Autotrophic growth of nitrifying community in an agricultural soil

The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-...

Full description

Saved in:
Bibliographic Details
Published inThe ISME Journal Vol. 5; no. 7; pp. 1226 - 1236
Main Authors Xia, Weiwei, Zhang, Caixia, Zeng, Xiaowei, Feng, Youzhi, Weng, Jiahua, Lin, Xiangui, Zhu, Jianguo, Xiong, Zhengqin, Xu, Jian, Cai, Zucong, Jia, Zhongjun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2011
Oxford University Press
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13 CO 2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13 C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira -like NOB in the 13 C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter -like NOB. Furthermore, the acetylene inhibition technique showed that 13 CO 2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.
AbstractList The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13 CO 2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13 C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira -like NOB in the 13 C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter -like NOB. Furthermore, the acetylene inhibition technique showed that 13 CO 2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by 13CO2 after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the 13C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the 13C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that 13CO2 assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.
The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining DNA-based stable isotope probing (SIP) and high-throughput pyrosequencing, we present the molecular evidence for autotrophic growth of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and nitrite-oxidizing bacteria (NOB) in agricultural soil upon ammonium fertilization. Time-course incubation of SIP microcosms indicated that the amoA genes of AOB was increasingly labeled by (13)CO(2) after incubation for 3, 7 and 28 days during active nitrification, whereas labeling of the AOA amoA gene was detected to a much lesser extent only after a 28-day incubation. Phylogenetic analysis of the (13)C-labeled amoA and 16S rRNA genes revealed that the Nitrosospira cluster 3-like sequences dominate the active AOB community and that active AOA is affiliated with the moderately thermophilic Nitrososphaera gargensis from a hot spring. The higher relative frequency of Nitrospira-like NOB in the (13)C-labeled DNA suggests that it may be more actively involved in nitrite oxidation than Nitrobacter-like NOB. Furthermore, the acetylene inhibition technique showed that (13)CO(2) assimilation by AOB, AOA and NOB occurs only when ammonia oxidation is not blocked, which provides strong hints for the chemolithoautotrophy of nitrifying community in complex soil environments. These results show that the microbial community of AOB and NOB dominates the nitrification process in the agricultural soil tested.
Author Zhu, Jianguo
Cai, Zucong
Jia, Zhongjun
Weng, Jiahua
Lin, Xiangui
Xiong, Zhengqin
Xu, Jian
Zhang, Caixia
Xia, Weiwei
Zeng, Xiaowei
Feng, Youzhi
Author_xml – sequence: 1
  givenname: Weiwei
  surname: Xia
  fullname: Xia, Weiwei
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China, Graduate School of the Chinese Academy of Sciences
– sequence: 2
  givenname: Caixia
  surname: Zhang
  fullname: Zhang, Caixia
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University
– sequence: 3
  givenname: Xiaowei
  surname: Zeng
  fullname: Zeng, Xiaowei
  organization: BioEnergy Genome Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences
– sequence: 4
  givenname: Youzhi
  surname: Feng
  fullname: Feng, Youzhi
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
– sequence: 5
  givenname: Jiahua
  surname: Weng
  fullname: Weng, Jiahua
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
– sequence: 6
  givenname: Xiangui
  surname: Lin
  fullname: Lin, Xiangui
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
– sequence: 7
  givenname: Jianguo
  surname: Zhu
  fullname: Zhu, Jianguo
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
– sequence: 8
  givenname: Zhengqin
  surname: Xiong
  fullname: Xiong, Zhengqin
  organization: College of Resources and Environmental Sciences, Nanjing Agricultural University
– sequence: 9
  givenname: Jian
  surname: Xu
  fullname: Xu, Jian
  organization: BioEnergy Genome Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences
– sequence: 10
  givenname: Zucong
  surname: Cai
  fullname: Cai, Zucong
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
– sequence: 11
  givenname: Zhongjun
  surname: Jia
  fullname: Jia, Zhongjun
  email: jia@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21326337$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1PwyAYh4mZcTq9eTaNFy928sJa2ovJXPxKTLzomVQGHUsLE6hm_73Mzc9oQvgIz_vLA-8e6hlrJEKHgIeAaXGmfSvnQ4IBhtkW2gWWQcoow73PfU76aM_7OcYZy3O2g_oEKMkpZbvoYtwFG5xdzLRIamdfwyyxKjE6OK2W2tSJsG3bxfMy0Sap4qidFl0TOlc1ibe62Ufbqmq8PNisA_R4dfkwuUnv7q9vJ-O7VGQwCilkhZCUSkKgUKRgMJWlVPgJAJNoU1GVj1SJp1EtTqMpVbQsGSGkILQkitIBOl_nLrqnVk6FNCEq8IXTbeWW3Faa_7wxesZr-8IpjHJSQgw42QQ4-9xJH3irvZBNUxlpO88LRinkBWORPP5Fzm3nTHxdhAgrC8A4QkfffT5FPj43AmQNCGe9d1JxoUMVtF3p6YYD5qsO8vcO8lUHeRaLTn8VfeT-g6dr3EfM1NJ9mf7JvwHF3qzo
CitedBy_id crossref_primary_10_1093_femsec_fiaa104
crossref_primary_10_3390_microorganisms10020247
crossref_primary_10_1002_saj2_20029
crossref_primary_10_1016_j_psep_2019_03_006
crossref_primary_10_1016_j_scitotenv_2024_176578
crossref_primary_10_1080_03650340_2022_2103675
crossref_primary_10_1111_1574_6968_12164
crossref_primary_10_3389_fmicb_2019_00929
crossref_primary_10_1007_s00253_013_5169_2
crossref_primary_10_3389_fmicb_2023_1337507
crossref_primary_10_3390_agriculture11030195
crossref_primary_10_1007_s11368_021_02897_z
crossref_primary_10_1128_AEM_01545_12
crossref_primary_10_3389_fmicb_2018_00280
crossref_primary_10_3389_fmicb_2022_885087
crossref_primary_10_1007_s10452_022_09943_z
crossref_primary_10_1038_ismej_2014_194
crossref_primary_10_1016_j_jhydrol_2022_128409
crossref_primary_10_1007_s11368_018_2188_8
crossref_primary_10_1007_s11368_022_03336_3
crossref_primary_10_1016_j_scitotenv_2018_08_193
crossref_primary_10_1099_ijs_0_063172_0
crossref_primary_10_1016_j_apsoil_2020_103729
crossref_primary_10_1016_S1002_0160_20_60030_3
crossref_primary_10_1093_femsre_fuaa037
crossref_primary_10_1093_femsec_fiy026
crossref_primary_10_1038_s41598_022_21108_4
crossref_primary_10_1007_s00374_021_01565_1
crossref_primary_10_1007_s11356_016_6396_8
crossref_primary_10_1039_C6RA13066F
crossref_primary_10_1007_s11104_021_05121_6
crossref_primary_10_1016_j_envpol_2021_117558
crossref_primary_10_1038_ismej_2013_35
crossref_primary_10_1007_s00253_014_6026_7
crossref_primary_10_1128_aem_01380_23
crossref_primary_10_1016_S1002_0160_21_60082_6
crossref_primary_10_3389_fmicb_2017_02226
crossref_primary_10_3389_fmicb_2022_962146
crossref_primary_10_1038_s41598_019_45877_7
crossref_primary_10_1111_1462_2920_15394
crossref_primary_10_1016_j_scitotenv_2018_03_108
crossref_primary_10_1016_j_jenvman_2024_120504
crossref_primary_10_1371_journal_pone_0218779
crossref_primary_10_1007_s11368_019_02479_0
crossref_primary_10_1016_j_jece_2025_115900
crossref_primary_10_1002_fsn3_866
crossref_primary_10_1016_S1002_0160_12_60044_7
crossref_primary_10_3389_fmicb_2016_01638
crossref_primary_10_1021_acs_est_8b01993
crossref_primary_10_1128_AEM_00426_15
crossref_primary_10_1016_j_apsoil_2019_103395
crossref_primary_10_1016_S1002_0160_17_60344_8
crossref_primary_10_1016_S2095_3119_17_61743_X
crossref_primary_10_1016_j_soilbio_2024_109361
crossref_primary_10_1089_ees_2014_0456
crossref_primary_10_1038_srep43283
crossref_primary_10_1038_ismej_2012_51
crossref_primary_10_3390_microorganisms10030639
crossref_primary_10_1016_j_ejsobi_2019_103087
crossref_primary_10_1007_s00248_012_0081_3
crossref_primary_10_1007_s00374_019_01387_2
crossref_primary_10_1007_s11270_017_3523_1
crossref_primary_10_1016_j_jenvman_2024_123566
crossref_primary_10_1016_j_soilbio_2016_01_012
crossref_primary_10_3389_fmicb_2024_1481044
crossref_primary_10_1016_j_scitotenv_2019_135684
crossref_primary_10_1016_j_watres_2019_115464
crossref_primary_10_1128_aem_00070_24
crossref_primary_10_1016_j_agee_2018_03_014
crossref_primary_10_1002_ldr_4594
crossref_primary_10_1016_j_soilbio_2018_02_017
crossref_primary_10_1002_ldr_4112
crossref_primary_10_1007_s00374_021_01566_0
crossref_primary_10_1016_j_jenvman_2025_124167
crossref_primary_10_1515_biol_2022_0010
crossref_primary_10_1016_j_soilbio_2020_107970
crossref_primary_10_1007_s11356_023_25253_9
crossref_primary_10_1016_j_biortech_2018_02_012
crossref_primary_10_1038_ismej_2012_45
crossref_primary_10_1093_femsle_fnw052
crossref_primary_10_1111_j_1574_6941_2011_01271_x
crossref_primary_10_1016_S1002_0160_19_60803_9
crossref_primary_10_1038_ismej_2014_159
crossref_primary_10_1016_j_watres_2023_119931
crossref_primary_10_1007_s11368_011_0450_4
crossref_primary_10_36783_18069657rbcs20220156
crossref_primary_10_1007_s11368_014_1001_6
crossref_primary_10_3389_fmicb_2019_01931
crossref_primary_10_3934_microbiol_2017_3_413
crossref_primary_10_1007_s00248_015_0633_4
crossref_primary_10_1016_j_biortech_2022_128005
crossref_primary_10_7717_peerj_436
crossref_primary_10_1016_j_apsoil_2020_103812
crossref_primary_10_1016_j_scitotenv_2019_01_315
crossref_primary_10_1111_1758_2229_12477
crossref_primary_10_1007_s11104_020_04711_0
crossref_primary_10_1021_acs_est_3c06002
crossref_primary_10_1016_j_jhazmat_2023_131076
crossref_primary_10_1016_j_soilbio_2022_108577
crossref_primary_10_1016_j_scitotenv_2020_138148
crossref_primary_10_1016_j_soilbio_2021_108211
crossref_primary_10_1016_j_soilbio_2024_109423
crossref_primary_10_1016_j_ibiod_2018_01_012
crossref_primary_10_1016_j_jes_2022_02_038
crossref_primary_10_1128_AEM_03633_13
crossref_primary_10_3390_su142215241
crossref_primary_10_1016_j_jhazmat_2021_127364
crossref_primary_10_3390_su12031250
crossref_primary_10_1016_j_agee_2020_107122
crossref_primary_10_1016_j_apsoil_2015_06_010
crossref_primary_10_5194_bg_11_3353_2014
crossref_primary_10_1021_acs_est_3c08319
crossref_primary_10_1016_j_soilbio_2014_04_023
crossref_primary_10_1007_s11270_018_3916_9
crossref_primary_10_1016_j_agee_2021_107540
crossref_primary_10_1002_glr2_12048
crossref_primary_10_1111_j_1462_2920_2012_02740_x
crossref_primary_10_1007_s42832_023_0199_x
crossref_primary_10_1016_j_biortech_2013_06_039
crossref_primary_10_1007_s11368_018_2155_4
crossref_primary_10_1016_j_soilbio_2013_02_014
crossref_primary_10_1186_s12866_016_0657_z
crossref_primary_10_1007_s42832_020_0032_8
crossref_primary_10_1007_s00374_018_01334_7
crossref_primary_10_1371_journal_pone_0200049
crossref_primary_10_1016_j_scitotenv_2021_148470
crossref_primary_10_1111_1462_2920_14457
crossref_primary_10_1038_s41396_021_01079_6
crossref_primary_10_1371_journal_pone_0139626
crossref_primary_10_1007_s11368_016_1525_z
crossref_primary_10_1111_1462_2920_12481
crossref_primary_10_3354_ame01712
crossref_primary_10_1007_s11368_020_02813_x
crossref_primary_10_1016_j_soilbio_2014_10_025
crossref_primary_10_1016_j_scitotenv_2016_12_141
crossref_primary_10_1016_j_apsoil_2016_03_008
crossref_primary_10_1016_j_soilbio_2022_108679
crossref_primary_10_1007_s11104_019_04164_0
crossref_primary_10_1080_17435390_2017_1290845
crossref_primary_10_1016_j_mib_2011_04_007
crossref_primary_10_1016_j_soilbio_2024_109687
crossref_primary_10_1016_j_apsoil_2017_11_018
crossref_primary_10_1111_ejss_13467
crossref_primary_10_1111_j_1462_2920_2011_02666_x
crossref_primary_10_2139_ssrn_4074487
crossref_primary_10_1128_AEM_01960_12
crossref_primary_10_1080_00380768_2011_637303
crossref_primary_10_3389_fmicb_2017_00630
crossref_primary_10_1111_1462_2920_14553
crossref_primary_10_1007_s00253_018_8865_0
crossref_primary_10_1007_s11368_018_2108_y
crossref_primary_10_1016_j_soilbio_2015_09_008
crossref_primary_10_1111_1758_2229_12109
crossref_primary_10_1002_fes3_248
crossref_primary_10_1016_j_soilbio_2018_01_016
crossref_primary_10_1007_s00374_024_01812_1
crossref_primary_10_2136_sssaj2019_05_0134
crossref_primary_10_1111_1758_2229_12588
crossref_primary_10_1016_j_agee_2022_108111
crossref_primary_10_1007_s00374_022_01663_8
crossref_primary_10_1016_j_chemosphere_2022_133554
crossref_primary_10_1016_j_soilbio_2017_10_023
crossref_primary_10_1016_j_soilbio_2021_108242
crossref_primary_10_3389_fmicb_2018_00171
crossref_primary_10_1002_jobm_201800581
crossref_primary_10_1016_j_scitotenv_2018_04_117
crossref_primary_10_3389_fmicb_2022_938481
crossref_primary_10_1007_s00374_020_01491_8
crossref_primary_10_1111_1462_2920_14246
crossref_primary_10_1264_jsme2_ME14137
crossref_primary_10_1016_S2095_3119_13_60424_4
crossref_primary_10_1186_s13568_017_0498_7
crossref_primary_10_1016_j_soilbio_2019_01_006
crossref_primary_10_2136_sssaj2010_0434
crossref_primary_10_3389_fmicb_2016_01101
crossref_primary_10_1371_journal_pone_0161979
crossref_primary_10_3389_fceng_2024_1485534
crossref_primary_10_1016_j_apsoil_2014_09_008
crossref_primary_10_3724_SP_J_1003_2012_10129
crossref_primary_10_1007_s11368_022_03261_5
crossref_primary_10_1016_j_soilbio_2016_11_005
crossref_primary_10_1007_s11368_018_2090_4
crossref_primary_10_1016_j_envres_2022_113900
crossref_primary_10_1016_j_apsoil_2014_09_003
crossref_primary_10_1515_pac_2022_0201
crossref_primary_10_1093_femsec_fiz197
crossref_primary_10_1093_femsec_fiz077
crossref_primary_10_1007_s11104_014_2097_6
crossref_primary_10_1016_j_apsoil_2022_104440
crossref_primary_10_1021_acs_est_0c08624
crossref_primary_10_1016_j_pedobi_2019_150589
crossref_primary_10_1016_j_soilbio_2014_11_021
crossref_primary_10_1111_1462_2920_12071
crossref_primary_10_1016_j_ecoenv_2024_116406
crossref_primary_10_1007_s10295_019_02211_4
crossref_primary_10_3389_fpls_2022_913204
crossref_primary_10_1111_1574_6941_12119
crossref_primary_10_1016_j_scitotenv_2018_09_275
crossref_primary_10_3390_ijerph19052732
crossref_primary_10_1016_j_mgene_2019_100625
crossref_primary_10_1016_j_biortech_2021_124924
crossref_primary_10_1016_j_ejsobi_2020_103213
crossref_primary_10_1038_srep11146
crossref_primary_10_1111_j_1462_2920_2012_02844_x
crossref_primary_10_1016_j_biortech_2018_09_042
crossref_primary_10_1016_j_ibiod_2023_105570
crossref_primary_10_1093_femsec_fiaa065
crossref_primary_10_1007_s42729_022_00841_9
crossref_primary_10_1016_j_soilbio_2017_05_001
crossref_primary_10_1007_s11356_016_8080_4
crossref_primary_10_1038_ismej_2014_81
crossref_primary_10_1128_msystems_01333_23
crossref_primary_10_1038_ismej_2011_168
crossref_primary_10_1002_imt2_271
crossref_primary_10_1016_j_apsoil_2013_03_006
crossref_primary_10_3389_fmicb_2022_876665
crossref_primary_10_1016_j_aquaeng_2017_01_004
crossref_primary_10_1038_srep33643
crossref_primary_10_7717_peerj_14088
crossref_primary_10_1016_j_soilbio_2022_108638
crossref_primary_10_1038_srep32791
crossref_primary_10_1128_AEM_00092_21
crossref_primary_10_1371_journal_pone_0146566
crossref_primary_10_1016_j_catena_2024_107955
crossref_primary_10_1128_AEM_01681_12
crossref_primary_10_1371_journal_pone_0137996
crossref_primary_10_1016_j_scitotenv_2022_155568
crossref_primary_10_3389_fmicb_2023_1256269
crossref_primary_10_1016_j_soilbio_2016_12_023
crossref_primary_10_1016_S2095_3119_13_60740_6
crossref_primary_10_1264_jsme2_ME24049
crossref_primary_10_1016_j_scitotenv_2023_161722
crossref_primary_10_1016_j_scitotenv_2019_04_181
crossref_primary_10_1128_mBio_01870_19
crossref_primary_10_1093_femsec_fiv014
crossref_primary_10_1371_journal_pone_0040653
crossref_primary_10_1007_s12665_013_2773_5
crossref_primary_10_1016_j_agee_2021_107318
crossref_primary_10_1007_s00374_013_0857_8
crossref_primary_10_1016_j_soilbio_2017_09_007
crossref_primary_10_1007_s11104_018_3673_y
crossref_primary_10_1016_j_scitotenv_2017_12_084
crossref_primary_10_1016_j_apsoil_2013_03_004
crossref_primary_10_1016_j_watres_2014_03_012
crossref_primary_10_1371_journal_pone_0169554
crossref_primary_10_1016_j_geoderma_2016_09_015
crossref_primary_10_1016_S1002_0160_21_60048_6
crossref_primary_10_3389_fmicb_2018_03122
crossref_primary_10_1525_elementa_2021_090
crossref_primary_10_1007_s00374_020_01500_w
crossref_primary_10_1016_j_soilbio_2015_08_031
crossref_primary_10_1002_jobm_202200190
crossref_primary_10_1128_msphere_00324_22
crossref_primary_10_1016_j_soilbio_2017_06_027
crossref_primary_10_1016_j_soilbio_2017_06_024
crossref_primary_10_1007_s11356_020_12038_7
crossref_primary_10_1007_s00248_016_0803_z
crossref_primary_10_1016_j_soilbio_2024_109706
crossref_primary_10_1016_j_apsoil_2025_105968
crossref_primary_10_1007_s12665_014_3128_6
crossref_primary_10_1016_j_soilbio_2016_04_012
crossref_primary_10_3390_agriculture11060523
crossref_primary_10_1007_s10924_018_1264_x
crossref_primary_10_1016_j_scitotenv_2020_143212
crossref_primary_10_1080_02772248_2018_1486945
crossref_primary_10_1128_AEM_00061_13
crossref_primary_10_3389_fmicb_2014_00710
crossref_primary_10_1007_s00253_024_13170_x
crossref_primary_10_1016_j_geoderma_2020_114419
crossref_primary_10_1016_j_tim_2013_09_005
crossref_primary_10_1007_s11356_020_09120_5
crossref_primary_10_1007_s42832_019_0006_x
crossref_primary_10_1016_j_soilbio_2012_12_003
crossref_primary_10_3389_fmicb_2020_581283
crossref_primary_10_1111_are_14231
crossref_primary_10_3389_fmicb_2015_01567
crossref_primary_10_1016_j_scitotenv_2018_12_236
crossref_primary_10_1093_femsec_fiu023
crossref_primary_10_1016_j_marpolbul_2016_09_047
crossref_primary_10_1016_j_soilbio_2015_02_013
crossref_primary_10_3389_fmicb_2020_580866
crossref_primary_10_1007_s11368_020_02733_w
crossref_primary_10_1007_s00253_015_6524_2
crossref_primary_10_1016_j_soilbio_2019_04_009
crossref_primary_10_1016_j_pedsph_2023_07_007
crossref_primary_10_1007_s00449_023_02866_5
crossref_primary_10_1016_S1002_0160_13_60065_X
crossref_primary_10_1016_S1002_0160_21_60036_X
crossref_primary_10_3389_fmars_2022_822939
crossref_primary_10_1038_srep03950
crossref_primary_10_1038_srep23680
crossref_primary_10_5194_soil_6_17_2020
crossref_primary_10_1007_s11368_021_03118_3
crossref_primary_10_1128_AEM_01807_20
crossref_primary_10_1007_s00253_014_6352_9
crossref_primary_10_1016_j_chemosphere_2015_12_055
crossref_primary_10_1016_j_soilbio_2012_06_006
crossref_primary_10_1007_s11368_014_0910_8
crossref_primary_10_1186_s40168_022_01287_y
crossref_primary_10_1016_j_ecolind_2021_107722
crossref_primary_10_1111_1751_7915_13532
crossref_primary_10_1007_s11104_022_05609_9
crossref_primary_10_1016_j_geoderma_2020_114637
crossref_primary_10_1016_j_chemosphere_2013_07_063
crossref_primary_10_1016_S1002_0160_18_60055_4
crossref_primary_10_1016_j_scitotenv_2016_05_185
crossref_primary_10_1128_AEM_01928_13
crossref_primary_10_3390_microorganisms11020527
crossref_primary_10_1007_s00374_023_01749_x
crossref_primary_10_1016_j_resmic_2014_08_003
crossref_primary_10_1016_j_geoderma_2018_11_033
crossref_primary_10_1007_s11104_018_3584_y
crossref_primary_10_1016_j_scitotenv_2021_145023
crossref_primary_10_1016_j_apsoil_2022_104785
crossref_primary_10_4236_as_2018_911096
crossref_primary_10_1007_s00374_017_1236_7
crossref_primary_10_1016_j_orggeochem_2013_04_012
crossref_primary_10_1080_10934529_2020_1852845
crossref_primary_10_1016_j_soilbio_2017_06_010
crossref_primary_10_1016_j_tim_2012_08_001
crossref_primary_10_2139_ssrn_4010914
crossref_primary_10_1111_1574_6941_12417
crossref_primary_10_1016_j_scitotenv_2018_10_195
Cites_doi 10.1007/BF00166026
10.1016/j.soilbio.2005.03.007
10.1111/j.1462-2920.2009.02070.x
10.1007/0-387-30742-7_16
10.1128/AEM.01536-06
10.1111/j.1462-2920.2008.01701.x
10.1111/j.1462-2920.2010.02205.x
10.1038/nature06592
10.1128/AEM.01861-08
10.1128/AEM.71.12.8323-8334.2005
10.1093/nar/gkn879
10.1038/ismej.2009.57
10.1111/j.1574-6941.2009.00725.x
10.1128/AEM.70.2.1008-1016.2004
10.1038/ismej.2007.34
10.1038/ismej.2009.39
10.1038/nature04983
10.1038/nprot.2007.109
10.1007/0-387-30745-1_36
10.1111/j.1574-6941.2008.00466.x
10.1111/j.1462-2920.2007.01506.x
10.1111/j.1758-2229.2009.00029.x
10.1093/bib/5.2.150
10.1111/j.1462-2920.2005.00906.x
10.1073/pnas.89.12.5685
10.1073/pnas.1004947107
10.1016/j.tim.2010.06.003
10.1128/AEM.01541-09
10.1146/annurev.micro.55.1.485
10.2166/wst.1996.0377
10.1038/nature07535
10.1038/nature08465
10.1111/j.1574-6941.2001.tb00847.x
10.1038/nrmicro1852
10.1111/j.1574-6941.2007.00404.x
10.1073/pnas.0708857105
10.1128/AEM.00320-10
10.1007/BF02568729
10.1128/AEM.00143-10
10.1038/ismej.2010.111
10.1111/j.1462-2920.2009.01891.x
10.1046/j.1472-765X.2001.00930.x
10.1111/j.1574-6941.2010.00971.x
10.1073/pnas.0611081104
10.1046/j.1462-2920.2003.00536.x
10.1073/pnas.0506625102
10.1128/AEM.67.11.5273-5284.2001
10.1038/nature03911
10.1111/j.1574-6976.2009.00179.x
10.1038/ngeo613
10.1111/j.1462-2920.2005.00947.x
10.1128/aem.63.12.4704-4712.1997
10.1128/AEM.64.9.3480-3485.1998
10.1016/S0021-9258(18)45979-0
10.1128/aem.62.8.2888-2896.1996
10.1128/AEM.64.1.258-264.1998
ContentType Journal Article
Copyright International Society for Microbial Ecology 2011
Copyright Nature Publishing Group Jul 2011
Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology
Copyright_xml – notice: International Society for Microbial Ecology 2011
– notice: Copyright Nature Publishing Group Jul 2011
– notice: Copyright © 2011 International Society for Microbial Ecology 2011 International Society for Microbial Ecology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7ST
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7X8
5PM
DOI 10.1038/ismej.2011.5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Agriculture
DocumentTitleAlternate Microbial nitrification in an agricultural soil
EISSN 1751-7370
EndPage 1236
ExternalDocumentID PMC3146291
2379524371
21326337
10_1038_ismej_2011_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-Q-
0R~
123
29J
39C
3V.
4.4
406
53G
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAHBH
AANZL
AAZLF
ABAKF
ABAWZ
ABDBF
ABEJV
ABGNP
ABJNI
ABLJU
ABUWG
ABXVV
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AENEX
AEUYN
AEVLU
AEXYK
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYLF
AOIJS
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DNIVK
DPUIP
DU5
EBS
EDH
EE.
EIOEI
EJD
EMOBN
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HYE
HZ~
I-F
IWAJR
JSO
KQ8
LK8
M1P
M7P
MM.
NAO
NQJWS
O9-
OK1
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
ROX
RPM
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TOX
TR2
TSG
TUS
UKHRP
~02
~8M
AAYXX
ACSTC
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7SN
7ST
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H13
K9.
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
SOI
7X8
5PM
ID FETCH-LOGICAL-c514t-158ce33e2218f2871de9ef0b1102326a3f64f90d1320d14d3f399722282392f33
IEDL.DBID 7X7
ISSN 1751-7362
1751-7370
IngestDate Thu Aug 21 14:01:58 EDT 2025
Fri Jul 11 08:02:04 EDT 2025
Wed Aug 13 09:23:20 EDT 2025
Thu Apr 03 07:02:09 EDT 2025
Tue Jul 01 01:04:16 EDT 2025
Thu Apr 24 23:09:41 EDT 2025
Fri Feb 21 02:39:22 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords ammonia-oxidizing bacteria
stable isotope probing
pyrosequencing
nitrite-oxidizing bacteria
agricultural soil
ammonia-oxidizing archaea
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c514t-158ce33e2218f2871de9ef0b1102326a3f64f90d1320d14d3f399722282392f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/ismej20115.pdf
PMID 21326337
PQID 872798100
PQPubID 536304
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3146291
proquest_miscellaneous_873316877
proquest_journals_872798100
pubmed_primary_21326337
crossref_citationtrail_10_1038_ismej_2011_5
crossref_primary_10_1038_ismej_2011_5
springer_journals_10_1038_ismej_2011_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Multidisciplinary Journal of Microbial Ecology
PublicationTitle The ISME Journal
PublicationTitleAbbrev ISME J
PublicationTitleAlternate ISME J
PublicationYear 2011
Publisher Nature Publishing Group UK
Oxford University Press
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
– name: Nature Publishing Group
References Schramm, de Beer, Wagner, Amann (CR52) 1998; 64
Spang, Hatzenpichler, Brochier-Armanet, Rattei, Tischler, Spieck (CR53) 2010; 18
Alawi, Off, Kaya, Spieck (CR3) 2009; 1
Freitag, Chang, Prosser (CR19) 2006; 8
Lam, Jensen, Lavik, McGinnis, Muller, Schubert (CR34) 2007; 104
Okano, Hristova, Leutenegger, Jackson, Denison, Gebreyesus (CR45) 2004; 70
Schloss, Westcott, Ryabin, Hall, Hartmann, Hollister (CR51) 2009; 75
Leininger, Urich, Schloter, Schwark, Qi, Nicol (CR36) 2006; 442
Zhang, Offre, He, Verhamme, Nicol, Prosser (CR57) 2010; 107
Poly, Wertz, Brothier, Degrange (CR46) 2008; 63
Schleper (CR50) 2010; 4
Reigstad, Richter, Daims, Urich, Schwark, Schleper (CR47) 2008; 64
Brochier-Armanet, Boussau, Gribaldo, Forterre (CR6) 2008; 6
Mertens, Broos, Wakelin, Kowalchuk, Springael, Smolders (CR40) 2009; 3
Gruber, Galloway (CR20) 2008; 451
DeLong (CR12) 1992; 89
Hatzenpichler, Lebedeva, Spieck, Stoecker, Richter, Daims (CR22) 2008; 105
Alawi, Lipski, Sanders, Eva Maria, Spieck (CR2) 2007; 1
Kowalchuk, Stephen (CR32) 2001; 55
Francis, Roberts, Beman, Santoro, Oakley (CR17) 2005; 102
Ehrich, Behrens, Lebedeva, Ludwig, Bock (CR14) 1995; 164
Koops, Purkhold, Pommerening-Roser, Timmermann, Wagner (CR31) 2006
Daims, Nielsen, Nielsen, Schleifer, Wagner (CR10) 2001; 67
Chen, Wu, Boden, Hillebrand, Kumaresan, Moussard (CR7) 2009; 3
Agogue, Brink, Dinasquet, Herndl (CR1) 2008; 456
Hovanec, DeLong (CR23) 1996; 62
Erguder, Boon, Wittebolle, Marzorati, Verstraete (CR15) 2009; 33
Huang, Ferguson, Singer, Lawson, Thompson, Kalin (CR25) 2009; 75
Treusch, Leininger, Kletzin, Schuster, Klenk, Schleper (CR54) 2005; 7
Martens-Habbena, Berube, Urakawa, de la Torre, Stahl (CR38) 2009; 461
Wagner, Rath, Koops, Flood, Amann (CR55) 1996; 34
Offre, Prosser, Nicol (CR44) 2009; 70
Neufeld, Vohra, Dumont, Lueders, Manefield, Friedrich (CR41) 2007; 2
Feliatra, Bianchi (CR16) 1993; 26
Rotthauwe, Witzel, Liesack (CR48) 1997; 63
Lueders, Manefield, Friedrich (CR37) 2004; 6
Hovanec, Taylor, Blakis, Delong (CR24) 1998; 64
Bock, Wagner (CR5) 2006
Whitby, Hall, Pickup, Saunders, Ineson, Parekh (CR56) 2001; 32
Nicol, Leininger, Schleper, Prosser (CR42) 2008; 10
de la Torre, Walker, Ingalls, Konneke, Stahl (CR11) 2008; 10
Chu, Fujii, Morimoto, Lin, Yagi, Hu (CR8) 2007; 73
Koops, Pommerening-Röser (CR30) 2001; 37
Hyman, Arp (CR26) 1992; 267
Jia, Conrad (CR27) 2009; 11
Könneke, Bernhard, de la Torre, Walker, Waterbury, Stahl (CR29) 2005; 437
Lane (CR35) 1991
Attard, Poly, Commeaux, Laurent, Terada, Smets (CR4) 2010; 12
Cole, Wang, Cardenas, Fish, Chai, Farris (CR9) 2009; 37
Freitag, Chang, Clegg, Prosser (CR18) 2005; 71
Kumar, Tamura, Nei (CR33) 2004; 5
Off, Alawi, Spieck (CR43) 2010; 76
Di, Cameron, Shen, Winefield, O’ Callaghan, BOWATTE (CR13) 2009; 2
Gubry-Rangin, Nicol, Prosser (CR21) 2010; 74
Jiang, Huang, Dong, Wang, Wang, Li (CR28) 2010; 76
Meng, Ding, Cai (CR39) 2005; 37
Santoro, Casciotti, Francis (CR49) 2010; 12
Santoro (2024020218225043900_CR49) 2010; 12
Di (2024020218225043900_CR13) 2009; 2
Schloss (2024020218225043900_CR51) 2009; 75
Reigstad (2024020218225043900_CR47) 2008; 64
Kumar (2024020218225043900_CR33) 2004; 5
Martens-Habbena (2024020218225043900_CR38) 2009; 461
Off (2024020218225043900_CR43) 2010; 76
Spang (2024020218225043900_CR53) 2010; 18
Rotthauwe (2024020218225043900_CR48) 1997; 63
Attard (2024020218225043900_CR4) 2010; 12
Gruber (2024020218225043900_CR20) 2008; 451
Poly (2024020218225043900_CR46) 2008; 63
Schleper (2024020218225043900_CR50) 2010; 4
Hovanec (2024020218225043900_CR23) 1996; 62
Bock (2024020218225043900_CR5) 2006
Chen (2024020218225043900_CR7) 2009; 3
Koops (2024020218225043900_CR30) 2001; 37
Schramm (2024020218225043900_CR52) 1998; 64
Lane (2024020218225043900_CR35) 1991
Feliatra (2024020218225043900_CR16) 1993; 26
Neufeld (2024020218225043900_CR41) 2007; 2
Chu (2024020218225043900_CR8) 2007; 73
Offre (2024020218225043900_CR44) 2009; 70
Hyman (2024020218225043900_CR26) 1992; 267
Lueders (2024020218225043900_CR37) 2004; 6
Alawi (2024020218225043900_CR3) 2009; 1
DeLong (2024020218225043900_CR12) 1992; 89
Erguder (2024020218225043900_CR15) 2009; 33
Freitag (2024020218225043900_CR19) 2006; 8
Leininger (2024020218225043900_CR36) 2006; 442
Huang (2024020218225043900_CR25) 2009; 75
Daims (2024020218225043900_CR10) 2001; 67
Brochier-Armanet (2024020218225043900_CR6) 2008; 6
Alawi (2024020218225043900_CR2) 2007; 1
Kowalchuk (2024020218225043900_CR32) 2001; 55
Okano (2024020218225043900_CR45) 2004; 70
Agogue (2024020218225043900_CR1) 2008; 456
Mertens (2024020218225043900_CR40) 2009; 3
Freitag (2024020218225043900_CR18) 2005; 71
Hovanec (2024020218225043900_CR24) 1998; 64
Zhang (2024020218225043900_CR57) 2010; 107
Cole (2024020218225043900_CR9) 2009; 37
Jiang (2024020218225043900_CR28) 2010; 76
Jia (2024020218225043900_CR27) 2009; 11
Gubry-Rangin (2024020218225043900_CR21) 2010; 74
Meng (2024020218225043900_CR39) 2005; 37
de la Torre (2024020218225043900_CR11) 2008; 10
Koops (2024020218225043900_CR31) 2006
Hatzenpichler (2024020218225043900_CR22) 2008; 105
Francis (2024020218225043900_CR17) 2005; 102
Lam (2024020218225043900_CR34) 2007; 104
Könneke (2024020218225043900_CR29) 2005; 437
Ehrich (2024020218225043900_CR14) 1995; 164
Nicol (2024020218225043900_CR42) 2008; 10
Treusch (2024020218225043900_CR54) 2005; 7
Whitby (2024020218225043900_CR56) 2001; 32
Wagner (2024020218225043900_CR55) 1996; 34
19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
24189985 - Microb Ecol. 1993 Jul;26(1):21-8
16177789 - Nature. 2005 Sep 22;437(7058):543-6
16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95
17098920 - Appl Environ Microbiol. 2007 Jan;73(2):485-91
19474813 - ISME J. 2009 Sep;3(9):1093-104
16915287 - Nature. 2006 Aug 17;442(7104):806-9
20345944 - Environ Microbiol. 2010 Jul;12(7):1989-2006
11412351 - Lett Appl Microbiol. 2001 Jun;32(6):398-401
16584480 - Environ Microbiol. 2006 Apr;8(4):684-96
20631805 - ISME J. 2010 Sep;4(9):1092-4
21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74
8702281 - Appl Environ Microbiol. 1996 Aug;62(8):2888-96
18062041 - ISME J. 2007 Jul;1(3):256-64
18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78
11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84
19807778 - Environ Microbiol. 2010 Feb;12(2):315-26
18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40
19387487 - ISME J. 2009 Aug;3(8):916-23
19037244 - Nature. 2008 Dec 11;456(7223):788-91
18355293 - FEMS Microbiol Ecol. 2008 May;64(2):167-74
20511427 - Appl Environ Microbiol. 2010 Jul;76(14):4640-6
20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5
19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108
17446886 - Nat Protoc. 2007;2(4):860-6
7646315 - Arch Microbiol. 1995 Jul;164(1):16-23
18997025 - Appl Environ Microbiol. 2009 Jan;75(1):234-41
18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52
18250313 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2134-9
1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
18205821 - Environ Microbiol. 2008 Mar;10(3):810-8
11544365 - Annu Rev Microbiol. 2001;55:485-529
14766583 - Appl Environ Microbiol. 2004 Feb;70(2):1008-16
17420469 - Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7104-9
15260895 - Brief Bioinform. 2004 Jun;5(2):150-63
1730700 - J Biol Chem. 1992 Jan 25;267(3):1534-45
16332819 - Appl Environ Microbiol. 2005 Dec;71(12):8323-34
19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
19453522 - FEMS Microbiol Rev. 2009 Sep;33(5):855-69
20598889 - Trends Microbiol. 2010 Aug;18(8):331-40
19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
18202647 - Nature. 2008 Jan 17;451(7176):293-6
16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
16349486 - Appl Environ Microbiol. 1998 Jan;64(1):258-64
9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
14686943 - Environ Microbiol. 2004 Jan;6(1):73-8
19794413 - Nature. 2009 Oct 15;461(7266):976-9
23765792 - Environ Microbiol Rep. 2009 Jun;1(3):184-90
20435758 - Appl Environ Microbiol. 2010 Jul;76(13):4538-41
9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5
References_xml – volume: 26
  start-page: 21
  year: 1993
  end-page: 28
  ident: CR16
  article-title: Rates of nitrification and carbon uptake in the Rhone River plume (northwestern Mediterranean Sea)
  publication-title: Microb Ecol
  doi: 10.1007/BF00166026
– volume: 37
  start-page: 2037
  year: 2005
  end-page: 2045
  ident: CR39
  article-title: Long-term application of organic manure and nitrogen fertilizer on N O emissions, soil quality and crop production in a sandy loam soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.03.007
– volume: 12
  start-page: 315
  year: 2010
  end-page: 326
  ident: CR4
  article-title: Shifts between nitrospira- and nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.02070.x
– start-page: 457
  year: 2006
  end-page: 495
  ident: CR5
  article-title: Oxidation of inorganic nitrogen compounds as an energy source
  publication-title: The Prokaryotes
  doi: 10.1007/0-387-30742-7_16
– volume: 73
  start-page: 485
  year: 2007
  end-page: 491
  ident: CR8
  article-title: Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01536-06
– volume: 62
  start-page: 2888
  year: 1996
  end-page: 2896
  ident: CR23
  article-title: Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria
  publication-title: Appl Environ Microbiol
– volume: 10
  start-page: 2966
  year: 2008
  end-page: 2978
  ident: CR42
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01701.x
– volume: 12
  start-page: 1989
  year: 2010
  end-page: 2006
  ident: CR49
  article-title: Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02205.x
– volume: 451
  start-page: 293
  year: 2008
  end-page: 296
  ident: CR20
  article-title: An earth-system perspective of the global nitrogen cycle
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 75
  start-page: 234
  year: 2009
  end-page: 241
  ident: CR25
  article-title: Resolving genetic functions within microbial populations: analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence hybridization
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01861-08
– volume: 71
  start-page: 8323
  year: 2005
  end-page: 8334
  ident: CR18
  article-title: Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in Agricultural Grassland Soils
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8323-8334.2005
– volume: 63
  start-page: 4704
  year: 1997
  end-page: 4712
  ident: CR48
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations
  publication-title: Appl Environ Microbiol
– volume: 37
  start-page: D141
  year: 2009
  end-page: D145
  ident: CR9
  article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn879
– volume: 3
  start-page: 1093
  year: 2009
  end-page: 1104
  ident: CR7
  article-title: Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave
  publication-title: ISME J
  doi: 10.1038/ismej.2009.57
– volume: 70
  start-page: 99
  year: 2009
  end-page: 108
  ident: CR44
  article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00725.x
– volume: 70
  start-page: 1008
  year: 2004
  end-page: 1016
  ident: CR45
  article-title: Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.2.1008-1016.2004
– volume: 1
  start-page: 256
  year: 2007
  end-page: 264
  ident: CR2
  article-title: Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic
  publication-title: ISME J
  doi: 10.1038/ismej.2007.34
– volume: 3
  start-page: 916
  year: 2009
  end-page: 923
  ident: CR40
  article-title: Bacteria, not archaea, restore nitrification in a zinc-contaminated soil
  publication-title: ISME J
  doi: 10.1038/ismej.2009.39
– volume: 442
  start-page: 806
  year: 2006
  end-page: 809
  ident: CR36
  article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils
  publication-title: Nature
  doi: 10.1038/nature04983
– volume: 2
  start-page: 860
  year: 2007
  end-page: 866
  ident: CR41
  article-title: DNA stable-isotope probing
  publication-title: Nat Protocols
  doi: 10.1038/nprot.2007.109
– start-page: 778
  year: 2006
  end-page: 811
  ident: CR31
  article-title: The lithoautotrophic ammonia-oxidizing bacteria
  publication-title: The Prokaryotes
  doi: 10.1007/0-387-30745-1_36
– volume: 64
  start-page: 167
  year: 2008
  end-page: 174
  ident: CR47
  article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2008.00466.x
– volume: 10
  start-page: 810
  year: 2008
  end-page: 818
  ident: CR11
  article-title: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01506.x
– volume: 1
  start-page: 184
  year: 2009
  end-page: 190
  ident: CR3
  article-title: Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge
  publication-title: Environ Microbiol Rep
  doi: 10.1111/j.1758-2229.2009.00029.x
– start-page: 177
  year: 1991
  end-page: 203
  ident: CR35
  article-title: 16S/23S rRNA sequencing
  publication-title: Nucleic Acid Techniques in Bacterial Systematics
– volume: 5
  start-page: 150
  year: 2004
  end-page: 163
  ident: CR33
  article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment
  publication-title: Brief Bioinform
  doi: 10.1093/bib/5.2.150
– volume: 7
  start-page: 1985
  year: 2005
  end-page: 1995
  ident: CR54
  article-title: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00906.x
– volume: 89
  start-page: 5685
  year: 1992
  end-page: 5689
  ident: CR12
  article-title: Archaea in coastal marine environments
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.12.5685
– volume: 107
  start-page: 17240
  year: 2010
  end-page: 17245
  ident: CR57
  article-title: Autotrophic ammonia oxidation by soil thaumarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004947107
– volume: 267
  start-page: 1534
  year: 1992
  end-page: 1545
  ident: CR26
  article-title: C H - and CO -labeling studies of the synthesis of polypeptides by during recovery from acetylene and light inactivation of ammonia monooxygenase
  publication-title: J Biol Chem
– volume: 18
  start-page: 331
  year: 2010
  end-page: 340
  ident: CR53
  article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2010.06.003
– volume: 75
  start-page: 7537
  year: 2009
  end-page: 7541
  ident: CR51
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
– volume: 55
  start-page: 485
  year: 2001
  end-page: 529
  ident: CR32
  article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology
  publication-title: Annl Rev Microbiol
  doi: 10.1146/annurev.micro.55.1.485
– volume: 34
  start-page: 237
  year: 1996
  end-page: 244
  ident: CR55
  article-title: In situ analysis of nitrifying bacteria in sewage treatment plants
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1996.0377
– volume: 456
  start-page: 788
  year: 2008
  end-page: 791
  ident: CR1
  article-title: Major gradients in putatively nitrifying and non-nitrifying in the deep North Atlantic
  publication-title: Nature
  doi: 10.1038/nature07535
– volume: 461
  start-page: 976
  year: 2009
  end-page: 979
  ident: CR38
  article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria
  publication-title: Nature
  doi: 10.1038/nature08465
– volume: 37
  start-page: 1
  year: 2001
  end-page: 9
  ident: CR30
  article-title: Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2001.tb00847.x
– volume: 6
  start-page: 245
  year: 2008
  end-page: 252
  ident: CR6
  article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1852
– volume: 63
  start-page: 132
  year: 2008
  end-page: 140
  ident: CR46
  article-title: First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00404.x
– volume: 105
  start-page: 2134
  year: 2008
  end-page: 2139
  ident: CR22
  article-title: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0708857105
– volume: 76
  start-page: 4640
  year: 2010
  end-page: 4646
  ident: CR43
  article-title: Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00320-10
– volume: 164
  start-page: 16
  year: 1995
  end-page: 23
  ident: CR14
  article-title: A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, sp. nov. and its phylogenetic relationship
  publication-title: Arch Microbiol
  doi: 10.1007/BF02568729
– volume: 76
  start-page: 4538
  year: 2010
  end-page: 4541
  ident: CR28
  article-title: RNA-based investigation of ammonia-oxidizing archaea in Hot Springs of Yunnan Province, China
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00143-10
– volume: 4
  start-page: 1092
  year: 2010
  end-page: 1094
  ident: CR50
  article-title: Ammonia oxidation: different niches for bacteria and archaea?
  publication-title: ISME J
  doi: 10.1038/ismej.2010.111
– volume: 11
  start-page: 1658
  year: 2009
  end-page: 1671
  ident: CR27
  article-title: rather than dominate microbial ammonia oxidation in an agricultural soil
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01891.x
– volume: 32
  start-page: 398
  year: 2001
  end-page: 401
  ident: CR56
  article-title: C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations
  publication-title: Lett Appl Microbiol
  doi: 10.1046/j.1472-765X.2001.00930.x
– volume: 74
  start-page: 566
  year: 2010
  end-page: 574
  ident: CR21
  article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00971.x
– volume: 64
  start-page: 258
  year: 1998
  end-page: 264
  ident: CR24
  article-title: Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria
  publication-title: Appl Environ Microbiol
– volume: 104
  start-page: 7104
  year: 2007
  end-page: 7109
  ident: CR34
  article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611081104
– volume: 64
  start-page: 3480
  year: 1998
  end-page: 3485
  ident: CR52
  article-title: Identification and activities of nitrosospira and spp. as dominant populations in a nitrifying fluidized bed reactor
  publication-title: Appl Environ Microbiol
– volume: 6
  start-page: 73
  year: 2004
  end-page: 78
  ident: CR37
  article-title: Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients
  publication-title: Environ Microbiol
  doi: 10.1046/j.1462-2920.2003.00536.x
– volume: 102
  start-page: 14683
  year: 2005
  end-page: 14688
  ident: CR17
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506625102
– volume: 67
  start-page: 5273
  year: 2001
  end-page: 5284
  ident: CR10
  article-title: characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.11.5273-5284.2001
– volume: 437
  start-page: 543
  year: 2005
  end-page: 546
  ident: CR29
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
  doi: 10.1038/nature03911
– volume: 33
  start-page: 855
  year: 2009
  end-page: 869
  ident: CR15
  article-title: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2009.00179.x
– volume: 2
  start-page: 621
  year: 2009
  end-page: 624
  ident: CR13
  article-title: Nitrification driven by bacteria and not archaea in nitrogen rich grassland soils
  publication-title: Nat Geosci
  doi: 10.1038/ngeo613
– volume: 8
  start-page: 684
  year: 2006
  end-page: 696
  ident: CR19
  article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00947.x
– volume: 451
  start-page: 293
  year: 2008
  ident: 2024020218225043900_CR20
  article-title: An earth-system perspective of the global nitrogen cycle
  publication-title: Nature
  doi: 10.1038/nature06592
– volume: 10
  start-page: 810
  year: 2008
  ident: 2024020218225043900_CR11
  article-title: Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2007.01506.x
– volume: 37
  start-page: 1
  year: 2001
  ident: 2024020218225043900_CR30
  article-title: Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2001.tb00847.x
– volume: 63
  start-page: 4704
  year: 1997
  ident: 2024020218225043900_CR48
  article-title: The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.63.12.4704-4712.1997
– volume: 10
  start-page: 2966
  year: 2008
  ident: 2024020218225043900_CR42
  article-title: The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2008.01701.x
– volume: 64
  start-page: 3480
  year: 1998
  ident: 2024020218225043900_CR52
  article-title: Identification and activities in situ of nitrosospira and nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.9.3480-3485.1998
– start-page: 457
  volume-title: The Prokaryotes
  year: 2006
  ident: 2024020218225043900_CR5
  doi: 10.1007/0-387-30742-7_16
– volume: 75
  start-page: 234
  year: 2009
  ident: 2024020218225043900_CR25
  article-title: Resolving genetic functions within microbial populations: in situ analyses using rRNA and mRNA stable isotope probing coupled with single-cell Raman-fluorescence in situ hybridization
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01861-08
– volume: 456
  start-page: 788
  year: 2008
  ident: 2024020218225043900_CR1
  article-title: Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic
  publication-title: Nature
  doi: 10.1038/nature07535
– volume: 37
  start-page: D141
  year: 2009
  ident: 2024020218225043900_CR9
  article-title: The ribosomal database project: improved alignments and new tools for rRNA analysis
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkn879
– start-page: 177
  volume-title: Nucleic Acid Techniques in Bacterial Systematics
  year: 1991
  ident: 2024020218225043900_CR35
– volume: 12
  start-page: 315
  year: 2010
  ident: 2024020218225043900_CR4
  article-title: Shifts between nitrospira- and nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.02070.x
– volume: 267
  start-page: 1534
  year: 1992
  ident: 2024020218225043900_CR26
  article-title: 14C2H2- and 14CO2-labeling studies of the de novo synthesis of polypeptides by Nitrosomonas europaea during recovery from acetylene and light inactivation of ammonia monooxygenase
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)45979-0
– start-page: 778
  volume-title: The Prokaryotes
  year: 2006
  ident: 2024020218225043900_CR31
  doi: 10.1007/0-387-30745-1_36
– volume: 89
  start-page: 5685
  year: 1992
  ident: 2024020218225043900_CR12
  article-title: Archaea in coastal marine environments
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.89.12.5685
– volume: 63
  start-page: 132
  year: 2008
  ident: 2024020218225043900_CR46
  article-title: First exploration of nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2007.00404.x
– volume: 461
  start-page: 976
  year: 2009
  ident: 2024020218225043900_CR38
  article-title: Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria
  publication-title: Nature
  doi: 10.1038/nature08465
– volume: 8
  start-page: 684
  year: 2006
  ident: 2024020218225043900_CR19
  article-title: Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00947.x
– volume: 33
  start-page: 855
  year: 2009
  ident: 2024020218225043900_CR15
  article-title: Environmental factors shaping the ecological niches of ammonia-oxidizing archaea
  publication-title: FEMS Microbiol Rev
  doi: 10.1111/j.1574-6976.2009.00179.x
– volume: 76
  start-page: 4640
  year: 2010
  ident: 2024020218225043900_CR43
  article-title: Enrichment and physiological characterization of a novel nitrospira-like bacterium obtained from a marine sponge
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00320-10
– volume: 26
  start-page: 21
  year: 1993
  ident: 2024020218225043900_CR16
  article-title: Rates of nitrification and carbon uptake in the Rhone River plume (northwestern Mediterranean Sea)
  publication-title: Microb Ecol
  doi: 10.1007/BF00166026
– volume: 76
  start-page: 4538
  year: 2010
  ident: 2024020218225043900_CR28
  article-title: RNA-based investigation of ammonia-oxidizing archaea in Hot Springs of Yunnan Province, China
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.00143-10
– volume: 7
  start-page: 1985
  year: 2005
  ident: 2024020218225043900_CR54
  article-title: Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2005.00906.x
– volume: 1
  start-page: 256
  year: 2007
  ident: 2024020218225043900_CR2
  article-title: Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic
  publication-title: ISME J
  doi: 10.1038/ismej.2007.34
– volume: 105
  start-page: 2134
  year: 2008
  ident: 2024020218225043900_CR22
  article-title: A moderately thermophilic ammonia-oxidizing crenarchaeote from a hot spring
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0708857105
– volume: 442
  start-page: 806
  year: 2006
  ident: 2024020218225043900_CR36
  article-title: Archaea predominate among ammonia-oxidizing prokaryotes in soils
  publication-title: Nature
  doi: 10.1038/nature04983
– volume: 18
  start-page: 331
  year: 2010
  ident: 2024020218225043900_CR53
  article-title: Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum thaumarchaeota
  publication-title: Trends Microbiol
  doi: 10.1016/j.tim.2010.06.003
– volume: 70
  start-page: 99
  year: 2009
  ident: 2024020218225043900_CR44
  article-title: Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2009.00725.x
– volume: 12
  start-page: 1989
  year: 2010
  ident: 2024020218225043900_CR49
  article-title: Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2010.02205.x
– volume: 437
  start-page: 543
  year: 2005
  ident: 2024020218225043900_CR29
  article-title: Isolation of an autotrophic ammonia-oxidizing marine archaeon
  publication-title: Nature
  doi: 10.1038/nature03911
– volume: 104
  start-page: 7104
  year: 2007
  ident: 2024020218225043900_CR34
  article-title: Linking crenarchaeal and bacterial nitrification to anammox in the Black Sea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0611081104
– volume: 37
  start-page: 2037
  year: 2005
  ident: 2024020218225043900_CR39
  article-title: Long-term application of organic manure and nitrogen fertilizer on N2O emissions, soil quality and crop production in a sandy loam soil
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2005.03.007
– volume: 2
  start-page: 860
  year: 2007
  ident: 2024020218225043900_CR41
  article-title: DNA stable-isotope probing
  publication-title: Nat Protocols
  doi: 10.1038/nprot.2007.109
– volume: 107
  start-page: 17240
  year: 2010
  ident: 2024020218225043900_CR57
  article-title: Autotrophic ammonia oxidation by soil thaumarchaea
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1004947107
– volume: 55
  start-page: 485
  year: 2001
  ident: 2024020218225043900_CR32
  article-title: Ammonia-oxidizing bacteria: a model for molecular microbial ecology
  publication-title: Annl Rev Microbiol
  doi: 10.1146/annurev.micro.55.1.485
– volume: 70
  start-page: 1008
  year: 2004
  ident: 2024020218225043900_CR45
  article-title: Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.70.2.1008-1016.2004
– volume: 6
  start-page: 245
  year: 2008
  ident: 2024020218225043900_CR6
  article-title: Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro1852
– volume: 5
  start-page: 150
  year: 2004
  ident: 2024020218225043900_CR33
  article-title: MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment
  publication-title: Brief Bioinform
  doi: 10.1093/bib/5.2.150
– volume: 67
  start-page: 5273
  year: 2001
  ident: 2024020218225043900_CR10
  article-title: In situ characterization of nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.67.11.5273-5284.2001
– volume: 102
  start-page: 14683
  year: 2005
  ident: 2024020218225043900_CR17
  article-title: Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0506625102
– volume: 64
  start-page: 167
  year: 2008
  ident: 2024020218225043900_CR47
  article-title: Nitrification in terrestrial hot springs of Iceland and Kamchatka
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2008.00466.x
– volume: 73
  start-page: 485
  year: 2007
  ident: 2024020218225043900_CR8
  article-title: Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01536-06
– volume: 3
  start-page: 916
  year: 2009
  ident: 2024020218225043900_CR40
  article-title: Bacteria, not archaea, restore nitrification in a zinc-contaminated soil
  publication-title: ISME J
  doi: 10.1038/ismej.2009.39
– volume: 4
  start-page: 1092
  year: 2010
  ident: 2024020218225043900_CR50
  article-title: Ammonia oxidation: different niches for bacteria and archaea?
  publication-title: ISME J
  doi: 10.1038/ismej.2010.111
– volume: 62
  start-page: 2888
  year: 1996
  ident: 2024020218225043900_CR23
  article-title: Comparative analysis of nitrifying bacteria associated with freshwater and marine aquaria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/aem.62.8.2888-2896.1996
– volume: 1
  start-page: 184
  year: 2009
  ident: 2024020218225043900_CR3
  article-title: Temperature influences the population structure of nitrite-oxidizing bacteria in activated sludge
  publication-title: Environ Microbiol Rep
  doi: 10.1111/j.1758-2229.2009.00029.x
– volume: 64
  start-page: 258
  year: 1998
  ident: 2024020218225043900_CR24
  article-title: Nitrospira-like bacteria associated with nitrite oxidation in freshwater aquaria
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.64.1.258-264.1998
– volume: 164
  start-page: 16
  year: 1995
  ident: 2024020218225043900_CR14
  article-title: A new obligately chemolithoautotrophic, nitrite-oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship
  publication-title: Arch Microbiol
  doi: 10.1007/BF02568729
– volume: 2
  start-page: 621
  year: 2009
  ident: 2024020218225043900_CR13
  article-title: Nitrification driven by bacteria and not archaea in nitrogen rich grassland soils
  publication-title: Nat Geosci
  doi: 10.1038/ngeo613
– volume: 74
  start-page: 566
  year: 2010
  ident: 2024020218225043900_CR21
  article-title: Archaea rather than bacteria control nitrification in two agricultural acidic soils
  publication-title: FEMS Microbiol Ecol
  doi: 10.1111/j.1574-6941.2010.00971.x
– volume: 75
  start-page: 7537
  year: 2009
  ident: 2024020218225043900_CR51
  article-title: Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.01541-09
– volume: 34
  start-page: 237
  year: 1996
  ident: 2024020218225043900_CR55
  article-title: In situ analysis of nitrifying bacteria in sewage treatment plants
  publication-title: Water Sci Technol
  doi: 10.2166/wst.1996.0377
– volume: 32
  start-page: 398
  year: 2001
  ident: 2024020218225043900_CR56
  article-title: 13C incorporation into DNA as a means of identifying the active components of ammonia-oxidizer populations
  publication-title: Lett Appl Microbiol
  doi: 10.1046/j.1472-765X.2001.00930.x
– volume: 3
  start-page: 1093
  year: 2009
  ident: 2024020218225043900_CR7
  article-title: Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave
  publication-title: ISME J
  doi: 10.1038/ismej.2009.57
– volume: 71
  start-page: 8323
  year: 2005
  ident: 2024020218225043900_CR18
  article-title: Influence of inorganic nitrogen management regime on the diversity of nitrite-oxidizing bacteria in Agricultural Grassland Soils
  publication-title: Appl Environ Microbiol
  doi: 10.1128/AEM.71.12.8323-8334.2005
– volume: 11
  start-page: 1658
  year: 2009
  ident: 2024020218225043900_CR27
  article-title: Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil
  publication-title: Environ Microbiol
  doi: 10.1111/j.1462-2920.2009.01891.x
– volume: 6
  start-page: 73
  year: 2004
  ident: 2024020218225043900_CR37
  article-title: Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients
  publication-title: Environ Microbiol
  doi: 10.1046/j.1462-2920.2003.00536.x
– reference: 14686943 - Environ Microbiol. 2004 Jan;6(1):73-8
– reference: 20631805 - ISME J. 2010 Sep;4(9):1092-4
– reference: 23765792 - Environ Microbiol Rep. 2009 Jun;1(3):184-90
– reference: 18997025 - Appl Environ Microbiol. 2009 Jan;75(1):234-41
– reference: 1730700 - J Biol Chem. 1992 Jan 25;267(3):1534-45
– reference: 19453522 - FEMS Microbiol Rev. 2009 Sep;33(5):855-69
– reference: 19656195 - FEMS Microbiol Ecol. 2009 Oct;70(1):99-108
– reference: 16177789 - Nature. 2005 Sep 22;437(7058):543-6
– reference: 16915287 - Nature. 2006 Aug 17;442(7104):806-9
– reference: 15260895 - Brief Bioinform. 2004 Jun;5(2):150-63
– reference: 18205821 - Environ Microbiol. 2008 Mar;10(3):810-8
– reference: 9406389 - Appl Environ Microbiol. 1997 Dec;63(12):4704-12
– reference: 18062041 - ISME J. 2007 Jul;1(3):256-64
– reference: 19794413 - Nature. 2009 Oct 15;461(7266):976-9
– reference: 18355293 - FEMS Microbiol Ecol. 2008 May;64(2):167-74
– reference: 1608980 - Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5685-9
– reference: 16349486 - Appl Environ Microbiol. 1998 Jan;64(1):258-64
– reference: 20435758 - Appl Environ Microbiol. 2010 Jul;76(13):4538-41
– reference: 8702281 - Appl Environ Microbiol. 1996 Aug;62(8):2888-96
– reference: 17420469 - Proc Natl Acad Sci U S A. 2007 Apr 24;104(17):7104-9
– reference: 19474813 - ISME J. 2009 Sep;3(9):1093-104
– reference: 20855593 - Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17240-5
– reference: 19801464 - Appl Environ Microbiol. 2009 Dec;75(23):7537-41
– reference: 20511427 - Appl Environ Microbiol. 2010 Jul;76(14):4640-6
– reference: 9726900 - Appl Environ Microbiol. 1998 Sep;64(9):3480-5
– reference: 11544365 - Annu Rev Microbiol. 2001;55:485-529
– reference: 17446886 - Nat Protoc. 2007;2(4):860-6
– reference: 19807778 - Environ Microbiol. 2010 Feb;12(2):315-26
– reference: 16332819 - Appl Environ Microbiol. 2005 Dec;71(12):8323-34
– reference: 11412351 - Lett Appl Microbiol. 2001 Jun;32(6):398-401
– reference: 16186488 - Proc Natl Acad Sci U S A. 2005 Oct 11;102(41):14683-8
– reference: 11679356 - Appl Environ Microbiol. 2001 Nov;67(11):5273-84
– reference: 19236445 - Environ Microbiol. 2009 Jul;11(7):1658-71
– reference: 20598889 - Trends Microbiol. 2010 Aug;18(8):331-40
– reference: 14766583 - Appl Environ Microbiol. 2004 Feb;70(2):1008-16
– reference: 18707610 - Environ Microbiol. 2008 Nov;10(11):2966-78
– reference: 17098920 - Appl Environ Microbiol. 2007 Jan;73(2):485-91
– reference: 18250313 - Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2134-9
– reference: 19004872 - Nucleic Acids Res. 2009 Jan;37(Database issue):D141-5
– reference: 20345944 - Environ Microbiol. 2010 Jul;12(7):1989-2006
– reference: 16309395 - Environ Microbiol. 2005 Dec;7(12):1985-95
– reference: 19387487 - ISME J. 2009 Aug;3(8):916-23
– reference: 16584480 - Environ Microbiol. 2006 Apr;8(4):684-96
– reference: 18202647 - Nature. 2008 Jan 17;451(7176):293-6
– reference: 24189985 - Microb Ecol. 1993 Jul;26(1):21-8
– reference: 18031541 - FEMS Microbiol Ecol. 2008 Jan;63(1):132-40
– reference: 7646315 - Arch Microbiol. 1995 Jul;164(1):16-23
– reference: 19037244 - Nature. 2008 Dec 11;456(7223):788-91
– reference: 21039653 - FEMS Microbiol Ecol. 2010 Dec;74(3):566-74
– reference: 18274537 - Nat Rev Microbiol. 2008 Mar;6(3):245-52
SSID ssj0057667
Score 2.5089772
Snippet The two-step nitrification process is an integral part of the global nitrogen cycle, and it is accomplished by distinctly different nitrifiers. By combining...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1226
SubjectTerms 631/326/171/1818
631/326/2565/855
631/443/319
Agricultural land
Agriculture
Ammonia
Ammonia - metabolism
Ammonium
Archaea - classification
Archaea - genetics
Archaea - growth & development
Autotrophic Processes
Bacteria - classification
Bacteria - genetics
Bacteria - growth & development
Biomedical and Life Sciences
Carbon dioxide
Deoxyribonucleic acid
DNA
Ecology
Evolutionary Biology
Gene Library
Genes, Archaeal
Genes, Bacterial
Genes, rRNA
High-Throughput Nucleotide Sequencing
Hot springs
Incubation
Life Sciences
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microcosms
Nitrification
Nitrites - metabolism
Nitrogen cycle
Original
original-article
Oxidation
Phylogeny
Sequence Analysis, DNA
Soil - analysis
Soil environment
Soil Microbiology
Soil testing
Soils
Stable isotopes
Title Autotrophic growth of nitrifying community in an agricultural soil
URI https://link.springer.com/article/10.1038/ismej.2011.5
https://www.ncbi.nlm.nih.gov/pubmed/21326337
https://www.proquest.com/docview/872798100
https://www.proquest.com/docview/873316877
https://pubmed.ncbi.nlm.nih.gov/PMC3146291
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR364vclAvEmyb9HUSFUUEH4jC3kraJm5lbdfd7sF_70zbrawv6KVkoOlMkpnJzHwDcBBrz0oTZfEE9R-XWgke48rgse0GAjWmloquBm7vvOtnedN1u01uzqhJq5ycidVBnRYJ3ZGfBKhow8C2rNPBO6emURRcbTpozMI8IZdRRpffbf0ttKSrBrKoIG3u40Hd5L1bIjjJRm_6tQbwdKc10g8z82e25LeQaaWJrpZhqTEh2Vkt8xWY0fkqLNRNJT_W4PxsXBblsBj0soS9oJdd9lhhGG7dYVYVNbGkLgopP1iWM4XPy7BF4GCjIuuvw_PV5dPFNW86JfAEDZ6SI2MTLYR2UGEb8oFSHWpjxTYBMzieEsaTJrRSqpdObZkKI6hg1kF_C-0jI8QGzOVFrreAeTJUaaB0artKSnLHlDKOUNIoXyrb78DxhFtR0sCIUzeLflSFs0UQVbyNiLeR24HDlnpQw2f8QbczYXzUbKJR1Iq8A6wdxdVPIQ2V62JMJII6b_k4rc1aSu1nHPxZTwgc8afk1xIQsPb0SJ71KoBtgerDCe0OHE0k_TWp32a__e_sd2CxvoimHN9dmCuHY72HlkwZ71frdR_mzy_vHh7x7em--wkbWvZ_
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6hINReKuiLlEf3UHqpVtje9etQIaCgUCCqKpC4uWt7l7iidkgcVflR_Edm_KoCbW9Iue1KnszOzjez8wL4EGvPShNl8QTxj0utBI9RMnhsu4FAxNRS0dPA-dAbXMqvV-7VEty1tTCUVtnqxEpRp0VCb-S7AQJtGNiWtTe-5TQ0ioKr7QSNWipO9fw3emzTzydf8Hh3HOf46OJwwJuhAjxB26DkSEOihdAOYpshdyHVoTZWbFMPA8dTwnjShFZKpcWpLVNhBNWWOuiaoClh6P0TNf6yFOjJ9GD54Gj47Xur-tF2r0bWIiTb3EdoaDLtLRHsZtNf-mfdMtRdxMBHhu3j_MwHQdoK-45X4UVjtLL9WsrWYEnnL2GlHmM5fwUH-7OyKCfFeJQl7Br9-nLECsNQWUyyqoyKJXUZSjlnWc4U_q4nXc8PNi2ym9dw-SRsfAO9vMj1OjBPhioNlE5tV0lJDqBSxhFKGuVLZft9-NRyK0qaxuU0P-MmqgLoIogq3kbE28jtw063e1w37PjHvo2W8VFzbadRJ2R9YN0q3jcKoqhcFzPaImjWl49kva1PqfuMg3_WEwJX_IXz6zZQK-_FlTwbVS29BQKWE9p9-Nie9B-i_kb9u_9S_x6eDS7Oz6Kzk-HpBjyvn8Epw3gTeuVkprfQjirj7UZ6Gfx46gtzD0HdLyM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUVcUCmPLgXqA-WCrI1j53VAqNCuWgoVByrtLTiJ3Q0qyXY3K7Q_rf-uM3mhpS23SnuzpcyOZ_zNeF4AbxPjO1mqHZ4i_nFltOQJSgZPhBdKREyjND0NfDv1j87Ul7E3XoOrrhaG0iq7O7G-qLMypTfyYYhAG4XCcYa2zYr4fjD6OL3kNECKAq3dNI1GQk7M8g96b_MPxwd41HuuOzr88fmItwMGeIp2QsWRntRIaVzEOUuuQ2YiY51EUD8D19fS-spGTkZlxplQmbSS6kxddFPQrLD0Foq3_4NAeoJULBj3vh5a8fXwWgRnwQMEiTbn3pHhMJ__Nr-a5qHeKhreMHFvZmr-E66tUXC0CY9b85XtN_L2BNZMsQUbzUDL5VP4tL-oympWTid5ys7Rw68mrLQMr41ZXhdUsbQpSKmWLC-Yxt_5rO_-weZlfvEMzu6Fic9hvSgLsw3MV5HOQm0y4WmlyBXU2rpSK6sDpUUwgPcdt-K0bWFOkzQu4jqULsO45m1MvI29Aez1u6dN64479u10jI9bBZ7HvbgNgPWrqHkUTtGFKRe0RdLUrwDJetGcUv8ZF_-sLyWuBCvn12-gpt6rK0U-qZt7S4QuNxIDeNed9F-ibqP-5X-p34WHqCbx1-PTkx141LyHU6rxK1ivZgvzGg2qKnlTiy6Dn_etK9cZxzHz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autotrophic+growth+of+nitrifying+community+in+an+agricultural+soil&rft.jtitle=The+ISME+Journal&rft.au=Xia%2C+Weiwei&rft.au=Zhang%2C+Caixia&rft.au=Zeng%2C+Xiaowei&rft.au=Feng%2C+Youzhi&rft.date=2011-07-01&rft.eissn=1751-7370&rft.volume=5&rft.issue=7&rft.spage=1226&rft_id=info:doi/10.1038%2Fismej.2011.5&rft_id=info%3Apmid%2F21326337&rft.externalDocID=21326337
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon