Stretchable biofuel cells as wearable textile-based self-powered sensors

Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectron...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 47; pp. 18342 - 18353
Main Authors Jeerapan, Itthipon, Sempionatto, Juliane R., Pavinatto, Adriana, You, Jung-Min, Wang, Joseph
Format Journal Article
LanguageEnglish
Published England 21.12.2016
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C6TA08358G

Cover

Loading…
Abstract Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g. , stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm −2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
AbstractList Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 mu W cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm⁻² with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm −2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. The article describes stretchable textile-based biofuel cells acting as self-powered sensors for personalized healthcare, energy, and wearable applications.
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g. , stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm −2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.
Author Jeerapan, Itthipon
You, Jung-Min
Pavinatto, Adriana
Sempionatto, Juliane R.
Wang, Joseph
Author_xml – sequence: 1
  givenname: Itthipon
  surname: Jeerapan
  fullname: Jeerapan, Itthipon
  organization: Department of NanoEngineering, University of California, San Diego, USA
– sequence: 2
  givenname: Juliane R.
  surname: Sempionatto
  fullname: Sempionatto, Juliane R.
  organization: Department of NanoEngineering, University of California, San Diego, USA
– sequence: 3
  givenname: Adriana
  surname: Pavinatto
  fullname: Pavinatto, Adriana
  organization: Department of NanoEngineering, University of California, San Diego, USA
– sequence: 4
  givenname: Jung-Min
  surname: You
  fullname: You, Jung-Min
  organization: Department of NanoEngineering, University of California, San Diego, USA
– sequence: 5
  givenname: Joseph
  surname: Wang
  fullname: Wang, Joseph
  organization: Department of NanoEngineering, University of California, San Diego, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28439415$$D View this record in MEDLINE/PubMed
BookMark eNqNkltrFTEURkOptLXtiz-gzKMIo7lfXoRy0FYo-GD7HDKZHRvJmZwmOa3-e-f0akWwIZCEvfaCj-zXaHvKEyD0huD3BDPzYSHPj7FmQp9soT2KBe4VN3L78a71Ljqs9Qeel8ZYGrODdqnmzHAi9tDpt1ag-Us3JOiGmMMaUuchpdq52t2AK7eVBj9bTNAPrsLYVUihX-UbKLePqeZSD9Cr4FKFw_tzH118_nS-OO3Pvp58WRyf9V4Q3nrCgwqgRiU8C4SYIImnhAjNwFEDI_WYMoy992Cc4zJw4RTzRotBejpKto8-3nlX62EJo4epFZfsqsSlK79sdtE-r0zx0n7P11ZwjKlhs-DtvaDkqzXUZpexbhK7CfK6WkoV0UJLZf6LEm3mjaV4CSq5mJWcvwAVWCmmzAY9-jPsY8qH_5sBfAf4kmstEKyPzbWYN9ljsgTbzZTYpymZW9791fJg_Qf8G1rUu6w
CitedBy_id crossref_primary_10_1038_s41467_023_41740_6
crossref_primary_10_1016_j_bios_2024_116365
crossref_primary_10_1002_adma_202002640
crossref_primary_10_3390_molecules29010257
crossref_primary_10_1007_s40820_023_01045_1
crossref_primary_10_1039_C8TC04017F
crossref_primary_10_1126_sciadv_aav3294
crossref_primary_10_1039_D1EE03113A
crossref_primary_10_1038_s41378_021_00238_1
crossref_primary_10_1039_C7CS00148G
crossref_primary_10_1088_2058_8585_ac61f1
crossref_primary_10_1016_j_bios_2021_113249
crossref_primary_10_1039_C9CC09533K
crossref_primary_10_3390_chemosensors8030071
crossref_primary_10_1002_app_55427
crossref_primary_10_1021_acssensors_7b00818
crossref_primary_10_1149_2754_2726_ad54d2
crossref_primary_10_1016_j_snb_2019_04_134
crossref_primary_10_1002_adma_201902083
crossref_primary_10_1016_j_mattod_2021_02_001
crossref_primary_10_3390_molecules30030673
crossref_primary_10_1016_j_coelec_2022_100966
crossref_primary_10_1002_aenm_201903512
crossref_primary_10_1002_adfm_202002041
crossref_primary_10_3390_bios13010127
crossref_primary_10_3390_bios13030313
crossref_primary_10_1016_j_bios_2019_111471
crossref_primary_10_1002_admt_202200853
crossref_primary_10_1016_j_nanoen_2020_105155
crossref_primary_10_1021_acs_chemrev_9b00115
crossref_primary_10_1016_j_ceramint_2024_09_222
crossref_primary_10_1002_anse_202200066
crossref_primary_10_1007_s12274_021_3330_8
crossref_primary_10_1021_acsami_4c00312
crossref_primary_10_1002_elan_201800487
crossref_primary_10_1149_1945_7111_ab7117
crossref_primary_10_1016_j_trac_2023_116938
crossref_primary_10_1109_JFLEX_2023_3272624
crossref_primary_10_1002_adhm_202301280
crossref_primary_10_1021_acs_nanolett_8b02256
crossref_primary_10_1002_adfm_201905785
crossref_primary_10_1002_adma_202100899
crossref_primary_10_1016_j_bios_2021_113107
crossref_primary_10_1016_j_nanoms_2024_01_010
crossref_primary_10_1039_D2NR04464A
crossref_primary_10_1021_acs_analchem_7b03662
crossref_primary_10_1109_JSEN_2021_3074311
crossref_primary_10_1021_acs_chemrev_9b00821
crossref_primary_10_1038_s41587_019_0045_y
crossref_primary_10_3390_mi9010039
crossref_primary_10_1039_D4EE03646H
crossref_primary_10_1039_C6TA09766A
crossref_primary_10_1016_j_addr_2020_09_011
crossref_primary_10_1016_j_electacta_2024_144384
crossref_primary_10_1016_j_medntd_2022_100118
crossref_primary_10_1002_advs_202201890
crossref_primary_10_1002_smll_202003269
crossref_primary_10_1039_C9AN01968E
crossref_primary_10_1039_C8LC00025E
crossref_primary_10_1002_adfm_202102915
crossref_primary_10_3390_s17102289
crossref_primary_10_1016_j_sna_2025_116339
crossref_primary_10_1002_adfm_202110535
crossref_primary_10_1021_acsbiomaterials_3c01633
crossref_primary_10_3390_ma13122733
crossref_primary_10_1089_3dp_2020_0095
crossref_primary_10_1016_j_bios_2022_114545
crossref_primary_10_1002_aenm_202002969
crossref_primary_10_3389_fmed_2024_1390634
crossref_primary_10_3390_en15207495
crossref_primary_10_1002_adfm_202103976
crossref_primary_10_1016_j_jelechem_2018_10_027
crossref_primary_10_1002_advs_202409178
crossref_primary_10_1016_j_jcis_2017_08_036
crossref_primary_10_1016_j_bios_2021_113604
crossref_primary_10_1021_acs_analchem_7b01142
crossref_primary_10_3390_s20236835
crossref_primary_10_1016_j_bios_2020_112750
crossref_primary_10_1021_acsami_0c04739
crossref_primary_10_1038_s43246_024_00557_6
crossref_primary_10_1088_2515_7655_abebcb
crossref_primary_10_1016_j_coelec_2017_07_001
crossref_primary_10_1016_j_enconman_2023_118042
crossref_primary_10_1063_5_0084917
crossref_primary_10_3390_bios10120205
crossref_primary_10_1002_advs_202203690
crossref_primary_10_1002_admi_202101417
crossref_primary_10_1021_acssensors_7b00051
crossref_primary_10_1016_j_enrev_2024_100099
crossref_primary_10_1021_acsomega_4c05140
crossref_primary_10_1038_s41928_022_00723_z
crossref_primary_10_1021_acs_analchem_8b03423
crossref_primary_10_1002_admt_202200654
crossref_primary_10_1039_C9MH00013E
crossref_primary_10_1021_accountsmr_1c00002
crossref_primary_10_1016_j_bios_2021_113270
crossref_primary_10_1016_j_mtener_2021_100900
crossref_primary_10_1016_j_compositesb_2021_109179
crossref_primary_10_7736_KSPE_2018_35_11_1043
crossref_primary_10_1002_admt_201700210
crossref_primary_10_1002_admt_202000694
crossref_primary_10_1002_sstr_202300282
crossref_primary_10_1002_er_6045
crossref_primary_10_1016_j_bios_2020_112652
crossref_primary_10_1016_j_jpowsour_2019_226844
crossref_primary_10_1021_acs_chemrev_2c00823
crossref_primary_10_2174_0929867331666230807143639
crossref_primary_10_1002_aenm_201702261
crossref_primary_10_1002_ijch_202000113
crossref_primary_10_1039_C8TB02862A
crossref_primary_10_1039_D2EE02695C
crossref_primary_10_1246_bcsj_20220339
crossref_primary_10_3390_diagnostics13050916
crossref_primary_10_1002_smll_201803266
crossref_primary_10_1002_admt_202301499
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1002_smsc_202300148
crossref_primary_10_1007_s12274_018_2068_y
crossref_primary_10_1021_acsbiomaterials_1c00699
crossref_primary_10_1002_elan_201700126
crossref_primary_10_1016_j_mser_2019_100523
crossref_primary_10_1016_j_aeue_2021_153888
crossref_primary_10_1016_j_microc_2024_110250
crossref_primary_10_1016_j_bios_2019_04_058
crossref_primary_10_1016_j_applthermaleng_2021_117937
crossref_primary_10_1016_j_ijbiomac_2023_127577
crossref_primary_10_3390_bios9010014
crossref_primary_10_1039_C8EE02792G
crossref_primary_10_1016_j_coelec_2017_06_013
crossref_primary_10_1038_s41528_018_0045_x
crossref_primary_10_1007_s41061_020_00312_8
crossref_primary_10_1016_j_jpowsour_2018_11_076
crossref_primary_10_1002_admi_202200492
crossref_primary_10_1002_EXP_20210112
crossref_primary_10_3390_mi15070884
crossref_primary_10_1002_adma_202303197
crossref_primary_10_1007_s12553_021_00619_6
crossref_primary_10_1021_acs_analchem_9b00152
crossref_primary_10_1016_j_electacta_2019_134744
crossref_primary_10_1039_D0CS00304B
crossref_primary_10_1039_C9TB02474C
crossref_primary_10_3390_bios13020236
crossref_primary_10_1039_C9CS00319C
crossref_primary_10_1016_j_coelec_2019_10_002
crossref_primary_10_1016_j_jpowsour_2022_232190
crossref_primary_10_1049_mnl_2017_0621
crossref_primary_10_1016_j_jpowsour_2020_228807
crossref_primary_10_1016_j_bios_2020_112601
crossref_primary_10_1002_aisy_202000255
crossref_primary_10_1016_j_sna_2024_115280
crossref_primary_10_3390_bios13100909
crossref_primary_10_1016_j_nanoen_2021_105853
crossref_primary_10_1016_j_jelechem_2024_118474
crossref_primary_10_1016_j_bioelechem_2020_107537
crossref_primary_10_1002_aesr_202100031
crossref_primary_10_1039_C7EE00865A
crossref_primary_10_1021_acssensors_1c01266
crossref_primary_10_1002_smsc_202300043
crossref_primary_10_1021_acs_chemrev_1c00502
crossref_primary_10_1002_adma_201901958
crossref_primary_10_1021_acsmaterialslett_2c01207
crossref_primary_10_2174_2211550112666221201152211
crossref_primary_10_1002_adhm_202100577
crossref_primary_10_1016_j_nanoen_2024_110213
crossref_primary_10_1021_acs_chemrev_2c00192
crossref_primary_10_1021_acs_analchem_9b04668
crossref_primary_10_1002_adfm_202008087
crossref_primary_10_3390_s22155670
crossref_primary_10_1016_j_isci_2024_108998
crossref_primary_10_1002_adfm_202009602
crossref_primary_10_1016_j_fmre_2021_05_002
crossref_primary_10_1039_D1RA03277A
crossref_primary_10_1021_acs_accounts_8b00451
crossref_primary_10_1038_s41378_022_00443_6
crossref_primary_10_3390_electronics11203341
crossref_primary_10_3390_s23239453
crossref_primary_10_1080_10408363_2025_2453152
crossref_primary_10_1016_j_snb_2021_130178
crossref_primary_10_1016_j_trac_2020_116024
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1109_TBCAS_2019_2950509
crossref_primary_10_3390_s21020442
crossref_primary_10_3390_mi11030243
crossref_primary_10_1021_acs_analchem_7b04224
crossref_primary_10_1016_j_sna_2020_112355
crossref_primary_10_1021_acssensors_2c02642
crossref_primary_10_1016_j_ensm_2019_04_032
crossref_primary_10_1039_C8AN00979A
crossref_primary_10_1016_j_mtener_2021_100786
crossref_primary_10_1002_adfm_201906243
crossref_primary_10_3390_c5040062
crossref_primary_10_1016_j_apenergy_2021_117824
crossref_primary_10_3390_s21113806
crossref_primary_10_1246_cl_200799
crossref_primary_10_1002_adma_202305854
crossref_primary_10_3390_chemosensors10010022
crossref_primary_10_1016_j_mtnano_2019_100041
crossref_primary_10_1021_acs_chemrev_3c00507
crossref_primary_10_1002_aelm_202100578
crossref_primary_10_1016_j_ensm_2020_04_007
crossref_primary_10_1021_acsami_2c20681
crossref_primary_10_1109_LSENS_2024_3411780
crossref_primary_10_1002_celc_201800983
crossref_primary_10_1021_acssensors_9b00891
crossref_primary_10_1039_D3YA00067B
crossref_primary_10_1016_j_talanta_2022_123425
crossref_primary_10_3390_electronics8020150
crossref_primary_10_1039_C8TB00497H
crossref_primary_10_1038_s41598_020_74337_w
crossref_primary_10_1016_j_snr_2024_100260
crossref_primary_10_1146_annurev_anchem_061318_114910
crossref_primary_10_1007_s42765_024_00484_8
crossref_primary_10_1002_smll_201800938
crossref_primary_10_1002_elan_201700785
crossref_primary_10_1016_j_cjac_2021_11_004
crossref_primary_10_1021_acsami_2c03807
crossref_primary_10_1016_j_biosx_2022_100153
crossref_primary_10_1016_j_isci_2022_104174
crossref_primary_10_1002_smll_202104506
crossref_primary_10_1016_j_trac_2021_116476
crossref_primary_10_1016_j_mtener_2021_100886
crossref_primary_10_1002_adma_201902278
crossref_primary_10_1002_adhm_201700889
crossref_primary_10_1016_j_bios_2018_09_063
crossref_primary_10_1109_JSSC_2018_2869569
crossref_primary_10_3390_bios12110919
crossref_primary_10_3390_jsan13040040
crossref_primary_10_1016_j_jpowsour_2021_230631
crossref_primary_10_1016_j_jpowsour_2021_229533
crossref_primary_10_1016_j_trac_2025_118169
crossref_primary_10_1002_rpm_20240018
crossref_primary_10_1016_j_bios_2020_112133
crossref_primary_10_1016_j_joule_2021_06_004
crossref_primary_10_3390_bios13020175
crossref_primary_10_1002_adhm_201700770
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1002_adma_202004832
crossref_primary_10_1088_1361_6439_ad5b6b
crossref_primary_10_1039_C8CC02555J
crossref_primary_10_1038_s41528_019_0057_1
crossref_primary_10_1002_advs_202304132
crossref_primary_10_1021_acsami_8b13457
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1038_s41578_022_00441_0
crossref_primary_10_5796_denkikagaku_19_FE0028
crossref_primary_10_1002_adma_202209906
crossref_primary_10_1038_s41467_021_21701_7
crossref_primary_10_1002_sus2_14
crossref_primary_10_3390_bios12040222
crossref_primary_10_1021_acsami_0c07614
crossref_primary_10_1364_OME_9_004023
crossref_primary_10_1016_j_apmt_2021_100953
crossref_primary_10_1149_1945_7111_ac72c3
Cites_doi 10.1039/C5TC01274K
10.1016/j.tsf.2013.04.026
10.1038/nature16521
10.1002/adma.201200359
10.1186/cc3818
10.1016/j.elecom.2014.07.014
10.1038/ncomms8461
10.1016/j.electacta.2015.12.183
10.1039/c3cp50767j
10.1016/j.microrel.2008.03.025
10.1016/j.ijhydene.2008.01.049
10.1146/annurev-anchem-062011-143049
10.1038/nnano.2016.38
10.1039/C4TA04796F
10.1002/adfm.201504755
10.1002/elan.200403113
10.1016/j.bios.2013.04.034
10.1021/nl503997m
10.1021/acssensors.6b00356
10.1039/c4cc01540a
10.3390/s140711855
10.1016/j.bios.2015.07.063
10.1016/j.ijhydene.2011.03.096
10.1021/ja1020487
10.1002/anie.201107068
10.1016/j.aca.2012.05.018
10.1021/am504932j
10.1007/s00216-013-7307-1
10.1021/acs.analchem.5b04651
10.1016/j.bios.2007.03.004
10.1016/j.bios.2015.07.070
10.1016/j.bios.2012.05.041
10.1126/science.1206157
10.1021/ac501699p
10.1002/ente.201402182
10.1002/elan.201100631
10.1021/acssensors.6b00250
10.1016/j.compscitech.2008.06.018
10.1021/ac401573r
10.1002/anie.201302922
10.1038/ncomms3817
10.1021/ja0167102
10.1021/acs.nanolett.5b04549
10.1002/adma.200306107
10.1002/cctc.201402747
10.1016/j.nanoen.2015.03.035
10.1016/0013-4686(78)85021-X
10.1016/j.bios.2015.06.029
10.1021/nl051834o
10.1016/j.tiv.2010.06.016
10.1038/nnano.2014.38
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
5PM
DOI 10.1039/C6TA08358G
DatabaseName CrossRef
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
AGRICOLA
PubMed

MEDLINE - Academic
CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 18353
ExternalDocumentID PMC5400293
28439415
10_1039_C6TA08358G
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB019698
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
NPM
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c514t-14f7fe7d75c3f119f61c211583ea29ed2c02300ccce9aa46f45a73c985b6c2d63
ISSN 2050-7488
2050-7496
IngestDate Thu Aug 21 18:37:09 EDT 2025
Fri Jul 11 01:20:17 EDT 2025
Fri Jul 11 10:21:01 EDT 2025
Fri Jul 11 08:54:16 EDT 2025
Fri Jul 11 10:29:51 EDT 2025
Thu Apr 03 07:07:20 EDT 2025
Tue Jul 01 03:13:33 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 47
Keywords biofuel cells
self-powered sensors
wearable sensors
printed electronics
stretchable electronics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c514t-14f7fe7d75c3f119f61c211583ea29ed2c02300ccce9aa46f45a73c985b6c2d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28439415
PQID 1850773794
PQPubID 23462
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5400293
proquest_miscellaneous_2271858679
proquest_miscellaneous_1891890659
proquest_miscellaneous_1864579344
proquest_miscellaneous_1850773794
pubmed_primary_28439415
crossref_citationtrail_10_1039_C6TA08358G
crossref_primary_10_1039_C6TA08358G
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-21
PublicationDateYYYYMMDD 2016-12-21
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationTitleAlternate J Mater Chem A Mater Energy Sustain
PublicationYear 2016
References Ozgit (C6TA08358G-(cit41)/*[position()=1]) 2014; 6
Kim (C6TA08358G-(cit5)/*[position()=1]) 2011; 333
Bandodkar (C6TA08358G-(cit21)/*[position()=1]) 2016; 16
Scodeller (C6TA08358G-(cit30)/*[position()=1]) 2010; 132
Miyake (C6TA08358G-(cit10)/*[position()=1]) 2013; 40
Zhou (C6TA08358G-(cit16)/*[position()=1]) 2012; 24
Amjadi (C6TA08358G-(cit35)/*[position()=1]) 2016; 26
Sanli (C6TA08358G-(cit40)/*[position()=1]) 2008; 33
Matsuhisa (C6TA08358G-(cit19)/*[position()=1]) 2015; 6
Zhou (C6TA08358G-(cit54)/*[position()=1]) 2012; 51
Rasmussen (C6TA08358G-(cit48)/*[position()=1]) 2016; 76
Li (C6TA08358G-(cit17)/*[position()=1]) 2012; 734
Yu (C6TA08358G-(cit24)/*[position()=1]) 2016; 75
Hocheng (C6TA08358G-(cit27)/*[position()=1]) 2014; 14
Gaikwad (C6TA08358G-(cit18)/*[position()=1]) 2015; 3
Wang (C6TA08358G-(cit43)/*[position()=1]) 2005; 17
Gai (C6TA08358G-(cit14)/*[position()=1]) 2016; 19
Gao (C6TA08358G-(cit2)/*[position()=1]) 2016; 529
Hwang (C6TA08358G-(cit6)/*[position()=1]) 2015; 15
MacVittie (C6TA08358G-(cit53)/*[position()=1]) 2014; 50
Kim (C6TA08358G-(cit26)/*[position()=1]) 2016; 1
Jia (C6TA08358G-(cit1)/*[position()=1]) 2013; 85
Lee (C6TA08358G-(cit33)/*[position()=1]) 2012; 24
Vagin (C6TA08358G-(cit20)/*[position()=1]) 2016; 190
Casalongue (C6TA08358G-(cit29)/*[position()=1]) 2013; 4
Cignini (C6TA08358G-(cit31)/*[position()=1]) 1978; 23
Kemp (C6TA08358G-(cit46)/*[position()=1]) 2005; 289
Pham (C6TA08358G-(cit37)/*[position()=1]) 2015; 3
Jia (C6TA08358G-(cit9)/*[position()=1]) 2013; 52
Lee (C6TA08358G-(cit4)/*[position()=1]) 2016; 11
Cui (C6TA08358G-(cit51)/*[position()=1]) 2007; 22
Son (C6TA08358G-(cit3)/*[position()=1]) 2014; 9
Ogawa (C6TA08358G-(cit11)/*[position()=1]) 2015; 74
Gray (C6TA08358G-(cit25)/*[position()=1]) 2004; 16
Gonzalez (C6TA08358G-(cit28)/*[position()=1]) 2008; 48
Bauhofer (C6TA08358G-(cit34)/*[position()=1]) 2009; 69
Jia (C6TA08358G-(cit47)/*[position()=1]) 2014; 2
Valdés-Ramírez (C6TA08358G-(cit8)/*[position()=1]) 2014; 47
Murray (C6TA08358G-(cit36)/*[position()=1]) 2005; 5
Teymourian (C6TA08358G-(cit52)/*[position()=1]) 2013; 49
Wang (C6TA08358G-(cit39)/*[position()=1]) 2011; 36
Sekretaryova (C6TA08358G-(cit13)/*[position()=1]) 2014; 86
Harvey (C6TA08358G-(cit22)/*[position()=1]) 2010; 24
Valenza (C6TA08358G-(cit45)/*[position()=1]) 2005; 9
Wang (C6TA08358G-(cit15)/*[position()=1]) 2016; 88
Meredith (C6TA08358G-(cit49)/*[position()=1]) 2012; 5
Pistoia (C6TA08358G-(cit32)/*[position()=1]) 2005
Harn (C6TA08358G-(cit38)/*[position()=1]) 2015; 7
Nelson (C6TA08358G-(cit50)/*[position()=1]) 2008
Bandodkar (C6TA08358G-(cit7)/*[position()=1]) 2016; 1
Katz (C6TA08358G-(cit12)/*[position()=1]) 2001; 123
Lund (C6TA08358G-(cit42)/*[position()=1]) 2013; 536
Reuillard (C6TA08358G-(cit23)/*[position()=1]) 2013; 15
Rassaei (C6TA08358G-(cit44)/*[position()=1]) 2014; 406
22610599 - Adv Mater. 2012 Jul 3;24(25):3326-32
26283586 - Biosens Bioelectron. 2016 Jan 15;75:23-7
26163747 - Biosens Bioelectron. 2016 Feb 15;76:91-102
24999718 - Sensors (Basel). 2014 Jul 04;14(7):11855-77
26864988 - Anal Chem. 2016 Mar 15;88(6):3243-8
24687004 - Chem Commun (Camb). 2014 May 14;50(37):4816-9
24037614 - Anal Bioanal Chem. 2014 Jan;406(1):123-37
23455694 - Phys Chem Chem Phys. 2013 Apr 14;15(14):4892-6
16277476 - Nano Lett. 2005 Nov;5(11):2319-24
26257187 - Biosens Bioelectron. 2015 Dec 15;74:947-52
26819044 - Nature. 2016 Jan 28;529(7587):509-14
16356243 - Crit Care. 2005;9(6):588-93
16105824 - Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R895-901; author reply R904-910
23815621 - Anal Chem. 2013 Jul 16;85(14):6553-60
25706246 - Nano Lett. 2015 May 13;15(5):2801-8
22223361 - Angew Chem Int Ed Engl. 2012 Mar 12;51(11):2686-9
22704470 - Anal Chim Acta. 2012 Jul 13;734:31-44
25164485 - Anal Chem. 2014 Oct 7;86(19):9540-7
22704841 - Biosens Bioelectron. 2013 Feb 15;40(1):45-9
20599493 - Toxicol In Vitro. 2010 Sep;24(6):1790-6
21836009 - Science. 2011 Aug 12;333(6044):838-43
26999482 - Nat Nanotechnol. 2016 Jun;11(6):566-72
20698679 - J Am Chem Soc. 2010 Aug 18;132(32):11132-40
23729381 - Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7233-6
23708810 - Biosens Bioelectron. 2013 Nov 15;49:1-8
24681776 - Nat Nanotechnol. 2014 May;9(5):397-404
26694819 - Nano Lett. 2016 Jan 13;16(1):721-7
22524222 - Annu Rev Anal Chem (Palo Alto Calif). 2012;5:157-79
26109453 - Nat Commun. 2015 Jun 25;6:7461
17408948 - Biosens Bioelectron. 2007 Jun 15;22(12):3288-92
25419994 - ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20752-7
11674014 - J Am Chem Soc. 2001 Oct 31;123(43):10752-3
References_xml – volume: 3
  start-page: 7720
  year: 2015
  ident: C6TA08358G-(cit37)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC01274K
– volume: 536
  start-page: 156
  year: 2013
  ident: C6TA08358G-(cit42)/*[position()=1]
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2013.04.026
– volume: 529
  start-page: 509
  year: 2016
  ident: C6TA08358G-(cit2)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 24
  start-page: 3326
  year: 2012
  ident: C6TA08358G-(cit33)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200359
– volume-title: Batteries for Portable Devices
  year: 2005
  ident: C6TA08358G-(cit32)/*[position()=1]
– volume: 9
  start-page: 588
  year: 2005
  ident: C6TA08358G-(cit45)/*[position()=1]
  publication-title: Critical Care
  doi: 10.1186/cc3818
– volume: 47
  start-page: 58
  year: 2014
  ident: C6TA08358G-(cit8)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2014.07.014
– volume: 6
  year: 2015
  ident: C6TA08358G-(cit19)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8461
– volume: 190
  start-page: 495
  year: 2016
  ident: C6TA08358G-(cit20)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.12.183
– volume: 15
  start-page: 4892
  year: 2013
  ident: C6TA08358G-(cit23)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50767j
– volume: 48
  start-page: 825
  year: 2008
  ident: C6TA08358G-(cit28)/*[position()=1]
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2008.03.025
– volume: 33
  start-page: 2097
  year: 2008
  ident: C6TA08358G-(cit40)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.01.049
– volume: 5
  start-page: 157
  year: 2012
  ident: C6TA08358G-(cit49)/*[position()=1]
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-062011-143049
– volume: 11
  start-page: 566
  year: 2016
  ident: C6TA08358G-(cit4)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.38
– volume: 2
  start-page: 18184
  year: 2014
  ident: C6TA08358G-(cit47)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA04796F
– volume: 26
  start-page: 1678
  year: 2016
  ident: C6TA08358G-(cit35)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504755
– volume: 17
  start-page: 7
  year: 2005
  ident: C6TA08358G-(cit43)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.200403113
– volume: 49
  start-page: 1
  year: 2013
  ident: C6TA08358G-(cit52)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.04.034
– volume: 15
  start-page: 2801
  year: 2015
  ident: C6TA08358G-(cit6)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl503997m
– volume: 1
  start-page: 1011
  year: 2016
  ident: C6TA08358G-(cit26)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00356
– volume: 50
  start-page: 4816
  year: 2014
  ident: C6TA08358G-(cit53)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c4cc01540a
– volume: 14
  start-page: 11855
  year: 2014
  ident: C6TA08358G-(cit27)/*[position()=1]
  publication-title: Sensors
  doi: 10.3390/s140711855
– volume: 74
  start-page: 947
  year: 2015
  ident: C6TA08358G-(cit11)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.07.063
– volume: 36
  start-page: 7374
  year: 2011
  ident: C6TA08358G-(cit39)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.03.096
– volume: 132
  start-page: 11132
  year: 2010
  ident: C6TA08358G-(cit30)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1020487
– volume: 51
  start-page: 2686
  year: 2012
  ident: C6TA08358G-(cit54)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201107068
– volume: 734
  start-page: 31
  year: 2012
  ident: C6TA08358G-(cit17)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2012.05.018
– volume: 6
  start-page: 20752
  year: 2014
  ident: C6TA08358G-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am504932j
– volume: 406
  start-page: 123
  year: 2014
  ident: C6TA08358G-(cit44)/*[position()=1]
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-013-7307-1
– volume: 88
  start-page: 3243
  year: 2016
  ident: C6TA08358G-(cit15)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.5b04651
– volume: 22
  start-page: 3288
  year: 2007
  ident: C6TA08358G-(cit51)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2007.03.004
– volume: 75
  start-page: 23
  year: 2016
  ident: C6TA08358G-(cit24)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.07.070
– volume: 40
  start-page: 45
  year: 2013
  ident: C6TA08358G-(cit10)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.05.041
– volume: 333
  start-page: 838
  year: 2011
  ident: C6TA08358G-(cit5)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1206157
– volume: 86
  start-page: 9540
  year: 2014
  ident: C6TA08358G-(cit13)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac501699p
– volume: 3
  start-page: 305
  year: 2015
  ident: C6TA08358G-(cit18)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201402182
– volume: 24
  start-page: 197
  year: 2012
  ident: C6TA08358G-(cit16)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.201100631
– volume: 289
  start-page: R895
  year: 2005
  ident: C6TA08358G-(cit46)/*[position()=1]
  publication-title: Am. J. Physiol.: Regul., Integr. Comp. Physiol.
– volume: 1
  start-page: 464
  year: 2016
  ident: C6TA08358G-(cit7)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00250
– volume: 69
  start-page: 1486
  year: 2009
  ident: C6TA08358G-(cit34)/*[position()=1]
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2008.06.018
– volume: 85
  start-page: 6553
  year: 2013
  ident: C6TA08358G-(cit1)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac401573r
– volume: 52
  start-page: 7233
  year: 2013
  ident: C6TA08358G-(cit9)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302922
– volume: 4
  year: 2013
  ident: C6TA08358G-(cit29)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3817
– volume: 123
  start-page: 10752
  year: 2001
  ident: C6TA08358G-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0167102
– volume: 16
  start-page: 721
  year: 2016
  ident: C6TA08358G-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04549
– volume: 16
  start-page: 393
  year: 2004
  ident: C6TA08358G-(cit25)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200306107
– volume: 7
  start-page: 80
  year: 2015
  ident: C6TA08358G-(cit38)/*[position()=1]
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201402747
– volume-title: Lehninger Principles of Biochemistry
  year: 2008
  ident: C6TA08358G-(cit50)/*[position()=1]
– volume: 19
  start-page: 541
  year: 2016
  ident: C6TA08358G-(cit14)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.03.035
– volume: 23
  start-page: 1099
  year: 1978
  ident: C6TA08358G-(cit31)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(78)85021-X
– volume: 76
  start-page: 91
  year: 2016
  ident: C6TA08358G-(cit48)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2015.06.029
– volume: 5
  start-page: 2319
  year: 2005
  ident: C6TA08358G-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl051834o
– volume: 24
  start-page: 1790
  year: 2010
  ident: C6TA08358G-(cit22)/*[position()=1]
  publication-title: Toxicol. in Vitro
  doi: 10.1016/j.tiv.2010.06.016
– volume: 9
  start-page: 397
  year: 2014
  ident: C6TA08358G-(cit3)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.38
– reference: 17408948 - Biosens Bioelectron. 2007 Jun 15;22(12):3288-92
– reference: 24687004 - Chem Commun (Camb). 2014 May 14;50(37):4816-9
– reference: 26819044 - Nature. 2016 Jan 28;529(7587):509-14
– reference: 26109453 - Nat Commun. 2015 Jun 25;6:7461
– reference: 23708810 - Biosens Bioelectron. 2013 Nov 15;49:1-8
– reference: 26283586 - Biosens Bioelectron. 2016 Jan 15;75:23-7
– reference: 11674014 - J Am Chem Soc. 2001 Oct 31;123(43):10752-3
– reference: 26163747 - Biosens Bioelectron. 2016 Feb 15;76:91-102
– reference: 23729381 - Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7233-6
– reference: 26864988 - Anal Chem. 2016 Mar 15;88(6):3243-8
– reference: 26999482 - Nat Nanotechnol. 2016 Jun;11(6):566-72
– reference: 16277476 - Nano Lett. 2005 Nov;5(11):2319-24
– reference: 26694819 - Nano Lett. 2016 Jan 13;16(1):721-7
– reference: 16105824 - Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R895-901; author reply R904-910
– reference: 25164485 - Anal Chem. 2014 Oct 7;86(19):9540-7
– reference: 16356243 - Crit Care. 2005;9(6):588-93
– reference: 25706246 - Nano Lett. 2015 May 13;15(5):2801-8
– reference: 24037614 - Anal Bioanal Chem. 2014 Jan;406(1):123-37
– reference: 22524222 - Annu Rev Anal Chem (Palo Alto Calif). 2012;5:157-79
– reference: 20599493 - Toxicol In Vitro. 2010 Sep;24(6):1790-6
– reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43
– reference: 22223361 - Angew Chem Int Ed Engl. 2012 Mar 12;51(11):2686-9
– reference: 26257187 - Biosens Bioelectron. 2015 Dec 15;74:947-52
– reference: 22704470 - Anal Chim Acta. 2012 Jul 13;734:31-44
– reference: 22610599 - Adv Mater. 2012 Jul 3;24(25):3326-32
– reference: 22704841 - Biosens Bioelectron. 2013 Feb 15;40(1):45-9
– reference: 24999718 - Sensors (Basel). 2014 Jul 04;14(7):11855-77
– reference: 25419994 - ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20752-7
– reference: 20698679 - J Am Chem Soc. 2010 Aug 18;132(32):11132-40
– reference: 23455694 - Phys Chem Chem Phys. 2013 Apr 14;15(14):4892-6
– reference: 24681776 - Nat Nanotechnol. 2014 May;9(5):397-404
– reference: 23815621 - Anal Chem. 2013 Jul 16;85(14):6553-60
SSID ssj0000800699
Score 2.6048856
Snippet Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 18342
SubjectTerms Biochemical fuel cells
biosensors
chemistry
deformation
Devices
electric potential difference
Electronics
fabrics
fuels
glucose
Inks
lactic acid
microbial fuel cells
Nanostructure
Sensors
serpentine
Stretching
sweat
synergism
Wearable
Title Stretchable biofuel cells as wearable textile-based self-powered sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/28439415
https://www.proquest.com/docview/1850773794
https://www.proquest.com/docview/1864579344
https://www.proquest.com/docview/1891890659
https://www.proquest.com/docview/2271858679
https://pubmed.ncbi.nlm.nih.gov/PMC5400293
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wA8IBi3clMQvKAqJbEdJ3msqo4OdQOJVOpbZDvOVqmkFU1B4lfwkzm2kzSlYxpIldXGzqU-X44_2-eC0FuYn2UCC-oSiqWrN2bcSOmo-zwnTACqWaR9h8_O2WRGP86Deafzq2W1tC3FQP680q_kf6QKx0Cu2kv2HyTbXBQOwHeQL5QgYShvJGO9pQy9bryfxGKVb9Wyr1fiNzp7zA_AsKnRth3w7rt6wMr6G7XM3bXOjWZ-FJtVtZ9zyFCBzNp_0Zd1WrhBf2g9fOoaEzHc-g-aJfjaH0ub3O7Mc5R28rJLradleblY7zb_v6iva70cWZar2l-bA_FtNqA-8--LpnaYwV0L3lJV9pziwj2rQohXKxi-yftj3aKtosNe4LkhtZlta61MW-CjYX89AN1DsQtlQFoK1xxtjd5N_cHQ4BEdWVWykmvWGV3sBsB60__8U3oym07TZDxPbqEjDBMP3EVHw3FyOm3W7TTDZiYtafPYddRbEr_fXX6f5xxMXv60wW2RmuQ-ulfJ2hlaaD1AHVUco9ujWtrH6G4rXuVDNGkBzqkA5xjAOXzj1IBz9gDntAHnVIB7hGYn42Q0catUHK4ERl26Ps3DXIVZGEiS-36cM19imExERHEcqwxLPZf1pJQq5pyynAY8JDKOAsEkzhh5jLrFqlBPkSNyX1IRs0j6giqf8SjOFScxBxXBhQh66F3dcams4tTrdCnL1NhLkDgdsWRoOvlDD71p2q5tdJYrW72u-z-F7tPdAkBebTcpkFUvDAmMSde1YTSAUYxe2yaGjzZR-HsbjIEGBjq-ZQ89sbJvnhk4IomBSvdQuIeKpoEOAr9fUywuTTB4mHF5QNmf3eC-z9Gd3ev3AnXLb1v1Eih1KV5VKP8N6bPTUQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+biofuel+cells+as+wearable+textile-based+self-powered+sensors&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jeerapan%2C+Itthipon&rft.au=Sempionatto%2C+Juliane+R&rft.au=Pavinatto%2C+Adriana&rft.au=You%2C+Jung-Min&rft.date=2016-12-21&rft.issn=2050-7496&rft.volume=4&rft.issue=47+p.18342-18353&rft.spage=18342&rft.epage=18353&rft_id=info:doi/10.1039%2Fc6ta08358g&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon