Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach

Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful desig...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 6; no. 1; pp. 20 - 35
Main Authors Chen, Yung-Chung, Hsu, Chih-Yu, Lin, Ryan Yeh-Yung, Ho, Kuo-Chuan, Lin, Jiann T.
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.01.2013
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems. All good things come in threes: Addition of a third component in bulk heterojunction solar cells (sensitizer or fullerene derivative) may increase the short‐circuit current through enhanced light harvesting and/or can increase the open‐circuit voltage through enhanced carrier mobility and modification of HOMO/LUMO energy levels. Such ternary organic solar cell systems will be reviewed in this article.
AbstractList Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.
Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems. All good things come in threes: Addition of a third component in bulk heterojunction solar cells (sensitizer or fullerene derivative) may increase the short‐circuit current through enhanced light harvesting and/or can increase the open‐circuit voltage through enhanced carrier mobility and modification of HOMO/LUMO energy levels. Such ternary organic solar cell systems will be reviewed in this article.
Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.
Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullereneI/functional fullereneII, and polymer/quantum dot or metal/functional fullerene systems. [PUBLICATION ABSTRACT]
Author Lin, Ryan Yeh-Yung
Ho, Kuo-Chuan
Chen, Yung-Chung
Hsu, Chih-Yu
Lin, Jiann T.
Author_xml – sequence: 1
  givenname: Yung-Chung
  surname: Chen
  fullname: Chen, Yung-Chung
  organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237
– sequence: 2
  givenname: Chih-Yu
  surname: Hsu
  fullname: Hsu, Chih-Yu
  organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237
– sequence: 3
  givenname: Ryan Yeh-Yung
  surname: Lin
  fullname: Lin, Ryan Yeh-Yung
  organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237
– sequence: 4
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
  organization: Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106 Taiwan (ROC)
– sequence: 5
  givenname: Jiann T.
  surname: Lin
  fullname: Lin, Jiann T.
  email: jtlin@gate.sinica.edu.tw
  organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23288712$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvEzEURi1URB-wZYkssWEzwe-x2UUDFKTQIiWo7CyPx0NcJuNgO6X593VIG6FKiJW9OOfzvf5OwdEYRgfAS4wmGCHy1qZkJwRhgpBA6gk4wVKwigv2_ehwp_gYnKZ0_QcR4hk4JpRIWWNyAhZfTHbRmyHBPkSYlw5ObfY3Ds7M1kUYengZf5jRW_h1GXK4CUM23qZ3cOHiaOIWzsNgImzcMMDpeh2Dscvn4GlfEt2L-_MMfPv4YdF8qmaX55-b6ayyHDNVEUGcpNL2SLWC14R3tOOsLUOaTqq2NrWSypmWMy6UoVigmvVOcYuY6Jil9Ay82eeWZ39tXMp65ZMtk5jRhU3SmNSUUYaZLOjrR-h12JQFhh0lpKBK8bpQr-6pTbtynV5Hvyo76of_KgDbAzaGlKLrtfXZZB_GHI0fNEZ6V4ve1aIPtRRt8kh7SP6noPbCbz-47X9o3cznzd9utXd9yu724Jr4U4ua1lxfXZzrK3nxvpELqjG9A9tnrKM
CitedBy_id crossref_primary_10_1142_S1088424619500147
crossref_primary_10_1002_adfm_201704212
crossref_primary_10_1021_acsami_5b07015
crossref_primary_10_1002_aenm_201502109
crossref_primary_10_1007_s11433_014_5584_0
crossref_primary_10_1002_sia_6794
crossref_primary_10_1007_s10854_015_3239_1
crossref_primary_10_1039_C5MH00090D
crossref_primary_10_7567_JJAP_53_01AB10
crossref_primary_10_1039_C4CP04128C
crossref_primary_10_1016_j_dyepig_2016_04_038
crossref_primary_10_1021_jp5088724
crossref_primary_10_1002_pat_4202
crossref_primary_10_1039_C7TA02076G
crossref_primary_10_1002_pi_4668
crossref_primary_10_1038_s41598_017_12374_8
crossref_primary_10_3390_coatings13061123
crossref_primary_10_1021_am503038t
crossref_primary_10_1016_j_orgel_2017_03_030
crossref_primary_10_1016_j_orgel_2015_11_005
crossref_primary_10_1063_1_4958690
crossref_primary_10_1021_acs_accounts_4c00130
crossref_primary_10_1155_2023_3367579
crossref_primary_10_3390_polym6112784
crossref_primary_10_1039_C8TA10015B
crossref_primary_10_1021_ja513045a
crossref_primary_10_1002_solr_201800263
crossref_primary_10_1021_jz400723u
crossref_primary_10_1016_j_polymer_2014_04_045
crossref_primary_10_1134_S0036024415120043
crossref_primary_10_1016_j_orgel_2021_106063
crossref_primary_10_1039_C5CC06290J
crossref_primary_10_1039_C4TC01178C
crossref_primary_10_1039_C7MH00958E
crossref_primary_10_1063_1_4828363
crossref_primary_10_1016_j_orgel_2016_08_017
crossref_primary_10_1021_acsaelm_8b00113
crossref_primary_10_1002_aenm_201502094
crossref_primary_10_1039_C4CP01411A
crossref_primary_10_1007_s10118_017_1898_5
crossref_primary_10_1038_nphoton_2013_82
crossref_primary_10_1002_adma_201501275
crossref_primary_10_1039_c3cp55075c
crossref_primary_10_1021_acs_jpcb_5b00110
crossref_primary_10_1002_cssc_201501690
crossref_primary_10_1039_C5TA04243G
crossref_primary_10_1063_1_4818726
crossref_primary_10_1134_S1990793117020038
crossref_primary_10_1039_C5TA04905A
crossref_primary_10_1039_C5CP05161D
crossref_primary_10_1039_C5TA08120C
crossref_primary_10_1002_solr_201700158
crossref_primary_10_1007_s10854_013_1563_x
crossref_primary_10_1021_acsenergylett_8b01400
crossref_primary_10_1002_cssc_201802939
crossref_primary_10_1039_C6TC03957J
crossref_primary_10_1142_S1088424617500638
crossref_primary_10_1002_adma_201502773
crossref_primary_10_1038_nphoton_2015_128
crossref_primary_10_1007_s42452_019_0663_5
crossref_primary_10_1021_jacs_3c08451
crossref_primary_10_1039_C5TA09199C
crossref_primary_10_1039_C5EE02641E
crossref_primary_10_1039_C4NR00868E
crossref_primary_10_1002_adom_201400542
crossref_primary_10_1016_j_progpolymsci_2013_07_010
crossref_primary_10_1039_C8NR01421C
crossref_primary_10_1021_acs_chemmater_6b05194
crossref_primary_10_1021_am5066267
crossref_primary_10_1021_acs_macromol_5b01137
crossref_primary_10_1039_C6RA04746G
crossref_primary_10_1007_s10895_021_02837_7
crossref_primary_10_1021_am508491v
crossref_primary_10_1016_j_synthmet_2019_116112
crossref_primary_10_3762_bjoc_10_76
crossref_primary_10_1038_srep09321
crossref_primary_10_1021_sc500276u
crossref_primary_10_1039_c3tc31235f
crossref_primary_10_1021_acs_jpcc_5b04850
crossref_primary_10_1080_15421406_2014_933303
crossref_primary_10_1002_marc_202100828
crossref_primary_10_1021_cm5018147
crossref_primary_10_1039_D2ME00166G
crossref_primary_10_1002_aenm_201602540
crossref_primary_10_1039_C4RA12184H
crossref_primary_10_1039_C8TC00416A
crossref_primary_10_1016_j_orgel_2020_105747
crossref_primary_10_1016_j_polymer_2013_07_053
crossref_primary_10_1063_1_5125438
crossref_primary_10_1002_adfm_201800627
crossref_primary_10_1039_C5EE03460D
crossref_primary_10_1039_C7NR03789A
crossref_primary_10_1039_c4pp00071d
crossref_primary_10_1039_C4TA05101G
crossref_primary_10_1002_adma_201603588
crossref_primary_10_1016_j_apsusc_2023_157140
crossref_primary_10_1016_j_synthmet_2016_07_022
crossref_primary_10_1039_C6TA10739G
crossref_primary_10_4028_www_scientific_net_MSF_827_119
crossref_primary_10_1016_j_dyepig_2017_07_032
crossref_primary_10_1016_j_carbon_2015_04_011
crossref_primary_10_1088_0022_3727_48_29_295105
crossref_primary_10_1002_solr_201600003
crossref_primary_10_1021_acsami_6b10144
crossref_primary_10_1021_acsami_6b15678
crossref_primary_10_1021_acs_jpca_9b02768
crossref_primary_10_1039_C5TA07173A
crossref_primary_10_1016_j_orgel_2016_01_028
crossref_primary_10_1002_aenm_201600660
crossref_primary_10_1021_acs_chemmater_8b00675
crossref_primary_10_1039_C4EE02004A
crossref_primary_10_1021_acs_jpcc_7b03447
crossref_primary_10_1039_C6TC02001A
crossref_primary_10_1021_jp5029905
crossref_primary_10_1016_j_solmat_2013_07_050
crossref_primary_10_1016_j_solmat_2013_08_007
crossref_primary_10_1039_C5TA10759H
crossref_primary_10_1039_C9RA04036F
crossref_primary_10_1007_s00396_014_3397_3
crossref_primary_10_1063_5_0096556
crossref_primary_10_1002_advs_201500250
crossref_primary_10_1039_D1QM00835H
crossref_primary_10_1016_j_orgel_2016_12_046
crossref_primary_10_1021_am500074s
crossref_primary_10_1039_C6TA08593H
Cites_doi 10.1016/j.orgel.2011.11.029
10.1021/ma201648t
10.1039/c0cc03962d
10.1021/ja200314m
10.1002/adfm.200900832
10.1002/ange.201005451
10.1016/j.synthmet.2005.07.189
10.1039/b617972j
10.1016/j.solmat.2010.04.059
10.1002/adma.200801283
10.1039/b924404b
10.1021/ar900041b
10.1063/1.3001802
10.1016/j.solmat.2010.12.013
10.1021/ja302935n
10.1126/science.332.6027.293
10.1002/pola.24882
10.1016/j.solmat.2011.05.013
10.1039/C0EE00536C
10.1016/j.orgel.2009.11.010
10.1002/anie.201005451
10.1002/aenm.201100182
10.1002/marc.201000133
10.1039/c2jm31882b
10.1021/cr900182s
10.1038/nmat1574
10.1126/science.1141711
10.1039/b903189h
10.1039/c1ee02279b
10.1002/anie.201101021
10.1021/ma0505934
10.1016/j.orgel.2012.05.015
10.1038/nphoton.2009.72
10.1016/j.solmat.2007.09.017
10.1016/j.solmat.2011.01.046
10.1021/jp809589n
10.1002/asia.201000506
10.1021/ma902206u
10.1016/j.solmat.2011.07.037
10.1002/adma.201103006
10.1021/cr078381n
10.1016/j.jpowsour.2010.09.118
10.1038/nphoton.2009.192
10.1002/ange.201101021
10.1016/j.sse.2011.12.009
10.1039/b822770e
10.1039/c1cc13827h
10.1002/adma.200501717
10.1166/jnn.2011.5311
10.1039/b806748a
10.1002/marc.201100643
10.1016/j.solmat.2008.01.003
10.1016/j.solmat.2011.02.018
10.1016/j.jiec.2008.01.014
10.1002/adma.200802559
10.1021/am800229p
10.1002/adma.200903528
10.1021/ja047768u
10.1039/c0cc01787f
10.1039/b918362k
10.1021/jp909786k
10.1021/am900244y
10.1039/c0jm00191k
10.1016/j.cplett.2005.09.052
10.1021/ja205977z
10.1021/ma201425d
10.1016/j.solmat.2006.09.007
10.1016/j.solmat.2010.08.001
10.1021/ar900061z
10.1021/ja1112595
10.1016/j.colsurfa.2007.04.162
10.1002/adma.201101274
10.1002/adma.200501825
10.1063/1.3626464
10.1021/cm102189g
10.1039/C0JM02668A
10.1021/ja204056m
10.1021/ja211597w
10.1038/nphoton.2011.317
10.1021/ol201770g
10.1002/adfm.200901473
10.1021/jp201742v
10.1002/adma.201001491
ContentType Journal Article
Copyright Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201200609
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 35
ExternalDocumentID 2862473541
23288712
10_1002_cssc_201200609
CSSC201200609
ark_67375_WNG_W8NDC8T3_1
Genre reviewArticle
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: National Science Council, Taiwan
– fundername: Academia Sinica
– fundername: Institute of Chemistry
GroupedDBID ---
05W
0R~
1OC
29B
31~
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
BSCLL
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c5149-262e838cf09b65725d3d54b609ad89b7a7989eab54569a316074fe95c046d4c33
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 08:54:38 EDT 2025
Fri Jul 25 12:09:42 EDT 2025
Mon Jul 21 06:06:08 EDT 2025
Tue Jul 01 03:55:18 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Jan 22 16:19:44 EST 2025
Wed Oct 30 09:56:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5149-262e838cf09b65725d3d54b609ad89b7a7989eab54569a316074fe95c046d4c33
Notes ArticleID:CSSC201200609
Institute of Chemistry
ark:/67375/WNG-W8NDC8T3-1
National Science Council, Taiwan
Academia Sinica
istex:8E94D6472A9DF79BDAA0517B6056E0CA66CCF92A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
PMID 23288712
PQID 1268639957
PQPubID 986333
PageCount 16
ParticipantIDs proquest_miscellaneous_1273434148
proquest_journals_1268639957
pubmed_primary_23288712
crossref_citationtrail_10_1002_cssc_201200609
crossref_primary_10_1002_cssc_201200609
wiley_primary_10_1002_cssc_201200609_CSSC201200609
istex_primary_ark_67375_WNG_W8NDC8T3_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-01
January 2013
2013-01-00
2013-Jan
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle ChemSusChem
PublicationTitleAlternate ChemSusChem
PublicationYear 2013
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
– name: Wiley Subscription Services, Inc
References H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem. 2011, 123, 3051-3054
J. W. Choi, C. Kulshreshtha, G. P. Kennedy, J. H. Kwon, S. H. Jung, M. Chae, Sol. Energy Mater. Sol. Cells 2011, 95, 2069-2076.
T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem. Commun. 2009, 1673-1675.
T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Org. Electron. 2012, 13, 335-340.
Y. Hayashi, H. Sakuragi, T. Soga, I. Alexandrou, G. A. J. Amaratunga, Colloids Surf. A 2008, 313-314, 422-425.
J. Tang, E. H. Sargent, Adv. Mater. 2011, 23, 12-29.
S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, ACS Appl. Mater. Interfaces 2009, 1, 804-810.
Angew. Chem. Int. Ed. 2011, 50, 5519-5523.
Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868-5923.
C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062-10065
J. Peet, A. B. Tamayo, X. D. Dang, J. H. Seo, T. Q. Nguyen, Appl. Phys. Lett. 2008, 93, 163306.
P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2012, 134, 9074-9077.
H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607-632.
A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932
Y. A. M. Ismail, T. Soga, T. Jimbo, Sol. Energy Mater. Sol. Cells 2010, 94, 1406-1411.
N. Cooling, K. B. Burke, X. Zhou, S. J. Lind, K. C. Gordon, T. W. Jones, P. C. Dastoor, W. J. Belcher, Sol. Energy Mater. Sol. Cells 2011, 95, 1767-1774.
S. J. Park, J. M. Cho, W. B. Byun, J. C. Le, W. S. Shin, I. N. Kang, S. J. Moon, S. K. Lee, J. Polym. Sci. Part A 2011, 49, 4416-4424.
R. F. Service, Science 2011, 332, 293-293
C. E. Small, S. Chen, J. Subbian, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, Nat. Photonics 2012, 6, 115-120.
J. N. de Freitas, I. R. Grova, L. C. Akcelrud, E. Arici, N. S. Sariciftcic, A. F. Nogueira, J. Mater. Chem. 2010, 20, 4845-4853.
Y. C. Lai, T. Higashihara, J. C. Hsu, M. Ueda, W. C. Chen, Sol. Energy Mater. Sol. Cells 2012, 97, 164-170.
G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, H. Takakura, Sol. Energy Mater. Sol. Cells 2008, 92, 371-373.
W. J. Belcher, K. I. Wagner, P. C. Dastoor, Sol. Energy Mater. Sol. Cells 2007, 91, 447-452.
D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, A. J. Heeger, Angew. Chem. 2011, 123, 5633-5637
Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang, X. Y. Hou, Chem. Phys. Lett. 2005, 416, 42-46.
J. A. Mikroyannidis, P. Suresh, G. D. Sharma, Org. Electron. 2010, 11, 311-321.
B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 2011, 23, 470-482.
Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135-138
J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 2011, 4, 842-857.
K. B. V. Naidu, J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, S. H. Jin, Sol. Energy Mater. Sol. Cells 2008, 92, 397-401.
Y. Kubo, Z. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T. Shoda, H. Ota, Org. Lett. 2011, 13, 4574-4577.
M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, Adv. Mater. 2011, 23, 3315-3319
Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, Synth. Met. 2005, 152, 105-108.
J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572-576.
M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, Y. Tai, Sol. Energy Mater. Sol. Cells 2011, 95, 2621-2627.
Z. X. Xu, V. A. L. Roy, K. H. Low, C. M. Che, Chem. Commun. 2011, 47, 9654-9656.
J. H. Huang, M. Velusamy, K. C. Ho, J. T. Lin, C. W. Chu, J. Mater. Chem. 2010, 20, 2820-2825.
S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys. Chem. C 2010, 114, 1343-1349.
Angew. Chem. Int. Ed. 2011, 50, 2995-2998
J. Lee, M. H. Yun, J. Kim, J. Y. Kim, C. Yang, Macromol. Rapid Commun. 2012, 33, 140-145.
E. Lim, S. Lee, K. K. Lee, Chem. Commun. 2011, 47, 914-916.
M. Park, B. D. Chin, J. W. Yu, M. S. Chun, S. H. Han, J. Ind. Eng. Chem. 2008, 14, 382-386.
J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, Adv. Mater. 2009, 21, 1521-1527.
H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649-653
S. H. Chan, C. S. Lai, H. L. Chen, C. Ting, C. P. Chen, Macromolecules 2011, 44, 8886-8891.
B. C. Thompson, Y. G. Kim, J. R. Reynolds, Macromolecules 2005, 38, 5359-5362
M. Taukeer Khan, A. Kaur, S. K. Dhawan, S. Chand, J. Appl. Phys. 2011, 110, 044509.
G. Itskos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, S. A. Choulis, Adv. Energy Mater. 2011, 1, 802-812.
G. D. Sharma, S. P. Singh, M. S. Roy, J. A. Mikroyannidis, Org.Electron. 2012, 13, 1756-1762.
T. Hasobe, A. S. D. Sandanayaka, T. Wada, Y. Araki, Chem. Commun. 2008, 3372-3374.
L. Yang, H. Zhou, S. C. Price, W. You, J. Am. Chem. Soc. 2012, 134, 5432-5435.
J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, A. Kumar, Y. K. Vijay, G. D. Sharma, Sol. Energy Mater. Sol. Cells 2010, 94, 2318-2327.
S. Honda, H. Ohkita, H. Benten, S. Ito, Chem. Commun. 2010, 46, 6596-6598.
R. Debnath, O. Bakr, E. H. Sargent, Energy Environ. Sci. 2011, 4, 4870-4881.
H. Kim, M. Shin, Y. Kim, J. Phys. Chem. C 2009, 113, 1620-1623.
J. A. Mikroyannidis, D. V. Tsagkournos, P. Balraju, G. D. Sharma, J. Power Sources 2011, 196, 2364-2372.
H. Fu, M. Choi, W. Luan, Y. S. Kim, S. T. Tu, Solid-State Electron. 2012, 69, 50-54.
J. Chen, Y. Cao, Acc. Chem. Res. 2009, 42, 1709-1718.
P. Sonar, G. M. Ng, T. T. Lin, A. Dodabalapur, Z. K. Chen, J. Mater. Chem. 2010, 20, 3626-3636.
T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, Nat. Photonics 2009, 3, 332-336.
A. Tang, S. Qu, F. Teng, Y. Hou, Y. Wang, Z. Wang, J. Nanosci. Nanotechnol. 2011, 11, 9384-9394.
M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec, P. Schilinsky, C. N. Hoth, Adv. Funct. Mater. 2010, 20, 338-346.
P. Suresh, P. Balraju, G. D. Sharma, J. A. Mikroyannidis, M. M. Stylianakis, ACS Appl. Mater. Interfaces 2009, 1, 1370-1374.
G. Adam, A. Pivrikas, A. M. Ramil, S. Tadesse, T. Yohannes, N. S. Sariciftci, D. A. M. Egbe, J. Mater. Chem. 2011, 21, 2594-2600.
S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625-4631
G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323-1338.
C. H. Chen, Y. J. Cheng, M. Dubosc, C. H. Hsieh, C. C. Chu, C. S. Hsu, Chem. Asian J. 2010, 5, 2483-2492.
B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063-3069
J. Roncali, Acc. Chem. Res. 2009, 42, 1719-1730.
S. S. Sharma, G. D. Sharma, J. A. Mikroyannidis, Sol. Energy Mater. Sol. Cells 2011, 95, 1219-1223.
B. P. Karsten, J. C. Bijleveld, R. A. J. Janssen, Macromol. Rapid Commun. 2010, 31, 1554-1559.
P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2011, 133, 14534-14537.
C. H. Chen, C. H. Hsieh, M. Dubosc, Y. J. Cheng, C. S. Hsu, Macromolecules 2010, 43, 697-708.
Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197-203.
T. Y. Chu, J. Lu, B. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250-4253
M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789-894.
S. Honda, S. Yokoya, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. C 2011, 115, 11306-11316.
T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, J. Mater. Chem. 2009, 19, 2298-2300.
Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636-4643
R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 2007, 31, 496-501
F. Machui, S. Rathgeber, N. Li, T. Ameri, C. J. Brabec, J. Mater. Chem. 2012, 22, 15570-15577.
J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222-225.
T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 1216-1228.
2011; 115
2010; 11
2007; 107
2009; 42
2005; 416
2011; 11
2009; 113
2011; 13
2011 2011; 123 50
2007; 31
2011; 196
2012; 13
2012; 97
2011; 110
2010; 22
2010; 20
2012; 134
2010; 114
2011; 21
2011; 23
2012; 69
2005; 38
2009; 19
2010; 5
2012; 22
2010; 31
2009; 21
2005; 152
2011; 1
2009
2008; 14
2008
2006; 5
2006; 18
2007; 91
2011; 4
2008; 92
2008; 93
2012; 33
2011; 332
2011; 133
2010; 43
2007; 317
2010; 46
2005; 127
2011; 95
2008; 313–314
2011; 44
2011; 47
2009; 3
2012; 6
2011; 49
2012; 45
2009; 109
2009; 1
2010; 94
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_2
e_1_2_7_83_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_62_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_64_2
e_1_2_7_85_2
e_1_2_7_45_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
e_1_2_7_28_2
e_1_2_7_71_2
e_1_2_7_50_2
e_1_2_7_25_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_73_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_56_2
e_1_2_7_79_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_37_2
e_1_2_7_39_2
e_1_2_7_4_2
e_1_2_7_2_2
e_1_2_7_8_3
e_1_2_7_8_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_12_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_84_2
e_1_2_7_84_3
e_1_2_7_10_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_48_2
e_1_2_7_27_2
e_1_2_7_29_2
e_1_2_7_72_2
e_1_2_7_70_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_51_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_53_2
e_1_2_7_74_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_57_2
e_1_2_7_78_2
e_1_2_7_38_2
e_1_2_7_59_2
References_xml – reference: S. Honda, S. Yokoya, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. C 2011, 115, 11306-11316.
– reference: J. W. Choi, C. Kulshreshtha, G. P. Kennedy, J. H. Kwon, S. H. Jung, M. Chae, Sol. Energy Mater. Sol. Cells 2011, 95, 2069-2076.
– reference: J. Peet, A. B. Tamayo, X. D. Dang, J. H. Seo, T. Q. Nguyen, Appl. Phys. Lett. 2008, 93, 163306.
– reference: Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135-138;
– reference: F. Machui, S. Rathgeber, N. Li, T. Ameri, C. J. Brabec, J. Mater. Chem. 2012, 22, 15570-15577.
– reference: H. Fu, M. Choi, W. Luan, Y. S. Kim, S. T. Tu, Solid-State Electron. 2012, 69, 50-54.
– reference: A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932;
– reference: Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197-203.
– reference: T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem. Commun. 2009, 1673-1675.
– reference: J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222-225.
– reference: L. Yang, H. Zhou, S. C. Price, W. You, J. Am. Chem. Soc. 2012, 134, 5432-5435.
– reference: Y. Hayashi, H. Sakuragi, T. Soga, I. Alexandrou, G. A. J. Amaratunga, Colloids Surf. A 2008, 313-314, 422-425.
– reference: J. Roncali, Acc. Chem. Res. 2009, 42, 1719-1730.
– reference: Y. Kubo, Z. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T. Shoda, H. Ota, Org. Lett. 2011, 13, 4574-4577.
– reference: G. D. Sharma, S. P. Singh, M. S. Roy, J. A. Mikroyannidis, Org.Electron. 2012, 13, 1756-1762.
– reference: Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang, X. Y. Hou, Chem. Phys. Lett. 2005, 416, 42-46.
– reference: M. Park, B. D. Chin, J. W. Yu, M. S. Chun, S. H. Han, J. Ind. Eng. Chem. 2008, 14, 382-386.
– reference: B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 2011, 23, 470-482.
– reference: M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789-894.
– reference: Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868-5923.
– reference: R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 2007, 31, 496-501;
– reference: W. J. Belcher, K. I. Wagner, P. C. Dastoor, Sol. Energy Mater. Sol. Cells 2007, 91, 447-452.
– reference: Angew. Chem. Int. Ed. 2011, 50, 5519-5523.
– reference: P. Sonar, G. M. Ng, T. T. Lin, A. Dodabalapur, Z. K. Chen, J. Mater. Chem. 2010, 20, 3626-3636.
– reference: T. Y. Chu, J. Lu, B. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250-4253;
– reference: Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, Synth. Met. 2005, 152, 105-108.
– reference: B. P. Karsten, J. C. Bijleveld, R. A. J. Janssen, Macromol. Rapid Commun. 2010, 31, 1554-1559.
– reference: M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, Y. Tai, Sol. Energy Mater. Sol. Cells 2011, 95, 2621-2627.
– reference: C. H. Chen, C. H. Hsieh, M. Dubosc, Y. J. Cheng, C. S. Hsu, Macromolecules 2010, 43, 697-708.
– reference: T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, J. Mater. Chem. 2009, 19, 2298-2300.
– reference: A. Tang, S. Qu, F. Teng, Y. Hou, Y. Wang, Z. Wang, J. Nanosci. Nanotechnol. 2011, 11, 9384-9394.
– reference: R. Debnath, O. Bakr, E. H. Sargent, Energy Environ. Sci. 2011, 4, 4870-4881.
– reference: G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, H. Takakura, Sol. Energy Mater. Sol. Cells 2008, 92, 371-373.
– reference: Z. X. Xu, V. A. L. Roy, K. H. Low, C. M. Che, Chem. Commun. 2011, 47, 9654-9656.
– reference: Angew. Chem. Int. Ed. 2011, 50, 2995-2998;
– reference: G. Adam, A. Pivrikas, A. M. Ramil, S. Tadesse, T. Yohannes, N. S. Sariciftci, D. A. M. Egbe, J. Mater. Chem. 2011, 21, 2594-2600.
– reference: H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607-632.
– reference: H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649-653;
– reference: T. Hasobe, A. S. D. Sandanayaka, T. Wada, Y. Araki, Chem. Commun. 2008, 3372-3374.
– reference: N. Cooling, K. B. Burke, X. Zhou, S. J. Lind, K. C. Gordon, T. W. Jones, P. C. Dastoor, W. J. Belcher, Sol. Energy Mater. Sol. Cells 2011, 95, 1767-1774.
– reference: K. B. V. Naidu, J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, S. H. Jin, Sol. Energy Mater. Sol. Cells 2008, 92, 397-401.
– reference: T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, Nat. Photonics 2009, 3, 332-336.
– reference: Y. C. Lai, T. Higashihara, J. C. Hsu, M. Ueda, W. C. Chen, Sol. Energy Mater. Sol. Cells 2012, 97, 164-170.
– reference: J. N. de Freitas, I. R. Grova, L. C. Akcelrud, E. Arici, N. S. Sariciftcic, A. F. Nogueira, J. Mater. Chem. 2010, 20, 4845-4853.
– reference: C. E. Small, S. Chen, J. Subbian, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, Nat. Photonics 2012, 6, 115-120.
– reference: J. A. Mikroyannidis, P. Suresh, G. D. Sharma, Org. Electron. 2010, 11, 311-321.
– reference: S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, ACS Appl. Mater. Interfaces 2009, 1, 804-810.
– reference: S. H. Chan, C. S. Lai, H. L. Chen, C. Ting, C. P. Chen, Macromolecules 2011, 44, 8886-8891.
– reference: S. J. Park, J. M. Cho, W. B. Byun, J. C. Le, W. S. Shin, I. N. Kang, S. J. Moon, S. K. Lee, J. Polym. Sci. Part A 2011, 49, 4416-4424.
– reference: R. F. Service, Science 2011, 332, 293-293;
– reference: S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625-4631;
– reference: D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, A. J. Heeger, Angew. Chem. 2011, 123, 5633-5637;
– reference: J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, Adv. Mater. 2009, 21, 1521-1527.
– reference: Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636-4643;
– reference: J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 2011, 4, 842-857.
– reference: J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, A. Kumar, Y. K. Vijay, G. D. Sharma, Sol. Energy Mater. Sol. Cells 2010, 94, 2318-2327.
– reference: S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys. Chem. C 2010, 114, 1343-1349.
– reference: M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, Adv. Mater. 2011, 23, 3315-3319;
– reference: S. Honda, H. Ohkita, H. Benten, S. Ito, Chem. Commun. 2010, 46, 6596-6598.
– reference: Y. A. M. Ismail, T. Soga, T. Jimbo, Sol. Energy Mater. Sol. Cells 2010, 94, 1406-1411.
– reference: P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2012, 134, 9074-9077.
– reference: H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem. 2011, 123, 3051-3054;
– reference: C. H. Chen, Y. J. Cheng, M. Dubosc, C. H. Hsieh, C. C. Chu, C. S. Hsu, Chem. Asian J. 2010, 5, 2483-2492.
– reference: P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2011, 133, 14534-14537.
– reference: M. Taukeer Khan, A. Kaur, S. K. Dhawan, S. Chand, J. Appl. Phys. 2011, 110, 044509.
– reference: B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063-3069;
– reference: P. Suresh, P. Balraju, G. D. Sharma, J. A. Mikroyannidis, M. M. Stylianakis, ACS Appl. Mater. Interfaces 2009, 1, 1370-1374.
– reference: S. S. Sharma, G. D. Sharma, J. A. Mikroyannidis, Sol. Energy Mater. Sol. Cells 2011, 95, 1219-1223.
– reference: J. A. Mikroyannidis, D. V. Tsagkournos, P. Balraju, G. D. Sharma, J. Power Sources 2011, 196, 2364-2372.
– reference: G. Itskos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, S. A. Choulis, Adv. Energy Mater. 2011, 1, 802-812.
– reference: G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323-1338.
– reference: M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec, P. Schilinsky, C. N. Hoth, Adv. Funct. Mater. 2010, 20, 338-346.
– reference: C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062-10065;
– reference: E. Lim, S. Lee, K. K. Lee, Chem. Commun. 2011, 47, 914-916.
– reference: J. Chen, Y. Cao, Acc. Chem. Res. 2009, 42, 1709-1718.
– reference: B. C. Thompson, Y. G. Kim, J. R. Reynolds, Macromolecules 2005, 38, 5359-5362;
– reference: J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572-576.
– reference: T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Org. Electron. 2012, 13, 335-340.
– reference: J. Tang, E. H. Sargent, Adv. Mater. 2011, 23, 12-29.
– reference: T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 1216-1228.
– reference: J. H. Huang, M. Velusamy, K. C. Ho, J. T. Lin, C. W. Chu, J. Mater. Chem. 2010, 20, 2820-2825.
– reference: J. Lee, M. H. Yun, J. Kim, J. Y. Kim, C. Yang, Macromol. Rapid Commun. 2012, 33, 140-145.
– reference: H. Kim, M. Shin, Y. Kim, J. Phys. Chem. C 2009, 113, 1620-1623.
– volume: 3
  start-page: 649
  year: 2009
  end-page: 653
  publication-title: Nat. Photonics
– volume: 44
  start-page: 8886
  year: 2011
  end-page: 8891
  publication-title: Macromolecules
– volume: 20
  start-page: 2820
  year: 2010
  end-page: 2825
  publication-title: J. Mater. Chem.
– volume: 97
  start-page: 164
  year: 2012
  end-page: 170
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 93
  start-page: 163306
  year: 2008
  publication-title: Appl. Phys. Lett.
– volume: 33
  start-page: 140
  year: 2012
  end-page: 145
  publication-title: Macromol. Rapid Commun.
– volume: 45
  start-page: 607
  year: 2012
  end-page: 632
  publication-title: Macromolecules
– volume: 115
  start-page: 11306
  year: 2011
  end-page: 11316
  publication-title: J. Phys. Chem. C
– volume: 21
  start-page: 1323
  year: 2009
  end-page: 1338
  publication-title: Adv. Mater.
– volume: 127
  start-page: 1216
  year: 2005
  end-page: 1228
  publication-title: J. Am. Chem. Soc.
– volume: 95
  start-page: 1219
  year: 2011
  end-page: 1223
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 49
  start-page: 4416
  year: 2011
  end-page: 4424
  publication-title: J. Polym. Sci. Part A
– volume: 1
  start-page: 804
  year: 2009
  end-page: 810
  publication-title: ACS Appl. Mater. Interfaces
– volume: 109
  start-page: 5868
  year: 2009
  end-page: 5923
  publication-title: Chem. Rev.
– volume: 92
  start-page: 371
  year: 2008
  end-page: 373
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 6
  start-page: 115
  year: 2012
  end-page: 120
  publication-title: Nat. Photonics
– volume: 107
  start-page: 4891
  year: 2007
  end-page: 4932
  publication-title: Chem. Rev.
– volume: 13
  start-page: 1756
  year: 2012
  end-page: 1762
  publication-title: Org.Electron.
– volume: 69
  start-page: 50
  year: 2012
  end-page: 54
  publication-title: Solid‐State Electron.
– volume: 313–314
  start-page: 422
  year: 2008
  end-page: 425
  publication-title: Colloids Surf. A
– volume: 110
  start-page: 044509
  year: 2011
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 2483
  year: 2010
  end-page: 2492
  publication-title: Chem. Asian J.
– volume: 19
  start-page: 2298
  year: 2009
  end-page: 2300
  publication-title: J. Mater. Chem.
– volume: 152
  start-page: 105
  year: 2005
  end-page: 108
  publication-title: Synth. Met.
– volume: 20
  start-page: 4845
  year: 2010
  end-page: 4853
  publication-title: J. Mater. Chem.
– volume: 23
  start-page: 470
  year: 2011
  end-page: 482
  publication-title: Chem. Mater.
– volume: 1
  start-page: 1370
  year: 2009
  end-page: 1374
  publication-title: ACS Appl. Mater. Interfaces
– volume: 94
  start-page: 1406
  year: 2010
  end-page: 1411
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 42
  start-page: 1709
  year: 2009
  end-page: 1718
  publication-title: Acc. Chem. Res.
– volume: 416
  start-page: 42
  year: 2005
  end-page: 46
  publication-title: Chem. Phys. Lett.
– volume: 4
  start-page: 842
  year: 2011
  end-page: 857
  publication-title: Energy Environ. Sci.
– start-page: 1673
  year: 2009
  end-page: 1675
  publication-title: Chem. Commun.
– volume: 46
  start-page: 6596
  year: 2010
  end-page: 6598
  publication-title: Chem. Commun.
– volume: 14
  start-page: 382
  year: 2008
  end-page: 386
  publication-title: J. Ind. Eng. Chem.
– volume: 133
  start-page: 4625
  year: 2011
  end-page: 4631
  publication-title: J. Am. Chem. Soc.
– volume: 94
  start-page: 2318
  year: 2010
  end-page: 2327
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 1
  start-page: 802
  year: 2011
  end-page: 812
  publication-title: Adv. Energy Mater.
– volume: 31
  start-page: 496
  year: 2007
  end-page: 501
  publication-title: New J. Chem.
– volume: 21
  start-page: 1521
  year: 2009
  end-page: 1527
  publication-title: Adv. Mater.
– volume: 5
  start-page: 197
  year: 2006
  end-page: 203
  publication-title: Nat. Mater.
– volume: 20
  start-page: 338
  year: 2010
  end-page: 346
  publication-title: Adv. Funct. Mater.
– volume: 123 50
  start-page: 3051 2995
  year: 2011 2011
  end-page: 3054 2998
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 38
  start-page: 5359
  year: 2005
  end-page: 5362
  publication-title: Macromolecules
– volume: 91
  start-page: 447
  year: 2007
  end-page: 452
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 4
  start-page: 4870
  year: 2011
  end-page: 4881
  publication-title: Energy Environ. Sci.
– volume: 31
  start-page: 1554
  year: 2010
  end-page: 1559
  publication-title: Macromol. Rapid Commun.
– volume: 47
  start-page: 914
  year: 2011
  end-page: 916
  publication-title: Chem. Commun.
– volume: 332
  start-page: 293
  year: 2011
  end-page: 293
  publication-title: Science
– volume: 133
  start-page: 14534
  year: 2011
  end-page: 14537
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3315
  year: 2011
  end-page: 3319
  publication-title: Adv. Mater.
– volume: 47
  start-page: 9654
  year: 2011
  end-page: 9656
  publication-title: Chem. Commun.
– volume: 18
  start-page: 789
  year: 2006
  end-page: 894
  publication-title: Adv. Mater.
– volume: 22
  start-page: 15570
  year: 2012
  end-page: 15577
  publication-title: J. Mater. Chem.
– volume: 18
  start-page: 572
  year: 2006
  end-page: 576
  publication-title: Adv. Mater.
– volume: 23
  start-page: 12
  year: 2011
  end-page: 29
  publication-title: Adv. Mater.
– volume: 11
  start-page: 311
  year: 2010
  end-page: 321
  publication-title: Org. Electron.
– volume: 13
  start-page: 335
  year: 2012
  end-page: 340
  publication-title: Org. Electron.
– volume: 20
  start-page: 3626
  year: 2010
  end-page: 3636
  publication-title: J. Mater. Chem.
– volume: 95
  start-page: 1767
  year: 2011
  end-page: 1774
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 114
  start-page: 1343
  year: 2010
  end-page: 1349
  publication-title: J. Phys. Chem. C
– volume: 133
  start-page: 10062
  year: 2011
  end-page: 10065
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 1620
  year: 2009
  end-page: 1623
  publication-title: J. Phys. Chem. C
– volume: 123 50
  start-page: 5633 5519
  year: 2011 2011
  end-page: 5637 5523
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 23
  start-page: 4636
  year: 2011
  end-page: 4643
  publication-title: Adv. Mater.
– start-page: 3372
  year: 2008
  end-page: 3374
  publication-title: Chem. Commun.
– volume: 95
  start-page: 2621
  year: 2011
  end-page: 2627
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 92
  start-page: 397
  year: 2008
  end-page: 401
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 21
  start-page: 2594
  year: 2011
  end-page: 2600
  publication-title: J. Mater. Chem.
– volume: 95
  start-page: 2069
  year: 2011
  end-page: 2076
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 3
  start-page: 332
  year: 2009
  end-page: 336
  publication-title: Nat. Photonics
– volume: 133
  start-page: 4250
  year: 2011
  end-page: 4253
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 9074
  year: 2012
  end-page: 9077
  publication-title: J. Am. Chem. Soc.
– volume: 43
  start-page: 697
  year: 2010
  end-page: 708
  publication-title: Macromolecules
– volume: 22
  start-page: 135
  year: 2010
  end-page: 138
  publication-title: Adv. Mater.
– volume: 134
  start-page: 5432
  year: 2012
  end-page: 5435
  publication-title: J. Am. Chem. Soc.
– volume: 317
  start-page: 222
  year: 2007
  end-page: 225
  publication-title: Science
– volume: 11
  start-page: 9384
  year: 2011
  end-page: 9394
  publication-title: J. Nanosci. Nanotechnol.
– volume: 13
  start-page: 4574
  year: 2011
  end-page: 4577
  publication-title: Org. Lett.
– volume: 42
  start-page: 1719
  year: 2009
  end-page: 1730
  publication-title: Acc. Chem. Res.
– volume: 196
  start-page: 2364
  year: 2011
  end-page: 2372
  publication-title: J. Power Sources
– volume: 19
  start-page: 3063
  year: 2009
  end-page: 3069
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_7_38_2
  doi: 10.1016/j.orgel.2011.11.029
– ident: e_1_2_7_3_2
  doi: 10.1021/ma201648t
– ident: e_1_2_7_62_2
  doi: 10.1039/c0cc03962d
– ident: e_1_2_7_13_2
  doi: 10.1021/ja200314m
– ident: e_1_2_7_41_2
  doi: 10.1002/adfm.200900832
– ident: e_1_2_7_8_2
  doi: 10.1002/ange.201005451
– ident: e_1_2_7_21_2
  doi: 10.1016/j.synthmet.2005.07.189
– ident: e_1_2_7_30_2
  doi: 10.1039/b617972j
– ident: e_1_2_7_51_2
  doi: 10.1016/j.solmat.2010.04.059
– ident: e_1_2_7_1_2
  doi: 10.1002/adma.200801283
– ident: e_1_2_7_42_2
  doi: 10.1039/b924404b
– ident: e_1_2_7_31_2
  doi: 10.1021/ar900041b
– ident: e_1_2_7_45_2
  doi: 10.1063/1.3001802
– ident: e_1_2_7_50_2
  doi: 10.1016/j.solmat.2010.12.013
– ident: e_1_2_7_68_2
  doi: 10.1021/ja302935n
– ident: e_1_2_7_7_2
  doi: 10.1126/science.332.6027.293
– ident: e_1_2_7_64_2
  doi: 10.1002/pola.24882
– ident: e_1_2_7_55_2
  doi: 10.1016/j.solmat.2011.05.013
– ident: e_1_2_7_18_2
  doi: 10.1039/C0EE00536C
– ident: e_1_2_7_49_2
  doi: 10.1016/j.orgel.2009.11.010
– ident: e_1_2_7_8_3
  doi: 10.1002/anie.201005451
– ident: e_1_2_7_79_2
  doi: 10.1002/aenm.201100182
– ident: e_1_2_7_43_2
  doi: 10.1002/marc.201000133
– ident: e_1_2_7_61_2
  doi: 10.1039/c2jm31882b
– ident: e_1_2_7_5_2
  doi: 10.1021/cr900182s
– ident: e_1_2_7_22_2
  doi: 10.1038/nmat1574
– ident: e_1_2_7_40_2
– ident: e_1_2_7_58_2
  doi: 10.1126/science.1141711
– ident: e_1_2_7_71_2
  doi: 10.1039/b903189h
– ident: e_1_2_7_77_2
  doi: 10.1039/c1ee02279b
– ident: e_1_2_7_84_3
  doi: 10.1002/anie.201101021
– ident: e_1_2_7_20_2
  doi: 10.1021/ma0505934
– ident: e_1_2_7_47_2
  doi: 10.1016/j.orgel.2012.05.015
– ident: e_1_2_7_78_2
  doi: 10.1038/nphoton.2009.72
– ident: e_1_2_7_85_2
  doi: 10.1016/j.solmat.2007.09.017
– ident: e_1_2_7_36_2
  doi: 10.1016/j.solmat.2011.01.046
– ident: e_1_2_7_59_2
  doi: 10.1021/jp809589n
– ident: e_1_2_7_63_2
  doi: 10.1002/asia.201000506
– ident: e_1_2_7_65_2
  doi: 10.1021/ma902206u
– ident: e_1_2_7_73_2
  doi: 10.1016/j.solmat.2011.07.037
– ident: e_1_2_7_15_2
  doi: 10.1002/adma.201103006
– ident: e_1_2_7_29_2
  doi: 10.1021/cr078381n
– ident: e_1_2_7_66_2
  doi: 10.1016/j.jpowsour.2010.09.118
– ident: e_1_2_7_9_2
  doi: 10.1038/nphoton.2009.192
– ident: e_1_2_7_84_2
  doi: 10.1002/ange.201101021
– ident: e_1_2_7_81_2
  doi: 10.1016/j.sse.2011.12.009
– ident: e_1_2_7_19_2
– ident: e_1_2_7_72_2
  doi: 10.1039/b822770e
– ident: e_1_2_7_37_2
  doi: 10.1039/c1cc13827h
– ident: e_1_2_7_57_2
  doi: 10.1002/adma.200501717
– ident: e_1_2_7_75_2
  doi: 10.1166/jnn.2011.5311
– ident: e_1_2_7_34_2
  doi: 10.1039/b806748a
– ident: e_1_2_7_46_2
  doi: 10.1002/marc.201100643
– ident: e_1_2_7_6_2
– ident: e_1_2_7_24_2
  doi: 10.1016/j.solmat.2008.01.003
– ident: e_1_2_7_52_2
  doi: 10.1016/j.solmat.2011.02.018
– ident: e_1_2_7_83_2
  doi: 10.1016/j.jiec.2008.01.014
– ident: e_1_2_7_2_2
  doi: 10.1002/adma.200802559
– ident: e_1_2_7_25_2
  doi: 10.1021/am800229p
– ident: e_1_2_7_14_2
  doi: 10.1002/adma.200903528
– ident: e_1_2_7_33_2
  doi: 10.1021/ja047768u
– ident: e_1_2_7_27_2
  doi: 10.1039/c0cc01787f
– ident: e_1_2_7_39_2
  doi: 10.1039/b918362k
– ident: e_1_2_7_44_2
  doi: 10.1021/jp909786k
– ident: e_1_2_7_48_2
  doi: 10.1021/am900244y
– ident: e_1_2_7_80_2
  doi: 10.1039/c0jm00191k
– ident: e_1_2_7_53_2
  doi: 10.1016/j.cplett.2005.09.052
– ident: e_1_2_7_69_2
  doi: 10.1021/ja205977z
– ident: e_1_2_7_74_2
  doi: 10.1021/ma201425d
– ident: e_1_2_7_35_2
  doi: 10.1016/j.solmat.2006.09.007
– ident: e_1_2_7_70_2
  doi: 10.1016/j.solmat.2010.08.001
– ident: e_1_2_7_17_2
  doi: 10.1021/ar900061z
– ident: e_1_2_7_10_2
  doi: 10.1021/ja1112595
– ident: e_1_2_7_54_2
  doi: 10.1016/j.colsurfa.2007.04.162
– ident: e_1_2_7_12_2
  doi: 10.1002/adma.201101274
– ident: e_1_2_7_23_2
  doi: 10.1002/adma.200501825
– ident: e_1_2_7_82_2
  doi: 10.1063/1.3626464
– ident: e_1_2_7_4_2
  doi: 10.1021/cm102189g
– ident: e_1_2_7_56_2
  doi: 10.1039/C0JM02668A
– ident: e_1_2_7_11_2
  doi: 10.1021/ja204056m
– ident: e_1_2_7_67_2
  doi: 10.1021/ja211597w
– ident: e_1_2_7_16_2
  doi: 10.1038/nphoton.2011.317
– ident: e_1_2_7_32_2
  doi: 10.1021/ol201770g
– ident: e_1_2_7_60_2
  doi: 10.1002/adfm.200901473
– ident: e_1_2_7_28_2
– ident: e_1_2_7_26_2
  doi: 10.1021/jp201742v
– ident: e_1_2_7_76_2
  doi: 10.1002/adma.201001491
SSID ssj0060966
Score 2.4289405
SecondaryResourceType review_article
Snippet Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped...
Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20
SubjectTerms absorption
carrier mobility
charge transfer
Electric Power Supplies
energy level
Equipment Design
Fullerenes - chemistry
Metals - chemistry
Photovoltaic cells
Polymers - chemistry
Quantum Dots
solar cells
Solar Energy
Title Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach
URI https://api.istex.fr/ark:/67375/WNG-W8NDC8T3-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201200609
https://www.ncbi.nlm.nih.gov/pubmed/23288712
https://www.proquest.com/docview/1268639957
https://www.proquest.com/docview/1273434148
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yOlICMhOKVNbCe2uVWBUiFYIXar9mbZjlegVptqk5WAX8-M84BFICQ4OhnHjj0z_vz6hpBnAVCFF7ZOmQdzE8xlqVtCErmjCuZgjHPxtMWsPD4Rb8-Ks59u8ff8ENOCG1pG9Ndo4Na1Bz9IQ33bIgVhjnPieIMPD2whKvo48UfB87hZmatSpEXJ85G1MWMH29m3RqWr2MBffgc5txFsHIKObhI7Vr4_eXK-v-ncvv_2C6_j__zdLXJjwKf0sFeo2-RKWN0h16oxLNxdsnhvu15rKeBdCviRHkafSd9ZgO-0WdL-fqenHz41XQPur7OfffuSLnDpcf2VznE2TatwAcUMjOb3yMnR60V1nA6hGVIPCEunrGRBceWXmXZlIVlR87oQDqpqa6WdtFIrHaxDfKYtRxY7sQy68DAdr4Xn_D7ZWTWr8JBQXXuRKQniCiabuXbwfc9yL2WdcSuzhKRj1xg_8JZj-IwL0zMuM4NtZaa2SsiLSf6yZ-z4o-Tz2NOTmF2f4zk3WZjT2RtzqmavKrXgJk_I3qgKZjDx1uSsVAjvCpmQp9Nr6AzccbGr0GxQRnIBOEGohDzoVWgqDKAsOPicJYRFRfhLZU01n1dTavdfMj0i11kM5oELSHtkp1tvwmOAVJ17Es3mO0SAE_U
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFceD8CBYzE45Q2cV42EocqS9nS7QqxW7U313ayArXaoE1WUP4Vf4VfxExeaBEICakHjlYmzmNmPN9MnG8AnuaIKmyoM5dbdLeQG881MxwSd1TEDcY4U--2GMfDo_DtSXSyBt-6f2Eafoi-4EaeUa_X5OBUkN75yRpqy5I4CH1Kij3Z7qs8yC8-Y9ZWvtofoIqfcb73epoO3baxgGsRH0iXxzwXgbAzT5o4SniUBVkUGpxFZ0KaRCdSyFwbQhdSB8TBFs5yGVlMJrPQUg0UV_0NaiNOdP2D9z1jFU5Rfx71RRy6URz4HU-kx3dW73clDm6QSr_8DuSuYuY66O1dg-_d62r2upxtLyuzbb_-wiT5X73P63C1heBst_GZG7CWz2_CZtp1vrsF00NdNY7JENIzhMhstw4LbKQxQ2HFjDW_sFr27kNRFbjCV_qjLV-yKVVXFxdsQgUDlubneJmWtP02HF3KQ92B9Xkxz-8Bk5kNPZGguMB82pcG57fct0mSeYFOPAfczhaUbanZqUPIuWpIpbki3aheNw686OU_NaQkf5R8XptWL6YXZ7SVL4nU8fiNOhbjQSqmgfId2OpsT7WrWKl8HgtCsFHiwJP-MCqDPirpeV4sSSYJQoRCoXDgbmOz_cUQrWMM87kDvLa8v9ysSieTtB_d_5eTHsPmcHo4UqP98cEDuMLr3iVUL9uC9WqxzB8igqzMo9pnGZxetlH_ABdtb1g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrQRceD8CBYzE45Q2cZzERuJQZVlaWlYVu1V7M7bjqFWr3WqTFZRfxV_hHzHOCy0CISH1wDHJJHEyM55vJs43AM8togrDVO5Tg-7GqA58XeCm446KqcYYp-vVFqNk-4C9P4qPVuBb9y9Mww_RF9ycZ9TztXPw87zY_EkaasrSURCGLicORLusctdefMakrXyzM0ANv6B0-HaSbfttXwHfIDwQPk2o5RE3RSB0Eqc0zqM8ZhqvonIudKpSwYVV2oELoSJHwcYKK2KDuWTOjCuB4qS_xvAE1yxi8LEnrMI99dfRkCfMj5Mo7GgiA7q5PN6lMLjmNPrldxh3GTLXMW94A753b6tZ6nK6saj0hvn6C5Hk__Q6b8L1FoCTrcZjbsGKnd6Gq1nX9-4OTD6oqnFLgoCeIEAmW3VQIHsK8xMyK0jzA6sh-8ezaobze6VOTPmaTFxtdX5Bxq5cQDJ7hrdpKdvvwsGlPNQ9WJ3OpvYBEJEbFvAUxTlm06HQeH1DQ5OmeRCpNPDA70xBmpaY3fUHOZMNpTSVTjey140Hr3r584aS5I-SL2vL6sXU_NQt5EtjeTh6Jw_5aJDxSSRDD9Y705PtHFbKkCbc4dc49eBZfxiV4T4pqamdLZxMGjEEQox7cL8x2f5miNUxgoXUA1ob3l8GK7PxOOu3Hv7LSU_hyv5gKPd2RruP4BqtG5e4Ytk6rFbzhX2M8LHST2qPJfDpsm36Byo8bgc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+for+the+Active+Layer+of+Organic+Photovoltaics%3A+Ternary+Solar+Cell+Approach&rft.jtitle=ChemSusChem&rft.au=Chen%2C+Yung-Chung&rft.au=Hsu%2C+Chih-Yu&rft.au=Lin%2C+Ryan+Yeh-Yung&rft.au=Ho%2C+Kuo-Chuan&rft.date=2013-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=6&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1002%2Fcssc.201200609&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2862473541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon