_primary_10_1103_PhysRevLett_124_053602
crossref_primary_10_1063_5_0111516
crossref_primary_10_1103_PhysRevA_110_043706
crossref_primary_10_1103_PhysRevX_11_031053
crossref_primary_10_1103_PhysRevA_103_062605
crossref_primary_10_1140_epjqt_s40507_023_00177_y
crossref_primary_10_1364_OL_544015
crossref_primary_10_1002_andp_202400221
crossref_primary_10_1364_JOSAB_525408
crossref_primary_10_1142_S021773232350044X
crossref_primary_10_1103_PhysRevA_109_053712
crossref_primary_10_1007_s11128_025_04690_0
crossref_primary_10_1038_s41598_023_48825_8
crossref_primary_10_1103_PhysRevA_111_013713
crossref_primary_10_1103_PhysRevA_110_013710
crossref_primary_10_1364_OE_537202
crossref_primary_10_1140_epjp_s13360_024_05907_4
crossref_primary_10_1002_andp_202200184
crossref_primary_10_1103_PhysRevA_108_023501
crossref_primary_10_1103_PhysRevA_105_053710
crossref_primary_10_1007_s11467_022_1253_3
crossref_primary_10_1007_s11128_022_03653_z
crossref_primary_10_7498_aps_71_20220260
crossref_primary_10_1103_PhysRevB_101_014416
crossref_primary_10_1016_j_rinp_2024_107449
crossref_primary_10_1103_PhysRevB_101_014419
crossref_primary_10_1063_5_0201228
crossref_primary_10_1103_PhysRevA_109_013704
crossref_primary_10_1016_j_physleta_2023_128667
crossref_primary_10_1007_s11128_024_04450_6
crossref_primary_10_1088_1361_648X_ad6828
crossref_primary_10_1016_j_physrep_2022_03_002
crossref_primary_10_1007_s11128_020_02764_9
crossref_primary_10_1088_1361_6455_acce11
crossref_primary_10_1140_epjp_s13360_022_02651_5
crossref_primary_10_1360_SSPMA_2023_0111
crossref_primary_10_1103_PhysRevApplied_22_054036
crossref_primary_10_1016_j_ijleo_2022_169035
crossref_primary_10_1088_1367_2630_ace3eb
crossref_primary_10_7498_aps_69_20200838
crossref_primary_10_1063_5_0124841
crossref_primary_10_1016_j_optcom_2024_130899
crossref_primary_10_1364_JOSAB_505018
crossref_primary_10_1007_s11128_022_03438_4
crossref_primary_10_1103_PhysRevB_110_144424
crossref_primary_10_1364_OE_418531
crossref_primary_10_1016_j_ijleo_2023_170870
crossref_primary_10_1002_andp_202400251
crossref_primary_10_1063_5_0189742
crossref_primary_10_1364_JOSAB_437407
crossref_primary_10_1088_2058_9565_acab7b
crossref_primary_10_1063_5_0166869
crossref_primary_10_1364_OE_500854
crossref_primary_10_1088_1402_4896_ad0d8d
crossref_primary_10_1103_PhysRevApplied_16_024009
crossref_primary_10_1103_PhysRevB_105_094422
crossref_primary_10_1109_TQE_2021_3057799
crossref_primary_10_1088_2058_9565_aca3cf
crossref_primary_10_1103_PhysRevB_108_224416
crossref_primary_10_1002_andp_202100156
crossref_primary_10_1088_1367_2630_ad327c
crossref_primary_10_1364_OE_495656
crossref_primary_10_1103_PhysRevA_110_063504
crossref_primary_10_1063_5_0229979
crossref_primary_10_1364_JOSAB_380755
crossref_primary_10_1002_qute_202400275
crossref_primary_10_1016_j_physleta_2024_129678
crossref_primary_10_1063_5_0228364
crossref_primary_10_1103_PhysRevResearch_3_023126
crossref_primary_10_1364_JOSAB_507012
crossref_primary_10_1142_S0217979223502454
crossref_primary_10_1364_OL_414975
crossref_primary_10_1364_JOSAB_442375
crossref_primary_10_1103_PhysRevA_106_012609
crossref_primary_10_1088_2058_9565_acd576
crossref_primary_10_1103_PhysRevA_105_022624
crossref_primary_10_1007_s11128_022_03819_9
crossref_primary_10_1103_PhysRevA_109_043708
crossref_primary_10_1103_PhysRevA_105_043705
Cites_doi 10.1103/PhysRevX.5.041037
10.1103/PhysRevLett.115.243601
10.1103/PhysRevLett.111.127003
10.1103/PhysRevA.40.1165
10.1016/0375-9601(87)90681-5
10.1063/1.4941730
10.1103/PhysRevLett.117.123605
10.1103/PhysRevLett.95.090503
10.1103/PhysRevA.42.78
10.1126/science.aaa3693
10.1103/PhysRevA.99.021801
10.1103/PhysRevA.71.032317
10.1103/RevModPhys.85.471
10.1007/BF02054655
10.1103/PhysRevA.63.023812
10.1103/PhysRevLett.121.203601
10.1126/science.1244563
10.1103/RevModPhys.86.1391
10.1088/1751-8113/40/28/S01
10.1103/PhysRevLett.113.083603
10.1103/PhysRevA.95.012141
10.1103/PhysRevB.93.144420
10.1038/ncomms9914
10.1364/OE.27.005544
10.1103/PhysRevLett.118.217201
10.1103/PhysRevLett.113.156401
10.1103/PhysRevLett.120.057202
10.1103/PhysRevLett.46.1
10.1126/sciadv.1501286
10.1038/s41586-018-0038-x
10.1103/PhysRev.110.836
10.1103/PhysRevLett.84.2726
10.1103/PhysRevLett.98.030405
10.1038/s41586-018-0036-z
10.1038/nature16536
10.1103/PhysRevA.69.022301
10.1103/PhysRevA.65.032314
10.1103/PhysRev.73.155
10.1103/PhysRev.58.1098
10.1103/PhysRevLett.114.227201
10.1103/PhysRevA.93.050102
10.1103/PhysRevB.94.224410
10.1103/PhysRevB.99.054404
10.1038/s41467-017-01634-w
10.1038/npjqi.2015.14
10.1126/science.aac5138
10.1103/PhysRevLett.121.220404
10.7567/1882-0786/ab248d
10.1103/PhysRevApplied.2.054002
10.1126/sciadv.1603150
10.1007/BF02105068
ContentType Journal Article
Copyright 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
H8D
L7M
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1088/1367-2630/ab3508
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Aerospace Database
Advanced Technologies Database with Aerospace
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Entangling two magnon modes via magnetostrictive interaction
EISSN 1367-2630
ExternalDocumentID oai_doaj_org_article_f3acc408deab43c2aace418545493eaf
10_1088_1367_2630_ab3508
njpab3508
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFA0304200; 2017YFA0304202
GroupedDBID 123
1JI
1PV
29N
2WC
5PX
5VS
7.M
AAFWJ
AAJIO
AAJKP
ABHWH
ACAFW
ACGFO
ACHIP
ADBBV
AEFHF
AEJGL
AENEX
AFKRA
AFPKN
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
CBCFC
CCPQU
CEBXE
CJUJL
CRLBU
CS3
DU5
E3Z
EBS
EDWGO
EQZZN
F5P
GROUPED_DOAJ
GX1
HH5
IJHAN
IOP
IZVLO
J9A
KNG
KQ8
LAP
M45
M48
M~E
N5L
N9A
O3W
OK1
P2P
PIMPY
PJBAE
RIN
RNS
RO9
ROL
SY9
T37
TR2
TSCCA
UCJ
W28
XPP
XSB
ZMT
AAYXX
CITATION
OVT
PHGZM
PHGZT
8FD
ABUWG
AZQEC
DWQXO
H8D
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
EJD
PUEGO
ID FETCH-LOGICAL-c514t-3ff55fd1333b241ccf19fc5449d8fa557ab1b93494afb893823efe280ca84ea93
IEDL.DBID M48
ISSN 1367-2630
IngestDate Wed Aug 27 01:25:53 EDT 2025
Mon Jun 30 06:18:01 EDT 2025
Tue Jul 01 01:30:25 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Wed Aug 21 03:34:11 EDT 2024
Thu Jan 07 13:51:02 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-3ff55fd1333b241ccf19fc5449d8fa557ab1b93494afb893823efe280ca84ea93
Notes NJP-110304.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/ab3508
PQID 2312366382
PQPubID 4491272
PageCount 8
ParticipantIDs crossref_citationtrail_10_1088_1367_2630_ab3508
crossref_primary_10_1088_1367_2630_ab3508
proquest_journals_2312366382
iop_journals_10_1088_1367_2630_ab3508
doaj_primary_oai_doaj_org_article_f3acc408deab43c2aace418545493eaf
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-06
PublicationDateYYYYMMDD 2019-08-06
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-06
  day: 06
PublicationDecade 2010
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle New journal of physics
PublicationTitleAbbrev NJP
PublicationTitleAlternate New J. Phys
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Plenio (njpab3508bib39) 2005; 95
Huebl (njpab3508bib1) 2013; 111
Zhang (njpab3508bib17) 2017; 8
Diósi (njpab3508bib46a) 1987; 120
Riedinger (njpab3508bib24) 2016; 530
Ockeloen-Korppi (njpab3508bib28) 2018; 556
Zhang (njpab3508bib47) 2019
Tabuchi (njpab3508bib2) 2014; 113
Pirkkalainen (njpab3508bib23b) 2015; 115
Zhang (njpab3508bib45b) 2017; 95
Zhang (njpab3508bib16) 2015; 6
Benguria (njpab3508bib36b) 1981; 46
Bai (njpab3508bib19) 2017; 118
Li (njpab3508bib21) 2019; 99
Vitali (njpab3508bib34) 2007; 98
Bassi (njpab3508bib43) 2013; 85
Zhang (njpab3508bib3) 2014; 113
Ukena (njpab3508bib31) 2004; 69
Diósi (njpab3508bib46b) 1989; 40
Marinkovic (njpab3508bib25) 2018; 121
Gardiner (njpab3508bib35) 2000
Zhang (njpab3508bib6) 2015; 1
Bai (njpab3508bib5) 2015; 114
Ghirardi (njpab3508bib44b) 1995; 25
Li (njpab3508bib45a) 2016; 93
Palomaki (njpab3508bib26) 2013; 342
Riedinger (njpab3508bib27) 2018; 556
Yuan (njpab3508bib50) 2019
Li (njpab3508bib14) 2018; 121
Wang (njpab3508bib20) 2018; 120
Zhang (njpab3508bib13) 2016; 2
Penrose (njpab3508bib46c) 1996; 28
Vidal (njpab3508bib38b) 2002; 65
Tabuchi (njpab3508bib11) 2015; 349
Lachance-Quirion (njpab3508bib12) 2017; 3
Yu (njpab3508bib49) 2019
Simon (njpab3508bib41) 2000; 84
Bourhill (njpab3508bib7) 2016; 93
Kong (njpab3508bib29) 2019; 27
Kittel (njpab3508bib32) 1958; 110
Adesso (njpab3508bib40) 2007; 40
Zhang (njpab3508bib18) 2019; 99
Holstein (njpab3508bib33) 1940; 58
Eisert (njpab3508bib38a) 2001
Parks (njpab3508bib37) 1993
Wollman (njpab3508bib23a) 2015; 349
Kostylev (njpab3508bib8) 2016; 108
Aspelmeyer (njpab3508bib22) 2014; 86
Nair (njpab3508bib48) 2019
Zhang (njpab3508bib15) 2016; 117
Lecocq (njpab3508bib23c) 2015; 5
Giovannetti (njpab3508bib36a) 2001; 63
Goryachev (njpab3508bib4) 2014; 2
Morimae (njpab3508bib30) 2005; 71
Wang (njpab3508bib42) 2016; 94
Ghirardi (njpab3508bib44a) 1990; 42
Lachance-Quirion (njpab3508bib10) 2019; 12
Kittel (njpab3508bib9) 1948; 73
References_xml – volume: 5
  year: 2015
  ident: njpab3508bib23c
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.5.041037
– volume: 115
  year: 2015
  ident: njpab3508bib23b
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.243601
– volume: 111
  year: 2013
  ident: njpab3508bib1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.127003
– volume: 40
  start-page: 1165
  year: 1989
  ident: njpab3508bib46b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.40.1165
– volume: 120
  start-page: 377
  year: 1987
  ident: njpab3508bib46a
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(87)90681-5
– volume: 108
  year: 2016
  ident: njpab3508bib8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941730
– volume: 117
  year: 2016
  ident: njpab3508bib15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.123605
– year: 2001
  ident: njpab3508bib38a
  publication-title: PhD Thesis
– volume: 95
  year: 2005
  ident: njpab3508bib39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.090503
– volume: 42
  start-page: 78
  year: 1990
  ident: njpab3508bib44a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.42.78
– volume: 349
  start-page: 405
  year: 2015
  ident: njpab3508bib11
  publication-title: Science
  doi: 10.1126/science.aaa3693
– volume: 99
  year: 2019
  ident: njpab3508bib21
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.99.021801
– volume: 71
  start-page: 032317
  year: 2005
  ident: njpab3508bib30
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.032317
– volume: 85
  start-page: 471
  year: 2013
  ident: njpab3508bib43
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.471
– year: 2019
  ident: njpab3508bib48
– volume: 25
  start-page: 5
  year: 1995
  ident: njpab3508bib44b
  publication-title: Found. Phys.
  doi: 10.1007/BF02054655
– volume: 63
  year: 2001
  ident: njpab3508bib36a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.63.023812
– volume: 121
  year: 2018
  ident: njpab3508bib14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.203601
– volume: 342
  start-page: 710
  year: 2013
  ident: njpab3508bib26
  publication-title: Science
  doi: 10.1126/science.1244563
– volume: 86
  start-page: 1391
  year: 2014
  ident: njpab3508bib22
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.1391
– year: 2019
  ident: njpab3508bib49
– volume: 40
  start-page: 7821
  year: 2007
  ident: njpab3508bib40
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/40/28/S01
– volume: 113
  year: 2014
  ident: njpab3508bib2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.083603
– volume: 95
  year: 2017
  ident: njpab3508bib45b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.95.012141
– volume: 93
  year: 2016
  ident: njpab3508bib7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.144420
– volume: 6
  start-page: 8914
  year: 2015
  ident: njpab3508bib16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9914
– volume: 27
  start-page: 5544
  year: 2019
  ident: njpab3508bib29
  publication-title: Opt. Express
  doi: 10.1364/OE.27.005544
– year: 2000
  ident: njpab3508bib35
– volume: 118
  year: 2017
  ident: njpab3508bib19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.217201
– volume: 113
  year: 2014
  ident: njpab3508bib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.156401
– volume: 120
  year: 2018
  ident: njpab3508bib20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.057202
– volume: 46
  start-page: 1
  year: 1981
  ident: njpab3508bib36b
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.46.1
– volume: 2
  year: 2016
  ident: njpab3508bib13
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501286
– volume: 556
  start-page: 478
  year: 2018
  ident: njpab3508bib28
  publication-title: Nature
  doi: 10.1038/s41586-018-0038-x
– volume: 110
  start-page: 836
  year: 1958
  ident: njpab3508bib32
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.110.836
– volume: 84
  start-page: 2726
  year: 2000
  ident: njpab3508bib41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.2726
– volume: 98
  year: 2007
  ident: njpab3508bib34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.030405
– volume: 556
  start-page: 473
  year: 2018
  ident: njpab3508bib27
  publication-title: Nature
  doi: 10.1038/s41586-018-0036-z
– volume: 530
  start-page: 313
  year: 2016
  ident: njpab3508bib24
  publication-title: Nature
  doi: 10.1038/nature16536
– year: 1993
  ident: njpab3508bib37
– volume: 69
  year: 2004
  ident: njpab3508bib31
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.69.022301
– volume: 65
  year: 2002
  ident: njpab3508bib38b
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.65.032314
– volume: 73
  start-page: 155
  year: 1948
  ident: njpab3508bib9
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.73.155
– volume: 58
  start-page: 1098
  year: 1940
  ident: njpab3508bib33
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.58.1098
– volume: 114
  year: 2015
  ident: njpab3508bib5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.227201
– volume: 93
  year: 2016
  ident: njpab3508bib45a
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.93.050102
– volume: 94
  year: 2016
  ident: njpab3508bib42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.224410
– volume: 99
  year: 2019
  ident: njpab3508bib18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.054404
– volume: 8
  start-page: 1368
  year: 2017
  ident: njpab3508bib17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01634-w
– volume: 1
  start-page: 15014
  year: 2015
  ident: njpab3508bib6
  publication-title: NPJ Quantum Inf.
  doi: 10.1038/npjqi.2015.14
– volume: 349
  start-page: 952
  year: 2015
  ident: njpab3508bib23a
  publication-title: Science
  doi: 10.1126/science.aac5138
– volume: 121
  year: 2018
  ident: njpab3508bib25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.220404
– volume: 12
  year: 2019
  ident: njpab3508bib10
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab248d
– volume: 2
  year: 2014
  ident: njpab3508bib4
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.054002
– volume: 3
  year: 2017
  ident: njpab3508bib12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1603150
– volume: 28
  start-page: 581
  year: 1996
  ident: njpab3508bib46c
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/BF02105068
– year: 2019
  ident: njpab3508bib50
– year: 2019
  ident: njpab3508bib47
SSID ssj0011822
Score 2.6541255
Snippet We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number...
SourceID doaj
proquest
crossref
iop
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 85001
SubjectTerms cavity magnomechanics
Data processing
Dipole interactions
Entangled states
Ferrimagnetism
Ferrimagnets
Information processing
Laboratories
Magnetic dipoles
Magnetostriction
Magnons
Physics
Quantum entanglement
Quantum mechanics
quantum optics
Quantum phenomena
Radiation
Spheres
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xdpQc9eCjb5qNNwIuKiwh6cmFvIUkTUXR32a36951Ju-uKoBevYdqGN03mDZm8IeQERckwsKWB5zzlhtlUOkdTJ4oqo8rSzOJt5Lv74mbAb4diuNTqC2vCGnngBrheYMY5nsnKG8uZo8Y4j4IrHBIb5k3A3Rdi3jyZas8PgDXT9lASllEPdclSWrCsZywT2EpyKQhFrX4ILU_jyY8NOUaZ_ibZaOlhctFMa4us-NE2WYtlmm62Q86vR0DmHvEKeVJ_jJNXrJMbJdjOZpa8P5k44OsxNuOIG1mCchDT5vLCLhn0rx-ubtK2_wEglfM6ZSEIESrIIpmFQOtcyFVwgnNVyWCEKI3NrUJ9GRMs8A5JmQ-eyswZyb1RbI-swiT8Pkl4HgqlnAJ2BikRg5hUMYCwtGVZCVaWHdKbA6JdKw6OPSpedDykllIjhBoh1A2EHXK2eGLSCGP8YnuJGC_sUNI6DoCjdeto_ZejO-QUPKTbJTb75WPJN7vR80TTXEuN4nxZricVvKo7d_OXHRBdyoB_SXrwH9M9JOvArVSsFSy6ZLWevvkj4C-1PY6_6idZN-oL
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IOP Science Platform
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iFHzxo1U8tbIP-tCHvdvNx26Cvli5Q4SqDxV8KIQkm4ja3h13q4X-9c5k9674gZS-LWGyyU6ymd-Qmd8Qso-kZGjY0sBznnLDbCqdo6kTRZVRZWlmMRv523lxesXPrsX1Ajmc58KMxu3R34XHhii4UWEbECd7SDKW0oJlPWOZwETfJSbBcGL23sXl_AoBgDNt7yXf6vXMDkW6frAuMOSrMzkamsEq-TGbYhNfct99qG3X_XnB3vif37BGVloAmhw3outkwQ8_kg8xENRNP5Gj_hDg4g0mqSf171HyCyPxhgkWzJkmj7cmNvh6hOU-4lGZIOHEpEmP2CBXg_73k9O0rbAAa5HzOmUhCBEq8FOZBVPuXMhVcIJzVclghCiNza1CBhsTLCAbSZkPnsrMGcm9UWyTLMIk_BZJeB4KpZwC_AdOFwOrVzFAZ6Uty0qwsuyQ3kzf2rX041gF46eO1-BSatSJRp3oRicd8mXeY9xQb7wj-xWXcC6HpNmxAZSvW-XrwIxzPJOVN5YzR41xHrl7OPjIzJvQIQewXrr9iafvDJY8kxvejTXNtdRI_5flelzBq3Znu-ivHEBpymCjSrr9jyPtkGUAaCoGHBa7ZLGePPjPAIJquxc3-xM2m_zV
  priority: 102
  providerName: IOP Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_1RPBFtK30_GIf6kMfltvNx24Cgmg5kUKlSAXfQpJNxGJvt3er_vvO5HKnUrjX7GR3mSQzv2QmvyHkK5KSoWPLAy95zg2zuXSO5k5UTUGVpYXF28g_r6rLG_7jVtymA7dZSqtc2MRoqJvW4Rn5CHAIZeAeJT3t_uVYNQqjq6mExhpZBxMs5YCsn4-vfl0v4wiAnmkKTsJyGiE_WU4rVoyMZQJLSr5xRpGzH1zMfdv9Z5ijt7nYJlsJJmZn83HdIR_85CPZiOmabvaJnIwnAOru8Cp51j-32V_Ml5tkWNZmlj3dm9jg-xaLckSDliEtxHR-ieEzubkY__5-mac6CKCxkvc5C0GI0MBukllwuM6FUgUnOFeNDEaI2tjSKuSZMcEC_pCU-eCpLJyR3BvFdskAfsJ_IRkvQ6WUU4DSYGvEwDc1DDBUbeu6Eayuh2S0UIh2iSQca1U86BisllKjCjWqUM9VOCTflj26OUHGCtlz1PFSDqmtY0M7vdNppejAjHO8kI03ljNHjXEeGXY47GSZN2FIjmGEdFpqsxUfy97JTf50mpZaaiTpK0rdNfCqg8Uwv8q9TrS91Y_3ySagJxWzAasDMuinj_4QEEpvj9I0fAEJ-uFn
  priority: 102
  providerName: ProQuest
Title Entangling two magnon modes via magnetostrictive interaction
URI https://iopscience.iop.org/article/10.1088/1367-2630/ab3508
https://www.proquest.com/docview/2312366382
https://doaj.org/article/f3acc408deab43c2aace418545493eaf
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA9FKfSlqLX0qh77YB98WG83H7sJVKSWExX8QDzqW0iyiSj27nq3rfrfO5Pd8xBF6Esewmx2M_mY32wyvyFkE0nJ0LClgec85YbZVDpHUyeKKqPK0sxiNPLxSXEw4EeX4nIeHt0qcPqqa4f5pAaT2-37Pw-7sOB3mhtysoesYyktWNYzlgmM_F0Eu1RiPoNjPj9TACRNmyisRro9tHythWdGKnL5g-m5Ho1fbNjRCu0vkY8tfEx-NOO9TN754Qp5H69xuukn8r0_BLB3hSHmSX03Sn7jPbphgulupsm_axMrfD3CZB1xo0uQLmLSBDesksF-_-LnQdrmRwBN5rxOWQhChAq8TGahw86FXAUnOFeVDEaI0tjcKuSfMcECLpGU-eCpzJyR3BvFPpMF-Aj_hSQ8D4VSTgF6A5eJgc2qGGCr0pZlJVhZdkhvphDtWvJwzGFxq-MhtpQaVahRhbpRYYdsPT0xbogz3pDdQx0_ySHldawYTa50u4J0YMY5nsnKG8uZo8Y4j8w7HDxc5k3okG8wQno2g954WfJMbngz1jTXUiN5X5brcQVNrc-GeS4HQJgywGeSfv2Prq2RDwCxVLwyWKyThXry128AjKltlyzu9U_OzrvxNwCUh6dn3ThjoTxlvx4BVHzsvw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEE-xUMAHeuAQbeJH4kggRGGrLW1XCLVSb8Z27KoINmE3UPGn-I3MOMkWhLS3XhMnjsaPbybj-T5CXiApGQJbEkQmEmG4TZRzLHEyr1JWWpZarEY-nuezU_HhTJ5tkd9DLQweqxz2xLhRV7XDf-QT8EMYB3hU7E3zPUHVKMyuDhIa3bQ49L8uIWRbvT54D-O7y9j-9OTdLOlVBaD_TLQJD0HKUEFsxi3Al3MhK4OTQpSVCkbKwtjMlsjaYoIFNFeM--CZSp1RwhskX4Itf1vwPGUjsr03nX_8tM5bgLfO-mQoLN8J8qElLOfpxFguUcLyL_CLGgEAaRd18x8QRHTbv0Nu924pfdvNo7tkyy_ukRvxeKhb3SevpgtwIs-xdJ22lzX9hufzFhRldFb054WJF3xbowhI3EAp0lAsu6KJB-T0Wiz0kIzgI_wjQkUW8rJ0JXiFEIpxwMKKg89W2KKoJC-KMZkMBtGuJyVHbYyvOibHldJoQo0m1J0Jx-Tl-ommI-TY0HYPbbxuh1Ta8UK9PNf9ytSBG-dEqipvrOCOGeM8MvoIiJy5N2FMdmGEdL-0Vxs6o_-0W3xpNMu00kgKmGa6qeBVO8MwX7W7mtiPN99-Tm7OTo6P9NHB_PAJuQWeWxlPIuY7ZNQuf_in4B219lk_JSn5fN2r4A-Zgh71
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRSAuvFEXCuRADxyym_iROBIcgHbVUig9UKk3Yzs24rW76qZU8Kf4K_wkZhzvogKquPTALYocZeKZ-Pssz3wD8JBEyQjY8iBKkQvDba6cY7mTVVuwxrLCUjXyq71q-0C8OJSHK_B9WQsznaWlf4iXvVBwP4UpIU6NSGQsZxUvRsZy5BejWRtSVuWu_3qCe7b5k51NdPAGY-OtN8-389RWAA0oRZfzEKQMLW7OuEX8ci6UTXBSiKZVwUhZG1vahmRbTLAI54pxHzxThTNKeEPqS7jmX5AcsZoqBl_vL48tkKyzdBb6N0tPYV9sEYCIhp_5Bw5EcBtfhR-LaelzWj4Ojzs7dN9-U4z8j-btGlxJRDt72pt3HVb85AZcjAmvbn4THm9NkBa_o2L8rDuZZp8p43CSUWOgefblvYk3fDeltiYREjIS1jjqy0BuwcG5mH4bVtEIvwaZKEPVNK5BnoubS47o3nJkobWt61byuh7AaOFj7ZLMOnX7-KTjcb9SmvygyQ-698MAHi2fmPUSI2eMfUZhsxxH4uDxBjpcJ4frwI1zolCtN1Zwx4xxnjSKhESDvQkD2MAY0Wmxmp_xsuzUuMmHmWalVppkDotSY_wMYH0Rub_G4ZaBcWSyit35xzc9gEv7m2P9cmdv9y5cRk7axBzLah1Wu6Njfw95X2fvx38tg7fnHaQ_AVLjXXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entangling+two+magnon+modes+via+magnetostrictive+interaction&rft.jtitle=New+journal+of+physics&rft.au=Li%2C+Jie&rft.au=Zhu%2C+Shi-Yao&rft.date=2019-08-06&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=21&rft.issue=8&rft.spage=85001&rft_id=info:doi/10.1088%2F1367-2630%2Fab3508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_ab3508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon