Stretchable biofuel cells as wearable textile-based self-powered sensors
Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectron...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 4; no. 47; pp. 18342 - 18353 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
21.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C6TA08358G |
Cover
Loading…
Abstract | Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations,
e.g.
, stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm
−2
with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. |
---|---|
AbstractList | Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 mu W cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm⁻² with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm −2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. The article describes stretchable textile-based biofuel cells acting as self-powered sensors for personalized healthcare, energy, and wearable applications. Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm-2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to the synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g. , stretching, indentation, or torsional twisting. Glucose and lactate BFCs with single-enzyme and membrane-free configurations generated the maximum power densities of 160 and 250 μW cm −2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Their applicability to sock-based BFCs and self-powered biosensors and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn “scavenge-sense-display” devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment. |
Author | Jeerapan, Itthipon You, Jung-Min Pavinatto, Adriana Sempionatto, Juliane R. Wang, Joseph |
Author_xml | – sequence: 1 givenname: Itthipon surname: Jeerapan fullname: Jeerapan, Itthipon organization: Department of NanoEngineering, University of California, San Diego, USA – sequence: 2 givenname: Juliane R. surname: Sempionatto fullname: Sempionatto, Juliane R. organization: Department of NanoEngineering, University of California, San Diego, USA – sequence: 3 givenname: Adriana surname: Pavinatto fullname: Pavinatto, Adriana organization: Department of NanoEngineering, University of California, San Diego, USA – sequence: 4 givenname: Jung-Min surname: You fullname: You, Jung-Min organization: Department of NanoEngineering, University of California, San Diego, USA – sequence: 5 givenname: Joseph surname: Wang fullname: Wang, Joseph organization: Department of NanoEngineering, University of California, San Diego, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28439415$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkltrFTEURkOptLXtiz-gzKMIo7lfXoRy0FYo-GD7HDKZHRvJmZwmOa3-e-f0akWwIZCEvfaCj-zXaHvKEyD0huD3BDPzYSHPj7FmQp9soT2KBe4VN3L78a71Ljqs9Qeel8ZYGrODdqnmzHAi9tDpt1ag-Us3JOiGmMMaUuchpdq52t2AK7eVBj9bTNAPrsLYVUihX-UbKLePqeZSD9Cr4FKFw_tzH118_nS-OO3Pvp58WRyf9V4Q3nrCgwqgRiU8C4SYIImnhAjNwFEDI_WYMoy992Cc4zJw4RTzRotBejpKto8-3nlX62EJo4epFZfsqsSlK79sdtE-r0zx0n7P11ZwjKlhs-DtvaDkqzXUZpexbhK7CfK6WkoV0UJLZf6LEm3mjaV4CSq5mJWcvwAVWCmmzAY9-jPsY8qH_5sBfAf4kmstEKyPzbWYN9ljsgTbzZTYpymZW9791fJg_Qf8G1rUu6w |
CitedBy_id | crossref_primary_10_1038_s41467_023_41740_6 crossref_primary_10_1016_j_bios_2024_116365 crossref_primary_10_1002_adma_202002640 crossref_primary_10_3390_molecules29010257 crossref_primary_10_1007_s40820_023_01045_1 crossref_primary_10_1039_C8TC04017F crossref_primary_10_1126_sciadv_aav3294 crossref_primary_10_1039_D1EE03113A crossref_primary_10_1038_s41378_021_00238_1 crossref_primary_10_1039_C7CS00148G crossref_primary_10_1088_2058_8585_ac61f1 crossref_primary_10_1016_j_bios_2021_113249 crossref_primary_10_1039_C9CC09533K crossref_primary_10_3390_chemosensors8030071 crossref_primary_10_1002_app_55427 crossref_primary_10_1021_acssensors_7b00818 crossref_primary_10_1149_2754_2726_ad54d2 crossref_primary_10_1016_j_snb_2019_04_134 crossref_primary_10_1002_adma_201902083 crossref_primary_10_1016_j_mattod_2021_02_001 crossref_primary_10_3390_molecules30030673 crossref_primary_10_1016_j_coelec_2022_100966 crossref_primary_10_1002_aenm_201903512 crossref_primary_10_1002_adfm_202002041 crossref_primary_10_3390_bios13010127 crossref_primary_10_3390_bios13030313 crossref_primary_10_1016_j_bios_2019_111471 crossref_primary_10_1002_admt_202200853 crossref_primary_10_1016_j_nanoen_2020_105155 crossref_primary_10_1021_acs_chemrev_9b00115 crossref_primary_10_1016_j_ceramint_2024_09_222 crossref_primary_10_1002_anse_202200066 crossref_primary_10_1007_s12274_021_3330_8 crossref_primary_10_1021_acsami_4c00312 crossref_primary_10_1002_elan_201800487 crossref_primary_10_1149_1945_7111_ab7117 crossref_primary_10_1016_j_trac_2023_116938 crossref_primary_10_1109_JFLEX_2023_3272624 crossref_primary_10_1002_adhm_202301280 crossref_primary_10_1021_acs_nanolett_8b02256 crossref_primary_10_1002_adfm_201905785 crossref_primary_10_1002_adma_202100899 crossref_primary_10_1016_j_bios_2021_113107 crossref_primary_10_1016_j_nanoms_2024_01_010 crossref_primary_10_1039_D2NR04464A crossref_primary_10_1021_acs_analchem_7b03662 crossref_primary_10_1109_JSEN_2021_3074311 crossref_primary_10_1021_acs_chemrev_9b00821 crossref_primary_10_1038_s41587_019_0045_y crossref_primary_10_3390_mi9010039 crossref_primary_10_1039_D4EE03646H crossref_primary_10_1039_C6TA09766A crossref_primary_10_1016_j_addr_2020_09_011 crossref_primary_10_1016_j_electacta_2024_144384 crossref_primary_10_1016_j_medntd_2022_100118 crossref_primary_10_1002_advs_202201890 crossref_primary_10_1002_smll_202003269 crossref_primary_10_1039_C9AN01968E crossref_primary_10_1039_C8LC00025E crossref_primary_10_1002_adfm_202102915 crossref_primary_10_3390_s17102289 crossref_primary_10_1016_j_sna_2025_116339 crossref_primary_10_1002_adfm_202110535 crossref_primary_10_1021_acsbiomaterials_3c01633 crossref_primary_10_3390_ma13122733 crossref_primary_10_1089_3dp_2020_0095 crossref_primary_10_1016_j_bios_2022_114545 crossref_primary_10_1002_aenm_202002969 crossref_primary_10_3389_fmed_2024_1390634 crossref_primary_10_3390_en15207495 crossref_primary_10_1002_adfm_202103976 crossref_primary_10_1016_j_jelechem_2018_10_027 crossref_primary_10_1002_advs_202409178 crossref_primary_10_1016_j_jcis_2017_08_036 crossref_primary_10_1016_j_bios_2021_113604 crossref_primary_10_1021_acs_analchem_7b01142 crossref_primary_10_3390_s20236835 crossref_primary_10_1016_j_bios_2020_112750 crossref_primary_10_1021_acsami_0c04739 crossref_primary_10_1038_s43246_024_00557_6 crossref_primary_10_1088_2515_7655_abebcb crossref_primary_10_1016_j_coelec_2017_07_001 crossref_primary_10_1016_j_enconman_2023_118042 crossref_primary_10_1063_5_0084917 crossref_primary_10_3390_bios10120205 crossref_primary_10_1002_advs_202203690 crossref_primary_10_1002_admi_202101417 crossref_primary_10_1021_acssensors_7b00051 crossref_primary_10_1016_j_enrev_2024_100099 crossref_primary_10_1021_acsomega_4c05140 crossref_primary_10_1038_s41928_022_00723_z crossref_primary_10_1021_acs_analchem_8b03423 crossref_primary_10_1002_admt_202200654 crossref_primary_10_1039_C9MH00013E crossref_primary_10_1021_accountsmr_1c00002 crossref_primary_10_1016_j_bios_2021_113270 crossref_primary_10_1016_j_mtener_2021_100900 crossref_primary_10_1016_j_compositesb_2021_109179 crossref_primary_10_7736_KSPE_2018_35_11_1043 crossref_primary_10_1002_admt_201700210 crossref_primary_10_1002_admt_202000694 crossref_primary_10_1002_sstr_202300282 crossref_primary_10_1002_er_6045 crossref_primary_10_1016_j_bios_2020_112652 crossref_primary_10_1016_j_jpowsour_2019_226844 crossref_primary_10_1021_acs_chemrev_2c00823 crossref_primary_10_2174_0929867331666230807143639 crossref_primary_10_1002_aenm_201702261 crossref_primary_10_1002_ijch_202000113 crossref_primary_10_1039_C8TB02862A crossref_primary_10_1039_D2EE02695C crossref_primary_10_1246_bcsj_20220339 crossref_primary_10_3390_diagnostics13050916 crossref_primary_10_1002_smll_201803266 crossref_primary_10_1002_admt_202301499 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_smsc_202300148 crossref_primary_10_1007_s12274_018_2068_y crossref_primary_10_1021_acsbiomaterials_1c00699 crossref_primary_10_1002_elan_201700126 crossref_primary_10_1016_j_mser_2019_100523 crossref_primary_10_1016_j_aeue_2021_153888 crossref_primary_10_1016_j_microc_2024_110250 crossref_primary_10_1016_j_bios_2019_04_058 crossref_primary_10_1016_j_applthermaleng_2021_117937 crossref_primary_10_1016_j_ijbiomac_2023_127577 crossref_primary_10_3390_bios9010014 crossref_primary_10_1039_C8EE02792G crossref_primary_10_1016_j_coelec_2017_06_013 crossref_primary_10_1038_s41528_018_0045_x crossref_primary_10_1007_s41061_020_00312_8 crossref_primary_10_1016_j_jpowsour_2018_11_076 crossref_primary_10_1002_admi_202200492 crossref_primary_10_1002_EXP_20210112 crossref_primary_10_3390_mi15070884 crossref_primary_10_1002_adma_202303197 crossref_primary_10_1007_s12553_021_00619_6 crossref_primary_10_1021_acs_analchem_9b00152 crossref_primary_10_1016_j_electacta_2019_134744 crossref_primary_10_1039_D0CS00304B crossref_primary_10_1039_C9TB02474C crossref_primary_10_3390_bios13020236 crossref_primary_10_1039_C9CS00319C crossref_primary_10_1016_j_coelec_2019_10_002 crossref_primary_10_1016_j_jpowsour_2022_232190 crossref_primary_10_1049_mnl_2017_0621 crossref_primary_10_1016_j_jpowsour_2020_228807 crossref_primary_10_1016_j_bios_2020_112601 crossref_primary_10_1002_aisy_202000255 crossref_primary_10_1016_j_sna_2024_115280 crossref_primary_10_3390_bios13100909 crossref_primary_10_1016_j_nanoen_2021_105853 crossref_primary_10_1016_j_jelechem_2024_118474 crossref_primary_10_1016_j_bioelechem_2020_107537 crossref_primary_10_1002_aesr_202100031 crossref_primary_10_1039_C7EE00865A crossref_primary_10_1021_acssensors_1c01266 crossref_primary_10_1002_smsc_202300043 crossref_primary_10_1021_acs_chemrev_1c00502 crossref_primary_10_1002_adma_201901958 crossref_primary_10_1021_acsmaterialslett_2c01207 crossref_primary_10_2174_2211550112666221201152211 crossref_primary_10_1002_adhm_202100577 crossref_primary_10_1016_j_nanoen_2024_110213 crossref_primary_10_1021_acs_chemrev_2c00192 crossref_primary_10_1021_acs_analchem_9b04668 crossref_primary_10_1002_adfm_202008087 crossref_primary_10_3390_s22155670 crossref_primary_10_1016_j_isci_2024_108998 crossref_primary_10_1002_adfm_202009602 crossref_primary_10_1016_j_fmre_2021_05_002 crossref_primary_10_1039_D1RA03277A crossref_primary_10_1021_acs_accounts_8b00451 crossref_primary_10_1038_s41378_022_00443_6 crossref_primary_10_3390_electronics11203341 crossref_primary_10_3390_s23239453 crossref_primary_10_1080_10408363_2025_2453152 crossref_primary_10_1016_j_snb_2021_130178 crossref_primary_10_1016_j_trac_2020_116024 crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1109_TBCAS_2019_2950509 crossref_primary_10_3390_s21020442 crossref_primary_10_3390_mi11030243 crossref_primary_10_1021_acs_analchem_7b04224 crossref_primary_10_1016_j_sna_2020_112355 crossref_primary_10_1021_acssensors_2c02642 crossref_primary_10_1016_j_ensm_2019_04_032 crossref_primary_10_1039_C8AN00979A crossref_primary_10_1016_j_mtener_2021_100786 crossref_primary_10_1002_adfm_201906243 crossref_primary_10_3390_c5040062 crossref_primary_10_1016_j_apenergy_2021_117824 crossref_primary_10_3390_s21113806 crossref_primary_10_1246_cl_200799 crossref_primary_10_1002_adma_202305854 crossref_primary_10_3390_chemosensors10010022 crossref_primary_10_1016_j_mtnano_2019_100041 crossref_primary_10_1021_acs_chemrev_3c00507 crossref_primary_10_1002_aelm_202100578 crossref_primary_10_1016_j_ensm_2020_04_007 crossref_primary_10_1021_acsami_2c20681 crossref_primary_10_1109_LSENS_2024_3411780 crossref_primary_10_1002_celc_201800983 crossref_primary_10_1021_acssensors_9b00891 crossref_primary_10_1039_D3YA00067B crossref_primary_10_1016_j_talanta_2022_123425 crossref_primary_10_3390_electronics8020150 crossref_primary_10_1039_C8TB00497H crossref_primary_10_1038_s41598_020_74337_w crossref_primary_10_1016_j_snr_2024_100260 crossref_primary_10_1146_annurev_anchem_061318_114910 crossref_primary_10_1007_s42765_024_00484_8 crossref_primary_10_1002_smll_201800938 crossref_primary_10_1002_elan_201700785 crossref_primary_10_1016_j_cjac_2021_11_004 crossref_primary_10_1021_acsami_2c03807 crossref_primary_10_1016_j_biosx_2022_100153 crossref_primary_10_1016_j_isci_2022_104174 crossref_primary_10_1002_smll_202104506 crossref_primary_10_1016_j_trac_2021_116476 crossref_primary_10_1016_j_mtener_2021_100886 crossref_primary_10_1002_adma_201902278 crossref_primary_10_1002_adhm_201700889 crossref_primary_10_1016_j_bios_2018_09_063 crossref_primary_10_1109_JSSC_2018_2869569 crossref_primary_10_3390_bios12110919 crossref_primary_10_3390_jsan13040040 crossref_primary_10_1016_j_jpowsour_2021_230631 crossref_primary_10_1016_j_jpowsour_2021_229533 crossref_primary_10_1016_j_trac_2025_118169 crossref_primary_10_1002_rpm_20240018 crossref_primary_10_1016_j_bios_2020_112133 crossref_primary_10_1016_j_joule_2021_06_004 crossref_primary_10_3390_bios13020175 crossref_primary_10_1002_adhm_201700770 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1002_adma_202004832 crossref_primary_10_1088_1361_6439_ad5b6b crossref_primary_10_1039_C8CC02555J crossref_primary_10_1038_s41528_019_0057_1 crossref_primary_10_1002_advs_202304132 crossref_primary_10_1021_acsami_8b13457 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1038_s41578_022_00441_0 crossref_primary_10_5796_denkikagaku_19_FE0028 crossref_primary_10_1002_adma_202209906 crossref_primary_10_1038_s41467_021_21701_7 crossref_primary_10_1002_sus2_14 crossref_primary_10_3390_bios12040222 crossref_primary_10_1021_acsami_0c07614 crossref_primary_10_1364_OME_9_004023 crossref_primary_10_1016_j_apmt_2021_100953 crossref_primary_10_1149_1945_7111_ac72c3 |
Cites_doi | 10.1039/C5TC01274K 10.1016/j.tsf.2013.04.026 10.1038/nature16521 10.1002/adma.201200359 10.1186/cc3818 10.1016/j.elecom.2014.07.014 10.1038/ncomms8461 10.1016/j.electacta.2015.12.183 10.1039/c3cp50767j 10.1016/j.microrel.2008.03.025 10.1016/j.ijhydene.2008.01.049 10.1146/annurev-anchem-062011-143049 10.1038/nnano.2016.38 10.1039/C4TA04796F 10.1002/adfm.201504755 10.1002/elan.200403113 10.1016/j.bios.2013.04.034 10.1021/nl503997m 10.1021/acssensors.6b00356 10.1039/c4cc01540a 10.3390/s140711855 10.1016/j.bios.2015.07.063 10.1016/j.ijhydene.2011.03.096 10.1021/ja1020487 10.1002/anie.201107068 10.1016/j.aca.2012.05.018 10.1021/am504932j 10.1007/s00216-013-7307-1 10.1021/acs.analchem.5b04651 10.1016/j.bios.2007.03.004 10.1016/j.bios.2015.07.070 10.1016/j.bios.2012.05.041 10.1126/science.1206157 10.1021/ac501699p 10.1002/ente.201402182 10.1002/elan.201100631 10.1021/acssensors.6b00250 10.1016/j.compscitech.2008.06.018 10.1021/ac401573r 10.1002/anie.201302922 10.1038/ncomms3817 10.1021/ja0167102 10.1021/acs.nanolett.5b04549 10.1002/adma.200306107 10.1002/cctc.201402747 10.1016/j.nanoen.2015.03.035 10.1016/0013-4686(78)85021-X 10.1016/j.bios.2015.06.029 10.1021/nl051834o 10.1016/j.tiv.2010.06.016 10.1038/nnano.2014.38 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 5PM |
DOI | 10.1039/C6TA08358G |
DatabaseName | CrossRef PubMed Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts AGRICOLA PubMed MEDLINE - Academic CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 18353 |
ExternalDocumentID | PMC5400293 28439415 10_1039_C6TA08358G |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R21 EB019698 |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH NPM 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c514t-14f7fe7d75c3f119f61c211583ea29ed2c02300ccce9aa46f45a73c985b6c2d63 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Thu Aug 21 18:37:09 EDT 2025 Fri Jul 11 01:20:17 EDT 2025 Fri Jul 11 10:21:01 EDT 2025 Fri Jul 11 08:54:16 EDT 2025 Fri Jul 11 10:29:51 EDT 2025 Thu Apr 03 07:07:20 EDT 2025 Tue Jul 01 03:13:33 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 47 |
Keywords | biofuel cells self-powered sensors wearable sensors printed electronics stretchable electronics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c514t-14f7fe7d75c3f119f61c211583ea29ed2c02300ccce9aa46f45a73c985b6c2d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 28439415 |
PQID | 1850773794 |
PQPubID | 23462 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5400293 proquest_miscellaneous_2271858679 proquest_miscellaneous_1891890659 proquest_miscellaneous_1864579344 proquest_miscellaneous_1850773794 pubmed_primary_28439415 crossref_citationtrail_10_1039_C6TA08358G crossref_primary_10_1039_C6TA08358G |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-21 |
PublicationDateYYYYMMDD | 2016-12-21 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationTitleAlternate | J Mater Chem A Mater Energy Sustain |
PublicationYear | 2016 |
References | Ozgit (C6TA08358G-(cit41)/*[position()=1]) 2014; 6 Kim (C6TA08358G-(cit5)/*[position()=1]) 2011; 333 Bandodkar (C6TA08358G-(cit21)/*[position()=1]) 2016; 16 Scodeller (C6TA08358G-(cit30)/*[position()=1]) 2010; 132 Miyake (C6TA08358G-(cit10)/*[position()=1]) 2013; 40 Zhou (C6TA08358G-(cit16)/*[position()=1]) 2012; 24 Amjadi (C6TA08358G-(cit35)/*[position()=1]) 2016; 26 Sanli (C6TA08358G-(cit40)/*[position()=1]) 2008; 33 Matsuhisa (C6TA08358G-(cit19)/*[position()=1]) 2015; 6 Zhou (C6TA08358G-(cit54)/*[position()=1]) 2012; 51 Rasmussen (C6TA08358G-(cit48)/*[position()=1]) 2016; 76 Li (C6TA08358G-(cit17)/*[position()=1]) 2012; 734 Yu (C6TA08358G-(cit24)/*[position()=1]) 2016; 75 Hocheng (C6TA08358G-(cit27)/*[position()=1]) 2014; 14 Gaikwad (C6TA08358G-(cit18)/*[position()=1]) 2015; 3 Wang (C6TA08358G-(cit43)/*[position()=1]) 2005; 17 Gai (C6TA08358G-(cit14)/*[position()=1]) 2016; 19 Gao (C6TA08358G-(cit2)/*[position()=1]) 2016; 529 Hwang (C6TA08358G-(cit6)/*[position()=1]) 2015; 15 MacVittie (C6TA08358G-(cit53)/*[position()=1]) 2014; 50 Kim (C6TA08358G-(cit26)/*[position()=1]) 2016; 1 Jia (C6TA08358G-(cit1)/*[position()=1]) 2013; 85 Lee (C6TA08358G-(cit33)/*[position()=1]) 2012; 24 Vagin (C6TA08358G-(cit20)/*[position()=1]) 2016; 190 Casalongue (C6TA08358G-(cit29)/*[position()=1]) 2013; 4 Cignini (C6TA08358G-(cit31)/*[position()=1]) 1978; 23 Kemp (C6TA08358G-(cit46)/*[position()=1]) 2005; 289 Pham (C6TA08358G-(cit37)/*[position()=1]) 2015; 3 Jia (C6TA08358G-(cit9)/*[position()=1]) 2013; 52 Lee (C6TA08358G-(cit4)/*[position()=1]) 2016; 11 Cui (C6TA08358G-(cit51)/*[position()=1]) 2007; 22 Son (C6TA08358G-(cit3)/*[position()=1]) 2014; 9 Ogawa (C6TA08358G-(cit11)/*[position()=1]) 2015; 74 Gray (C6TA08358G-(cit25)/*[position()=1]) 2004; 16 Gonzalez (C6TA08358G-(cit28)/*[position()=1]) 2008; 48 Bauhofer (C6TA08358G-(cit34)/*[position()=1]) 2009; 69 Jia (C6TA08358G-(cit47)/*[position()=1]) 2014; 2 Valdés-Ramírez (C6TA08358G-(cit8)/*[position()=1]) 2014; 47 Murray (C6TA08358G-(cit36)/*[position()=1]) 2005; 5 Teymourian (C6TA08358G-(cit52)/*[position()=1]) 2013; 49 Wang (C6TA08358G-(cit39)/*[position()=1]) 2011; 36 Sekretaryova (C6TA08358G-(cit13)/*[position()=1]) 2014; 86 Harvey (C6TA08358G-(cit22)/*[position()=1]) 2010; 24 Valenza (C6TA08358G-(cit45)/*[position()=1]) 2005; 9 Wang (C6TA08358G-(cit15)/*[position()=1]) 2016; 88 Meredith (C6TA08358G-(cit49)/*[position()=1]) 2012; 5 Pistoia (C6TA08358G-(cit32)/*[position()=1]) 2005 Harn (C6TA08358G-(cit38)/*[position()=1]) 2015; 7 Nelson (C6TA08358G-(cit50)/*[position()=1]) 2008 Bandodkar (C6TA08358G-(cit7)/*[position()=1]) 2016; 1 Katz (C6TA08358G-(cit12)/*[position()=1]) 2001; 123 Lund (C6TA08358G-(cit42)/*[position()=1]) 2013; 536 Reuillard (C6TA08358G-(cit23)/*[position()=1]) 2013; 15 Rassaei (C6TA08358G-(cit44)/*[position()=1]) 2014; 406 22610599 - Adv Mater. 2012 Jul 3;24(25):3326-32 26283586 - Biosens Bioelectron. 2016 Jan 15;75:23-7 26163747 - Biosens Bioelectron. 2016 Feb 15;76:91-102 24999718 - Sensors (Basel). 2014 Jul 04;14(7):11855-77 26864988 - Anal Chem. 2016 Mar 15;88(6):3243-8 24687004 - Chem Commun (Camb). 2014 May 14;50(37):4816-9 24037614 - Anal Bioanal Chem. 2014 Jan;406(1):123-37 23455694 - Phys Chem Chem Phys. 2013 Apr 14;15(14):4892-6 16277476 - Nano Lett. 2005 Nov;5(11):2319-24 26257187 - Biosens Bioelectron. 2015 Dec 15;74:947-52 26819044 - Nature. 2016 Jan 28;529(7587):509-14 16356243 - Crit Care. 2005;9(6):588-93 16105824 - Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R895-901; author reply R904-910 23815621 - Anal Chem. 2013 Jul 16;85(14):6553-60 25706246 - Nano Lett. 2015 May 13;15(5):2801-8 22223361 - Angew Chem Int Ed Engl. 2012 Mar 12;51(11):2686-9 22704470 - Anal Chim Acta. 2012 Jul 13;734:31-44 25164485 - Anal Chem. 2014 Oct 7;86(19):9540-7 22704841 - Biosens Bioelectron. 2013 Feb 15;40(1):45-9 20599493 - Toxicol In Vitro. 2010 Sep;24(6):1790-6 21836009 - Science. 2011 Aug 12;333(6044):838-43 26999482 - Nat Nanotechnol. 2016 Jun;11(6):566-72 20698679 - J Am Chem Soc. 2010 Aug 18;132(32):11132-40 23729381 - Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7233-6 23708810 - Biosens Bioelectron. 2013 Nov 15;49:1-8 24681776 - Nat Nanotechnol. 2014 May;9(5):397-404 26694819 - Nano Lett. 2016 Jan 13;16(1):721-7 22524222 - Annu Rev Anal Chem (Palo Alto Calif). 2012;5:157-79 26109453 - Nat Commun. 2015 Jun 25;6:7461 17408948 - Biosens Bioelectron. 2007 Jun 15;22(12):3288-92 25419994 - ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20752-7 11674014 - J Am Chem Soc. 2001 Oct 31;123(43):10752-3 |
References_xml | – volume: 3 start-page: 7720 year: 2015 ident: C6TA08358G-(cit37)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C5TC01274K – volume: 536 start-page: 156 year: 2013 ident: C6TA08358G-(cit42)/*[position()=1] publication-title: Thin Solid Films doi: 10.1016/j.tsf.2013.04.026 – volume: 529 start-page: 509 year: 2016 ident: C6TA08358G-(cit2)/*[position()=1] publication-title: Nature doi: 10.1038/nature16521 – volume: 24 start-page: 3326 year: 2012 ident: C6TA08358G-(cit33)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201200359 – volume-title: Batteries for Portable Devices year: 2005 ident: C6TA08358G-(cit32)/*[position()=1] – volume: 9 start-page: 588 year: 2005 ident: C6TA08358G-(cit45)/*[position()=1] publication-title: Critical Care doi: 10.1186/cc3818 – volume: 47 start-page: 58 year: 2014 ident: C6TA08358G-(cit8)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.07.014 – volume: 6 year: 2015 ident: C6TA08358G-(cit19)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms8461 – volume: 190 start-page: 495 year: 2016 ident: C6TA08358G-(cit20)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.12.183 – volume: 15 start-page: 4892 year: 2013 ident: C6TA08358G-(cit23)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50767j – volume: 48 start-page: 825 year: 2008 ident: C6TA08358G-(cit28)/*[position()=1] publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2008.03.025 – volume: 33 start-page: 2097 year: 2008 ident: C6TA08358G-(cit40)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.01.049 – volume: 5 start-page: 157 year: 2012 ident: C6TA08358G-(cit49)/*[position()=1] publication-title: Annu. Rev. Anal. Chem. doi: 10.1146/annurev-anchem-062011-143049 – volume: 11 start-page: 566 year: 2016 ident: C6TA08358G-(cit4)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.38 – volume: 2 start-page: 18184 year: 2014 ident: C6TA08358G-(cit47)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA04796F – volume: 26 start-page: 1678 year: 2016 ident: C6TA08358G-(cit35)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504755 – volume: 17 start-page: 7 year: 2005 ident: C6TA08358G-(cit43)/*[position()=1] publication-title: Electroanalysis doi: 10.1002/elan.200403113 – volume: 49 start-page: 1 year: 2013 ident: C6TA08358G-(cit52)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.04.034 – volume: 15 start-page: 2801 year: 2015 ident: C6TA08358G-(cit6)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl503997m – volume: 1 start-page: 1011 year: 2016 ident: C6TA08358G-(cit26)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.6b00356 – volume: 50 start-page: 4816 year: 2014 ident: C6TA08358G-(cit53)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c4cc01540a – volume: 14 start-page: 11855 year: 2014 ident: C6TA08358G-(cit27)/*[position()=1] publication-title: Sensors doi: 10.3390/s140711855 – volume: 74 start-page: 947 year: 2015 ident: C6TA08358G-(cit11)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.07.063 – volume: 36 start-page: 7374 year: 2011 ident: C6TA08358G-(cit39)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.03.096 – volume: 132 start-page: 11132 year: 2010 ident: C6TA08358G-(cit30)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1020487 – volume: 51 start-page: 2686 year: 2012 ident: C6TA08358G-(cit54)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201107068 – volume: 734 start-page: 31 year: 2012 ident: C6TA08358G-(cit17)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2012.05.018 – volume: 6 start-page: 20752 year: 2014 ident: C6TA08358G-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am504932j – volume: 406 start-page: 123 year: 2014 ident: C6TA08358G-(cit44)/*[position()=1] publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-013-7307-1 – volume: 88 start-page: 3243 year: 2016 ident: C6TA08358G-(cit15)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.5b04651 – volume: 22 start-page: 3288 year: 2007 ident: C6TA08358G-(cit51)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2007.03.004 – volume: 75 start-page: 23 year: 2016 ident: C6TA08358G-(cit24)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.07.070 – volume: 40 start-page: 45 year: 2013 ident: C6TA08358G-(cit10)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.05.041 – volume: 333 start-page: 838 year: 2011 ident: C6TA08358G-(cit5)/*[position()=1] publication-title: Science doi: 10.1126/science.1206157 – volume: 86 start-page: 9540 year: 2014 ident: C6TA08358G-(cit13)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac501699p – volume: 3 start-page: 305 year: 2015 ident: C6TA08358G-(cit18)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201402182 – volume: 24 start-page: 197 year: 2012 ident: C6TA08358G-(cit16)/*[position()=1] publication-title: Electroanalysis doi: 10.1002/elan.201100631 – volume: 289 start-page: R895 year: 2005 ident: C6TA08358G-(cit46)/*[position()=1] publication-title: Am. J. Physiol.: Regul., Integr. Comp. Physiol. – volume: 1 start-page: 464 year: 2016 ident: C6TA08358G-(cit7)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.6b00250 – volume: 69 start-page: 1486 year: 2009 ident: C6TA08358G-(cit34)/*[position()=1] publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2008.06.018 – volume: 85 start-page: 6553 year: 2013 ident: C6TA08358G-(cit1)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac401573r – volume: 52 start-page: 7233 year: 2013 ident: C6TA08358G-(cit9)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302922 – volume: 4 year: 2013 ident: C6TA08358G-(cit29)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3817 – volume: 123 start-page: 10752 year: 2001 ident: C6TA08358G-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0167102 – volume: 16 start-page: 721 year: 2016 ident: C6TA08358G-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04549 – volume: 16 start-page: 393 year: 2004 ident: C6TA08358G-(cit25)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200306107 – volume: 7 start-page: 80 year: 2015 ident: C6TA08358G-(cit38)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.201402747 – volume-title: Lehninger Principles of Biochemistry year: 2008 ident: C6TA08358G-(cit50)/*[position()=1] – volume: 19 start-page: 541 year: 2016 ident: C6TA08358G-(cit14)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.03.035 – volume: 23 start-page: 1099 year: 1978 ident: C6TA08358G-(cit31)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/0013-4686(78)85021-X – volume: 76 start-page: 91 year: 2016 ident: C6TA08358G-(cit48)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2015.06.029 – volume: 5 start-page: 2319 year: 2005 ident: C6TA08358G-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl051834o – volume: 24 start-page: 1790 year: 2010 ident: C6TA08358G-(cit22)/*[position()=1] publication-title: Toxicol. in Vitro doi: 10.1016/j.tiv.2010.06.016 – volume: 9 start-page: 397 year: 2014 ident: C6TA08358G-(cit3)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.38 – reference: 17408948 - Biosens Bioelectron. 2007 Jun 15;22(12):3288-92 – reference: 24687004 - Chem Commun (Camb). 2014 May 14;50(37):4816-9 – reference: 26819044 - Nature. 2016 Jan 28;529(7587):509-14 – reference: 26109453 - Nat Commun. 2015 Jun 25;6:7461 – reference: 23708810 - Biosens Bioelectron. 2013 Nov 15;49:1-8 – reference: 26283586 - Biosens Bioelectron. 2016 Jan 15;75:23-7 – reference: 11674014 - J Am Chem Soc. 2001 Oct 31;123(43):10752-3 – reference: 26163747 - Biosens Bioelectron. 2016 Feb 15;76:91-102 – reference: 23729381 - Angew Chem Int Ed Engl. 2013 Jul 8;52(28):7233-6 – reference: 26864988 - Anal Chem. 2016 Mar 15;88(6):3243-8 – reference: 26999482 - Nat Nanotechnol. 2016 Jun;11(6):566-72 – reference: 16277476 - Nano Lett. 2005 Nov;5(11):2319-24 – reference: 26694819 - Nano Lett. 2016 Jan 13;16(1):721-7 – reference: 16105824 - Am J Physiol Regul Integr Comp Physiol. 2005 Sep;289(3):R895-901; author reply R904-910 – reference: 25164485 - Anal Chem. 2014 Oct 7;86(19):9540-7 – reference: 16356243 - Crit Care. 2005;9(6):588-93 – reference: 25706246 - Nano Lett. 2015 May 13;15(5):2801-8 – reference: 24037614 - Anal Bioanal Chem. 2014 Jan;406(1):123-37 – reference: 22524222 - Annu Rev Anal Chem (Palo Alto Calif). 2012;5:157-79 – reference: 20599493 - Toxicol In Vitro. 2010 Sep;24(6):1790-6 – reference: 21836009 - Science. 2011 Aug 12;333(6044):838-43 – reference: 22223361 - Angew Chem Int Ed Engl. 2012 Mar 12;51(11):2686-9 – reference: 26257187 - Biosens Bioelectron. 2015 Dec 15;74:947-52 – reference: 22704470 - Anal Chim Acta. 2012 Jul 13;734:31-44 – reference: 22610599 - Adv Mater. 2012 Jul 3;24(25):3326-32 – reference: 22704841 - Biosens Bioelectron. 2013 Feb 15;40(1):45-9 – reference: 24999718 - Sensors (Basel). 2014 Jul 04;14(7):11855-77 – reference: 25419994 - ACS Appl Mater Interfaces. 2014 Dec 10;6(23):20752-7 – reference: 20698679 - J Am Chem Soc. 2010 Aug 18;132(32):11132-40 – reference: 23455694 - Phys Chem Chem Phys. 2013 Apr 14;15(14):4892-6 – reference: 24681776 - Nat Nanotechnol. 2014 May;9(5):397-404 – reference: 23815621 - Anal Chem. 2013 Jul 16;85(14):6553-60 |
SSID | ssj0000800699 |
Score | 2.6048856 |
Snippet | Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 18342 |
SubjectTerms | Biochemical fuel cells biosensors chemistry deformation Devices electric potential difference Electronics fabrics fuels glucose Inks lactic acid microbial fuel cells Nanostructure Sensors serpentine Stretching sweat synergism Wearable |
Title | Stretchable biofuel cells as wearable textile-based self-powered sensors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28439415 https://www.proquest.com/docview/1850773794 https://www.proquest.com/docview/1864579344 https://www.proquest.com/docview/1891890659 https://www.proquest.com/docview/2271858679 https://pubmed.ncbi.nlm.nih.gov/PMC5400293 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK9wA8IBi3clMQvKAqJbEdJ3msqo4OdQOJVOpbZDvOVqmkFU1B4lfwkzm2kzSlYxpIldXGzqU-X44_2-eC0FuYn2UCC-oSiqWrN2bcSOmo-zwnTACqWaR9h8_O2WRGP86Deafzq2W1tC3FQP680q_kf6QKx0Cu2kv2HyTbXBQOwHeQL5QgYShvJGO9pQy9bryfxGKVb9Wyr1fiNzp7zA_AsKnRth3w7rt6wMr6G7XM3bXOjWZ-FJtVtZ9zyFCBzNp_0Zd1WrhBf2g9fOoaEzHc-g-aJfjaH0ub3O7Mc5R28rJLradleblY7zb_v6iva70cWZar2l-bA_FtNqA-8--LpnaYwV0L3lJV9pziwj2rQohXKxi-yftj3aKtosNe4LkhtZlta61MW-CjYX89AN1DsQtlQFoK1xxtjd5N_cHQ4BEdWVWykmvWGV3sBsB60__8U3oym07TZDxPbqEjDBMP3EVHw3FyOm3W7TTDZiYtafPYddRbEr_fXX6f5xxMXv60wW2RmuQ-ulfJ2hlaaD1AHVUco9ujWtrH6G4rXuVDNGkBzqkA5xjAOXzj1IBz9gDntAHnVIB7hGYn42Q0catUHK4ERl26Ps3DXIVZGEiS-36cM19imExERHEcqwxLPZf1pJQq5pyynAY8JDKOAsEkzhh5jLrFqlBPkSNyX1IRs0j6giqf8SjOFScxBxXBhQh66F3dcams4tTrdCnL1NhLkDgdsWRoOvlDD71p2q5tdJYrW72u-z-F7tPdAkBebTcpkFUvDAmMSde1YTSAUYxe2yaGjzZR-HsbjIEGBjq-ZQ89sbJvnhk4IomBSvdQuIeKpoEOAr9fUywuTTB4mHF5QNmf3eC-z9Gd3ev3AnXLb1v1Eih1KV5VKP8N6bPTUQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stretchable+biofuel+cells+as+wearable+textile-based+self-powered+sensors&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Jeerapan%2C+Itthipon&rft.au=Sempionatto%2C+Juliane+R&rft.au=Pavinatto%2C+Adriana&rft.au=You%2C+Jung-Min&rft.date=2016-12-21&rft.issn=2050-7496&rft.volume=4&rft.issue=47+p.18342-18353&rft.spage=18342&rft.epage=18353&rft_id=info:doi/10.1039%2Fc6ta08358g&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |