Bacterial Autophagy: Offense and Defense at the Host–Pathogen Interface
Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host c...
Saved in:
Published in | Cellular and molecular gastroenterology and hepatology Vol. 4; no. 2; pp. 237 - 243 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.09.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response. |
---|---|
AbstractList | Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response. Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response. Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on Salmonella enterica serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response. Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a response to cellular stress, it now is well established that autophagy also is used as a defensive mechanism to combat the infection of host cells by intracellular pathogens. However, although this defensive strategy does limit the proliferation of most pathogens within their host cells, successful pathogens have evolved countermeasures that subvert or circumvent the autophagic response. In this review, we discuss the mechanisms used by a number of these pathogens to escape autophagy, with a particular focus on serovar Typhimurium, which has been the most extensively studied example. We also discuss the consequences of bacterial autophagy for the broader innate immune response. |
Author | Casanova, James E |
AuthorAffiliation | Department of Cell Biology, Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia |
AuthorAffiliation_xml | – name: Department of Cell Biology, Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia |
Author_xml | – sequence: 1 fullname: Casanova, James E |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28660242$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks9u1DAQxi1UREvpEyChHLlsGP9LskhUKqXQlSoVCZB6sxxnsnHI2lvbqbQ33qFvyJOQZZeqcMEXj-Tv-8aa3zwnB847JOQlhZwCLd70eW9Wyy5nQMscZA7AnpAjxiWbcSFvDh7Vh-Qkxh4AqCiLEuQzcsiqogAm2BFZvNcmYbB6yM7G5NedXm7eZtdtiy5ipl2TfcB9nbLUYXbpY_r54_6zTp1fossWbrK32uAL8rTVQ8ST_X1Mvn28-Hp-Obu6_rQ4P7uaGUlFmvGiLnjDjMSy0JVATUvBkFZNXTPZikKXfM5LTQEridNpZdNKgaah8xbqsubH5HSXux7rFTYGXQp6UOtgVzpslNdW_f3ibKeW_k5JUQEHPgW83gcEfztiTGplo8Fh0A79GBWdU1FJgEJMUr6TmuBjDNg-tKGgthxUr35zUFsOCqSaOEyuV49_-OD5M_VJ8G4nwGlOdxaDisaiM9jYgCapxtv_NDj9x28G66zRw3fcYOz9GNyEQFEVmQL1ZbsK202gJQeoxA3_BaxZsu0 |
CitedBy_id | crossref_primary_10_1080_15548627_2019_1596483 crossref_primary_10_1111_cei_13510 crossref_primary_10_3389_fcimb_2022_834321 crossref_primary_10_1111_jre_12810 crossref_primary_10_1186_s12862_019_1457_5 crossref_primary_10_3389_fmicb_2020_00721 crossref_primary_10_3389_fmicb_2019_00666 crossref_primary_10_1016_j_tube_2023_102422 crossref_primary_10_3389_fcell_2019_00113 crossref_primary_10_1128_mbio_00073_23 crossref_primary_10_3390_toxins12120792 crossref_primary_10_1111_imm_13117 crossref_primary_10_3389_fcimb_2020_599762 crossref_primary_10_3389_fimmu_2021_708472 crossref_primary_10_1016_j_fsi_2019_07_072 crossref_primary_10_3389_fcell_2018_00147 crossref_primary_10_3389_fphar_2022_844756 crossref_primary_10_3390_cells9010070 crossref_primary_10_1371_journal_ppat_1010736 crossref_primary_10_1080_21505594_2018_1454171 crossref_primary_10_1128_mBio_00820_20 crossref_primary_10_1128_AAC_01536_19 crossref_primary_10_3389_fcimb_2022_892610 crossref_primary_10_4049_jimmunol_2100151 crossref_primary_10_1016_j_ijmm_2017_11_003 crossref_primary_10_1111_jcmm_15027 crossref_primary_10_1007_s12275_022_2009_z crossref_primary_10_1051_bioconf_202411101022 crossref_primary_10_18632_oncotarget_26684 crossref_primary_10_1111_bph_15158 crossref_primary_10_1186_s13567_020_00823_8 crossref_primary_10_1371_journal_pone_0207312 crossref_primary_10_3389_fvets_2024_1356259 crossref_primary_10_1128_mSphere_00374_18 crossref_primary_10_1038_s41589_024_01635_z crossref_primary_10_3389_fimmu_2021_615930 crossref_primary_10_3390_cells9010161 crossref_primary_10_1111_mmi_14858 crossref_primary_10_1080_15548627_2019_1689770 |
Cites_doi | 10.1016/j.chom.2012.04.012 10.1111/j.1462-5822.2007.01099.x 10.1016/S1286-4579(01)01411-3 10.1083/jcb.200708093 10.1084/jem.20031023 10.1038/ncb0910-814 10.1128/mBio.00065-13 10.1146/annurev-cellbio-092910-154005 10.1016/j.ceb.2009.11.014 10.1038/ni.1800 10.1111/j.1462-5822.2004.00451.x 10.1016/j.mib.2016.11.004 10.1016/j.chom.2015.02.008 10.1152/ajpcell.00144.2006 10.1128/IAI.05308-11 10.1038/ncb1967 10.1016/j.chom.2013.05.004 10.1099/mic.0.058115-0 10.1016/j.molcel.2016.04.015 10.1016/j.chom.2012.10.019 10.1016/j.cell.2007.06.009 10.1016/j.cytogfr.2014.07.015 10.1083/jcb.200803137 10.1128/IAI.72.8.4751-4762.2004 10.1111/j.1462-5822.2012.01768.x 10.1126/science.1106036 10.1016/j.chom.2010.07.002 10.1016/j.cell.2012.06.050 10.4161/auto.20881 10.1038/nrmicro3160 10.4161/auto.2825 10.1074/jbc.275.21.16309 10.1042/bse0550051 10.4049/jimmunol.0900441 10.1053/j.gastro.2013.08.035 10.1016/j.mib.2014.11.020 10.1074/jbc.M111.223610 10.1128/IAI.00068-09 10.1016/j.chom.2013.11.010 10.1016/j.mib.2014.10.010 10.1007/s10555-008-9165-4 10.1016/j.chom.2015.10.015 10.1371/journal.ppat.1004159 10.1128/mBio.02051-15 10.1371/journal.ppat.1005174 10.1038/nature10744 10.1016/j.chom.2014.03.012 10.1126/science.1227026 10.1016/j.cytogfr.2014.11.009 |
ContentType | Journal Article |
Copyright | The Author 2017 The Author 2017 The Author 2017 |
Copyright_xml | – notice: The Author – notice: 2017 The Author – notice: 2017 The Author 2017 |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.jcmgh.2017.05.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2352-345X |
EndPage | 243 |
ExternalDocumentID | 10_1016_j_jcmgh_2017_05_002 28660242 S2352345X1730084X 1_s2_0_S2352345X1730084X |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Institutes of Health grantid: RO1DK58536 – fundername: NIDDK NIH HHS grantid: R01 DK058536 |
GroupedDBID | .1- .FO 0R~ 0SF 1P~ 4.4 457 53G 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE ADRAZ ADVLN AEVXI AEXQZ AFJKZ AFRHN AFTJW AGHFR AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS EJD FDB GROUPED_DOAJ HYE KQ8 M41 M48 NCXOZ O9- OC. OK1 ON0 ROL RPM SSZ Z5R NPM AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c514t-36b63d2c5e76a84ea1742e18dbb25f46a73937a10e85eeeef5df54ecd19f0b7b3 |
IEDL.DBID | RPM |
ISSN | 2352-345X |
IngestDate | Tue Sep 17 21:14:27 EDT 2024 Fri Oct 25 06:31:57 EDT 2024 Thu Sep 26 18:55:41 EDT 2024 Sat Sep 28 08:06:48 EDT 2024 Fri Feb 23 02:26:12 EST 2024 Tue Oct 15 22:54:20 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Salmonella Salmonella-containing vacuole Xenophagy microtubule-associated light chain 3 SCV Akt DAG Autophagy IFN FAK focal adhesion kinase type III secretion system T3SS Interferon mechanistic target of rapamycin 1 TLR LC3 mTORC1 diacylglycerol Toll-like receptor IFN, interferon TLR, Toll-like receptor FAK, focal adhesion kinase DAG, diacylglycerol LC3, microtubule-associated light chain 3 SCV, Salmonella-containing vacuole T3SS, type III secretion system mTORC1, mechanistic target of rapamycin 1 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-36b63d2c5e76a84ea1742e18dbb25f46a73937a10e85eeeef5df54ecd19f0b7b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-0858-2899 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5480303/ |
PMID | 28660242 |
PQID | 1914850064 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5480303 proquest_miscellaneous_1914850064 crossref_primary_10_1016_j_jcmgh_2017_05_002 pubmed_primary_28660242 elsevier_sciencedirect_doi_10_1016_j_jcmgh_2017_05_002 elsevier_clinicalkeyesjournals_1_s2_0_S2352345X1730084X |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cellular and molecular gastroenterology and hepatology |
PublicationTitleAlternate | Cell Mol Gastroenterol Hepatol |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Verlhac, Grégoire, Azocar, Petkova, Baguet, Viret, Faure (bib16) 2015; 17 Owen, Anderson, Casanova (bib47) 2016; 7 Kreibich, Emmenlauer, Fredlund, Rämö, Münz, Dehio, Enninga, Hardt (bib34) 2015; 18 Hansen-Wester, Hensel (bib26) 2001; 3 Mizushima, Yoshimori, Ohsumi (bib2) 2011; 27 Yoshikawa, Ogawa, Hain, Yoshida, Fukumatsu, Kim, Mimuro, Nakagawa, Yanagawa, Ishii (bib19) 2009; 11 Shahnazari, Yen, Birmingham, Shiu, Namolovan, Zheng, Nakayama, Klionsky, Brumell (bib36) 2010; 8 Thurston, Ryzhakov, Bloor, von Muhlinen, Randow (bib14) 2009; 10 Tumbarello, Manna, Allen, Bycroft, Arden, Kendrick-Jones, Buss (bib12) 2015; 11 Knodler (bib33) 2015; 23 Mostowy, Sancho-Shimizu, Hamon, Simeone, Brosch, Johansen, Cossart (bib15) 2011; 286 Zheng, Shahnazari, Brech, Lamark, Johansen, Brumell (bib13) 2009; 183 Slobodkin, Elazar (bib8) 2013; 55 Van Raemdonck, Van den Steen, Liekens, Van Damme, Struyf (bib50) 2015; 26 Thurston, Wandel, von Muhlinen, Foeglein, Randow (bib35) 2012; 482 Owen, Pixley, Thomas, Vicente-Manzanares, Ray, Horwitz, Parsons, Beggs, Stanley, Bouton (bib46) 2007; 179 Randow, Youle (bib9) 2014; 15 Lin, Young (bib49) 2014; 25 Hueffer, Galán (bib39) 2004; 6 Pylayeva, Gillen, Gerald, Beggs, Reichardt, Giancotti (bib41) 2009; 119 Owen, Meyer, Bouton, Casanova (bib40) 2014; 10 Romagnoli, Etna, Giacomini, Pardini, Remoli, Corazzari, Falasca, Goletti, Gafa, Simeone (bib22) 2012; 8 Lapaquette, Bringer, Darfeuille-Michaud (bib21) 2012; 14 Hautefort, Thompson, Eriksson-Ygberg, Parker, Lucchini, Danino, Bongaerts, Ahmad, Rhen, Hinton (bib29) 2008; 10 Dong, Zhu, Lu, Hu, Zheng, Shao (bib17) 2012; 150 Birmingham, Brumell (bib32) 2006; 2 Ogawa, Yoshimori, Suzuki, Sagara, Mizushima, Sasakawa (bib18) 2005; 307 Figueira, Holden (bib27) 2012; 158 Huett, Heath, Begun, Sassi, Baxt, Vyas, Goldberg, Xavier (bib11) 2012; 12 Zhao, Guan (bib44) 2009; 28 Figueira, Watson, Holden, Helaine (bib28) 2013; 4 Axe, Walker, Manifava, Chandra, Roderick, Habermann, Griffiths, Ktistakis (bib7) 2008; 182 Fiskin, Bionda, Dikic, Behrends (bib10) 2016; 62 Fitzgerald, Rowe, Barnes, Caffrey, Visintin, Latz, Monks, Pitha, Golenbock (bib48) 2003; 198 Huang, Khoe, Befekadu, Chung, Takata, Ilic, Bryer-Ash (bib42) 2007; 292 Yasir, Pachikara, Bao, Pan, Fan (bib24) 2011; 79 Yang, Klionsky (bib3) 2010; 22 Benjamin, Sumpter, Levine, Hooper (bib38) 2013; 13 Kohler, Roy (bib6) 2016; 35 Pujol, Klein, Romanov, Palmer, Cirota, Zhao, Bliska (bib25) 2009; 77 Kröger, Colgan, Srikumar, Händler, Sivasankaran, Hammarlöf, Canals, Grissom, Conway, Hokamp (bib30) 2013; 14 Tattoli, Sorbara, Vuckovic, Ling, Soares, Carneiro, Yang, Emili, Philpott, Girardin (bib31) 2012; 11 Sonoda, Matsumoto, Funakoshi, Yamamoto, Hanks, Kasahara (bib43) 2000; 275 Choy, Dancourt, Mugo, O’Connor, Isberg, Melia, Roy (bib20) 2012; 338 Manning, Cantley (bib45) 2007; 129 Yang, Klionsky (bib1) 2010; 12 Sorbara, Girardin (bib5) 2015; 23 Al-Younes, Brinkmann, Meyer (bib23) 2004; 72 Huang, Brumell (bib4) 2014; 12 Conway, Kuballa, Song, Patel, Castoreno, Yilmaz, Jijon, Zhang, Aldrich, Villablanca (bib37) 2013; 145 19289509 - Infect Immun. 2009 Jun;77(6):2251-61 18031307 - Cell Microbiol. 2008 Apr;10(4):958-84 23592259 - MBio. 2013 Apr 16;4(2):e00065 17604717 - Cell. 2007 Jun 29;129(7):1261-74 23112293 - Science. 2012 Nov 23;338(6110):1072-6 19749745 - Nat Cell Biol. 2009 Oct;11(10):1233-40 26567507 - Cell Host Microbe. 2015 Nov 11;18(5):527-37 25461569 - Curr Opin Microbiol. 2015 Feb;23:23-31 11418329 - Microbes Infect. 2001 Jun;3(7):549-59 16874057 - Autophagy. 2006 Jul-Sep;2(3):156-8 23768496 - Cell Host Microbe. 2013 Jun 12;13(6):723-34 15469431 - Cell Microbiol. 2004 Nov;6(11):1019-25 22704617 - Cell Host Microbe. 2012 Jun 14;11(6):563-75 27211868 - Mol Cell. 2016 Jun 16;62(6):967-81 21801009 - Annu Rev Cell Dev Biol. 2011;27:107-32 25498524 - Cytokine Growth Factor Rev. 2015 Jun;26(3):311-27 18070912 - J Cell Biol. 2007 Dec 17;179(6):1275-87 27984783 - Curr Opin Microbiol. 2017 Feb;35:36-41 25156421 - Cytokine Growth Factor Rev. 2014 Aug;25(4):369-76 19169797 - Cancer Metastasis Rev. 2009 Jun;28(1-2):35-49 17135301 - Am J Physiol Cell Physiol. 2007 Apr;292(4):C1339-52 14517278 - J Exp Med. 2003 Oct 6;198(7):1043-55 19820708 - Nat Immunol. 2009 Nov;10(11):1215-21 23245322 - Cell Host Microbe. 2012 Dec 13;12 (6):778-90 26884434 - MBio. 2016 Feb 16;7(1):e02051-15 21646350 - J Biol Chem. 2011 Jul 29;286(30):26987-95 24721569 - Cell Host Microbe. 2014 Apr 9;15(4):403-11 22309232 - Cell Microbiol. 2012 Jun;14 (6):791-807 15576571 - Science. 2005 Feb 4;307(5710):727-31 20811353 - Nat Cell Biol. 2010 Sep;12(9):814-22 19812211 - J Immunol. 2009 Nov 1;183(9):5909-16 25771791 - Cell Host Microbe. 2015 Apr 8;17(4):515-25 20034776 - Curr Opin Cell Biol. 2010 Apr;22(2):124-31 10821872 - J Biol Chem. 2000 May 26;275(21):16309-15 15271937 - Infect Immun. 2004 Aug;72(8):4751-62 22422755 - Microbiology. 2012 May;158(Pt 5):1147-61 19147981 - J Clin Invest. 2009 Feb;119(2):252-66 26451915 - PLoS Pathog. 2015 Oct 09;11(10):e1005174 25497773 - Curr Opin Microbiol. 2015 Feb;23:163-70 23973919 - Gastroenterology. 2013 Dec;145(6):1347-57 24331466 - Cell Host Microbe. 2013 Dec 11;14(6):683-95 22939626 - Cell. 2012 Aug 31;150(5):1029-41 20674539 - Cell Host Microbe. 2010 Aug 19;8(2):137-46 21807906 - Infect Immun. 2011 Oct;79(10):4019-28 24384599 - Nat Rev Microbiol. 2014 Feb;12(2):101-14 22885411 - Autophagy. 2012 Sep;8(9):1357-70 24070471 - Essays Biochem. 2013;55:51-64 18725538 - J Cell Biol. 2008 Aug 25;182(4):685-701 22246324 - Nature. 2012 Jan 15;482(7385):414-8 24901456 - PLoS Pathog. 2014 Jun 05;10 (6):e1004159 Hansen-Wester (10.1016/j.jcmgh.2017.05.002_bib26) 2001; 3 Owen (10.1016/j.jcmgh.2017.05.002_bib40) 2014; 10 Choy (10.1016/j.jcmgh.2017.05.002_bib20) 2012; 338 Owen (10.1016/j.jcmgh.2017.05.002_bib47) 2016; 7 Knodler (10.1016/j.jcmgh.2017.05.002_bib33) 2015; 23 Fitzgerald (10.1016/j.jcmgh.2017.05.002_bib48) 2003; 198 Yang (10.1016/j.jcmgh.2017.05.002_bib3) 2010; 22 Benjamin (10.1016/j.jcmgh.2017.05.002_bib38) 2013; 13 Romagnoli (10.1016/j.jcmgh.2017.05.002_bib22) 2012; 8 Pylayeva (10.1016/j.jcmgh.2017.05.002_bib41) 2009; 119 Hautefort (10.1016/j.jcmgh.2017.05.002_bib29) 2008; 10 Huett (10.1016/j.jcmgh.2017.05.002_bib11) 2012; 12 Owen (10.1016/j.jcmgh.2017.05.002_bib46) 2007; 179 Slobodkin (10.1016/j.jcmgh.2017.05.002_bib8) 2013; 55 Zhao (10.1016/j.jcmgh.2017.05.002_bib44) 2009; 28 Zheng (10.1016/j.jcmgh.2017.05.002_bib13) 2009; 183 Randow (10.1016/j.jcmgh.2017.05.002_bib9) 2014; 15 Van Raemdonck (10.1016/j.jcmgh.2017.05.002_bib50) 2015; 26 Mostowy (10.1016/j.jcmgh.2017.05.002_bib15) 2011; 286 Yang (10.1016/j.jcmgh.2017.05.002_bib1) 2010; 12 Ogawa (10.1016/j.jcmgh.2017.05.002_bib18) 2005; 307 Lin (10.1016/j.jcmgh.2017.05.002_bib49) 2014; 25 Tattoli (10.1016/j.jcmgh.2017.05.002_bib31) 2012; 11 Birmingham (10.1016/j.jcmgh.2017.05.002_bib32) 2006; 2 Shahnazari (10.1016/j.jcmgh.2017.05.002_bib36) 2010; 8 Manning (10.1016/j.jcmgh.2017.05.002_bib45) 2007; 129 Hueffer (10.1016/j.jcmgh.2017.05.002_bib39) 2004; 6 Conway (10.1016/j.jcmgh.2017.05.002_bib37) 2013; 145 Huang (10.1016/j.jcmgh.2017.05.002_bib42) 2007; 292 Kröger (10.1016/j.jcmgh.2017.05.002_bib30) 2013; 14 Verlhac (10.1016/j.jcmgh.2017.05.002_bib16) 2015; 17 Sorbara (10.1016/j.jcmgh.2017.05.002_bib5) 2015; 23 Figueira (10.1016/j.jcmgh.2017.05.002_bib28) 2013; 4 Axe (10.1016/j.jcmgh.2017.05.002_bib7) 2008; 182 Kreibich (10.1016/j.jcmgh.2017.05.002_bib34) 2015; 18 Thurston (10.1016/j.jcmgh.2017.05.002_bib14) 2009; 10 Al-Younes (10.1016/j.jcmgh.2017.05.002_bib23) 2004; 72 Sonoda (10.1016/j.jcmgh.2017.05.002_bib43) 2000; 275 Yasir (10.1016/j.jcmgh.2017.05.002_bib24) 2011; 79 Lapaquette (10.1016/j.jcmgh.2017.05.002_bib21) 2012; 14 Kohler (10.1016/j.jcmgh.2017.05.002_bib6) 2016; 35 Pujol (10.1016/j.jcmgh.2017.05.002_bib25) 2009; 77 Thurston (10.1016/j.jcmgh.2017.05.002_bib35) 2012; 482 Huang (10.1016/j.jcmgh.2017.05.002_bib4) 2014; 12 Yoshikawa (10.1016/j.jcmgh.2017.05.002_bib19) 2009; 11 Fiskin (10.1016/j.jcmgh.2017.05.002_bib10) 2016; 62 Dong (10.1016/j.jcmgh.2017.05.002_bib17) 2012; 150 Tumbarello (10.1016/j.jcmgh.2017.05.002_bib12) 2015; 11 Figueira (10.1016/j.jcmgh.2017.05.002_bib27) 2012; 158 Mizushima (10.1016/j.jcmgh.2017.05.002_bib2) 2011; 27 |
References_xml | – volume: 27 start-page: 107 year: 2011 end-page: 132 ident: bib2 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol contributor: fullname: Ohsumi – volume: 2 start-page: 156 year: 2006 end-page: 158 ident: bib32 article-title: Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles publication-title: Autophagy contributor: fullname: Brumell – volume: 292 start-page: C1339 year: 2007 end-page: C1352 ident: bib42 article-title: Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways publication-title: Am J Physiol Cell Physiol contributor: fullname: Bryer-Ash – volume: 182 start-page: 685 year: 2008 end-page: 701 ident: bib7 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J Cell Biol contributor: fullname: Ktistakis – volume: 35 start-page: 36 year: 2016 end-page: 41 ident: bib6 article-title: Autophagic targeting and avoidance in intracellular bacterial infections publication-title: Curr Opin Microbiol contributor: fullname: Roy – volume: 15 start-page: 403 year: 2014 end-page: 411 ident: bib9 article-title: Self and nonself: how autophagy targets mitochondria and bacteria publication-title: Cell Host Microbe contributor: fullname: Youle – volume: 8 start-page: 1357 year: 2012 end-page: 1370 ident: bib22 article-title: ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells publication-title: Autophagy contributor: fullname: Simeone – volume: 13 start-page: 723 year: 2013 end-page: 734 ident: bib38 article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria publication-title: Cell Host Microbe contributor: fullname: Hooper – volume: 145 start-page: 1347 year: 2013 end-page: 1357 ident: bib37 article-title: Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection publication-title: Gastroenterology contributor: fullname: Villablanca – volume: 17 start-page: 515 year: 2015 end-page: 525 ident: bib16 article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation publication-title: Cell Host Microbe contributor: fullname: Faure – volume: 307 start-page: 727 year: 2005 end-page: 731 ident: bib18 article-title: Escape of intracellular Shigella from autophagy publication-title: Science contributor: fullname: Sasakawa – volume: 158 start-page: 1147 year: 2012 end-page: 1161 ident: bib27 article-title: Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors publication-title: Microbiology contributor: fullname: Holden – volume: 23 start-page: 23 year: 2015 end-page: 31 ident: bib33 article-title: Salmonella enterica: living a double life in epithelial cells publication-title: Curr Opin Microbiol contributor: fullname: Knodler – volume: 77 start-page: 2251 year: 2009 end-page: 2261 ident: bib25 article-title: Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification publication-title: Infect Immun contributor: fullname: Bliska – volume: 11 start-page: e1005174 year: 2015 ident: bib12 article-title: The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy publication-title: PLoS Pathog contributor: fullname: Buss – volume: 11 start-page: 563 year: 2012 end-page: 575 ident: bib31 article-title: Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program publication-title: Cell Host Microbe contributor: fullname: Girardin – volume: 23 start-page: 163 year: 2015 end-page: 170 ident: bib5 article-title: Emerging themes in bacterial autophagy publication-title: Curr Opin Microbiol contributor: fullname: Girardin – volume: 4 start-page: e00065 year: 2013 ident: bib28 article-title: Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design publication-title: MBio contributor: fullname: Helaine – volume: 72 start-page: 4751 year: 2004 end-page: 4762 ident: bib23 article-title: Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway publication-title: Infect Immun contributor: fullname: Meyer – volume: 3 start-page: 549 year: 2001 end-page: 559 ident: bib26 article-title: Salmonella pathogenicity islands encoding type III secretion systems publication-title: Microbes Infect contributor: fullname: Hensel – volume: 26 start-page: 311 year: 2015 end-page: 327 ident: bib50 article-title: CXCR3 ligands in disease and therapy publication-title: Cytokine Growth Factor Rev contributor: fullname: Struyf – volume: 25 start-page: 369 year: 2014 end-page: 376 ident: bib49 article-title: Interferons: success in anti-viral immunotherapy publication-title: Cytokine Growth Factor Rev contributor: fullname: Young – volume: 275 start-page: 16309 year: 2000 end-page: 16315 ident: bib43 article-title: Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60 publication-title: J Biol Chem contributor: fullname: Kasahara – volume: 12 start-page: 778 year: 2012 end-page: 790 ident: bib11 article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium publication-title: Cell Host Microbe contributor: fullname: Xavier – volume: 10 start-page: 958 year: 2008 end-page: 984 ident: bib29 article-title: During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems publication-title: Cell Microbiol contributor: fullname: Hinton – volume: 198 start-page: 1043 year: 2003 end-page: 1055 ident: bib48 article-title: LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF publication-title: J Exp Med contributor: fullname: Golenbock – volume: 6 start-page: 1019 year: 2004 end-page: 1025 ident: bib39 article-title: Salmonella-induced macrophage death: multiple mechanisms, different outcomes publication-title: Cell Microbiol contributor: fullname: Galán – volume: 7 start-page: e02051 year: 2016 end-page: e02115 ident: bib47 article-title: Salmonella suppresses the TRIF-dependent type I interferon response in macrophages publication-title: MBio contributor: fullname: Casanova – volume: 179 start-page: 1275 year: 2007 end-page: 1287 ident: bib46 article-title: Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase publication-title: J Cell Biol contributor: fullname: Bouton – volume: 338 start-page: 1072 year: 2012 end-page: 1076 ident: bib20 article-title: The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation publication-title: Science contributor: fullname: Roy – volume: 79 start-page: 4019 year: 2011 end-page: 4028 ident: bib24 article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles publication-title: Infect Immun contributor: fullname: Fan – volume: 129 start-page: 1261 year: 2007 end-page: 1274 ident: bib45 article-title: AKT/PKB signaling: navigating downstream publication-title: Cell contributor: fullname: Cantley – volume: 119 start-page: 252 year: 2009 end-page: 266 ident: bib41 article-title: Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling publication-title: J Clin Invest contributor: fullname: Giancotti – volume: 28 start-page: 35 year: 2009 end-page: 49 ident: bib44 article-title: Signal transduction by focal adhesion kinase in cancer publication-title: Cancer Metastasis Rev contributor: fullname: Guan – volume: 22 start-page: 124 year: 2010 end-page: 131 ident: bib3 article-title: Mammalian autophagy: core molecular machinery and signaling regulation publication-title: Curr Opin Cell Biol contributor: fullname: Klionsky – volume: 10 start-page: e1004159 year: 2014 ident: bib40 article-title: Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages publication-title: PLoS Pathog contributor: fullname: Casanova – volume: 12 start-page: 101 year: 2014 end-page: 114 ident: bib4 article-title: Bacteria-autophagy interplay: a battle for survival publication-title: Nat Rev Microbiol contributor: fullname: Brumell – volume: 62 start-page: 967 year: 2016 end-page: 981 ident: bib10 article-title: Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection publication-title: Mol Cell contributor: fullname: Behrends – volume: 8 start-page: 137 year: 2010 end-page: 146 ident: bib36 article-title: A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy publication-title: Cell Host Microbe contributor: fullname: Brumell – volume: 150 start-page: 1029 year: 2012 end-page: 1041 ident: bib17 article-title: Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses publication-title: Cell contributor: fullname: Shao – volume: 183 start-page: 5909 year: 2009 end-page: 5916 ident: bib13 article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway publication-title: J Immunol contributor: fullname: Brumell – volume: 14 start-page: 791 year: 2012 end-page: 807 ident: bib21 article-title: Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response publication-title: Cell Microbiol contributor: fullname: Darfeuille-Michaud – volume: 11 start-page: 1233 year: 2009 end-page: 1240 ident: bib19 article-title: Listeria monocytogenes ActA-mediated escape from autophagic recognition publication-title: Nat Cell Biol contributor: fullname: Ishii – volume: 12 start-page: 814 year: 2010 end-page: 822 ident: bib1 article-title: Eaten alive: a history of macroautophagy publication-title: Nat Cell Biol contributor: fullname: Klionsky – volume: 14 start-page: 683 year: 2013 end-page: 695 ident: bib30 article-title: An infection-relevant transcriptomic compendium for Salmonella enterica Serovar typhimurium publication-title: Cell Host Microbe contributor: fullname: Hokamp – volume: 18 start-page: 527 year: 2015 end-page: 537 ident: bib34 article-title: Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1 publication-title: Cell Host Microbe contributor: fullname: Hardt – volume: 10 start-page: 1215 year: 2009 end-page: 1221 ident: bib14 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat Immunol contributor: fullname: Randow – volume: 482 start-page: 414 year: 2012 end-page: 418 ident: bib35 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature contributor: fullname: Randow – volume: 55 start-page: 51 year: 2013 end-page: 64 ident: bib8 article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy publication-title: Essays Biochem contributor: fullname: Elazar – volume: 286 start-page: 26987 year: 2011 end-page: 26995 ident: bib15 article-title: p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways publication-title: J Biol Chem contributor: fullname: Cossart – volume: 11 start-page: 563 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib31 article-title: Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.04.012 contributor: fullname: Tattoli – volume: 10 start-page: 958 year: 2008 ident: 10.1016/j.jcmgh.2017.05.002_bib29 article-title: During infection of epithelial cells Salmonella enterica serovar Typhimurium undergoes a time-dependent transcriptional adaptation that results in simultaneous expression of three type 3 secretion systems publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2007.01099.x contributor: fullname: Hautefort – volume: 3 start-page: 549 year: 2001 ident: 10.1016/j.jcmgh.2017.05.002_bib26 article-title: Salmonella pathogenicity islands encoding type III secretion systems publication-title: Microbes Infect doi: 10.1016/S1286-4579(01)01411-3 contributor: fullname: Hansen-Wester – volume: 119 start-page: 252 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib41 article-title: Ras- and PI3K-dependent breast tumorigenesis in mice and humans requires focal adhesion kinase signaling publication-title: J Clin Invest contributor: fullname: Pylayeva – volume: 179 start-page: 1275 year: 2007 ident: 10.1016/j.jcmgh.2017.05.002_bib46 article-title: Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase publication-title: J Cell Biol doi: 10.1083/jcb.200708093 contributor: fullname: Owen – volume: 198 start-page: 1043 year: 2003 ident: 10.1016/j.jcmgh.2017.05.002_bib48 article-title: LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF publication-title: J Exp Med doi: 10.1084/jem.20031023 contributor: fullname: Fitzgerald – volume: 12 start-page: 814 year: 2010 ident: 10.1016/j.jcmgh.2017.05.002_bib1 article-title: Eaten alive: a history of macroautophagy publication-title: Nat Cell Biol doi: 10.1038/ncb0910-814 contributor: fullname: Yang – volume: 4 start-page: e00065 year: 2013 ident: 10.1016/j.jcmgh.2017.05.002_bib28 article-title: Identification of salmonella pathogenicity island-2 type III secretion system effectors involved in intramacrophage replication of S. enterica serovar typhimurium: implications for rational vaccine design publication-title: MBio doi: 10.1128/mBio.00065-13 contributor: fullname: Figueira – volume: 27 start-page: 107 year: 2011 ident: 10.1016/j.jcmgh.2017.05.002_bib2 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154005 contributor: fullname: Mizushima – volume: 22 start-page: 124 year: 2010 ident: 10.1016/j.jcmgh.2017.05.002_bib3 article-title: Mammalian autophagy: core molecular machinery and signaling regulation publication-title: Curr Opin Cell Biol doi: 10.1016/j.ceb.2009.11.014 contributor: fullname: Yang – volume: 10 start-page: 1215 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib14 article-title: The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria publication-title: Nat Immunol doi: 10.1038/ni.1800 contributor: fullname: Thurston – volume: 6 start-page: 1019 year: 2004 ident: 10.1016/j.jcmgh.2017.05.002_bib39 article-title: Salmonella-induced macrophage death: multiple mechanisms, different outcomes publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2004.00451.x contributor: fullname: Hueffer – volume: 35 start-page: 36 year: 2016 ident: 10.1016/j.jcmgh.2017.05.002_bib6 article-title: Autophagic targeting and avoidance in intracellular bacterial infections publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2016.11.004 contributor: fullname: Kohler – volume: 17 start-page: 515 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib16 article-title: Autophagy receptor NDP52 regulates pathogen-containing autophagosome maturation publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.02.008 contributor: fullname: Verlhac – volume: 292 start-page: C1339 year: 2007 ident: 10.1016/j.jcmgh.2017.05.002_bib42 article-title: Focal adhesion kinase mediates cell survival via NF-kappaB and ERK signaling pathways publication-title: Am J Physiol Cell Physiol doi: 10.1152/ajpcell.00144.2006 contributor: fullname: Huang – volume: 79 start-page: 4019 year: 2011 ident: 10.1016/j.jcmgh.2017.05.002_bib24 article-title: Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles publication-title: Infect Immun doi: 10.1128/IAI.05308-11 contributor: fullname: Yasir – volume: 11 start-page: 1233 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib19 article-title: Listeria monocytogenes ActA-mediated escape from autophagic recognition publication-title: Nat Cell Biol doi: 10.1038/ncb1967 contributor: fullname: Yoshikawa – volume: 13 start-page: 723 year: 2013 ident: 10.1016/j.jcmgh.2017.05.002_bib38 article-title: Intestinal epithelial autophagy is essential for host defense against invasive bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.05.004 contributor: fullname: Benjamin – volume: 158 start-page: 1147 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib27 article-title: Functions of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system effectors publication-title: Microbiology doi: 10.1099/mic.0.058115-0 contributor: fullname: Figueira – volume: 62 start-page: 967 year: 2016 ident: 10.1016/j.jcmgh.2017.05.002_bib10 article-title: Global analysis of host and bacterial ubiquitinome in response to Salmonella typhimurium infection publication-title: Mol Cell doi: 10.1016/j.molcel.2016.04.015 contributor: fullname: Fiskin – volume: 12 start-page: 778 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib11 article-title: The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium publication-title: Cell Host Microbe doi: 10.1016/j.chom.2012.10.019 contributor: fullname: Huett – volume: 129 start-page: 1261 year: 2007 ident: 10.1016/j.jcmgh.2017.05.002_bib45 article-title: AKT/PKB signaling: navigating downstream publication-title: Cell doi: 10.1016/j.cell.2007.06.009 contributor: fullname: Manning – volume: 25 start-page: 369 year: 2014 ident: 10.1016/j.jcmgh.2017.05.002_bib49 article-title: Interferons: success in anti-viral immunotherapy publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2014.07.015 contributor: fullname: Lin – volume: 182 start-page: 685 year: 2008 ident: 10.1016/j.jcmgh.2017.05.002_bib7 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J Cell Biol doi: 10.1083/jcb.200803137 contributor: fullname: Axe – volume: 72 start-page: 4751 year: 2004 ident: 10.1016/j.jcmgh.2017.05.002_bib23 article-title: Interaction of Chlamydia trachomatis serovar L2 with the host autophagic pathway publication-title: Infect Immun doi: 10.1128/IAI.72.8.4751-4762.2004 contributor: fullname: Al-Younes – volume: 14 start-page: 791 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib21 article-title: Defects in autophagy favour adherent-invasive Escherichia coli persistence within macrophages leading to increased pro-inflammatory response publication-title: Cell Microbiol doi: 10.1111/j.1462-5822.2012.01768.x contributor: fullname: Lapaquette – volume: 307 start-page: 727 year: 2005 ident: 10.1016/j.jcmgh.2017.05.002_bib18 article-title: Escape of intracellular Shigella from autophagy publication-title: Science doi: 10.1126/science.1106036 contributor: fullname: Ogawa – volume: 8 start-page: 137 year: 2010 ident: 10.1016/j.jcmgh.2017.05.002_bib36 article-title: A diacylglycerol-dependent signaling pathway contributes to regulation of antibacterial autophagy publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.07.002 contributor: fullname: Shahnazari – volume: 150 start-page: 1029 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib17 article-title: Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses publication-title: Cell doi: 10.1016/j.cell.2012.06.050 contributor: fullname: Dong – volume: 8 start-page: 1357 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib22 article-title: ESX-1 dependent impairment of autophagic flux by Mycobacterium tuberculosis in human dendritic cells publication-title: Autophagy doi: 10.4161/auto.20881 contributor: fullname: Romagnoli – volume: 12 start-page: 101 year: 2014 ident: 10.1016/j.jcmgh.2017.05.002_bib4 article-title: Bacteria-autophagy interplay: a battle for survival publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro3160 contributor: fullname: Huang – volume: 2 start-page: 156 year: 2006 ident: 10.1016/j.jcmgh.2017.05.002_bib32 article-title: Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles publication-title: Autophagy doi: 10.4161/auto.2825 contributor: fullname: Birmingham – volume: 275 start-page: 16309 year: 2000 ident: 10.1016/j.jcmgh.2017.05.002_bib43 article-title: Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60 publication-title: J Biol Chem doi: 10.1074/jbc.275.21.16309 contributor: fullname: Sonoda – volume: 55 start-page: 51 year: 2013 ident: 10.1016/j.jcmgh.2017.05.002_bib8 article-title: The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy publication-title: Essays Biochem doi: 10.1042/bse0550051 contributor: fullname: Slobodkin – volume: 183 start-page: 5909 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib13 article-title: The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway publication-title: J Immunol doi: 10.4049/jimmunol.0900441 contributor: fullname: Zheng – volume: 145 start-page: 1347 year: 2013 ident: 10.1016/j.jcmgh.2017.05.002_bib37 article-title: Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection publication-title: Gastroenterology doi: 10.1053/j.gastro.2013.08.035 contributor: fullname: Conway – volume: 23 start-page: 163 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib5 article-title: Emerging themes in bacterial autophagy publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2014.11.020 contributor: fullname: Sorbara – volume: 286 start-page: 26987 year: 2011 ident: 10.1016/j.jcmgh.2017.05.002_bib15 article-title: p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways publication-title: J Biol Chem doi: 10.1074/jbc.M111.223610 contributor: fullname: Mostowy – volume: 77 start-page: 2251 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib25 article-title: Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification publication-title: Infect Immun doi: 10.1128/IAI.00068-09 contributor: fullname: Pujol – volume: 14 start-page: 683 year: 2013 ident: 10.1016/j.jcmgh.2017.05.002_bib30 article-title: An infection-relevant transcriptomic compendium for Salmonella enterica Serovar typhimurium publication-title: Cell Host Microbe doi: 10.1016/j.chom.2013.11.010 contributor: fullname: Kröger – volume: 23 start-page: 23 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib33 article-title: Salmonella enterica: living a double life in epithelial cells publication-title: Curr Opin Microbiol doi: 10.1016/j.mib.2014.10.010 contributor: fullname: Knodler – volume: 28 start-page: 35 year: 2009 ident: 10.1016/j.jcmgh.2017.05.002_bib44 article-title: Signal transduction by focal adhesion kinase in cancer publication-title: Cancer Metastasis Rev doi: 10.1007/s10555-008-9165-4 contributor: fullname: Zhao – volume: 18 start-page: 527 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib34 article-title: Autophagy proteins promote repair of endosomal membranes damaged by the Salmonella type three secretion system 1 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2015.10.015 contributor: fullname: Kreibich – volume: 10 start-page: e1004159 year: 2014 ident: 10.1016/j.jcmgh.2017.05.002_bib40 article-title: Activation of focal adhesion kinase by Salmonella suppresses autophagy via an Akt/mTOR signaling pathway and promotes bacterial survival in macrophages publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1004159 contributor: fullname: Owen – volume: 7 start-page: e02051 year: 2016 ident: 10.1016/j.jcmgh.2017.05.002_bib47 article-title: Salmonella suppresses the TRIF-dependent type I interferon response in macrophages publication-title: MBio doi: 10.1128/mBio.02051-15 contributor: fullname: Owen – volume: 11 start-page: e1005174 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib12 article-title: The autophagy receptor TAX1BP1 and the molecular motor myosin VI are required for clearance of salmonella typhimurium by autophagy publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1005174 contributor: fullname: Tumbarello – volume: 482 start-page: 414 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib35 article-title: Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion publication-title: Nature doi: 10.1038/nature10744 contributor: fullname: Thurston – volume: 15 start-page: 403 year: 2014 ident: 10.1016/j.jcmgh.2017.05.002_bib9 article-title: Self and nonself: how autophagy targets mitochondria and bacteria publication-title: Cell Host Microbe doi: 10.1016/j.chom.2014.03.012 contributor: fullname: Randow – volume: 338 start-page: 1072 year: 2012 ident: 10.1016/j.jcmgh.2017.05.002_bib20 article-title: The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation publication-title: Science doi: 10.1126/science.1227026 contributor: fullname: Choy – volume: 26 start-page: 311 year: 2015 ident: 10.1016/j.jcmgh.2017.05.002_bib50 article-title: CXCR3 ligands in disease and therapy publication-title: Cytokine Growth Factor Rev doi: 10.1016/j.cytogfr.2014.11.009 contributor: fullname: Van Raemdonck |
SSID | ssj0001476705 |
Score | 2.3017893 |
SecondaryResourceType | review_article |
Snippet | Autophagy is a fundamental cellular process used for the turnover and recycling of cytosolic components and damaged organelles. Originally characterized as a... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 237 |
SubjectTerms | Akt Autophagy FAK Gastroenterology and Hepatology Interferon Review Salmonella Xenophagy |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuQwELUQSIgLYhtoNgVpjmSUxEsSJIRY1YzEIkFLfbO8hRkEaaDTEtz4B_6QL6EqSw_7YXLKYsdOVTl-ZZefCfkZKIABhqc-ZwZHq5z1dUIDH-4LGgobpRZXIx8di3aH_e7y7ghpdkWtBdj_1LXD_aQ6d1e_7m8ftqDBb_6L1bo01xc4sxBWNJxILjkWITMXxvLVeL8cdGGxiMuwxgiAh08Z7zZMRJ-_56ve6iMafR9U-aqXOpgikzW89LYre5gmIy6fIeNH9QT6LDncqdiZMc0AOQXUxcOGd5Jl4M06T-XW23P1eeEBNvTavX7x_Ph0CkCxB7bmlSOImTJujnQO9s932369m4JvABQVPhVaUBsZ7mKhEuYU-CKRCxOrdcQzJlTJjafCwCXcwZFxm3HmjA3TLNCxpj_IaN7L3QLxbBo46OkNZ0ozjRmMNZorRSmgMZq1yHojNXlTkWbIJprsUpZClihkGXAJQm6RuJGsbNaDwh_M9RtrkKHsRzKQZ6g1VFqILPsJ67aIGOasEUOFBCTYx_dFrjUalNCecJJE5a43gKJScBA5IrUWma80OvyGKBECMQ1U-I2uhwmQq_vtk_zvn5KzG2n1AC0s_m-Fl8gEXlXRbctktLgbuBWAQ4VeLU38BWDhCTo priority: 102 providerName: Scholars Portal |
Title | Bacterial Autophagy: Offense and Defense at the Host–Pathogen Interface |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S2352345X1730084X https://dx.doi.org/10.1016/j.jcmgh.2017.05.002 https://www.ncbi.nlm.nih.gov/pubmed/28660242 https://search.proquest.com/docview/1914850064 https://pubmed.ncbi.nlm.nih.gov/PMC5480303 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61RUJcEG8WyipIHEnXiR9JeisL1YK0bSWoFHGx_EppxWYrNnvgxn_oP-SXMHbiVQuCAzlEUWLLznjs-TwefwZ4RRTCAMOrlDPjvVXOprqkJMX3gmbC5pX1u5HnR2J2yj7UvN4CHvfChKB9o8_32q-Lvfb8S4itvFyYSYwTm5zMp56jDIfeyTZso4Jem6IHxworREF4ZBgKsVwXZnHmVx6ynqaT-DNs8lIIb6D-ZpD-BJy_x01eM0SH9-DugCCTg76m92HLtQ_g9nxYI38I79_0BMw-zdrTBqiz7_vJcdPghNUlqrXJWzc8dwnCv2S2XHU_f1ydIBZcojolwUnYKOMewenhu0_TWTocmJAaxD1dSoUW1OaGu0KokjmF043cZaXVOucNEyrQ36mMuJI7vBpuG86csVnVEF1o-hh22mXrnkJiK-LQmBvOlGbaZzDWaK4UpQi4aDOC11Fq8rLnxZAxYOxCBnlLL29JuER5j6CIkpVxyycOUm419JiVzOQql0R-zBERUsbrzBPpl6wegdjkHEBBb-wljvn_LvJlbEGJXcavg6jWLddYVIVzQO7B2Aie9C26-YeoFVjhG229SeDpuG9-QS0NtNyDVj7775zP4Y6vfx_Btgs73be1e4GQp9Pj4CrA-5yVY7h1NK2PP4-D2v8CEyAGUw |
link.rule.ids | 230,315,730,783,787,867,888,2228,24332,27938,27939,53806,53808 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEX3oXlGSSOZNeJH0m4QaHaQrdUokV7s_xKaWGzFZs9wIn_wD_klzB24lVbBBLkFMW2nNHM2N_Y488AT4lCGGB4lXJm_GqVs6kuKUnxu6CZsHll_Wnkya4YH7A3Uz5dAx7PwoSkfaOPhs3n2bA5-hhyK09mZhTzxEZ7k03PUYZD7-gCXER_JeJUkB6WVlghCsIjx1DI5jo2s0O_95B1RJ3E32KTl0L4KepPU9LvkPN85uSpqWjrGnyIQnQZKJ-Gy1YPzbdz_I7_LOV1uNqD0-RFV3wD1lxzEy5N-u33W7D9suN29nWWnpFAHX59nryra4yFXaIam7xy_XubILJMxvNF-_P7jz2EmXO01CSsP9bKuNtwsPV6f3Oc9ncxpAYhVZtSoQW1ueGuEKpkTmEkk7ustFrnvGZCBWY9lRFXcodPzW3NmTM2q2qiC003YL2ZN-4uJLYiDnGC4Uxppn0DY43mSlGKWI7WA3gW1SFPOsoNGXPRjmVQpPSKlIRLVOQAiqgyGU-T4vjnFr0zLmQmF7kk8n2OYJMyPs08R3_JpgMQq5Y93uhwhMTp5O9dPommIdEb_RaLatx8iV1VGF5yj_MGcKczlZUM0dzwh88Y0aqCZ_o-W4KmERi_e1O4998tH8Pl8f5kR-5s7769D1e8LF2i3ANYb78s3UNEVq1-FPzoF5pHJL4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSBUX3pQtryBxJLtO_EjCDVpWW2DLSlBpxcXys7R0sys2e4AT_4F_yC9h7MSrbREcmlOU2EpGM-P5xh5_Rug5lgADNKtSRrWfrbImVSXBKTznJOMmr4zfjTw-5KMj-nbKphtHfYWifa1O-vXZrF-ffAm1lYuZHsQ6scFkvOc5ymDoHSyMG1xF18BncbmRqIfpFVrwArPIMxQquk717NivP2QtWSf2J9nkJec-TP0rLP0NOy9WT26Eo-FN9DkK0lahfO2vGtXXPy5wPF5K0lvoRgdSk1dtk9voiq3voO1xtwx_Fx28bjmefZuVZyaQx99fJh-cg5zYJrI2yb7t7psEEGYymi-b3z9_TQBuzsFikzAP6aS299DR8M2nvVHancmQaoBWTUq44sTkmtmCy5JaCRlNbrPSKJUzR7kMDHsyw7ZkFi7HjGPUapNVDqtCkftoq57X9gFKTIUt4AXNqFRU-Q7aaMWkJAQwHXE99CKqRCxa6g0Ra9JORVCm8MoUmAlQZg8VUW0i7iqFcdAuO6dcikwsc4HFxxxAJ6Fsmnmu_pJOe4ive3a4o8UTAsLK_z_5LJqHAK_0Sy2ytvMVfKqCNJN5vNdDO625rGWIJgc_fM6Q1g084_f5N2Aegfm7M4fdS_d8irYn-0Px_uDw3UN03YvS1ss9QlvNt5V9DACrUU-CK_0Br-0nPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+Autophagy%3A+Offense+and+Defense+at+the+Host%E2%80%93Pathogen+Interface&rft.jtitle=Cellular+and+molecular+gastroenterology+and+hepatology&rft.au=Casanova%2C+James+E.&rft.date=2017-09-01&rft.pub=Elsevier+Inc&rft.issn=2352-345X&rft.eissn=2352-345X&rft.volume=4&rft.issue=2&rft.spage=237&rft.epage=243&rft_id=info:doi/10.1016%2Fj.jcmgh.2017.05.002&rft.externalDocID=S2352345X1730084X |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F2352345X%2FS2352345X16X00124%2Fcov150h.gif |