Autotrophic growth of nitrifying community in an agricultural soil
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-...
Saved in:
Published in | The ISME Journal Vol. 5; no. 7; pp. 1226 - 1236 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.07.2011
Oxford University Press Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the
amoA
genes of AOB was increasingly labeled by
13
CO
2
after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA
amoA
gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the
13
C-labeled
amoA
and 16S rRNA genes revealed that the
Nitrosospira
cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic
Nitrososphaera gargensis
from a hot spring. The higher relative frequency of
Nitrospira
-like NOB in the
13
C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than
Nitrobacter
-like NOB. Furthermore, the acetylene inhibition technique showed that
13
CO
2
assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. |
---|---|
AbstractList | The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the
amoA
genes of AOB was increasingly labeled by
13
CO
2
after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA
amoA
gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the
13
C-labeled
amoA
and 16S rRNA genes revealed that the
Nitrosospira
cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic
Nitrososphaera gargensis
from a hot spring. The higher relative frequency of
Nitrospira
-like NOB in the
13
C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than
Nitrobacter
-like NOB. Furthermore, the acetylene inhibition technique showed that
13
CO
2
assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested. |
Author | Zhu, Jianguo Cai, Zucong Jia, Zhongjun Weng, Jiahua Lin, Xiangui Xiong, Zhengqin Xu, Jian Zhang, Caixia Xia, Weiwei Zeng, Xiaowei Feng, Youzhi |
Author_xml | – sequence: 1 givenname: Weiwei surname: Xia fullname: Xia, Weiwei organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China, Graduate School of the Chinese Academy of Sciences – sequence: 2 givenname: Caixia surname: Zhang fullname: Zhang, Caixia organization: College of Resources and Environmental Sciences, Nanjing Agricultural University – sequence: 3 givenname: Xiaowei surname: Zeng fullname: Zeng, Xiaowei organization: BioEnergy Genome Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences – sequence: 4 givenname: Youzhi surname: Feng fullname: Feng, Youzhi organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China – sequence: 5 givenname: Jiahua surname: Weng fullname: Weng, Jiahua organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China – sequence: 6 givenname: Xiangui surname: Lin fullname: Lin, Xiangui organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China – sequence: 7 givenname: Jianguo surname: Zhu fullname: Zhu, Jianguo organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China – sequence: 8 givenname: Zhengqin surname: Xiong fullname: Xiong, Zhengqin organization: College of Resources and Environmental Sciences, Nanjing Agricultural University – sequence: 9 givenname: Jian surname: Xu fullname: Xu, Jian organization: BioEnergy Genome Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences – sequence: 10 givenname: Zucong surname: Cai fullname: Cai, Zucong organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China – sequence: 11 givenname: Zhongjun surname: Jia fullname: Jia, Zhongjun email: jia@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21326337$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1PwyAYh4mZcTq9eTaNFy928sJa2ovJXPxKTLzomVQGHUsLE6hm_73Mzc9oQvgIz_vLA-8e6hlrJEKHgIeAaXGmfSvnQ4IBhtkW2gWWQcoow73PfU76aM_7OcYZy3O2g_oEKMkpZbvoYtwFG5xdzLRIamdfwyyxKjE6OK2W2tSJsG3bxfMy0Sap4qidFl0TOlc1ibe62Ufbqmq8PNisA_R4dfkwuUnv7q9vJ-O7VGQwCilkhZCUSkKgUKRgMJWlVPgJAJNoU1GVj1SJp1EtTqMpVbQsGSGkILQkitIBOl_nLrqnVk6FNCEq8IXTbeWW3Faa_7wxesZr-8IpjHJSQgw42QQ4-9xJH3irvZBNUxlpO88LRinkBWORPP5Fzm3nTHxdhAgrC8A4QkfffT5FPj43AmQNCGe9d1JxoUMVtF3p6YYD5qsO8vcO8lUHeRaLTn8VfeT-g6dr3EfM1NJ9mf7JvwHF3qzo |
CitedBy_id | crossref_primary_10_1093_femsec_fiaa104 crossref_primary_10_3390_microorganisms10020247 crossref_primary_10_1002_saj2_20029 crossref_primary_10_1016_j_psep_2019_03_006 crossref_primary_10_1016_j_scitotenv_2024_176578 crossref_primary_10_1080_03650340_2022_2103675 crossref_primary_10_1111_1574_6968_12164 crossref_primary_10_3389_fmicb_2019_00929 crossref_primary_10_1007_s00253_013_5169_2 crossref_primary_10_3389_fmicb_2023_1337507 crossref_primary_10_3390_agriculture11030195 crossref_primary_10_1007_s11368_021_02897_z crossref_primary_10_1128_AEM_01545_12 crossref_primary_10_3389_fmicb_2018_00280 crossref_primary_10_3389_fmicb_2022_885087 crossref_primary_10_1007_s10452_022_09943_z crossref_primary_10_1038_ismej_2014_194 crossref_primary_10_1016_j_jhydrol_2022_128409 crossref_primary_10_1007_s11368_018_2188_8 crossref_primary_10_1007_s11368_022_03336_3 crossref_primary_10_1016_j_scitotenv_2018_08_193 crossref_primary_10_1099_ijs_0_063172_0 crossref_primary_10_1016_j_apsoil_2020_103729 crossref_primary_10_1016_S1002_0160_20_60030_3 crossref_primary_10_1093_femsre_fuaa037 crossref_primary_10_1093_femsec_fiy026 crossref_primary_10_1038_s41598_022_21108_4 crossref_primary_10_1007_s00374_021_01565_1 crossref_primary_10_1007_s11356_016_6396_8 crossref_primary_10_1039_C6RA13066F crossref_primary_10_1007_s11104_021_05121_6 crossref_primary_10_1016_j_envpol_2021_117558 crossref_primary_10_1038_ismej_2013_35 crossref_primary_10_1007_s00253_014_6026_7 crossref_primary_10_1128_aem_01380_23 crossref_primary_10_1016_S1002_0160_21_60082_6 crossref_primary_10_3389_fmicb_2017_02226 crossref_primary_10_3389_fmicb_2022_962146 crossref_primary_10_1038_s41598_019_45877_7 crossref_primary_10_1111_1462_2920_15394 crossref_primary_10_1016_j_scitotenv_2018_03_108 crossref_primary_10_1016_j_jenvman_2024_120504 crossref_primary_10_1371_journal_pone_0218779 crossref_primary_10_1007_s11368_019_02479_0 crossref_primary_10_1016_j_jece_2025_115900 crossref_primary_10_1002_fsn3_866 crossref_primary_10_1016_S1002_0160_12_60044_7 crossref_primary_10_3389_fmicb_2016_01638 crossref_primary_10_1021_acs_est_8b01993 crossref_primary_10_1128_AEM_00426_15 crossref_primary_10_1016_j_apsoil_2019_103395 crossref_primary_10_1016_S1002_0160_17_60344_8 crossref_primary_10_1016_S2095_3119_17_61743_X crossref_primary_10_1016_j_soilbio_2024_109361 crossref_primary_10_1089_ees_2014_0456 crossref_primary_10_1038_srep43283 crossref_primary_10_1038_ismej_2012_51 crossref_primary_10_3390_microorganisms10030639 crossref_primary_10_1016_j_ejsobi_2019_103087 crossref_primary_10_1007_s00248_012_0081_3 crossref_primary_10_1007_s00374_019_01387_2 crossref_primary_10_1007_s11270_017_3523_1 crossref_primary_10_1016_j_jenvman_2024_123566 crossref_primary_10_1016_j_soilbio_2016_01_012 crossref_primary_10_3389_fmicb_2024_1481044 crossref_primary_10_1016_j_scitotenv_2019_135684 crossref_primary_10_1016_j_watres_2019_115464 crossref_primary_10_1128_aem_00070_24 crossref_primary_10_1016_j_agee_2018_03_014 crossref_primary_10_1002_ldr_4594 crossref_primary_10_1016_j_soilbio_2018_02_017 crossref_primary_10_1002_ldr_4112 crossref_primary_10_1007_s00374_021_01566_0 crossref_primary_10_1016_j_jenvman_2025_124167 crossref_primary_10_1515_biol_2022_0010 crossref_primary_10_1016_j_soilbio_2020_107970 crossref_primary_10_1007_s11356_023_25253_9 crossref_primary_10_1016_j_biortech_2018_02_012 crossref_primary_10_1038_ismej_2012_45 crossref_primary_10_1093_femsle_fnw052 crossref_primary_10_1111_j_1574_6941_2011_01271_x crossref_primary_10_1016_S1002_0160_19_60803_9 crossref_primary_10_1038_ismej_2014_159 crossref_primary_10_1016_j_watres_2023_119931 crossref_primary_10_1007_s11368_011_0450_4 crossref_primary_10_36783_18069657rbcs20220156 crossref_primary_10_1007_s11368_014_1001_6 crossref_primary_10_3389_fmicb_2019_01931 crossref_primary_10_3934_microbiol_2017_3_413 crossref_primary_10_1007_s00248_015_0633_4 crossref_primary_10_1016_j_biortech_2022_128005 crossref_primary_10_7717_peerj_436 crossref_primary_10_1016_j_apsoil_2020_103812 crossref_primary_10_1016_j_scitotenv_2019_01_315 crossref_primary_10_1111_1758_2229_12477 crossref_primary_10_1007_s11104_020_04711_0 crossref_primary_10_1021_acs_est_3c06002 crossref_primary_10_1016_j_jhazmat_2023_131076 crossref_primary_10_1016_j_soilbio_2022_108577 crossref_primary_10_1016_j_scitotenv_2020_138148 crossref_primary_10_1016_j_soilbio_2021_108211 crossref_primary_10_1016_j_soilbio_2024_109423 crossref_primary_10_1016_j_ibiod_2018_01_012 crossref_primary_10_1016_j_jes_2022_02_038 crossref_primary_10_1128_AEM_03633_13 crossref_primary_10_3390_su142215241 crossref_primary_10_1016_j_jhazmat_2021_127364 crossref_primary_10_3390_su12031250 crossref_primary_10_1016_j_agee_2020_107122 crossref_primary_10_1016_j_apsoil_2015_06_010 crossref_primary_10_5194_bg_11_3353_2014 crossref_primary_10_1021_acs_est_3c08319 crossref_primary_10_1016_j_soilbio_2014_04_023 crossref_primary_10_1007_s11270_018_3916_9 crossref_primary_10_1016_j_agee_2021_107540 crossref_primary_10_1002_glr2_12048 crossref_primary_10_1111_j_1462_2920_2012_02740_x crossref_primary_10_1007_s42832_023_0199_x crossref_primary_10_1016_j_biortech_2013_06_039 crossref_primary_10_1007_s11368_018_2155_4 crossref_primary_10_1016_j_soilbio_2013_02_014 crossref_primary_10_1186_s12866_016_0657_z crossref_primary_10_1007_s42832_020_0032_8 crossref_primary_10_1007_s00374_018_01334_7 crossref_primary_10_1371_journal_pone_0200049 crossref_primary_10_1016_j_scitotenv_2021_148470 crossref_primary_10_1111_1462_2920_14457 crossref_primary_10_1038_s41396_021_01079_6 crossref_primary_10_1371_journal_pone_0139626 crossref_primary_10_1007_s11368_016_1525_z crossref_primary_10_1111_1462_2920_12481 crossref_primary_10_3354_ame01712 crossref_primary_10_1007_s11368_020_02813_x crossref_primary_10_1016_j_soilbio_2014_10_025 crossref_primary_10_1016_j_scitotenv_2016_12_141 crossref_primary_10_1016_j_apsoil_2016_03_008 crossref_primary_10_1016_j_soilbio_2022_108679 crossref_primary_10_1007_s11104_019_04164_0 crossref_primary_10_1080_17435390_2017_1290845 crossref_primary_10_1016_j_mib_2011_04_007 crossref_primary_10_1016_j_soilbio_2024_109687 crossref_primary_10_1016_j_apsoil_2017_11_018 crossref_primary_10_1111_ejss_13467 crossref_primary_10_1111_j_1462_2920_2011_02666_x crossref_primary_10_2139_ssrn_4074487 crossref_primary_10_1128_AEM_01960_12 crossref_primary_10_1080_00380768_2011_637303 crossref_primary_10_3389_fmicb_2017_00630 crossref_primary_10_1111_1462_2920_14553 crossref_primary_10_1007_s00253_018_8865_0 crossref_primary_10_1007_s11368_018_2108_y crossref_primary_10_1016_j_soilbio_2015_09_008 crossref_primary_10_1111_1758_2229_12109 crossref_primary_10_1002_fes3_248 crossref_primary_10_1016_j_soilbio_2018_01_016 crossref_primary_10_1007_s00374_024_01812_1 crossref_primary_10_2136_sssaj2019_05_0134 crossref_primary_10_1111_1758_2229_12588 crossref_primary_10_1016_j_agee_2022_108111 crossref_primary_10_1007_s00374_022_01663_8 crossref_primary_10_1016_j_chemosphere_2022_133554 crossref_primary_10_1016_j_soilbio_2017_10_023 crossref_primary_10_1016_j_soilbio_2021_108242 crossref_primary_10_3389_fmicb_2018_00171 crossref_primary_10_1002_jobm_201800581 crossref_primary_10_1016_j_scitotenv_2018_04_117 crossref_primary_10_3389_fmicb_2022_938481 crossref_primary_10_1007_s00374_020_01491_8 crossref_primary_10_1111_1462_2920_14246 crossref_primary_10_1264_jsme2_ME14137 crossref_primary_10_1016_S2095_3119_13_60424_4 crossref_primary_10_1186_s13568_017_0498_7 crossref_primary_10_1016_j_soilbio_2019_01_006 crossref_primary_10_2136_sssaj2010_0434 crossref_primary_10_3389_fmicb_2016_01101 crossref_primary_10_1371_journal_pone_0161979 crossref_primary_10_3389_fceng_2024_1485534 crossref_primary_10_1016_j_apsoil_2014_09_008 crossref_primary_10_3724_SP_J_1003_2012_10129 crossref_primary_10_1007_s11368_022_03261_5 crossref_primary_10_1016_j_soilbio_2016_11_005 crossref_primary_10_1007_s11368_018_2090_4 crossref_primary_10_1016_j_envres_2022_113900 crossref_primary_10_1016_j_apsoil_2014_09_003 crossref_primary_10_1515_pac_2022_0201 crossref_primary_10_1093_femsec_fiz197 crossref_primary_10_1093_femsec_fiz077 crossref_primary_10_1007_s11104_014_2097_6 crossref_primary_10_1016_j_apsoil_2022_104440 crossref_primary_10_1021_acs_est_0c08624 crossref_primary_10_1016_j_pedobi_2019_150589 crossref_primary_10_1016_j_soilbio_2014_11_021 crossref_primary_10_1111_1462_2920_12071 crossref_primary_10_1016_j_ecoenv_2024_116406 crossref_primary_10_1007_s10295_019_02211_4 crossref_primary_10_3389_fpls_2022_913204 crossref_primary_10_1111_1574_6941_12119 crossref_primary_10_1016_j_scitotenv_2018_09_275 crossref_primary_10_3390_ijerph19052732 crossref_primary_10_1016_j_mgene_2019_100625 crossref_primary_10_1016_j_biortech_2021_124924 crossref_primary_10_1016_j_ejsobi_2020_103213 crossref_primary_10_1038_srep11146 crossref_primary_10_1111_j_1462_2920_2012_02844_x crossref_primary_10_1016_j_biortech_2018_09_042 crossref_primary_10_1016_j_ibiod_2023_105570 crossref_primary_10_1093_femsec_fiaa065 crossref_primary_10_1007_s42729_022_00841_9 crossref_primary_10_1016_j_soilbio_2017_05_001 crossref_primary_10_1007_s11356_016_8080_4 crossref_primary_10_1038_ismej_2014_81 crossref_primary_10_1128_msystems_01333_23 crossref_primary_10_1038_ismej_2011_168 crossref_primary_10_1002_imt2_271 crossref_primary_10_1016_j_apsoil_2013_03_006 crossref_primary_10_3389_fmicb_2022_876665 crossref_primary_10_1016_j_aquaeng_2017_01_004 crossref_primary_10_1038_srep33643 crossref_primary_10_7717_peerj_14088 crossref_primary_10_1016_j_soilbio_2022_108638 crossref_primary_10_1038_srep32791 crossref_primary_10_1128_AEM_00092_21 crossref_primary_10_1371_journal_pone_0146566 crossref_primary_10_1016_j_catena_2024_107955 crossref_primary_10_1128_AEM_01681_12 crossref_primary_10_1371_journal_pone_0137996 crossref_primary_10_1016_j_scitotenv_2022_155568 crossref_primary_10_3389_fmicb_2023_1256269 crossref_primary_10_1016_j_soilbio_2016_12_023 crossref_primary_10_1016_S2095_3119_13_60740_6 crossref_primary_10_1264_jsme2_ME24049 crossref_primary_10_1016_j_scitotenv_2023_161722 crossref_primary_10_1016_j_scitotenv_2019_04_181 crossref_primary_10_1128_mBio_01870_19 crossref_primary_10_1093_femsec_fiv014 crossref_primary_10_1371_journal_pone_0040653 crossref_primary_10_1007_s12665_013_2773_5 crossref_primary_10_1016_j_agee_2021_107318 crossref_primary_10_1007_s00374_013_0857_8 crossref_primary_10_1016_j_soilbio_2017_09_007 crossref_primary_10_1007_s11104_018_3673_y crossref_primary_10_1016_j_scitotenv_2017_12_084 crossref_primary_10_1016_j_apsoil_2013_03_004 crossref_primary_10_1016_j_watres_2014_03_012 crossref_primary_10_1371_journal_pone_0169554 crossref_primary_10_1016_j_geoderma_2016_09_015 crossref_primary_10_1016_S1002_0160_21_60048_6 crossref_primary_10_3389_fmicb_2018_03122 crossref_primary_10_1525_elementa_2021_090 crossref_primary_10_1007_s00374_020_01500_w crossref_primary_10_1016_j_soilbio_2015_08_031 crossref_primary_10_1002_jobm_202200190 crossref_primary_10_1128_msphere_00324_22 crossref_primary_10_1016_j_soilbio_2017_06_027 crossref_primary_10_1016_j_soilbio_2017_06_024 crossref_primary_10_1007_s11356_020_12038_7 crossref_primary_10_1007_s00248_016_0803_z crossref_primary_10_1016_j_soilbio_2024_109706 crossref_primary_10_1016_j_apsoil_2025_105968 crossref_primary_10_1007_s12665_014_3128_6 crossref_primary_10_1016_j_soilbio_2016_04_012 crossref_primary_10_3390_agriculture11060523 crossref_primary_10_1007_s10924_018_1264_x crossref_primary_10_1016_j_scitotenv_2020_143212 crossref_primary_10_1080_02772248_2018_1486945 crossref_primary_10_1128_AEM_00061_13 crossref_primary_10_3389_fmicb_2014_00710 crossref_primary_10_1007_s00253_024_13170_x crossref_primary_10_1016_j_geoderma_2020_114419 crossref_primary_10_1016_j_tim_2013_09_005 crossref_primary_10_1007_s11356_020_09120_5 crossref_primary_10_1007_s42832_019_0006_x crossref_primary_10_1016_j_soilbio_2012_12_003 crossref_primary_10_3389_fmicb_2020_581283 crossref_primary_10_1111_are_14231 crossref_primary_10_3389_fmicb_2015_01567 crossref_primary_10_1016_j_scitotenv_2018_12_236 crossref_primary_10_1093_femsec_fiu023 crossref_primary_10_1016_j_marpolbul_2016_09_047 crossref_primary_10_1016_j_soilbio_2015_02_013 crossref_primary_10_3389_fmicb_2020_580866 crossref_primary_10_1007_s11368_020_02733_w crossref_primary_10_1007_s00253_015_6524_2 crossref_primary_10_1016_j_soilbio_2019_04_009 crossref_primary_10_1016_j_pedsph_2023_07_007 crossref_primary_10_1007_s00449_023_02866_5 crossref_primary_10_1016_S1002_0160_13_60065_X crossref_primary_10_1016_S1002_0160_21_60036_X crossref_primary_10_3389_fmars_2022_822939 crossref_primary_10_1038_srep03950 crossref_primary_10_1038_srep23680 crossref_primary_10_5194_soil_6_17_2020 crossref_primary_10_1007_s11368_021_03118_3 crossref_primary_10_1128_AEM_01807_20 crossref_primary_10_1007_s00253_014_6352_9 crossref_primary_10_1016_j_chemosphere_2015_12_055 crossref_primary_10_1016_j_soilbio_2012_06_006 crossref_primary_10_1007_s11368_014_0910_8 crossref_primary_10_1186_s40168_022_01287_y crossref_primary_10_1016_j_ecolind_2021_107722 crossref_primary_10_1111_1751_7915_13532 crossref_primary_10_1007_s11104_022_05609_9 crossref_primary_10_1016_j_geoderma_2020_114637 crossref_primary_10_1016_j_chemosphere_2013_07_063 crossref_primary_10_1016_S1002_0160_18_60055_4 crossref_primary_10_1016_j_scitotenv_2016_05_185 crossref_primary_10_1128_AEM_01928_13 crossref_primary_10_3390_microorganisms11020527 crossref_primary_10_1007_s00374_023_01749_x crossref_primary_10_1016_j_resmic_2014_08_003 crossref_primary_10_1016_j_geoderma_2018_11_033 crossref_primary_10_1007_s11104_018_3584_y crossref_primary_10_1016_j_scitotenv_2021_145023 crossref_primary_10_1016_j_apsoil_2022_104785 crossref_primary_10_4236_as_2018_911096 crossref_primary_10_1007_s00374_017_1236_7 crossref_primary_10_1016_j_orggeochem_2013_04_012 crossref_primary_10_1080_10934529_2020_1852845 crossref_primary_10_1016_j_soilbio_2017_06_010 crossref_primary_10_1016_j_tim_2012_08_001 crossref_primary_10_2139_ssrn_4010914 crossref_primary_10_1111_1574_6941_12417 crossref_primary_10_1016_j_scitotenv_2018_10_195 |
Cites_doi | 10.1007/BF00166026 10.1016/j.soilbio.2005.03.007 10.1111/j.1462-2920.2009.02070.x 10.1007/0-387-30742-7_16 10.1128/AEM.01536-06 10.1111/j.1462-2920.2008.01701.x 10.1111/j.1462-2920.2010.02205.x 10.1038/nature06592 10.1128/AEM.01861-08 10.1128/AEM.71.12.8323-8334.2005 10.1093/nar/gkn879 10.1038/ismej.2009.57 10.1111/j.1574-6941.2009.00725.x 10.1128/AEM.70.2.1008-1016.2004 10.1038/ismej.2007.34 10.1038/ismej.2009.39 10.1038/nature04983 10.1038/nprot.2007.109 10.1007/0-387-30745-1_36 10.1111/j.1574-6941.2008.00466.x 10.1111/j.1462-2920.2007.01506.x 10.1111/j.1758-2229.2009.00029.x 10.1093/bib/5.2.150 10.1111/j.1462-2920.2005.00906.x 10.1073/pnas.89.12.5685 10.1073/pnas.1004947107 10.1016/j.tim.2010.06.003 10.1128/AEM.01541-09 10.1146/annurev.micro.55.1.485 10.2166/wst.1996.0377 10.1038/nature07535 10.1038/nature08465 10.1111/j.1574-6941.2001.tb00847.x 10.1038/nrmicro1852 10.1111/j.1574-6941.2007.00404.x 10.1073/pnas.0708857105 10.1128/AEM.00320-10 10.1007/BF02568729 10.1128/AEM.00143-10 10.1038/ismej.2010.111 10.1111/j.1462-2920.2009.01891.x 10.1046/j.1472-765X.2001.00930.x 10.1111/j.1574-6941.2010.00971.x 10.1073/pnas.0611081104 10.1046/j.1462-2920.2003.00536.x 10.1073/pnas.0506625102 10.1128/AEM.67.11.5273-5284.2001 10.1038/nature03911 10.1111/j.1574-6976.2009.00179.x 10.1038/ngeo613 10.1111/j.1462-2920.2005.00947.x 10.1128/aem.63.12.4704-4712.1997 10.1128/AEM.64.9.3480-3485.1998 10.1016/S0021-9258(18)45979-0 10.1128/aem.62.8.2888-2896.1996 10.1128/AEM.64.1.258-264.1998 |
ContentType | Journal Article |
Copyright | International Society for Microbial Ecology 2011 Copyright Nature Publishing Group Jul 2011 Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology |
Copyright_xml | – notice: International Society for Microbial Ecology 2011 – notice: Copyright Nature Publishing Group Jul 2011 – notice: Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7ST 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY SOI 7X8 5PM |
DOI | 10.1038/ismej.2011.5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Agriculture |
DocumentTitleAlternate | Microbial nitrification in an agricultural soil |
EISSN | 1751-7370 |
EndPage | 1236 |
ExternalDocumentID | PMC3146291 2379524371 21326337 10_1038_ismej_2011_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -Q- 0R~ 123 29J 39C 3V. 4.4 406 53G 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAHBH AANZL AAZLF ABAKF ABAWZ ABDBF ABEJV ABGNP ABJNI ABLJU ABUWG ABXVV ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AENEX AEUYN AEVLU AEXYK AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYLF AOIJS ASPBG ATCPS AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DNIVK DPUIP DU5 EBS EDH EE. EIOEI EJD EMOBN ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HYE HZ~ I-F IWAJR JSO KQ8 LK8 M1P M7P MM. NAO NQJWS O9- OK1 PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT ROX RPM SNX SNYQT SOHCF SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TOX TR2 TSG TUS UKHRP ~02 ~8M AAYXX ACSTC AYFIA CITATION JZLTJ PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7SN 7ST 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H13 K9. M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS SOI 7X8 5PM |
ID | FETCH-LOGICAL-c514t-158ce33e2218f2871de9ef0b1102326a3f64f90d1320d14d3f399722282392f33 |
IEDL.DBID | 7X7 |
ISSN | 1751-7362 1751-7370 |
IngestDate | Thu Aug 21 14:01:58 EDT 2025 Fri Jul 11 08:02:04 EDT 2025 Wed Aug 13 09:23:20 EDT 2025 Thu Apr 03 07:02:09 EDT 2025 Tue Jul 01 01:04:16 EDT 2025 Thu Apr 24 23:09:41 EDT 2025 Fri Feb 21 02:39:22 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | ammonia-oxidizing bacteria stable isotope probing pyrosequencing nitrite-oxidizing bacteria agricultural soil ammonia-oxidizing archaea |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c514t-158ce33e2218f2871de9ef0b1102326a3f64f90d1320d14d3f399722282392f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/ismej20115.pdf |
PMID | 21326337 |
PQID | 872798100 |
PQPubID | 536304 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146291 proquest_miscellaneous_873316877 proquest_journals_872798100 pubmed_primary_21326337 crossref_citationtrail_10_1038_ismej_2011_5 crossref_primary_10_1038_ismej_2011_5 springer_journals_10_1038_ismej_2011_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Multidisciplinary Journal of Microbial Ecology |
PublicationTitle | The ISME Journal |
PublicationTitleAbbrev | ISME J |
PublicationTitleAlternate | ISME J |
PublicationYear | 2011 |
Publisher | Nature Publishing Group UK Oxford University Press Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press – name: Nature Publishing Group |
References | Schramm, de Beer, Wagner, Amann (CR52) 1998; 64 Spang, Hatzenpichler, Brochier-Armanet, Rattei, Tischler, Spieck (CR53) 2010; 18 Alawi, Off, Kaya, Spieck (CR3) 2009; 1 Freitag, Chang, Prosser (CR19) 2006; 8 Lam, Jensen, Lavik, McGinnis, Muller, Schubert (CR34) 2007; 104 Okano, Hristova, Leutenegger, Jackson, Denison, Gebreyesus (CR45) 2004; 70 Schloss, Westcott, Ryabin, Hall, Hartmann, Hollister (CR51) 2009; 75 Leininger, Urich, Schloter, Schwark, Qi, Nicol (CR36) 2006; 442 Zhang, Offre, He, Verhamme, Nicol, Prosser (CR57) 2010; 107 Poly, Wertz, Brothier, Degrange (CR46) 2008; 63 Schleper (CR50) 2010; 4 Reigstad, Richter, Daims, Urich, Schwark, Schleper (CR47) 2008; 64 Brochier-Armanet, Boussau, Gribaldo, Forterre (CR6) 2008; 6 Mertens, Broos, Wakelin, Kowalchuk, Springael, Smolders (CR40) 2009; 3 Gruber, Galloway (CR20) 2008; 451 DeLong (CR12) 1992; 89 Hatzenpichler, Lebedeva, Spieck, Stoecker, Richter, Daims (CR22) 2008; 105 Alawi, Lipski, Sanders, Eva Maria, Spieck (CR2) 2007; 1 Kowalchuk, Stephen (CR32) 2001; 55 Francis, Roberts, Beman, Santoro, Oakley (CR17) 2005; 102 Ehrich, Behrens, Lebedeva, Ludwig, Bock (CR14) 1995; 164 Koops, Purkhold, Pommerening-Roser, Timmermann, Wagner (CR31) 2006 Daims, Nielsen, Nielsen, Schleifer, Wagner (CR10) 2001; 67 Chen, Wu, Boden, Hillebrand, Kumaresan, Moussard (CR7) 2009; 3 Agogue, Brink, Dinasquet, Herndl (CR1) 2008; 456 Hovanec, DeLong (CR23) 1996; 62 Erguder, Boon, Wittebolle, Marzorati, Verstraete (CR15) 2009; 33 Huang, Ferguson, Singer, Lawson, Thompson, Kalin (CR25) 2009; 75 Treusch, Leininger, Kletzin, Schuster, Klenk, Schleper (CR54) 2005; 7 Martens-Habbena, Berube, Urakawa, de la Torre, Stahl (CR38) 2009; 461 Wagner, Rath, Koops, Flood, Amann (CR55) 1996; 34 Offre, Prosser, Nicol (CR44) 2009; 70 Neufeld, Vohra, Dumont, Lueders, Manefield, Friedrich (CR41) 2007; 2 Feliatra, Bianchi (CR16) 1993; 26 Rotthauwe, Witzel, Liesack (CR48) 1997; 63 Lueders, Manefield, Friedrich (CR37) 2004; 6 Hovanec, Taylor, Blakis, Delong (CR24) 1998; 64 Bock, Wagner (CR5) 2006 Whitby, Hall, Pickup, Saunders, Ineson, Parekh (CR56) 2001; 32 Nicol, Leininger, Schleper, Prosser (CR42) 2008; 10 de la Torre, Walker, Ingalls, Konneke, Stahl (CR11) 2008; 10 Chu, Fujii, Morimoto, Lin, Yagi, Hu (CR8) 2007; 73 Koops, Pommerening-Röser (CR30) 2001; 37 Hyman, Arp (CR26) 1992; 267 Jia, Conrad (CR27) 2009; 11 Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (CR29) 2005; 437 Lane (CR35) 1991 Attard, Poly, Commeaux, Laurent, Terada, Smets (CR4) 2010; 12 Cole, Wang, Cardenas, Fish, Chai, Farris (CR9) 2009; 37 Freitag, Chang, Clegg, Prosser (CR18) 2005; 71 Kumar, Tamura, Nei (CR33) 2004; 5 Off, Alawi, Spieck (CR43) 2010; 76 Di, Cameron, Shen, Winefield, O’ Callaghan, BOWATTE (CR13) 2009; 2 Gubry-Rangin, Nicol, Prosser (CR21) 2010; 74 Jiang, Huang, Dong, Wang, Wang, Li (CR28) 2010; 76 Meng, Ding, Cai (CR39) 2005; 37 Santoro, Casciotti, Francis (CR49) 2010; 12 Santoro (2024020218225043900_CR49) 2010; 12 Di (2024020218225043900_CR13) 2009; 2 Schloss (2024020218225043900_CR51) 2009; 75 Reigstad (2024020218225043900_CR47) 2008; 64 Kumar (2024020218225043900_CR33) 2004; 5 Martens-Habbena (2024020218225043900_CR38) 2009; 461 Off (2024020218225043900_CR43) 2010; 76 Spang (2024020218225043900_CR53) 2010; 18 Rotthauwe (2024020218225043900_CR48) 1997; 63 Attard (2024020218225043900_CR4) 2010; 12 Gruber (2024020218225043900_CR20) 2008; 451 Poly (2024020218225043900_CR46) 2008; 63 Schleper (2024020218225043900_CR50) 2010; 4 Hovanec (2024020218225043900_CR23) 1996; 62 Bock (2024020218225043900_CR5) 2006 Chen (2024020218225043900_CR7) 2009; 3 Koops (2024020218225043900_CR30) 2001; 37 Schramm (2024020218225043900_CR52) 1998; 64 Lane (2024020218225043900_CR35) 1991 Feliatra (2024020218225043900_CR16) 1993; 26 Neufeld (2024020218225043900_CR41) 2007; 2 Chu (2024020218225043900_CR8) 2007; 73 Offre (2024020218225043900_CR44) 2009; 70 Hyman (2024020218225043900_CR26) 1992; 267 Lueders (2024020218225043900_CR37) 2004; 6 Alawi (2024020218225043900_CR3) 2009; 1 DeLong (2024020218225043900_CR12) 1992; 89 Erguder (2024020218225043900_CR15) 2009; 33 Freitag (2024020218225043900_CR19) 2006; 8 Leininger (2024020218225043900_CR36) 2006; 442 Huang (2024020218225043900_CR25) 2009; 75 Daims (2024020218225043900_CR10) 2001; 67 Brochier-Armanet (2024020218225043900_CR6) 2008; 6 Alawi (2024020218225043900_CR2) 2007; 1 Kowalchuk (2024020218225043900_CR32) 2001; 55 Okano (2024020218225043900_CR45) 2004; 70 Agogue (2024020218225043900_CR1) 2008; 456 Mertens (2024020218225043900_CR40) 2009; 3 Freitag (2024020218225043900_CR18) 2005; 71 Hovanec (2024020218225043900_CR24) 1998; 64 Zhang (2024020218225043900_CR57) 2010; 107 Cole (2024020218225043900_CR9) 2009; 37 Jiang (2024020218225043900_CR28) 2010; 76 Jia (2024020218225043900_CR27) 2009; 11 Gubry-Rangin (2024020218225043900_CR21) 2010; 74 Meng (2024020218225043900_CR39) 2005; 37 de la Torre (2024020218225043900_CR11) 2008; 10 Koops (2024020218225043900_CR31) 2006 Hatzenpichler (2024020218225043900_CR22) 2008; 105 Francis (2024020218225043900_CR17) 2005; 102 Lam (2024020218225043900_CR34) 2007; 104 Könneke (2024020218225043900_CR29) 2005; 437 Ehrich (2024020218225043900_CR14) 1995; 164 Nicol (2024020218225043900_CR42) 2008; 10 Treusch (2024020218225043900_CR54) 2005; 7 Whitby (2024020218225043900_CR56) 2001; 32 Wagner (2024020218225043900_CR55) 1996; 34 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 24189985 - Microb Ecol. 1993 Jul;26(1):21-8 16177789 - Nature. 2005 Sep 22;437(7058):543-6 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95 17098920 - Appl Environ Microbiol. 2007 Jan;73(2):485-91 19474813 - ISME J. 2009 Sep;3(9):1093-104 16915287 - Nature. 2006 Aug 17;442(7104):806-9 20345944 - Environ Microbiol. 2010 Jul;12(7):1989-2006 11412351 - Lett Appl Microbiol. 2001 Jun;32(6):398-401 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96 20631805 - ISME J. 2010 Sep;4(9):1092-4 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74 8702281 - Appl Environ Microbiol. 1996 Aug;62(8):2888-96 18062041 - ISME J. 2007 Jul;1(3):256-64 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84 19807778 - Environ Microbiol. 2010 Feb;12(2):315-26 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40 19387487 - ISME J. 2009 Aug;3(8):916-23 19037244 - Nature. 2008 Dec 11;456(7223):788-91 18355293 - FEMS Microbiol Ecol. 2008 May;64(2):167-74 20511427 - Appl Environ Microbiol. 2010 Jul;76(14):4640-6 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108 17446886 - Nat Protoc. 2007;2(4):860-6 7646315 - Arch Microbiol. 1995 Jul;164(1):16-23 18997025 - Appl Environ Microbiol. 2009 Jan;75(1):234-41 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52 18250313 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2134-9 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9 18205821 - Environ Microbiol. 2008 Mar;10(3):810-8 11544365 - Annu Rev Microbiol. 2001;55:485-529 14766583 - Appl Environ Microbiol. 2004 Feb;70(2):1008-16 17420469 - Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7104-9 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63 1730700 - J Biol Chem. 1992 Jan 25;267(3):1534-45 16332819 - Appl Environ Microbiol. 2005 Dec;71(12):8323-34 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 19453522 - FEMS Microbiol Rev. 2009 Sep;33(5):855-69 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 18202647 - Nature. 2008 Jan 17;451(7176):293-6 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 16349486 - Appl Environ Microbiol. 1998 Jan;64(1):258-64 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 14686943 - Environ Microbiol. 2004 Jan;6(1):73-8 19794413 - Nature. 2009 Oct 15;461(7266):976-9 23765792 - Environ Microbiol Rep. 2009 Jun;1(3):184-90 20435758 - Appl Environ Microbiol. 2010 Jul;76(13):4538-41 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5 |
References_xml | – volume: 26 start-page: 21 year: 1993 end-page: 28 ident: CR16 article-title: Rates of nitrification and carbon uptake in the Rhone River plume (northwestern Mediterranean Sea) publication-title: Microb Ecol doi: 10.1007/BF00166026 – volume: 37 start-page: 2037 year: 2005 end-page: 2045 ident: CR39 article-title: Long-term application of organic manure and nitrogen fertilizer on N O emissions, soil quality and crop production in a sandy loam soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.03.007 – volume: 12 start-page: 315 year: 2010 end-page: 326 ident: CR4 article-title: Shifts between nitrospira- and nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.02070.x – start-page: 457 year: 2006 end-page: 495 ident: CR5 article-title: Oxidation of inorganic nitrogen compounds as an energy source publication-title: The Prokaryotes doi: 10.1007/0-387-30742-7_16 – volume: 73 start-page: 485 year: 2007 end-page: 491 ident: CR8 article-title: Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01536-06 – volume: 62 start-page: 2888 year: 1996 end-page: 2896 ident: CR23 article-title: Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria publication-title: Appl Environ Microbiol – volume: 10 start-page: 2966 year: 2008 end-page: 2978 ident: CR42 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 12 start-page: 1989 year: 2010 end-page: 2006 ident: CR49 article-title: Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02205.x – volume: 451 start-page: 293 year: 2008 end-page: 296 ident: CR20 article-title: An earth-system perspective of the global nitrogen cycle publication-title: Nature doi: 10.1038/nature06592 – volume: 75 start-page: 234 year: 2009 end-page: 241 ident: CR25 article-title: Resolving genetic functions within microbial populations: analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence hybridization publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01861-08 – volume: 71 start-page: 8323 year: 2005 end-page: 8334 ident: CR18 article-title: Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in Agricultural Grassland Soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8323-8334.2005 – volume: 63 start-page: 4704 year: 1997 end-page: 4712 ident: CR48 article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations publication-title: Appl Environ Microbiol – volume: 37 start-page: D141 year: 2009 end-page: D145 ident: CR9 article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn879 – volume: 3 start-page: 1093 year: 2009 end-page: 1104 ident: CR7 article-title: Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave publication-title: ISME J doi: 10.1038/ismej.2009.57 – volume: 70 start-page: 99 year: 2009 end-page: 108 ident: CR44 article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00725.x – volume: 70 start-page: 1008 year: 2004 end-page: 1016 ident: CR45 article-title: Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.2.1008-1016.2004 – volume: 1 start-page: 256 year: 2007 end-page: 264 ident: CR2 article-title: Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic publication-title: ISME J doi: 10.1038/ismej.2007.34 – volume: 3 start-page: 916 year: 2009 end-page: 923 ident: CR40 article-title: Bacteria, not archaea, restore nitrification in a zinc-contaminated soil publication-title: ISME J doi: 10.1038/ismej.2009.39 – volume: 442 start-page: 806 year: 2006 end-page: 809 ident: CR36 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – volume: 2 start-page: 860 year: 2007 end-page: 866 ident: CR41 article-title: DNA stable-isotope probing publication-title: Nat Protocols doi: 10.1038/nprot.2007.109 – start-page: 778 year: 2006 end-page: 811 ident: CR31 article-title: The lithoautotrophic ammonia-oxidizing bacteria publication-title: The Prokaryotes doi: 10.1007/0-387-30745-1_36 – volume: 64 start-page: 167 year: 2008 end-page: 174 ident: CR47 article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2008.00466.x – volume: 10 start-page: 810 year: 2008 end-page: 818 ident: CR11 article-title: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01506.x – volume: 1 start-page: 184 year: 2009 end-page: 190 ident: CR3 article-title: Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge publication-title: Environ Microbiol Rep doi: 10.1111/j.1758-2229.2009.00029.x – start-page: 177 year: 1991 end-page: 203 ident: CR35 article-title: 16S/23S rRNA sequencing publication-title: Nucleic Acid Techniques in Bacterial Systematics – volume: 5 start-page: 150 year: 2004 end-page: 163 ident: CR33 article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment publication-title: Brief Bioinform doi: 10.1093/bib/5.2.150 – volume: 7 start-page: 1985 year: 2005 end-page: 1995 ident: CR54 article-title: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00906.x – volume: 89 start-page: 5685 year: 1992 end-page: 5689 ident: CR12 article-title: Archaea in coastal marine environments publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.12.5685 – volume: 107 start-page: 17240 year: 2010 end-page: 17245 ident: CR57 article-title: Autotrophic ammonia oxidation by soil thaumarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004947107 – volume: 267 start-page: 1534 year: 1992 end-page: 1545 ident: CR26 article-title: C H - and CO -labeling studies of the synthesis of polypeptides by during recovery from acetylene and light inactivation of ammonia monooxygenase publication-title: J Biol Chem – volume: 18 start-page: 331 year: 2010 end-page: 340 ident: CR53 article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota publication-title: Trends Microbiol doi: 10.1016/j.tim.2010.06.003 – volume: 75 start-page: 7537 year: 2009 end-page: 7541 ident: CR51 article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01541-09 – volume: 55 start-page: 485 year: 2001 end-page: 529 ident: CR32 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annl Rev Microbiol doi: 10.1146/annurev.micro.55.1.485 – volume: 34 start-page: 237 year: 1996 end-page: 244 ident: CR55 article-title: In situ analysis of nitrifying bacteria in sewage treatment plants publication-title: Water Sci Technol doi: 10.2166/wst.1996.0377 – volume: 456 start-page: 788 year: 2008 end-page: 791 ident: CR1 article-title: Major gradients in putatively nitrifying and non-nitrifying in the deep North Atlantic publication-title: Nature doi: 10.1038/nature07535 – volume: 461 start-page: 976 year: 2009 end-page: 979 ident: CR38 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 37 start-page: 1 year: 2001 end-page: 9 ident: CR30 article-title: Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2001.tb00847.x – volume: 6 start-page: 245 year: 2008 end-page: 252 ident: CR6 article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1852 – volume: 63 start-page: 132 year: 2008 end-page: 140 ident: CR46 article-title: First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00404.x – volume: 105 start-page: 2134 year: 2008 end-page: 2139 ident: CR22 article-title: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0708857105 – volume: 76 start-page: 4640 year: 2010 end-page: 4646 ident: CR43 article-title: Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00320-10 – volume: 164 start-page: 16 year: 1995 end-page: 23 ident: CR14 article-title: A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, sp. nov. and its phylogenetic relationship publication-title: Arch Microbiol doi: 10.1007/BF02568729 – volume: 76 start-page: 4538 year: 2010 end-page: 4541 ident: CR28 article-title: RNA-based investigation of ammonia-oxidizing archaea in Hot Springs of Yunnan Province, China publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00143-10 – volume: 4 start-page: 1092 year: 2010 end-page: 1094 ident: CR50 article-title: Ammonia oxidation: different niches for bacteria and archaea? publication-title: ISME J doi: 10.1038/ismej.2010.111 – volume: 11 start-page: 1658 year: 2009 end-page: 1671 ident: CR27 article-title: rather than dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01891.x – volume: 32 start-page: 398 year: 2001 end-page: 401 ident: CR56 article-title: C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations publication-title: Lett Appl Microbiol doi: 10.1046/j.1472-765X.2001.00930.x – volume: 74 start-page: 566 year: 2010 end-page: 574 ident: CR21 article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00971.x – volume: 64 start-page: 258 year: 1998 end-page: 264 ident: CR24 article-title: Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria publication-title: Appl Environ Microbiol – volume: 104 start-page: 7104 year: 2007 end-page: 7109 ident: CR34 article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611081104 – volume: 64 start-page: 3480 year: 1998 end-page: 3485 ident: CR52 article-title: Identification and activities of nitrosospira and spp. as dominant populations in a nitrifying fluidized bed reactor publication-title: Appl Environ Microbiol – volume: 6 start-page: 73 year: 2004 end-page: 78 ident: CR37 article-title: Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2003.00536.x – volume: 102 start-page: 14683 year: 2005 end-page: 14688 ident: CR17 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506625102 – volume: 67 start-page: 5273 year: 2001 end-page: 5284 ident: CR10 article-title: characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.11.5273-5284.2001 – volume: 437 start-page: 543 year: 2005 end-page: 546 ident: CR29 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 33 start-page: 855 year: 2009 end-page: 869 ident: CR15 article-title: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2009.00179.x – volume: 2 start-page: 621 year: 2009 end-page: 624 ident: CR13 article-title: Nitrification driven by bacteria and not archaea in nitrogen rich grassland soils publication-title: Nat Geosci doi: 10.1038/ngeo613 – volume: 8 start-page: 684 year: 2006 end-page: 696 ident: CR19 article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00947.x – volume: 451 start-page: 293 year: 2008 ident: 2024020218225043900_CR20 article-title: An earth-system perspective of the global nitrogen cycle publication-title: Nature doi: 10.1038/nature06592 – volume: 10 start-page: 810 year: 2008 ident: 2024020218225043900_CR11 article-title: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2007.01506.x – volume: 37 start-page: 1 year: 2001 ident: 2024020218225043900_CR30 article-title: Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2001.tb00847.x – volume: 63 start-page: 4704 year: 1997 ident: 2024020218225043900_CR48 article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations publication-title: Appl Environ Microbiol doi: 10.1128/aem.63.12.4704-4712.1997 – volume: 10 start-page: 2966 year: 2008 ident: 2024020218225043900_CR42 article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2008.01701.x – volume: 64 start-page: 3480 year: 1998 ident: 2024020218225043900_CR52 article-title: Identification and activities in situ of nitrosospira and nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.9.3480-3485.1998 – start-page: 457 volume-title: The Prokaryotes year: 2006 ident: 2024020218225043900_CR5 doi: 10.1007/0-387-30742-7_16 – volume: 75 start-page: 234 year: 2009 ident: 2024020218225043900_CR25 article-title: Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01861-08 – volume: 456 start-page: 788 year: 2008 ident: 2024020218225043900_CR1 article-title: Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic publication-title: Nature doi: 10.1038/nature07535 – volume: 37 start-page: D141 year: 2009 ident: 2024020218225043900_CR9 article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis publication-title: Nucleic Acids Res doi: 10.1093/nar/gkn879 – start-page: 177 volume-title: Nucleic Acid Techniques in Bacterial Systematics year: 1991 ident: 2024020218225043900_CR35 – volume: 12 start-page: 315 year: 2010 ident: 2024020218225043900_CR4 article-title: Shifts between nitrospira- and nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.02070.x – volume: 267 start-page: 1534 year: 1992 ident: 2024020218225043900_CR26 article-title: 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)45979-0 – start-page: 778 volume-title: The Prokaryotes year: 2006 ident: 2024020218225043900_CR31 doi: 10.1007/0-387-30745-1_36 – volume: 89 start-page: 5685 year: 1992 ident: 2024020218225043900_CR12 article-title: Archaea in coastal marine environments publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.89.12.5685 – volume: 63 start-page: 132 year: 2008 ident: 2024020218225043900_CR46 article-title: First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2007.00404.x – volume: 461 start-page: 976 year: 2009 ident: 2024020218225043900_CR38 article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria publication-title: Nature doi: 10.1038/nature08465 – volume: 8 start-page: 684 year: 2006 ident: 2024020218225043900_CR19 article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00947.x – volume: 33 start-page: 855 year: 2009 ident: 2024020218225043900_CR15 article-title: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea publication-title: FEMS Microbiol Rev doi: 10.1111/j.1574-6976.2009.00179.x – volume: 76 start-page: 4640 year: 2010 ident: 2024020218225043900_CR43 article-title: Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00320-10 – volume: 26 start-page: 21 year: 1993 ident: 2024020218225043900_CR16 article-title: Rates of nitrification and carbon uptake in the Rhone River plume (northwestern Mediterranean Sea) publication-title: Microb Ecol doi: 10.1007/BF00166026 – volume: 76 start-page: 4538 year: 2010 ident: 2024020218225043900_CR28 article-title: RNA-based investigation of ammonia-oxidizing archaea in Hot Springs of Yunnan Province, China publication-title: Appl Environ Microbiol doi: 10.1128/AEM.00143-10 – volume: 7 start-page: 1985 year: 2005 ident: 2024020218225043900_CR54 article-title: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2005.00906.x – volume: 1 start-page: 256 year: 2007 ident: 2024020218225043900_CR2 article-title: Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic publication-title: ISME J doi: 10.1038/ismej.2007.34 – volume: 105 start-page: 2134 year: 2008 ident: 2024020218225043900_CR22 article-title: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0708857105 – volume: 442 start-page: 806 year: 2006 ident: 2024020218225043900_CR36 article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils publication-title: Nature doi: 10.1038/nature04983 – volume: 18 start-page: 331 year: 2010 ident: 2024020218225043900_CR53 article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota publication-title: Trends Microbiol doi: 10.1016/j.tim.2010.06.003 – volume: 70 start-page: 99 year: 2009 ident: 2024020218225043900_CR44 article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2009.00725.x – volume: 12 start-page: 1989 year: 2010 ident: 2024020218225043900_CR49 article-title: Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2010.02205.x – volume: 437 start-page: 543 year: 2005 ident: 2024020218225043900_CR29 article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon publication-title: Nature doi: 10.1038/nature03911 – volume: 104 start-page: 7104 year: 2007 ident: 2024020218225043900_CR34 article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0611081104 – volume: 37 start-page: 2037 year: 2005 ident: 2024020218225043900_CR39 article-title: Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2005.03.007 – volume: 2 start-page: 860 year: 2007 ident: 2024020218225043900_CR41 article-title: DNA stable-isotope probing publication-title: Nat Protocols doi: 10.1038/nprot.2007.109 – volume: 107 start-page: 17240 year: 2010 ident: 2024020218225043900_CR57 article-title: Autotrophic ammonia oxidation by soil thaumarchaea publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1004947107 – volume: 55 start-page: 485 year: 2001 ident: 2024020218225043900_CR32 article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology publication-title: Annl Rev Microbiol doi: 10.1146/annurev.micro.55.1.485 – volume: 70 start-page: 1008 year: 2004 ident: 2024020218225043900_CR45 article-title: Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.70.2.1008-1016.2004 – volume: 6 start-page: 245 year: 2008 ident: 2024020218225043900_CR6 article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota publication-title: Nat Rev Microbiol doi: 10.1038/nrmicro1852 – volume: 5 start-page: 150 year: 2004 ident: 2024020218225043900_CR33 article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment publication-title: Brief Bioinform doi: 10.1093/bib/5.2.150 – volume: 67 start-page: 5273 year: 2001 ident: 2024020218225043900_CR10 article-title: In situ characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants publication-title: Appl Environ Microbiol doi: 10.1128/AEM.67.11.5273-5284.2001 – volume: 102 start-page: 14683 year: 2005 ident: 2024020218225043900_CR17 article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0506625102 – volume: 64 start-page: 167 year: 2008 ident: 2024020218225043900_CR47 article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2008.00466.x – volume: 73 start-page: 485 year: 2007 ident: 2024020218225043900_CR8 article-title: Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01536-06 – volume: 3 start-page: 916 year: 2009 ident: 2024020218225043900_CR40 article-title: Bacteria, not archaea, restore nitrification in a zinc-contaminated soil publication-title: ISME J doi: 10.1038/ismej.2009.39 – volume: 4 start-page: 1092 year: 2010 ident: 2024020218225043900_CR50 article-title: Ammonia oxidation: different niches for bacteria and archaea? publication-title: ISME J doi: 10.1038/ismej.2010.111 – volume: 62 start-page: 2888 year: 1996 ident: 2024020218225043900_CR23 article-title: Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria publication-title: Appl Environ Microbiol doi: 10.1128/aem.62.8.2888-2896.1996 – volume: 1 start-page: 184 year: 2009 ident: 2024020218225043900_CR3 article-title: Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge publication-title: Environ Microbiol Rep doi: 10.1111/j.1758-2229.2009.00029.x – volume: 64 start-page: 258 year: 1998 ident: 2024020218225043900_CR24 article-title: Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria publication-title: Appl Environ Microbiol doi: 10.1128/AEM.64.1.258-264.1998 – volume: 164 start-page: 16 year: 1995 ident: 2024020218225043900_CR14 article-title: A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship publication-title: Arch Microbiol doi: 10.1007/BF02568729 – volume: 2 start-page: 621 year: 2009 ident: 2024020218225043900_CR13 article-title: Nitrification driven by bacteria and not archaea in nitrogen rich grassland soils publication-title: Nat Geosci doi: 10.1038/ngeo613 – volume: 74 start-page: 566 year: 2010 ident: 2024020218225043900_CR21 article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils publication-title: FEMS Microbiol Ecol doi: 10.1111/j.1574-6941.2010.00971.x – volume: 75 start-page: 7537 year: 2009 ident: 2024020218225043900_CR51 article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities publication-title: Appl Environ Microbiol doi: 10.1128/AEM.01541-09 – volume: 34 start-page: 237 year: 1996 ident: 2024020218225043900_CR55 article-title: In situ analysis of nitrifying bacteria in sewage treatment plants publication-title: Water Sci Technol doi: 10.2166/wst.1996.0377 – volume: 32 start-page: 398 year: 2001 ident: 2024020218225043900_CR56 article-title: 13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations publication-title: Lett Appl Microbiol doi: 10.1046/j.1472-765X.2001.00930.x – volume: 3 start-page: 1093 year: 2009 ident: 2024020218225043900_CR7 article-title: Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave publication-title: ISME J doi: 10.1038/ismej.2009.57 – volume: 71 start-page: 8323 year: 2005 ident: 2024020218225043900_CR18 article-title: Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in Agricultural Grassland Soils publication-title: Appl Environ Microbiol doi: 10.1128/AEM.71.12.8323-8334.2005 – volume: 11 start-page: 1658 year: 2009 ident: 2024020218225043900_CR27 article-title: Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil publication-title: Environ Microbiol doi: 10.1111/j.1462-2920.2009.01891.x – volume: 6 start-page: 73 year: 2004 ident: 2024020218225043900_CR37 article-title: Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients publication-title: Environ Microbiol doi: 10.1046/j.1462-2920.2003.00536.x – reference: 14686943 - Environ Microbiol. 2004 Jan;6(1):73-8 – reference: 20631805 - ISME J. 2010 Sep;4(9):1092-4 – reference: 23765792 - Environ Microbiol Rep. 2009 Jun;1(3):184-90 – reference: 18997025 - Appl Environ Microbiol. 2009 Jan;75(1):234-41 – reference: 1730700 - J Biol Chem. 1992 Jan 25;267(3):1534-45 – reference: 19453522 - FEMS Microbiol Rev. 2009 Sep;33(5):855-69 – reference: 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108 – reference: 16177789 - Nature. 2005 Sep 22;437(7058):543-6 – reference: 16915287 - Nature. 2006 Aug 17;442(7104):806-9 – reference: 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63 – reference: 18205821 - Environ Microbiol. 2008 Mar;10(3):810-8 – reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12 – reference: 18062041 - ISME J. 2007 Jul;1(3):256-64 – reference: 19794413 - Nature. 2009 Oct 15;461(7266):976-9 – reference: 18355293 - FEMS Microbiol Ecol. 2008 May;64(2):167-74 – reference: 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9 – reference: 16349486 - Appl Environ Microbiol. 1998 Jan;64(1):258-64 – reference: 20435758 - Appl Environ Microbiol. 2010 Jul;76(13):4538-41 – reference: 8702281 - Appl Environ Microbiol. 1996 Aug;62(8):2888-96 – reference: 17420469 - Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7104-9 – reference: 19474813 - ISME J. 2009 Sep;3(9):1093-104 – reference: 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5 – reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41 – reference: 20511427 - Appl Environ Microbiol. 2010 Jul;76(14):4640-6 – reference: 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5 – reference: 11544365 - Annu Rev Microbiol. 2001;55:485-529 – reference: 17446886 - Nat Protoc. 2007;2(4):860-6 – reference: 19807778 - Environ Microbiol. 2010 Feb;12(2):315-26 – reference: 16332819 - Appl Environ Microbiol. 2005 Dec;71(12):8323-34 – reference: 11412351 - Lett Appl Microbiol. 2001 Jun;32(6):398-401 – reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8 – reference: 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84 – reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71 – reference: 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40 – reference: 14766583 - Appl Environ Microbiol. 2004 Feb;70(2):1008-16 – reference: 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78 – reference: 17098920 - Appl Environ Microbiol. 2007 Jan;73(2):485-91 – reference: 18250313 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2134-9 – reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5 – reference: 20345944 - Environ Microbiol. 2010 Jul;12(7):1989-2006 – reference: 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95 – reference: 19387487 - ISME J. 2009 Aug;3(8):916-23 – reference: 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96 – reference: 18202647 - Nature. 2008 Jan 17;451(7176):293-6 – reference: 24189985 - Microb Ecol. 1993 Jul;26(1):21-8 – reference: 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40 – reference: 7646315 - Arch Microbiol. 1995 Jul;164(1):16-23 – reference: 19037244 - Nature. 2008 Dec 11;456(7223):788-91 – reference: 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74 – reference: 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52 |
SSID | ssj0057667 |
Score | 2.5089772 |
Snippet | The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1226 |
SubjectTerms | 631/326/171/1818 631/326/2565/855 631/443/319 Agricultural land Agriculture Ammonia Ammonia - metabolism Ammonium Archaea - classification Archaea - genetics Archaea - growth & development Autotrophic Processes Bacteria - classification Bacteria - genetics Bacteria - growth & development Biomedical and Life Sciences Carbon dioxide Deoxyribonucleic acid DNA Ecology Evolutionary Biology Gene Library Genes, Archaeal Genes, Bacterial Genes, rRNA High-Throughput Nucleotide Sequencing Hot springs Incubation Life Sciences Microbial Ecology Microbial Genetics and Genomics Microbiology Microcosms Nitrification Nitrites - metabolism Nitrogen cycle Original original-article Oxidation Phylogeny Sequence Analysis, DNA Soil - analysis Soil environment Soil Microbiology Soil testing Soils Stable isotopes |
Title | Autotrophic growth of nitrifying community in an agricultural soil |
URI | https://link.springer.com/article/10.1038/ismej.2011.5 https://www.ncbi.nlm.nih.gov/pubmed/21326337 https://www.proquest.com/docview/872798100 https://www.proquest.com/docview/873316877 https://pubmed.ncbi.nlm.nih.gov/PMC3146291 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR364vclAvEmyb9HUSFUUEH4jC3kraJm5lbdfd7sF_70zbrawv6KVkoOlMkpnJzHwDcBBrz0oTZfEE9R-XWgke48rgse0GAjWmloquBm7vvOtnedN1u01uzqhJq5ycidVBnRYJ3ZGfBKhow8C2rNPBO6emURRcbTpozMI8IZdRRpffbf0ttKSrBrKoIG3u40Hd5L1bIjjJRm_6tQbwdKc10g8z82e25LeQaaWJrpZhqTEh2Vkt8xWY0fkqLNRNJT_W4PxsXBblsBj0soS9oJdd9lhhGG7dYVYVNbGkLgopP1iWM4XPy7BF4GCjIuuvw_PV5dPFNW86JfAEDZ6SI2MTLYR2UGEb8oFSHWpjxTYBMzieEsaTJrRSqpdObZkKI6hg1kF_C-0jI8QGzOVFrreAeTJUaaB0artKSnLHlDKOUNIoXyrb78DxhFtR0sCIUzeLflSFs0UQVbyNiLeR24HDlnpQw2f8QbczYXzUbKJR1Iq8A6wdxdVPIQ2V62JMJII6b_k4rc1aSu1nHPxZTwgc8afk1xIQsPb0SJ71KoBtgerDCe0OHE0k_TWp32a__e_sd2CxvoimHN9dmCuHY72HlkwZ71frdR_mzy_vHh7x7em--wkbWvZ_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6hINReKuiLlEf3UHqpVtje9etQIaCgUCCqKpC4uWt7l7iidkgcVflR_Edm_KoCbW9Iue1KnszOzjez8wL4EGvPShNl8QTxj0utBI9RMnhsu4FAxNRS0dPA-dAbXMqvV-7VEty1tTCUVtnqxEpRp0VCb-S7AQJtGNiWtTe-5TQ0ioKr7QSNWipO9fw3emzTzydf8Hh3HOf46OJwwJuhAjxB26DkSEOihdAOYpshdyHVoTZWbFMPA8dTwnjShFZKpcWpLVNhBNWWOuiaoClh6P0TNf6yFOjJ9GD54Gj47Xur-tF2r0bWIiTb3EdoaDLtLRHsZtNf-mfdMtRdxMBHhu3j_MwHQdoK-45X4UVjtLL9WsrWYEnnL2GlHmM5fwUH-7OyKCfFeJQl7Br9-nLECsNQWUyyqoyKJXUZSjlnWc4U_q4nXc8PNi2ym9dw-SRsfAO9vMj1OjBPhioNlE5tV0lJDqBSxhFKGuVLZft9-NRyK0qaxuU0P-MmqgLoIogq3kbE28jtw063e1w37PjHvo2W8VFzbadRJ2R9YN0q3jcKoqhcFzPaImjWl49kva1PqfuMg3_WEwJX_IXz6zZQK-_FlTwbVS29BQKWE9p9-Nie9B-i_kb9u_9S_x6eDS7Oz6Kzk-HpBjyvn8Epw3gTeuVkprfQjirj7UZ6Gfx46gtzD0HdLyM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUVcUCmPLgXqA-WCrI1j53VAqNCuWgoVByrtLTiJ3Q0qyXY3K7Q_rf-uM3mhpS23SnuzpcyOZ_zNeF4AbxPjO1mqHZ4i_nFltOQJSgZPhBdKREyjND0NfDv1j87Ul7E3XoOrrhaG0iq7O7G-qLMypTfyYYhAG4XCcYa2zYr4fjD6OL3kNECKAq3dNI1GQk7M8g96b_MPxwd41HuuOzr88fmItwMGeIp2QsWRntRIaVzEOUuuQ2YiY51EUD8D19fS-spGTkZlxplQmbSS6kxddFPQrLD0Foq3_4NAeoJULBj3vh5a8fXwWgRnwQMEiTbn3pHhMJ__Nr-a5qHeKhreMHFvZmr-E66tUXC0CY9b85XtN_L2BNZMsQUbzUDL5VP4tL-oympWTid5ys7Rw68mrLQMr41ZXhdUsbQpSKmWLC-Yxt_5rO_-weZlfvEMzu6Fic9hvSgLsw3MV5HOQm0y4WmlyBXU2rpSK6sDpUUwgPcdt-K0bWFOkzQu4jqULsO45m1MvI29Aez1u6dN64479u10jI9bBZ7HvbgNgPWrqHkUTtGFKRe0RdLUrwDJetGcUv8ZF_-sLyWuBCvn12-gpt6rK0U-qZt7S4QuNxIDeNed9F-ibqP-5X-p34WHqCbx1-PTkx141LyHU6rxK1ivZgvzGg2qKnlTiy6Dn_etK9cZxzHz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autotrophic+growth+of+nitrifying+community+in+an+agricultural+soil&rft.jtitle=The+ISME+Journal&rft.au=Xia%2C+Weiwei&rft.au=Zhang%2C+Caixia&rft.au=Zeng%2C+Xiaowei&rft.au=Feng%2C+Youzhi&rft.date=2011-07-01&rft.eissn=1751-7370&rft.volume=5&rft.issue=7&rft.spage=1226&rft_id=info:doi/10.1038%2Fismej.2011.5&rft_id=info%3Apmid%2F21326337&rft.externalDocID=21326337 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon |