Entangling two magnon modes via magnetostrictive interaction
We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activ...
Saved in:
Published in | New journal of physics Vol. 21; no. 8; pp. 85001 - 85008 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
06.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activating the nonlinear magnetostrictive interaction in one ferrimagnet, realized by driving the magnon mode with a strong red-detuned microwave field, the two magnon modes can be prepared in an entangled state. The entanglement is achieved by exploiting the nonlinear magnon-phonon coupling and the linear magnon-cavity coupling, and is in the steady state and robust against temperature. The entangled magnon modes in two massive ferrimagnets represent genuinely macroscopic quantum states, and may find applications in the study of macroscopic quantum mechanics and quantum information processing based on magnonics. |
---|---|
AbstractList | We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number of spins in two macroscopic ferrimagnets, and couple to a single microwave cavity mode via magnetic dipole interaction. We show that by activating the nonlinear magnetostrictive interaction in one ferrimagnet, realized by driving the magnon mode with a strong red-detuned microwave field, the two magnon modes can be prepared in an entangled state. The entanglement is achieved by exploiting the nonlinear magnon-phonon coupling and the linear magnon-cavity coupling, and is in the steady state and robust against temperature. The entangled magnon modes in two massive ferrimagnets represent genuinely macroscopic quantum states, and may find applications in the study of macroscopic quantum mechanics and quantum information processing based on magnonics. |
Author | Zhu, Shi-Yao Li, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Li fullname: Li, Jie email: jieli6677@hotmail.com organization: Zhejiang University Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang, People's Republic of China – sequence: 2 givenname: Shi-Yao surname: Zhu fullname: Zhu, Shi-Yao organization: Zhejiang University Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics and State Key Laboratory of Modern Optical Instrumentation, Hangzhou, Zhejiang, People's Republic of China |
BookMark | eNp9kUtLxDAUhYMoqKN7lwUXbhzNs6bgRmR8gOBG15fbNBkyzCQ1jYr_3tb6QtRVLod7vpycbJP1EIMlZI_RI0a1PmaiPJnyUtBjrIWieo1sfUrr3-ZNst11C0oZ05xvkdNZyBjmSx_mRX6OxQrnPbhYxcZ2xZPHN8Hm2OXkTfZPtvAh24T9HMMO2XC47Ozu-zkh9xezu_Or6c3t5fX52c3UKCbzVDinlGuYEKLmkhnjWOWMkrJqtEOlTrBmdSVkJdHVuhKaC-ss19SglhYrMSHXI7eJuIA2-RWmF4jo4U2IaQ6YsjdLC06gMZLqxmItheGIxkqmlVSyEhZdz9ofWW2KD4-2y7CIjyn08YELxkVZDvdPSDlumRS7LlkHxmcc3pwT-iUwCkPrMNQKQ60wtt4b6Q_jR9x_LAejxcf2K0xYtMAZaKBa9b8FbTNkP_xl80_wKzMkoVQ |
CODEN | NJOPFM |
CitedBy_id | crossref_primary_10_1016_j_rinp_2024_107762 crossref_primary_10_1088_1674_1056_acaf2b crossref_primary_10_1103_PhysRevA_101_042331 crossref_primary_10_1103_PhysRevA_107_063714 crossref_primary_10_1364_OE_500912 crossref_primary_10_1103_PhysRevApplied_19_034035 crossref_primary_10_1016_j_cjph_2024_05_043 crossref_primary_10_1088_1402_4896_adb8ab crossref_primary_10_1103_PhysRevB_104_224302 crossref_primary_10_1103_PhysRevResearch_3_013192 crossref_primary_10_1088_1361_6463_ac9b68 crossref_primary_10_1103_PhysRevA_105_033507 crossref_primary_10_1002_andp_202200660 crossref_primary_10_1140_epjp_s13360_022_03042_6 crossref_primary_10_1016_j_fmre_2025_02_012 crossref_primary_10_1088_1361_6455_ac8e3c crossref_primary_10_1088_1361_6455_ad5896 crossref_primary_10_1103_PhysRevA_105_063704 crossref_primary_10_1002_andp_202100493 crossref_primary_10_1103_PhysRevLett_129_123601 crossref_primary_10_1103_PhysRevA_103_063708 crossref_primary_10_1103_PhysRevA_108_063704 crossref_primary_10_1364_JOSAB_481012 crossref_primary_10_1364_JOSAB_430462 crossref_primary_10_1103_PhysRevA_108_063703 crossref_primary_10_1016_j_optcom_2021_126903 crossref_primary_10_1103_PhysRevApplied_21_034061 crossref_primary_10_1103_PhysRevB_103_224416 crossref_primary_10_1103_PhysRevResearch_1_023021 crossref_primary_10_3390_photonics10080886 crossref_primary_10_1103_PhysRevA_109_022601 crossref_primary_10_1364_OE_536838 crossref_primary_10_1103_PhysRevApplied_15_024056 crossref_primary_10_1002_qute_202400654 crossref_primary_10_1103_PhysRevA_109_022442 crossref_primary_10_1103_PhysRevA_104_023711 crossref_primary_10_1103_PhysRevApplied_22_044081 crossref_primary_10_1364_OE_453787 crossref_primary_10_1088_1367_2630_ac8699 crossref_primary_10_1103_PhysRevA_110_063715 crossref_primary_10_1016_j_chaos_2024_115629 crossref_primary_10_1103_PhysRevA_111_023710 crossref_primary_10_1007_s11128_021_03305_8 crossref_primary_10_1103_PhysRevB_106_184426 crossref_primary_10_1103_PhysRevApplied_19_054069 crossref_primary_10_1103_PhysRevB_109_064412 crossref_primary_10_1103_PhysRevA_109_013719 crossref_primary_10_1063_5_0121314 crossref_primary_10_1103_PhysRevB_106_224404 crossref_primary_10_1103_PhysRevB_107_L140405 crossref_primary_10_1364_OE_551766 crossref_primary_10_1364_JOSAB_414600 crossref_primary_10_1007_s11433_024_2432_9 crossref_primary_10_1103_PhysRevA_102_033721 crossref_primary_10_1140_epjd_s10053_022_00377_8 crossref_primary_10_1103_PhysRevApplied_15_024042 crossref_primary_10_1002_qute_202400224 crossref_primary_10_1063_5_0015195 crossref_primary_10_1103_PhysRevApplied_16_024047 crossref_primary_10_1063_5_0138391 crossref_primary_10_1063_5_0209005 crossref_primary_10_1140_epjp_s13360_022_03064_0 crossref_primary_10_1364_OE_468400 crossref_primary_10_7498_aps_74_20241801 crossref_primary_10_1002_andp_202200603 crossref_primary_10_1364_OE_546225 crossref_primary_10_1140_epjqt_s40507_023_00172_3 crossref_primary_10_1088_1674_1056_ad8cbb crossref_primary_10_1103_PhysRevApplied_17_034024 crossref_primary_10_1103_PhysRevB_102_224418 crossref_primary_10_1103_PhysRevResearch_5_043197 crossref_primary_10_1103_PhysRevA_106_012419 crossref_primary_10_1140_epjp_s13360_024_05954_x crossref_primary_10_1016_j_fmre_2022_07_006 crossref_primary_10_1088_1361_6455_ad717e crossref_primary_10_1140_epjqt_s40507_024_00218_0 crossref_primary_10_1103_PhysRevB_108_094430 crossref_primary_10_1140_epjp_s13360_024_05386_7 crossref_primary_10_1063_5_0152543 crossref_primary_10_1103_PhysRevResearch_1_033161 crossref_primary_10_1140_epjqt_s40507_024_00301_6 crossref_primary_10_1364_JOSAB_492470 crossref_primary_10_1088_2058_9565_abd982 crossref_primary_10_1364_OE_478963 crossref_primary_10_1002_andp_202300095 crossref_primary_10_1080_09500340_2023_2219778 crossref_primary_10_1002_andp_202200315 crossref_primary_10_1103_PhysRevLett_124_053602 crossref_primary_10_1063_5_0111516 crossref_primary_10_1103_PhysRevA_110_043706 crossref_primary_10_1103_PhysRevX_11_031053 crossref_primary_10_1103_PhysRevA_103_062605 crossref_primary_10_1140_epjqt_s40507_023_00177_y crossref_primary_10_1364_OL_544015 crossref_primary_10_1002_andp_202400221 crossref_primary_10_1364_JOSAB_525408 crossref_primary_10_1142_S021773232350044X crossref_primary_10_1103_PhysRevA_109_053712 crossref_primary_10_1007_s11128_025_04690_0 crossref_primary_10_1038_s41598_023_48825_8 crossref_primary_10_1103_PhysRevA_111_013713 crossref_primary_10_1103_PhysRevA_110_013710 crossref_primary_10_1364_OE_537202 crossref_primary_10_1140_epjp_s13360_024_05907_4 crossref_primary_10_1002_andp_202200184 crossref_primary_10_1103_PhysRevA_108_023501 crossref_primary_10_1103_PhysRevA_105_053710 crossref_primary_10_1007_s11467_022_1253_3 crossref_primary_10_1007_s11128_022_03653_z crossref_primary_10_7498_aps_71_20220260 crossref_primary_10_1103_PhysRevB_101_014416 crossref_primary_10_1016_j_rinp_2024_107449 crossref_primary_10_1103_PhysRevB_101_014419 crossref_primary_10_1063_5_0201228 crossref_primary_10_1103_PhysRevA_109_013704 crossref_primary_10_1016_j_physleta_2023_128667 crossref_primary_10_1007_s11128_024_04450_6 crossref_primary_10_1088_1361_648X_ad6828 crossref_primary_10_1016_j_physrep_2022_03_002 crossref_primary_10_1007_s11128_020_02764_9 crossref_primary_10_1088_1361_6455_acce11 crossref_primary_10_1140_epjp_s13360_022_02651_5 crossref_primary_10_1360_SSPMA_2023_0111 crossref_primary_10_1103_PhysRevApplied_22_054036 crossref_primary_10_1016_j_ijleo_2022_169035 crossref_primary_10_1088_1367_2630_ace3eb crossref_primary_10_7498_aps_69_20200838 crossref_primary_10_1063_5_0124841 crossref_primary_10_1016_j_optcom_2024_130899 crossref_primary_10_1364_JOSAB_505018 crossref_primary_10_1007_s11128_022_03438_4 crossref_primary_10_1103_PhysRevB_110_144424 crossref_primary_10_1364_OE_418531 crossref_primary_10_1016_j_ijleo_2023_170870 crossref_primary_10_1002_andp_202400251 crossref_primary_10_1063_5_0189742 crossref_primary_10_1364_JOSAB_437407 crossref_primary_10_1088_2058_9565_acab7b crossref_primary_10_1063_5_0166869 crossref_primary_10_1364_OE_500854 crossref_primary_10_1088_1402_4896_ad0d8d crossref_primary_10_1103_PhysRevApplied_16_024009 crossref_primary_10_1103_PhysRevB_105_094422 crossref_primary_10_1109_TQE_2021_3057799 crossref_primary_10_1088_2058_9565_aca3cf crossref_primary_10_1103_PhysRevB_108_224416 crossref_primary_10_1002_andp_202100156 crossref_primary_10_1088_1367_2630_ad327c crossref_primary_10_1364_OE_495656 crossref_primary_10_1103_PhysRevA_110_063504 crossref_primary_10_1063_5_0229979 crossref_primary_10_1364_JOSAB_380755 crossref_primary_10_1002_qute_202400275 crossref_primary_10_1016_j_physleta_2024_129678 crossref_primary_10_1063_5_0228364 crossref_primary_10_1103_PhysRevResearch_3_023126 crossref_primary_10_1364_JOSAB_507012 crossref_primary_10_1142_S0217979223502454 crossref_primary_10_1364_OL_414975 crossref_primary_10_1364_JOSAB_442375 crossref_primary_10_1103_PhysRevA_106_012609 crossref_primary_10_1088_2058_9565_acd576 crossref_primary_10_1103_PhysRevA_105_022624 crossref_primary_10_1007_s11128_022_03819_9 crossref_primary_10_1103_PhysRevA_109_043708 crossref_primary_10_1103_PhysRevA_105_043705 |
Cites_doi | 10.1103/PhysRevX.5.041037 10.1103/PhysRevLett.115.243601 10.1103/PhysRevLett.111.127003 10.1103/PhysRevA.40.1165 10.1016/0375-9601(87)90681-5 10.1063/1.4941730 10.1103/PhysRevLett.117.123605 10.1103/PhysRevLett.95.090503 10.1103/PhysRevA.42.78 10.1126/science.aaa3693 10.1103/PhysRevA.99.021801 10.1103/PhysRevA.71.032317 10.1103/RevModPhys.85.471 10.1007/BF02054655 10.1103/PhysRevA.63.023812 10.1103/PhysRevLett.121.203601 10.1126/science.1244563 10.1103/RevModPhys.86.1391 10.1088/1751-8113/40/28/S01 10.1103/PhysRevLett.113.083603 10.1103/PhysRevA.95.012141 10.1103/PhysRevB.93.144420 10.1038/ncomms9914 10.1364/OE.27.005544 10.1103/PhysRevLett.118.217201 10.1103/PhysRevLett.113.156401 10.1103/PhysRevLett.120.057202 10.1103/PhysRevLett.46.1 10.1126/sciadv.1501286 10.1038/s41586-018-0038-x 10.1103/PhysRev.110.836 10.1103/PhysRevLett.84.2726 10.1103/PhysRevLett.98.030405 10.1038/s41586-018-0036-z 10.1038/nature16536 10.1103/PhysRevA.69.022301 10.1103/PhysRevA.65.032314 10.1103/PhysRev.73.155 10.1103/PhysRev.58.1098 10.1103/PhysRevLett.114.227201 10.1103/PhysRevA.93.050102 10.1103/PhysRevB.94.224410 10.1103/PhysRevB.99.054404 10.1038/s41467-017-01634-w 10.1038/npjqi.2015.14 10.1126/science.aac5138 10.1103/PhysRevLett.121.220404 10.7567/1882-0786/ab248d 10.1103/PhysRevApplied.2.054002 10.1126/sciadv.1603150 10.1007/BF02105068 |
ContentType | Journal Article |
Copyright | 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft – notice: 2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO H8D L7M PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
DOI | 10.1088/1367-2630/ab3508 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Aerospace Database Advanced Technologies Database with Aerospace ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Entangling two magnon modes via magnetostrictive interaction |
EISSN | 1367-2630 |
ExternalDocumentID | oai_doaj_org_article_f3acc408deab43c2aace418545493eaf 10_1088_1367_2630_ab3508 njpab3508 |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFA0304200; 2017YFA0304202 |
GroupedDBID | 123 1JI 1PV 29N 2WC 5PX 5VS 7.M AAFWJ AAJIO AAJKP ABHWH ACAFW ACGFO ACHIP ADBBV AEFHF AEJGL AENEX AFKRA AFPKN AFYNE AHSEE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR CBCFC CCPQU CEBXE CJUJL CRLBU CS3 DU5 E3Z EBS EDWGO EQZZN F5P GROUPED_DOAJ GX1 HH5 IJHAN IOP IZVLO J9A KNG KQ8 LAP M45 M48 M~E N5L N9A O3W OK1 P2P PIMPY PJBAE RIN RNS RO9 ROL SY9 T37 TR2 TSCCA UCJ W28 XPP XSB ZMT AAYXX CITATION OVT PHGZM PHGZT 8FD ABUWG AZQEC DWQXO H8D L7M PKEHL PQEST PQQKQ PQUKI PRINS EJD PUEGO |
ID | FETCH-LOGICAL-c514t-3ff55fd1333b241ccf19fc5449d8fa557ab1b93494afb893823efe280ca84ea93 |
IEDL.DBID | M48 |
ISSN | 1367-2630 |
IngestDate | Wed Aug 27 01:25:53 EDT 2025 Mon Jun 30 06:18:01 EDT 2025 Tue Jul 01 01:30:25 EDT 2025 Thu Apr 24 22:52:48 EDT 2025 Wed Aug 21 03:34:11 EDT 2024 Thu Jan 07 13:51:02 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-3ff55fd1333b241ccf19fc5449d8fa557ab1b93494afb893823efe280ca84ea93 |
Notes | NJP-110304.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1088/1367-2630/ab3508 |
PQID | 2312366382 |
PQPubID | 4491272 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1088_1367_2630_ab3508 crossref_primary_10_1088_1367_2630_ab3508 proquest_journals_2312366382 iop_journals_10_1088_1367_2630_ab3508 doaj_primary_oai_doaj_org_article_f3acc408deab43c2aace418545493eaf |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-06 |
PublicationDateYYYYMMDD | 2019-08-06 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol |
PublicationTitle | New journal of physics |
PublicationTitleAbbrev | NJP |
PublicationTitleAlternate | New J. Phys |
PublicationYear | 2019 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Plenio (njpab3508bib39) 2005; 95 Huebl (njpab3508bib1) 2013; 111 Zhang (njpab3508bib17) 2017; 8 Diósi (njpab3508bib46a) 1987; 120 Riedinger (njpab3508bib24) 2016; 530 Ockeloen-Korppi (njpab3508bib28) 2018; 556 Zhang (njpab3508bib47) 2019 Tabuchi (njpab3508bib2) 2014; 113 Pirkkalainen (njpab3508bib23b) 2015; 115 Zhang (njpab3508bib45b) 2017; 95 Zhang (njpab3508bib16) 2015; 6 Benguria (njpab3508bib36b) 1981; 46 Bai (njpab3508bib19) 2017; 118 Li (njpab3508bib21) 2019; 99 Vitali (njpab3508bib34) 2007; 98 Bassi (njpab3508bib43) 2013; 85 Zhang (njpab3508bib3) 2014; 113 Ukena (njpab3508bib31) 2004; 69 Diósi (njpab3508bib46b) 1989; 40 Marinkovic (njpab3508bib25) 2018; 121 Gardiner (njpab3508bib35) 2000 Zhang (njpab3508bib6) 2015; 1 Bai (njpab3508bib5) 2015; 114 Ghirardi (njpab3508bib44b) 1995; 25 Li (njpab3508bib45a) 2016; 93 Palomaki (njpab3508bib26) 2013; 342 Riedinger (njpab3508bib27) 2018; 556 Yuan (njpab3508bib50) 2019 Li (njpab3508bib14) 2018; 121 Wang (njpab3508bib20) 2018; 120 Zhang (njpab3508bib13) 2016; 2 Penrose (njpab3508bib46c) 1996; 28 Vidal (njpab3508bib38b) 2002; 65 Tabuchi (njpab3508bib11) 2015; 349 Lachance-Quirion (njpab3508bib12) 2017; 3 Yu (njpab3508bib49) 2019 Simon (njpab3508bib41) 2000; 84 Bourhill (njpab3508bib7) 2016; 93 Kong (njpab3508bib29) 2019; 27 Kittel (njpab3508bib32) 1958; 110 Adesso (njpab3508bib40) 2007; 40 Zhang (njpab3508bib18) 2019; 99 Holstein (njpab3508bib33) 1940; 58 Eisert (njpab3508bib38a) 2001 Parks (njpab3508bib37) 1993 Wollman (njpab3508bib23a) 2015; 349 Kostylev (njpab3508bib8) 2016; 108 Aspelmeyer (njpab3508bib22) 2014; 86 Nair (njpab3508bib48) 2019 Zhang (njpab3508bib15) 2016; 117 Lecocq (njpab3508bib23c) 2015; 5 Giovannetti (njpab3508bib36a) 2001; 63 Goryachev (njpab3508bib4) 2014; 2 Morimae (njpab3508bib30) 2005; 71 Wang (njpab3508bib42) 2016; 94 Ghirardi (njpab3508bib44a) 1990; 42 Lachance-Quirion (njpab3508bib10) 2019; 12 Kittel (njpab3508bib9) 1948; 73 |
References_xml | – volume: 5 year: 2015 ident: njpab3508bib23c publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.5.041037 – volume: 115 year: 2015 ident: njpab3508bib23b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.243601 – volume: 111 year: 2013 ident: njpab3508bib1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.127003 – volume: 40 start-page: 1165 year: 1989 ident: njpab3508bib46b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.40.1165 – volume: 120 start-page: 377 year: 1987 ident: njpab3508bib46a publication-title: Phys. Lett. A doi: 10.1016/0375-9601(87)90681-5 – volume: 108 year: 2016 ident: njpab3508bib8 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941730 – volume: 117 year: 2016 ident: njpab3508bib15 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.123605 – year: 2001 ident: njpab3508bib38a publication-title: PhD Thesis – volume: 95 year: 2005 ident: njpab3508bib39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.090503 – volume: 42 start-page: 78 year: 1990 ident: njpab3508bib44a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.42.78 – volume: 349 start-page: 405 year: 2015 ident: njpab3508bib11 publication-title: Science doi: 10.1126/science.aaa3693 – volume: 99 year: 2019 ident: njpab3508bib21 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.021801 – volume: 71 start-page: 032317 year: 2005 ident: njpab3508bib30 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.032317 – volume: 85 start-page: 471 year: 2013 ident: njpab3508bib43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.85.471 – year: 2019 ident: njpab3508bib48 – volume: 25 start-page: 5 year: 1995 ident: njpab3508bib44b publication-title: Found. Phys. doi: 10.1007/BF02054655 – volume: 63 year: 2001 ident: njpab3508bib36a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.63.023812 – volume: 121 year: 2018 ident: njpab3508bib14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.203601 – volume: 342 start-page: 710 year: 2013 ident: njpab3508bib26 publication-title: Science doi: 10.1126/science.1244563 – volume: 86 start-page: 1391 year: 2014 ident: njpab3508bib22 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.1391 – year: 2019 ident: njpab3508bib49 – volume: 40 start-page: 7821 year: 2007 ident: njpab3508bib40 publication-title: J. Phys. A: Math. Theor. doi: 10.1088/1751-8113/40/28/S01 – volume: 113 year: 2014 ident: njpab3508bib2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 95 year: 2017 ident: njpab3508bib45b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.95.012141 – volume: 93 year: 2016 ident: njpab3508bib7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.144420 – volume: 6 start-page: 8914 year: 2015 ident: njpab3508bib16 publication-title: Nat. Commun. doi: 10.1038/ncomms9914 – volume: 27 start-page: 5544 year: 2019 ident: njpab3508bib29 publication-title: Opt. Express doi: 10.1364/OE.27.005544 – year: 2000 ident: njpab3508bib35 – volume: 118 year: 2017 ident: njpab3508bib19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.217201 – volume: 113 year: 2014 ident: njpab3508bib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156401 – volume: 120 year: 2018 ident: njpab3508bib20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.057202 – volume: 46 start-page: 1 year: 1981 ident: njpab3508bib36b publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.46.1 – volume: 2 year: 2016 ident: njpab3508bib13 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501286 – volume: 556 start-page: 478 year: 2018 ident: njpab3508bib28 publication-title: Nature doi: 10.1038/s41586-018-0038-x – volume: 110 start-page: 836 year: 1958 ident: njpab3508bib32 publication-title: Phys. Rev. doi: 10.1103/PhysRev.110.836 – volume: 84 start-page: 2726 year: 2000 ident: njpab3508bib41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.2726 – volume: 98 year: 2007 ident: njpab3508bib34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.030405 – volume: 556 start-page: 473 year: 2018 ident: njpab3508bib27 publication-title: Nature doi: 10.1038/s41586-018-0036-z – volume: 530 start-page: 313 year: 2016 ident: njpab3508bib24 publication-title: Nature doi: 10.1038/nature16536 – year: 1993 ident: njpab3508bib37 – volume: 69 year: 2004 ident: njpab3508bib31 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.69.022301 – volume: 65 year: 2002 ident: njpab3508bib38b publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.65.032314 – volume: 73 start-page: 155 year: 1948 ident: njpab3508bib9 publication-title: Phys. Rev. doi: 10.1103/PhysRev.73.155 – volume: 58 start-page: 1098 year: 1940 ident: njpab3508bib33 publication-title: Phys. Rev. doi: 10.1103/PhysRev.58.1098 – volume: 114 year: 2015 ident: njpab3508bib5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.227201 – volume: 93 year: 2016 ident: njpab3508bib45a publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.93.050102 – volume: 94 year: 2016 ident: njpab3508bib42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.224410 – volume: 99 year: 2019 ident: njpab3508bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.054404 – volume: 8 start-page: 1368 year: 2017 ident: njpab3508bib17 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01634-w – volume: 1 start-page: 15014 year: 2015 ident: njpab3508bib6 publication-title: NPJ Quantum Inf. doi: 10.1038/npjqi.2015.14 – volume: 349 start-page: 952 year: 2015 ident: njpab3508bib23a publication-title: Science doi: 10.1126/science.aac5138 – volume: 121 year: 2018 ident: njpab3508bib25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.220404 – volume: 12 year: 2019 ident: njpab3508bib10 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d – volume: 2 year: 2014 ident: njpab3508bib4 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054002 – volume: 3 year: 2017 ident: njpab3508bib12 publication-title: Sci. Adv. doi: 10.1126/sciadv.1603150 – volume: 28 start-page: 581 year: 1996 ident: njpab3508bib46c publication-title: Gen. Relativ. Gravit. doi: 10.1007/BF02105068 – year: 2019 ident: njpab3508bib50 – year: 2019 ident: njpab3508bib47 |
SSID | ssj0011822 |
Score | 2.6541255 |
Snippet | We present a scheme to entangle two magnon modes in a cavity magnomechanical system. The two magnon modes are embodied by collective motions of a large number... |
SourceID | doaj proquest crossref iop |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 85001 |
SubjectTerms | cavity magnomechanics Data processing Dipole interactions Entangled states Ferrimagnetism Ferrimagnets Information processing Laboratories Magnetic dipoles Magnetostriction Magnons Physics Quantum entanglement Quantum mechanics quantum optics Quantum phenomena Radiation Spheres |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iCF7ET1xdpQc9eCjb5qNNwIuKiwh6cmFvIUkTUXR32a36951Ju-uKoBevYdqGN03mDZm8IeQERckwsKWB5zzlhtlUOkdTJ4oqo8rSzOJt5Lv74mbAb4diuNTqC2vCGnngBrheYMY5nsnKG8uZo8Y4j4IrHBIb5k3A3Rdi3jyZas8PgDXT9lASllEPdclSWrCsZywT2EpyKQhFrX4ILU_jyY8NOUaZ_ibZaOlhctFMa4us-NE2WYtlmm62Q86vR0DmHvEKeVJ_jJNXrJMbJdjOZpa8P5k44OsxNuOIG1mCchDT5vLCLhn0rx-ubtK2_wEglfM6ZSEIESrIIpmFQOtcyFVwgnNVyWCEKI3NrUJ9GRMs8A5JmQ-eyswZyb1RbI-swiT8Pkl4HgqlnAJ2BikRg5hUMYCwtGVZCVaWHdKbA6JdKw6OPSpedDykllIjhBoh1A2EHXK2eGLSCGP8YnuJGC_sUNI6DoCjdeto_ZejO-QUPKTbJTb75WPJN7vR80TTXEuN4nxZricVvKo7d_OXHRBdyoB_SXrwH9M9JOvArVSsFSy6ZLWevvkj4C-1PY6_6idZN-oL priority: 102 providerName: Directory of Open Access Journals – databaseName: IOP Science Platform dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEA-iFHzxo1U8tbIP-tCHvdvNx26Cvli5Q4SqDxV8KIQkm4ja3h13q4X-9c5k9674gZS-LWGyyU6ymd-Qmd8Qso-kZGjY0sBznnLDbCqdo6kTRZVRZWlmMRv523lxesXPrsX1Ajmc58KMxu3R34XHhii4UWEbECd7SDKW0oJlPWOZwETfJSbBcGL23sXl_AoBgDNt7yXf6vXMDkW6frAuMOSrMzkamsEq-TGbYhNfct99qG3X_XnB3vif37BGVloAmhw3outkwQ8_kg8xENRNP5Gj_hDg4g0mqSf171HyCyPxhgkWzJkmj7cmNvh6hOU-4lGZIOHEpEmP2CBXg_73k9O0rbAAa5HzOmUhCBEq8FOZBVPuXMhVcIJzVclghCiNza1CBhsTLCAbSZkPnsrMGcm9UWyTLMIk_BZJeB4KpZwC_AdOFwOrVzFAZ6Uty0qwsuyQ3kzf2rX041gF46eO1-BSatSJRp3oRicd8mXeY9xQb7wj-xWXcC6HpNmxAZSvW-XrwIxzPJOVN5YzR41xHrl7OPjIzJvQIQewXrr9iafvDJY8kxvejTXNtdRI_5flelzBq3Znu-ivHEBpymCjSrr9jyPtkGUAaCoGHBa7ZLGePPjPAIJquxc3-xM2m_zV priority: 102 providerName: IOP Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxwxEA_1RPBFtK30_GIf6kMfltvNx24Cgmg5kUKlSAXfQpJNxGJvt3er_vvO5HKnUrjX7GR3mSQzv2QmvyHkK5KSoWPLAy95zg2zuXSO5k5UTUGVpYXF28g_r6rLG_7jVtymA7dZSqtc2MRoqJvW4Rn5CHAIZeAeJT3t_uVYNQqjq6mExhpZBxMs5YCsn4-vfl0v4wiAnmkKTsJyGiE_WU4rVoyMZQJLSr5xRpGzH1zMfdv9Z5ijt7nYJlsJJmZn83HdIR_85CPZiOmabvaJnIwnAOru8Cp51j-32V_Ml5tkWNZmlj3dm9jg-xaLckSDliEtxHR-ieEzubkY__5-mac6CKCxkvc5C0GI0MBukllwuM6FUgUnOFeNDEaI2tjSKuSZMcEC_pCU-eCpLJyR3BvFdskAfsJ_IRkvQ6WUU4DSYGvEwDc1DDBUbeu6Eayuh2S0UIh2iSQca1U86BisllKjCjWqUM9VOCTflj26OUHGCtlz1PFSDqmtY0M7vdNppejAjHO8kI03ljNHjXEeGXY47GSZN2FIjmGEdFpqsxUfy97JTf50mpZaaiTpK0rdNfCqg8Uwv8q9TrS91Y_3ySagJxWzAasDMuinj_4QEEpvj9I0fAEJ-uFn priority: 102 providerName: ProQuest |
Title | Entangling two magnon modes via magnetostrictive interaction |
URI | https://iopscience.iop.org/article/10.1088/1367-2630/ab3508 https://www.proquest.com/docview/2312366382 https://doaj.org/article/f3acc408deab43c2aace418545493eaf |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEA9FKfSlqLX0qh77YB98WG83H7sJVKSWExX8QDzqW0iyiSj27nq3rfrfO5Pd8xBF6Esewmx2M_mY32wyvyFkE0nJ0LClgec85YbZVDpHUyeKKqPK0sxiNPLxSXEw4EeX4nIeHt0qcPqqa4f5pAaT2-37Pw-7sOB3mhtysoesYyktWNYzlgmM_F0Eu1RiPoNjPj9TACRNmyisRro9tHythWdGKnL5g-m5Ho1fbNjRCu0vkY8tfEx-NOO9TN754Qp5H69xuukn8r0_BLB3hSHmSX03Sn7jPbphgulupsm_axMrfD3CZB1xo0uQLmLSBDesksF-_-LnQdrmRwBN5rxOWQhChAq8TGahw86FXAUnOFeVDEaI0tjcKuSfMcECLpGU-eCpzJyR3BvFPpMF-Aj_hSQ8D4VSTgF6A5eJgc2qGGCr0pZlJVhZdkhvphDtWvJwzGFxq-MhtpQaVahRhbpRYYdsPT0xbogz3pDdQx0_ySHldawYTa50u4J0YMY5nsnKG8uZo8Y4j8w7HDxc5k3okG8wQno2g954WfJMbngz1jTXUiN5X5brcQVNrc-GeS4HQJgywGeSfv2Prq2RDwCxVLwyWKyThXry128AjKltlyzu9U_OzrvxNwCUh6dn3ThjoTxlvx4BVHzsvw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqrRBcEE-xUMAHeuAQbeJH4kggRGGrLW1XCLVSb8Z27KoINmE3UPGn-I3MOMkWhLS3XhMnjsaPbybj-T5CXiApGQJbEkQmEmG4TZRzLHEyr1JWWpZarEY-nuezU_HhTJ5tkd9DLQweqxz2xLhRV7XDf-QT8EMYB3hU7E3zPUHVKMyuDhIa3bQ49L8uIWRbvT54D-O7y9j-9OTdLOlVBaD_TLQJD0HKUEFsxi3Al3MhK4OTQpSVCkbKwtjMlsjaYoIFNFeM--CZSp1RwhskX4Itf1vwPGUjsr03nX_8tM5bgLfO-mQoLN8J8qElLOfpxFguUcLyL_CLGgEAaRd18x8QRHTbv0Nu924pfdvNo7tkyy_ukRvxeKhb3SevpgtwIs-xdJ22lzX9hufzFhRldFb054WJF3xbowhI3EAp0lAsu6KJB-T0Wiz0kIzgI_wjQkUW8rJ0JXiFEIpxwMKKg89W2KKoJC-KMZkMBtGuJyVHbYyvOibHldJoQo0m1J0Jx-Tl-ommI-TY0HYPbbxuh1Ta8UK9PNf9ytSBG-dEqipvrOCOGeM8MvoIiJy5N2FMdmGEdL-0Vxs6o_-0W3xpNMu00kgKmGa6qeBVO8MwX7W7mtiPN99-Tm7OTo6P9NHB_PAJuQWeWxlPIuY7ZNQuf_in4B219lk_JSn5fN2r4A-Zgh71 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRSAuvFEXCuRADxyym_iROBIcgHbVUig9UKk3Yzs24rW76qZU8Kf4K_wkZhzvogKquPTALYocZeKZ-Pssz3wD8JBEyQjY8iBKkQvDba6cY7mTVVuwxrLCUjXyq71q-0C8OJSHK_B9WQsznaWlf4iXvVBwP4UpIU6NSGQsZxUvRsZy5BejWRtSVuWu_3qCe7b5k51NdPAGY-OtN8-389RWAA0oRZfzEKQMLW7OuEX8ci6UTXBSiKZVwUhZG1vahmRbTLAI54pxHzxThTNKeEPqS7jmX5AcsZoqBl_vL48tkKyzdBb6N0tPYV9sEYCIhp_5Bw5EcBtfhR-LaelzWj4Ojzs7dN9-U4z8j-btGlxJRDt72pt3HVb85AZcjAmvbn4THm9NkBa_o2L8rDuZZp8p43CSUWOgefblvYk3fDeltiYREjIS1jjqy0BuwcG5mH4bVtEIvwaZKEPVNK5BnoubS47o3nJkobWt61byuh7AaOFj7ZLMOnX7-KTjcb9SmvygyQ-698MAHi2fmPUSI2eMfUZhsxxH4uDxBjpcJ4frwI1zolCtN1Zwx4xxnjSKhESDvQkD2MAY0Wmxmp_xsuzUuMmHmWalVppkDotSY_wMYH0Rub_G4ZaBcWSyit35xzc9gEv7m2P9cmdv9y5cRk7axBzLah1Wu6Njfw95X2fvx38tg7fnHaQ_AVLjXXM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entangling+two+magnon+modes+via+magnetostrictive+interaction&rft.jtitle=New+journal+of+physics&rft.au=Li%2C+Jie&rft.au=Zhu%2C+Shi-Yao&rft.date=2019-08-06&rft.issn=1367-2630&rft.eissn=1367-2630&rft.volume=21&rft.issue=8&rft.spage=85001&rft_id=info:doi/10.1088%2F1367-2630%2Fab3508&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1367_2630_ab3508 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-2630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-2630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-2630&client=summon |