Intravenous infusion of nerve growth factor-secreting monocytes supports the survival of cholinergic neurons in the nucleus basalis of meynert in hypercholesterolemia brown-norway rats

The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood–brain barrier...

Full description

Saved in:
Bibliographic Details
Published inJournal of neuroscience research Vol. 92; no. 3; pp. 298 - 306
Main Authors Hohsfield, Lindsay A., Ehrlich, Daniela, Humpel, Christian
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.03.2014
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood–brain barrier dysfunction, but do not develop amyloid plaques. This study was designed to evaluate the effects of repeated intravenous (i.v.) infusion (via the dorsal penile vein) of primary monocytes on cognition, the cholinergic system, and cortical cytokine levels in hypercholesterolemia Brown‐Norway rats. In addition, we also transduced the monocytes with nerve growth factor (NGF) to evaluate whether these cells could be used to deliver a neuroprotective agent to the brain. Our results indicate that repeated i.v. infused monocytes migrate into the brains of hypercholesterolemic rats; however, this migration does not translate into marked effects on learning. Animals receiving NGF‐loaded monocytes demonstrate slightly improved learning and significantly elevated cholinergic neuron staining compared to treatment with monocytes alone. Furthermore, our data indicate that repeated infusion of monocytes does not lead to elevated cytokine secretion, indicating that no inflammatory response is induced. This study provides an experimental attempt to evaluate the effects of blood‐derived primary monocytes in hypercholesterolemia rats. © 2013 Wiley Periodicals, Inc.
AbstractList The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood–brain barrier dysfunction, but do not develop amyloid plaques. This study was designed to evaluate the effects of repeated intravenous (i.v.) infusion (via the dorsal penile vein) of primary monocytes on cognition, the cholinergic system, and cortical cytokine levels in hypercholesterolemia Brown‐Norway rats. In addition, we also transduced the monocytes with nerve growth factor (NGF) to evaluate whether these cells could be used to deliver a neuroprotective agent to the brain. Our results indicate that repeated i.v. infused monocytes migrate into the brains of hypercholesterolemic rats; however, this migration does not translate into marked effects on learning. Animals receiving NGF‐loaded monocytes demonstrate slightly improved learning and significantly elevated cholinergic neuron staining compared to treatment with monocytes alone. Furthermore, our data indicate that repeated infusion of monocytes does not lead to elevated cytokine secretion, indicating that no inflammatory response is induced. This study provides an experimental attempt to evaluate the effects of blood‐derived primary monocytes in hypercholesterolemia rats. © 2013 Wiley Periodicals, Inc.
The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood-brain barrier dysfunction, but do not develop amyloid plaques. This study was designed to evaluate the effects of repeated intravenous (i.v.) infusion (via the dorsal penile vein) of primary monocytes on cognition, the cholinergic system, and cortical cytokine levels in hypercholesterolemia Brown-Norway rats. In addition, we also transduced the monocytes with nerve growth factor (NGF) to evaluate whether these cells could be used to deliver a neuroprotective agent to the brain. Our results indicate that repeated i.v. infused monocytes migrate into the brains of hypercholesterolemic rats; however, this migration does not translate into marked effects on learning. Animals receiving NGF-loaded monocytes demonstrate slightly improved learning and significantly elevated cholinergic neuron staining compared to treatment with monocytes alone. Furthermore, our data indicate that repeated infusion of monocytes does not lead to elevated cytokine secretion, indicating that no inflammatory response is induced. This study provides an experimental attempt to evaluate the effects of blood-derived primary monocytes in hypercholesterolemia rats. copyright 2013 Wiley Periodicals, Inc.
The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood-brain barrier dysfunction, but do not develop amyloid plaques. This study was designed to evaluate the effects of repeated intravenous (i.v.) infusion (via the dorsal penile vein) of primary monocytes on cognition, the cholinergic system, and cortical cytokine levels in hypercholesterolemia Brown-Norway rats. In addition, we also transduced the monocytes with nerve growth factor (NGF) to evaluate whether these cells could be used to deliver a neuroprotective agent to the brain. Our results indicate that repeated i.v. infused monocytes migrate into the brains of hypercholesterolemic rats; however, this migration does not translate into marked effects on learning. Animals receiving NGF-loaded monocytes demonstrate slightly improved learning and significantly elevated cholinergic neuron staining compared to treatment with monocytes alone. Furthermore, our data indicate that repeated infusion of monocytes does not lead to elevated cytokine secretion, indicating that no inflammatory response is induced. This study provides an experimental attempt to evaluate the effects of blood-derived primary monocytes in hypercholesterolemia rats.
The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid plaque burden. Our previous investigations have shown that hypercholesterolemic rats develop cognitive, cholinergic, and blood-brain barrier dysfunction, but do not develop amyloid plaques. This study was designed to evaluate the effects of repeated intravenous (i.v.) infusion (via the dorsal penile vein) of primary monocytes on cognition, the cholinergic system, and cortical cytokine levels in hypercholesterolemia Brown-Norway rats. In addition, we also transduced the monocytes with nerve growth factor (NGF) to evaluate whether these cells could be used to deliver a neuroprotective agent to the brain. Our results indicate that repeated i.v. infused monocytes migrate into the brains of hypercholesterolemic rats; however, this migration does not translate into marked effects on learning. Animals receiving NGF-loaded monocytes demonstrate slightly improved learning and significantly elevated cholinergic neuron staining compared to treatment with monocytes alone. Furthermore, our data indicate that repeated infusion of monocytes does not lead to elevated cytokine secretion, indicating that no inflammatory response is induced. This study provides an experimental attempt to evaluate the effects of blood-derived primary monocytes in hypercholesterolemia rats. © 2013 Wiley Periodicals, Inc. [PUBLICATION ABSTRACT]
Author Humpel, Christian
Ehrlich, Daniela
Hohsfield, Lindsay A.
Author_xml – sequence: 1
  givenname: Lindsay A.
  surname: Hohsfield
  fullname: Hohsfield, Lindsay A.
  organization: Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
– sequence: 2
  givenname: Daniela
  surname: Ehrlich
  fullname: Ehrlich, Daniela
  organization: Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
– sequence: 3
  givenname: Christian
  surname: Humpel
  fullname: Humpel, Christian
  email: christian.humpel@i-med.ac.at
  organization: Laboratory of Psychiatry and Experimental Alzheimer's Research, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Innsbruck, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24323796$$D View this record in MEDLINE/PubMed
BookMark eNqNkstu1DAUQCNURKeFBT-AIrGBRVo7dsbxBglVTFtaFQnxEhvLdm5mPCT2YCcZ8md8Hk6nHQESEivL8rnnPnyPkgPrLCTJU4xOMEL56dr6k5wQxB8kM4w4y2hB2UEyQ2SOMopwfpgchbBGCHFekEfJYU5JThifz5Kfl7bzcgDr-pAaW_fBOJu6OrXgB0iX3m27VVpL3TmfBdAeOmOXaeus02MHIQ39ZuN8F9JuBfHiBzPIZhLolWtMtCyNjrLeOzsluMVsrxuI-ZQMsjFholsYI9tNxGrcgJ-iIXTg49EamapYiM2s81s5pl524XHysJZNgCd353HycfHmw9lFdv3u_PLs9XWmC0x5RlWJpEa1VJjRqs5LUkBRFZwQjgua86osldKK8lrnWpZVXmEAJTlR8wokKHKcvNp5N71qodIwzasRG29a6UfhpBF_vlizEks3CEowxpREwYs7gXff-9iTaE3Q0DTSQhy6iFXOy5KUiP8PihhmhE3W53-ha9d7GycRKcYYKcqSRurljtLeheCh3teNkZhWR8TVEberE9lnvze6J-93JQKnO2BrGhj_bRJvb97fK7NdhIk_-WMfIf03MY9dFOLzzbm4-LS4YouvV-IL-QXyZOaq
CitedBy_id crossref_primary_10_3389_fnagi_2015_00047
crossref_primary_10_1016_j_phrs_2017_03_020
crossref_primary_10_1016_j_neulet_2014_05_033
crossref_primary_10_1016_j_exger_2015_03_002
crossref_primary_10_1007_s10522_015_9580_1
Cites_doi 10.1371/journal.pone.0013950
10.1523/JNEUROSCI.0329-10.2010
10.1007/s12035-012-8337-y
10.1016/j.jim.2013.02.016
10.1016/j.mcn.2012.03.001
10.2310/JIM.0b013e318246d973
10.1186/1479-5876-10-239
10.1016/j.exger.2009.10.005
10.2174/156720210792231787
10.1038/nn0403-345
10.1016/j.neuron.2009.09.035
10.1016/j.neuron.2006.01.022
10.1016/j.expneurol.2005.12.009
10.2174/156720208785425701
10.2174/156720509787602870
10.1016/j.neubiorev.2010.04.010
10.1111/j.1749-6632.2000.tb06384.x
10.2174/156720511795256017
10.1136/jnnp.2008.150433
10.1002/glia.20973
10.1002/path.4106
10.1371/journal.pmed.1000113
10.1111/j.1471-4159.2008.05415.x
10.3233/JAD-2008-14202
10.1038/nrneurol.2010.71
10.1111/j.1460-9568.2010.07434.x
10.1016/j.brainres.2009.11.062
10.1016/j.brainresbull.2007.07.004
10.1523/JNEUROSCI.2545-05.2005
10.1016/j.nlm.2013.08.007
10.1523/JNEUROSCI.3567-08.2009
10.1017/S1092852900014164
10.1523/JNEUROSCI.6209-10.2011
10.1016/S1474-4422(05)70248-9
10.1016/j.mcn.2010.08.001
10.1038/nm1555
10.1111/j.1471-4159.2006.04079.x
10.1126/science.283.5400.401
ContentType Journal Article
Copyright Copyright © 2013 Wiley Periodicals, Inc.
2013 Wiley Periodicals, Inc. 2013
Copyright_xml – notice: Copyright © 2013 Wiley Periodicals, Inc.
– notice: 2013 Wiley Periodicals, Inc. 2013
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QP
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
DOI 10.1002/jnr.23309
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Animal Behavior Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
Neurosciences Abstracts
MEDLINE

Technology Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1097-4547
EndPage 306
ExternalDocumentID 3182677451
10_1002_jnr_23309
24323796
JNR23309
ark_67375_WNG_HVFK7FZK_X
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Austrian Science Funds
  funderid: P24541‐B24
– fundername: Austrian Science Fund FWF
  grantid: P 24541
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEQTP
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
YYP
ZGI
ZXP
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QP
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c5149-4b80ac0fab174df2835e5d5933915429d88bbcb49fc2ca8d2d1eeba93b6deaeb3
IEDL.DBID DR2
ISSN 0360-4012
IngestDate Tue Sep 17 21:18:59 EDT 2024
Fri Aug 16 11:36:10 EDT 2024
Fri Aug 16 23:09:38 EDT 2024
Thu Oct 10 22:07:56 EDT 2024
Fri Aug 23 01:47:24 EDT 2024
Sat Sep 28 08:22:57 EDT 2024
Sat Aug 24 00:51:08 EDT 2024
Wed Jan 17 05:01:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords monocytes
NGF
brain
hypercholesterolemia
Language English
License Copyright © 2013 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5149-4b80ac0fab174df2835e5d5933915429d88bbcb49fc2ca8d2d1eeba93b6deaeb3
Notes Austrian Science Funds - No. P24541-B24
ark:/67375/WNG-HVFK7FZK-X
ArticleID:JNR23309
istex:B279E67698F55D99B24CC5915A2C996885A55A74
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://europepmc.org/articles/pmc4311143?pdf=render
PMID 24323796
PQID 1477735884
PQPubID 1006396
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4311143
proquest_miscellaneous_1496883809
proquest_miscellaneous_1490717373
proquest_journals_1477735884
crossref_primary_10_1002_jnr_23309
pubmed_primary_24323796
wiley_primary_10_1002_jnr_23309_JNR23309
istex_primary_ark_67375_WNG_HVFK7FZK_X
PublicationCentury 2000
PublicationDate March 2014
PublicationDateYYYYMMDD 2014-03-01
PublicationDate_xml – month: 03
  year: 2014
  text: March 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of neuroscience research
PublicationTitleAlternate Journal of Neuroscience Research
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Maulik M, Westaway D, Jhamandas JH, Kar S. 2013. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 47:37-63.
Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS, Bhat NR. 2008. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 106:475-485.
Stalder AK, Ermini F, Bondolfi L, Krenger W, Burbach GJ, Deller T, Coomaraswamy J, Staufenbiel M, Landmann R, Jucker M. 2005. Invasion of hematopoietic cells in the brain of amyloid precursor protein transgenic mice. J Neurosci 25:11125-11132.
Ullrich C, Pirchl M, Humpel C. 2010. Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits. Mol Cell Neurosci 45:408-417.
Haag MD, Hofman A, Koudstaal PJ, Stricker BH, Breteler MM. 2008. Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study. J Neurol Neurosurg Psychiatry 80:13-17.
Granholm AC, Bimonte-Nelson HA, Moore AB, Nelson ME, Freeman LR, Sambamurti K. 2008. Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. J Alzheimers Dis 14:133-145.
Aloe L, Rocco ML, Bianchi P, Manni L. 2012. Nerve growth factor: from the early discoveries to the potential clinical use. J Transl Med 10:239.
Shobab LA, Hsiung GY, Feldman HH. 2005. Cholesterol in Alzheimer's disease. Lancet Neurol 4:841-852.
Mildner A, Schlevogt B, Kierdorf K, Böttcher C, Erny D, Kummer MP, Quinn M, Brück W, Bechmann I, Heneka MT, Priller J, Prinz M. 2011. Distinct and non-redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease. J Neurosci 31:11159-11171.
El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD. 2007. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432-438.
Schreurs BG. 2010. The effects of cholesterol on learning and memory. Neurosci Biobehav Rev 34:1366-1379.
Zassler B, Humpel C. 2006. Transplantation of NGF secreting primary monocytes counteracts NMDA-induced cell death of rat cholinergic neurons in vivo. Exp Neurol 198:391-400.
Simard AR, Soulet D, Gowing G, Julien JP, Rivest S. 2006. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 49:489-502.
Pirchl M, Ullrich C, Sperner-Unterweger B, Humpel C. 2012. Homocysteine has anti-inflammatory properties in a hypercholesterolemic rat model in vivo. Mol Cell Neurosci 49:456-463.
Humpel C. 2008. Basolateral aggregated rat amyloid beta (1-42) potentiates transmigration of primary rat monocytes through a rat blood brain barrier. Curr Neurovasc Res 5:185-192.
Rezai-Zadeh K, Gate D, Gowing G, Town T. 2011. How to get from here to there: macrophage recruitment in Alzheimer's disease. Curr Alzheimer Res 8:156-163.
Schreurs BG, Wang D, Smith-Bell CA, Burhans LB, Bell R, Gonzalez-Joekes J. 2012. Dietary cholesterol concentration and duration degrade long-term memory of classical conditioning of the rabbit's nictitating membrane response. Int J Alzheimers Dis 2012:732634.
Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M. 2009. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113.
Hohsfield LA, Humpel C. 2010. Homocysteine enhances transmigration of rat monocytes through a brain capillary endothelial cell monolayer via ICAM-1. Curr Neurovasc Res 7:192-200.
Moser KV, Humpel C. 2007. Primary rat monocytes migrate through a BCEC monolayer and express microglia markers at the basolateral side. Brain Res Bull 74:336-343.
Böttger D, Ullrich C, Humpel C. 2010. Monocytes deliver bioactive nerve growth factor through a brain capillary endothelial cell monolayer in vitro and counteract degeneration of cholinergic neurons. Brain Res 1312:108-119.
Puglielli L, Tanzi RE, Kovacs DM. 2003. Alzheimer's disease: the cholesterol connection. Nat Neurosci 6:345-351.
Shechter R, Schwartz M. 2013. Harnessing monocyte-derived macrophages to control central nervous system pathologies: no longer "if" but "how." J Pathol 229:332-346.
Paxinos G, Watson C. 1986. The rat brain in stereotaxic coordinates, 2nd ed. Sydney: Academic Press.
Malm T, Koistinaho M, Muona A, Magga J, Koistinaho J. 2010. The role and therapeutic potential of monocytic cells in Alzheimer's disease. Glia 58:889-900.
Hohsfield LA, Geley S, Reindl M, Humpel C. 2013b. The generation of NGF-secreting primary rat monocytes: a comparison of different transfer methods. J Immunol Methods 391:112-124.
Yong VW, Rivest S. 2009. Taking advantage of the systemic immune system to cure brain diseases. Neuron 64:55-60.
Jones L, Holmans PA, Hamshere ML, Harold D, Moskvina V, Ivanov D, Pocklington A, Abraham R, Hollingworth P, Sims R, Gerrish A, Pahwa JS, Jones N, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, Kölsch H, van den Bussche H, Heuser I, Peters O, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Rüther E, Carrasquillo MM, Pankratz VS, Younkin SG, Hardy J, O'Donovan MC, Owen MJ, Williams J. 2010. Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease. PLoS One 5:e13950.
Hochstrasser T, Weiss E, Marksteiner J, Humpel C. 2010. Soluble cell adhesion molecules in monocytes of Alzheimer's disease and mild cognitive impairment. Exp Gerontol 45:70-74.
Sparks DL, Kuo YM, Roher A, Martin T, Lukas RJ. 2000. Alterations of Alzheimer's disease in the cholesterol-fed rabbit, including vascular inflammation. Preliminary observations. Ann N Y Acad Sci 903:335-344.
D'Mello C, Le T, Swain MG. 2009. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29:2089-2102.
Covaceuszach S, Capsoni S, Ugolini G, Spirito F, Vignone D, Cattaneo A. 2009. Development of a noninvasive NGF-based therapy for Alzheimer's disease. Curr Alzheimer Res 6:158-170.
Lebson L, Nash K, Kamath S, Herber D, Carty N, Lee DC, Li Q, Szekeres K, Jinwal U, Koren J, Dickey CA, Gottschall PE, Morgan D, Gordon MN. 2010. Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci 30:9651-9658.
Reiss AB, Voloshyna I. 2012. Regulation of cerebral cholesterol metabolism in Alzheimer disease. J Invest Med 60:576-582.
Ghribi O, Golovko MY, Larsen B, Schrag M, Murphy EJ. 2006. Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J Neurochem 99:438-449.
Pirchl M, Ullrich C, Humpel C. 2010. Differential effects of short- and long-term hyperhomocysteinaemia on cholinergic neurons, spatial memory and microbleedings in vivo in rats. Eur J Neurosci 32:1516-1527.
Hohsfield LA, Ehrlich D, Humpel C. 2013a. Cholesterol diet counteracts repeated anesthesia/infusion-induced cognitive deficits in male brown-Norway rats. Neurobiol Learn Mem (in press).
Francis PT. 2005. The interplay of neurotransmitters in Alzheimer's disease. CNS Spectr 10:6-9.
Schwartz M, Shechter R. 2010. Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6:405-410.
2010; 34
2012; 60
2010; 32
2013; 47
2012; 2012
2010; 58
2009; 64
2013b; 391
2013; 229
2006; 99
2008; 14
2011; 31
2006; 198
2008; 106
2008; 5
2013a
2007; 74
2012; 10
2010; 1312
2007; 13
2011; 8
2009; 29
2005; 25
2010; 45
2000; 903
2003; 6
2006; 49
1986
2005; 4
2005; 10
2009; 6
2012; 49
2010; 5
2010; 7
2010; 30
2008; 80
2010; 6
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
Schreurs BG (e_1_2_6_29_1) 2012; 2012
e_1_2_6_20_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 229
  start-page: 332
  year: 2013
  end-page: 346
  article-title: Harnessing monocyte‐derived macrophages to control central nervous system pathologies: no longer “if” but “how.”
  publication-title: J Pathol
– volume: 4
  start-page: 841
  year: 2005
  end-page: 852
  article-title: Cholesterol in Alzheimer's disease
  publication-title: Lancet Neurol
– volume: 25
  start-page: 11125
  year: 2005
  end-page: 11132
  article-title: Invasion of hematopoietic cells in the brain of amyloid precursor protein transgenic mice
  publication-title: J Neurosci
– volume: 6
  start-page: 158
  year: 2009
  end-page: 170
  article-title: Development of a noninvasive NGF‐based therapy for Alzheimer's disease
  publication-title: Curr Alzheimer Res
– volume: 7
  start-page: 192
  year: 2010
  end-page: 200
  article-title: Homocysteine enhances transmigration of rat monocytes through a brain capillary endothelial cell monolayer via ICAM‐1
  publication-title: Curr Neurovasc Res
– volume: 49
  start-page: 489
  year: 2006
  end-page: 502
  article-title: Bone marrow‐derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease
  publication-title: Neuron
– volume: 6
  start-page: 345
  year: 2003
  end-page: 351
  article-title: Alzheimer's disease: the cholesterol connection
  publication-title: Nat Neurosci
– volume: 80
  start-page: 13
  year: 2008
  end-page: 17
  article-title: Statins are associated with a reduced risk of Alzheimer disease regardless of lipophilicity. The Rotterdam Study
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 60
  start-page: 576
  year: 2012
  end-page: 582
  article-title: Regulation of cerebral cholesterol metabolism in Alzheimer disease
  publication-title: J Invest Med
– volume: 34
  start-page: 1366
  year: 2010
  end-page: 1379
  article-title: The effects of cholesterol on learning and memory
  publication-title: Neurosci Biobehav Rev
– volume: 106
  start-page: 475
  year: 2008
  end-page: 485
  article-title: High cholesterol‐induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice
  publication-title: J Neurochem
– volume: 198
  start-page: 391
  year: 2006
  end-page: 400
  article-title: Transplantation of NGF secreting primary monocytes counteracts NMDA‐induced cell death of rat cholinergic neurons in vivo
  publication-title: Exp Neurol
– volume: 1312
  start-page: 108
  year: 2010
  end-page: 119
  article-title: Monocytes deliver bioactive nerve growth factor through a brain capillary endothelial cell monolayer in vitro and counteract degeneration of cholinergic neurons
  publication-title: Brain Res
– volume: 391
  start-page: 112
  year: 2013b
  end-page: 124
  article-title: The generation of NGF‐secreting primary rat monocytes: a comparison of different transfer methods
  publication-title: J Immunol Methods
– volume: 31
  start-page: 11159
  year: 2011
  end-page: 11171
  article-title: Distinct and non‐redundant roles of microglia and myeloid subsets in mouse models of Alzheimer's disease
  publication-title: J Neurosci
– volume: 32
  start-page: 1516
  year: 2010
  end-page: 1527
  article-title: Differential effects of short‐ and long‐term hyperhomocysteinaemia on cholinergic neurons, spatial memory and microbleedings in vivo in rats
  publication-title: Eur J Neurosci
– volume: 6
  start-page: 405
  year: 2010
  end-page: 410
  article-title: Systemic inflammatory cells fight off neurodegenerative disease
  publication-title: Nat Rev Neurol
– volume: 903
  start-page: 335
  year: 2000
  end-page: 344
  article-title: Alterations of Alzheimer's disease in the cholesterol‐fed rabbit, including vascular inflammation. Preliminary observations
  publication-title: Ann N Y Acad Sci
– volume: 45
  start-page: 70
  year: 2010
  end-page: 74
  article-title: Soluble cell adhesion molecules in monocytes of Alzheimer's disease and mild cognitive impairment
  publication-title: Exp Gerontol
– year: 1986
– volume: 13
  start-page: 432
  year: 2007
  end-page: 438
  article-title: Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer‐like disease
  publication-title: Nat Med
– volume: 10
  start-page: 239
  year: 2012
  article-title: Nerve growth factor: from the early discoveries to the potential clinical use
  publication-title: J Transl Med
– volume: 29
  start-page: 2089
  year: 2009
  end-page: 2102
  article-title: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation
  publication-title: J Neurosci
– volume: 14
  start-page: 133
  year: 2008
  end-page: 145
  article-title: Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle‐aged rat
  publication-title: J Alzheimers Dis
– volume: 49
  start-page: 456
  year: 2012
  end-page: 463
  article-title: Homocysteine has anti‐inflammatory properties in a hypercholesterolemic rat model in vivo
  publication-title: Mol Cell Neurosci
– volume: 5
  start-page: 185
  year: 2008
  end-page: 192
  article-title: Basolateral aggregated rat amyloid beta (1–42) potentiates transmigration of primary rat monocytes through a rat blood brain barrier
  publication-title: Curr Neurovasc Res
– volume: 2012
  start-page: 732634
  year: 2012
  article-title: Dietary cholesterol concentration and duration degrade long‐term memory of classical conditioning of the rabbit's nictitating membrane response
  publication-title: Int J Alzheimers Dis
– volume: 47
  start-page: 37
  year: 2013
  end-page: 63
  article-title: Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis
  publication-title: Mol Neurobiol
– volume: 74
  start-page: 336
  year: 2007
  end-page: 343
  article-title: Primary rat monocytes migrate through a BCEC monolayer and express microglia markers at the basolateral side
  publication-title: Brain Res Bull
– volume: 6
  start-page: e1000113
  year: 2009
  article-title: Infiltrating blood‐derived macrophages are vital cells playing an anti‐inflammatory role in recovery from spinal cord injury in mice
  publication-title: PLoS Med
– volume: 8
  start-page: 156
  year: 2011
  end-page: 163
  article-title: How to get from here to there: macrophage recruitment in Alzheimer's disease
  publication-title: Curr Alzheimer Res
– volume: 10
  start-page: 6
  year: 2005
  end-page: 9
  article-title: The interplay of neurotransmitters in Alzheimer's disease
  publication-title: CNS Spectr
– volume: 58
  start-page: 889
  year: 2010
  end-page: 900
  article-title: The role and therapeutic potential of monocytic cells in Alzheimer's disease
  publication-title: Glia
– volume: 99
  start-page: 438
  year: 2006
  end-page: 449
  article-title: Deposition of iron and beta‐amyloid plaques is associated with cortical cellular damage in rabbits fed with long‐term cholesterol‐enriched diets
  publication-title: J Neurochem
– volume: 30
  start-page: 9651
  year: 2010
  end-page: 9658
  article-title: Trafficking CD11b‐positive blood cells deliver therapeutic genes to the brain of amyloid‐depositing transgenic mice
  publication-title: J Neurosci
– volume: 64
  start-page: 55
  year: 2009
  end-page: 60
  article-title: Taking advantage of the systemic immune system to cure brain diseases
  publication-title: Neuron
– year: 2013a
  article-title: Cholesterol diet counteracts repeated anesthesia/infusion‐induced cognitive deficits in male brown‐Norway rats
  publication-title: Neurobiol Learn Mem
– volume: 5
  start-page: e13950
  year: 2010
  article-title: Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease
  publication-title: PLoS One
– volume: 45
  start-page: 408
  year: 2010
  end-page: 417
  article-title: Hypercholesterolemia in rats impairs the cholinergic system and leads to memory deficits
  publication-title: Mol Cell Neurosci
– ident: e_1_2_6_16_1
  doi: 10.1371/journal.pone.0013950
– ident: e_1_2_6_17_1
  doi: 10.1523/JNEUROSCI.0329-10.2010
– ident: e_1_2_6_19_1
  doi: 10.1007/s12035-012-8337-y
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jim.2013.02.016
– ident: e_1_2_6_24_1
  doi: 10.1016/j.mcn.2012.03.001
– ident: e_1_2_6_26_1
  doi: 10.2310/JIM.0b013e318246d973
– ident: e_1_2_6_2_1
  doi: 10.1186/1479-5876-10-239
– ident: e_1_2_6_11_1
  doi: 10.1016/j.exger.2009.10.005
– ident: e_1_2_6_12_1
  doi: 10.2174/156720210792231787
– ident: e_1_2_6_25_1
  doi: 10.1038/nn0403-345
– ident: e_1_2_6_39_1
  doi: 10.1016/j.neuron.2009.09.035
– ident: e_1_2_6_34_1
  doi: 10.1016/j.neuron.2006.01.022
– ident: e_1_2_6_40_1
  doi: 10.1016/j.expneurol.2005.12.009
– ident: e_1_2_6_15_1
  doi: 10.2174/156720208785425701
– ident: e_1_2_6_4_1
  doi: 10.2174/156720509787602870
– ident: e_1_2_6_28_1
  doi: 10.1016/j.neubiorev.2010.04.010
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1749-6632.2000.tb06384.x
– ident: e_1_2_6_27_1
  doi: 10.2174/156720511795256017
– ident: e_1_2_6_10_1
  doi: 10.1136/jnnp.2008.150433
– volume: 2012
  start-page: 732634
  year: 2012
  ident: e_1_2_6_29_1
  article-title: Dietary cholesterol concentration and duration degrade long‐term memory of classical conditioning of the rabbit's nictitating membrane response
  publication-title: Int J Alzheimers Dis
  contributor:
    fullname: Schreurs BG
– ident: e_1_2_6_18_1
  doi: 10.1002/glia.20973
– ident: e_1_2_6_31_1
  doi: 10.1002/path.4106
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pmed.1000113
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1471-4159.2008.05415.x
– ident: e_1_2_6_9_1
  doi: 10.3233/JAD-2008-14202
– ident: e_1_2_6_30_1
  doi: 10.1038/nrneurol.2010.71
– ident: e_1_2_6_23_1
  doi: 10.1111/j.1460-9568.2010.07434.x
– ident: e_1_2_6_3_1
  doi: 10.1016/j.brainres.2009.11.062
– ident: e_1_2_6_21_1
  doi: 10.1016/j.brainresbull.2007.07.004
– ident: e_1_2_6_36_1
  doi: 10.1523/JNEUROSCI.2545-05.2005
– ident: e_1_2_6_13_1
  doi: 10.1016/j.nlm.2013.08.007
– ident: e_1_2_6_5_1
  doi: 10.1523/JNEUROSCI.3567-08.2009
– ident: e_1_2_6_7_1
  doi: 10.1017/S1092852900014164
– ident: e_1_2_6_20_1
  doi: 10.1523/JNEUROSCI.6209-10.2011
– ident: e_1_2_6_33_1
  doi: 10.1016/S1474-4422(05)70248-9
– ident: e_1_2_6_38_1
  doi: 10.1016/j.mcn.2010.08.001
– ident: e_1_2_6_6_1
  doi: 10.1038/nm1555
– ident: e_1_2_6_8_1
  doi: 10.1111/j.1471-4159.2006.04079.x
– ident: e_1_2_6_22_1
  doi: 10.1126/science.283.5400.401
SSID ssj0009953
Score 2.1918457
Snippet The recruitment of monocytes into the brain has been implicated in Alzheimer's disease and recent studies have indicated that monocytes can reduce amyloid...
The recruitment of monocytes into the brain has been implicated in Alzheimer’s disease and recent studies have indicated that monocytes can reduce amyloid...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 298
SubjectTerms Administration, Intravenous
Amyloid
Analysis of Variance
Animals
Basal Nucleus of Meynert - pathology
brain
Cell Movement - drug effects
Cell Movement - physiology
Choline O-Acetyltransferase - metabolism
Cholinergic Neurons - drug effects
Cytokines - metabolism
Disease Models, Animal
Enzyme-Linked Immunosorbent Assay
hypercholesterolemia
Hypercholesterolemia - pathology
Hypercholesterolemia - physiopathology
Hypercholesterolemia - therapy
Male
Maze Learning - drug effects
monocytes
Monocytes - metabolism
Myelin Sheath - metabolism
Myelin Sheath - ultrastructure
Nerve Growth Factor
Nerve Growth Factors - metabolism
Nerve Growth Factors - therapeutic use
NGF
Rats
Title Intravenous infusion of nerve growth factor-secreting monocytes supports the survival of cholinergic neurons in the nucleus basalis of meynert in hypercholesterolemia brown-norway rats
URI https://api.istex.fr/ark:/67375/WNG-HVFK7FZK-X/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjnr.23309
https://www.ncbi.nlm.nih.gov/pubmed/24323796
https://www.proquest.com/docview/1477735884
https://search.proquest.com/docview/1490717373
https://search.proquest.com/docview/1496883809
https://pubmed.ncbi.nlm.nih.gov/PMC4311143
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLam7YYbYIyfwIYMQhM37Ro7fxZXE6KUTfRiYlAhpMh2nLVMdackBbqrPcIeiKfhSTjHaTLKnxBXbZWT2ok_-3zHPv5MyJOMSzxTG6UvUVQ7kgGMgzrvMBGbzIBDjhSu6L4eRoPj4GAUjtbIs2YvTK0P0U64Yc9w4zV2cKnKvSvR0I-26DKIxnHzHgrpISE6upKOEqJWoORRD2IknzWqQj2219654os28LV--R3R_DVf8kce6xxR_wb50DxCnX9y2p1XqqvPf1J3_M9nvEmuLwkq3a8RtUnWjL1FtvYtBOfTBd2lLmXUzcVvka-vsKafnMwrBajOceqNznJqMY-SnkCIX41pfaTPt4vLEikqpllTwP5ML4Dl0nJ-5hYtKBBR-AEDF0Af_wKHZbcxcaKpE920WIQzs6jBDCWCB0b5RrSemgXYVmgxhsi6wLudBgR8TCeSKpxtgCrYWfFZLijAvrxNjvsv3jwfdJbHQXQ0sDrRCVTSk7qXSwVRVJajUJwJs1Bw1LgHt5oliVJaBSLXTMskY5lvjJKCqygz0ih-h6zbmTX3CFV5KENfR1ESAP9iRgQ5hIFaaN_XEIAqjzxugJGe1aofaa3vzFJok9S1iUd2HWRaC1mcYppcHKbvhi_Twdv-Ydx_f5iOPLLdYCpdjhAlhFxxHHPcJuyRR-1l6Nu4YCOtgYYDG-GyJGL-V5soSXiC9blbw7StEAs447GIPBKvALg1QG3x1St2MnYa48ArIVKGcp86fP75LaQHwyP35f6_mz4g14B3BnUq3zZZr4q52QFuV6mHrhN_B-NhVLY
link.rule.ids 230,315,786,790,891,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbhMxFLVKu4ANr_IYKGAQqtgkzYznZYlNBYS0abOoWogqIcv2eJq0ilNNEiCs-AQ-iK_hS7jXk5kSXkKskmjuxJ7xufa59vUxIU8zJvFMbZS-RFHtWIbQD-q8EfDEZAYG5Fjhiu5-L-4chbv9qL9Cnld7YUp9iHrCDT3D9dfo4DghvXWhGnpqi2YA4Ti_RNbA3SN0y5cHF-JRnJcalCxuQZTkB5WuUCvYqm9dGo3W8MV-_B3V_DVj8kcm64ai9jXyrnqIMgPlrDmbqqb-9JO-4_8-5XVydcFR6XYJqhtkxdibZH3bQnw-mtNN6rJG3XT8Ovm6g1V975ReKaB1hrNvdJxTi6mU9ASi_OmAlqf6fPv8ZYIsFTOtKcB_rOdAdOlkdu7WLShwUfgBfRegH_8Ce2a3N3GoqdPdtFiEM7MowwwlwiCMCo5oPTJzsJ2ixQCC6wLvdjIQ8DEaSqpwwgGqYMfFBzmngPzJLXLUfnX4otNYnAjR0EDseCNUaUvqVi4VBFJZjlpxJsoizlDmHkbWLE2V0irkuQ60TLMg841RkjMVZ0YaxW6TVTu25i6hKo9k5Os4TkOgYIHhYQ6RoOba9zXEoMojTypkiPNS-EOUEs-BgDYRrk08sukwU1vI4gwz5ZJIvO29Fp037W7SPu6Kvkc2KlCJRScxgagrSRKGO4U98ri-DO6NazbSGmg4sOEuUSJhf7WJ05SlWJ87JU7rCgUhC1jCY48kSwiuDVBefPmKHQ6czDhQSwiWodxnDqB_fgtit3fgvtz7d9NH5HLncH9P7O30uvfJFaChYZnZt0FWp8XMPACqN1UPnUd_B-fqWNY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbhMxELVKKyFeuJXLlgIGoYqXpFl7bxZPFSWkDUSoohAhJMv2eklaxYlyAcITn8AH8TV8CTPeZEu4CfGURDsbe9djzzn2-JiQBzlXeKY2Sl-iqHaiIhgHTVFjIrW5hYCcaFzRfd5JWsfRYTfurpFHy70wpT5ENeGGPcOP19jBR3mxeyYaeuLGdQZsXJwjG1HCGTKv_aMz7SghSglKnjSAJIVsKSvUYLvVrSvBaAPf68ffIc1fEyZ_BLI-EjUvkbfLZygTUE7rs6mum08_yTv-50NeJhcXCJXulS51haxZd5Vs7jlg54M53aE-Z9RPxm-SrwdY0_de55WCr85w7o0OC-owkZK-A44_7dHyTJ9vn79MEKNinjUF5x-aOcBcOpmN_KoFBSQKP2DkAt_Hv8Bx2e9M7BvqVTcdFuHNHIowQ4kQglG_Ea0Hdg62U7ToAbUe491eBAI-Bn1FNU43QBXccPxBzSn4_eQaOW4-efm4VVucB1EzAOtELdJZQ5lGoTTQqLxApTgb57HgKHIPcTXPMq2NjkRhmFFZzvLQWq0E10luldX8Oll3Q2dvEqqLWMWhSZIsAgDGrIgK4IFGmDA0wEB1QO4vHUOOStkPWQo8MwltIn2bBGTHu0xlocanmCeXxvJ156lsvWq20-abtuwGZHvpU3IxREyAc6VpynGfcEDuVZehc-OKjXIWGg5shE-TSPlfbZIs4xnW50bpplWFWMQZT0USkHTFgSsDFBdfveL6PS8yDsASqDKU-9D755_fgjzsHPkvW_9uepecf7HflM8OOu1b5AJg0KhM69sm69PxzN4GnDfVd3x__g64r1eF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intravenous+infusion+of+nerve+growth+factor-secreting+monocytes+supports+the+survival+of+cholinergic+neurons+in+the+nucleus+basalis+of+meynert+in+hypercholesterolemia+brown-norway+rats&rft.jtitle=Journal+of+neuroscience+research&rft.au=Hohsfield%2C+Lindsay+A&rft.au=Ehrlich%2C+Daniela&rft.au=Humpel%2C+Christian&rft.date=2014-03-01&rft.issn=0360-4012&rft.eissn=1097-4547&rft.volume=92&rft.issue=3&rft.spage=298&rft.epage=306&rft_id=info:doi/10.1002%2Fjnr.23309&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-4012&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-4012&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-4012&client=summon