Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach
Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful desig...
Saved in:
Published in | ChemSusChem Vol. 6; no. 1; pp. 20 - 35 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.01.2013
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.
All good things come in threes: Addition of a third component in bulk heterojunction solar cells (sensitizer or fullerene derivative) may increase the short‐circuit current through enhanced light harvesting and/or can increase the open‐circuit voltage through enhanced carrier mobility and modification of HOMO/LUMO energy levels. Such ternary organic solar cell systems will be reviewed in this article. |
---|---|
AbstractList | Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems.Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems. Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems. All good things come in threes: Addition of a third component in bulk heterojunction solar cells (sensitizer or fullerene derivative) may increase the short‐circuit current through enhanced light harvesting and/or can increase the open‐circuit voltage through enhanced carrier mobility and modification of HOMO/LUMO energy levels. Such ternary organic solar cell systems will be reviewed in this article. Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy‐level offset, balanced electron and hole mobility, and good light‐harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullerene I/functional fullerene II, and polymer/quantum dot or metal/functional fullerene systems. Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped materials. The energy level and absorption profile of the active layer can be tuned by introduction of an additional component. Careful design of the additional component is required to achieve optimal panchromatic absorption, suitable energy-level offset, balanced electron and hole mobility, and good light-harvesting efficiency. This article reviews the recent progress on ternary organic photovoltaic systems, including polymer/small molecule/functional fullerene, polymer/polymer/functional fullerene, small molecule/small molecule/functional fullerene, polymer/functional fullereneI/functional fullereneII, and polymer/quantum dot or metal/functional fullerene systems. [PUBLICATION ABSTRACT] |
Author | Lin, Ryan Yeh-Yung Ho, Kuo-Chuan Chen, Yung-Chung Hsu, Chih-Yu Lin, Jiann T. |
Author_xml | – sequence: 1 givenname: Yung-Chung surname: Chen fullname: Chen, Yung-Chung organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237 – sequence: 2 givenname: Chih-Yu surname: Hsu fullname: Hsu, Chih-Yu organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237 – sequence: 3 givenname: Ryan Yeh-Yung surname: Lin fullname: Lin, Ryan Yeh-Yung organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237 – sequence: 4 givenname: Kuo-Chuan surname: Ho fullname: Ho, Kuo-Chuan organization: Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106 Taiwan (ROC) – sequence: 5 givenname: Jiann T. surname: Lin fullname: Lin, Jiann T. email: jtlin@gate.sinica.edu.tw organization: Institute of Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang Taipei, 115 Taiwan (ROC), Fax: (+886) 2-27831237 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23288712$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvEzEURi1URB-wZYkssWEzwe-x2UUDFKTQIiWo7CyPx0NcJuNgO6X593VIG6FKiJW9OOfzvf5OwdEYRgfAS4wmGCHy1qZkJwRhgpBA6gk4wVKwigv2_ehwp_gYnKZ0_QcR4hk4JpRIWWNyAhZfTHbRmyHBPkSYlw5ObfY3Ds7M1kUYengZf5jRW_h1GXK4CUM23qZ3cOHiaOIWzsNgImzcMMDpeh2Dscvn4GlfEt2L-_MMfPv4YdF8qmaX55-b6ayyHDNVEUGcpNL2SLWC14R3tOOsLUOaTqq2NrWSypmWMy6UoVigmvVOcYuY6Jil9Ay82eeWZ39tXMp65ZMtk5jRhU3SmNSUUYaZLOjrR-h12JQFhh0lpKBK8bpQr-6pTbtynV5Hvyo76of_KgDbAzaGlKLrtfXZZB_GHI0fNEZ6V4ve1aIPtRRt8kh7SP6noPbCbz-47X9o3cznzd9utXd9yu724Jr4U4ua1lxfXZzrK3nxvpELqjG9A9tnrKM |
CitedBy_id | crossref_primary_10_1142_S1088424619500147 crossref_primary_10_1002_adfm_201704212 crossref_primary_10_1021_acsami_5b07015 crossref_primary_10_1002_aenm_201502109 crossref_primary_10_1007_s11433_014_5584_0 crossref_primary_10_1002_sia_6794 crossref_primary_10_1007_s10854_015_3239_1 crossref_primary_10_1039_C5MH00090D crossref_primary_10_7567_JJAP_53_01AB10 crossref_primary_10_1039_C4CP04128C crossref_primary_10_1016_j_dyepig_2016_04_038 crossref_primary_10_1021_jp5088724 crossref_primary_10_1002_pat_4202 crossref_primary_10_1039_C7TA02076G crossref_primary_10_1002_pi_4668 crossref_primary_10_1038_s41598_017_12374_8 crossref_primary_10_3390_coatings13061123 crossref_primary_10_1021_am503038t crossref_primary_10_1016_j_orgel_2017_03_030 crossref_primary_10_1016_j_orgel_2015_11_005 crossref_primary_10_1063_1_4958690 crossref_primary_10_1021_acs_accounts_4c00130 crossref_primary_10_1155_2023_3367579 crossref_primary_10_3390_polym6112784 crossref_primary_10_1039_C8TA10015B crossref_primary_10_1021_ja513045a crossref_primary_10_1002_solr_201800263 crossref_primary_10_1021_jz400723u crossref_primary_10_1016_j_polymer_2014_04_045 crossref_primary_10_1134_S0036024415120043 crossref_primary_10_1016_j_orgel_2021_106063 crossref_primary_10_1039_C5CC06290J crossref_primary_10_1039_C4TC01178C crossref_primary_10_1039_C7MH00958E crossref_primary_10_1063_1_4828363 crossref_primary_10_1016_j_orgel_2016_08_017 crossref_primary_10_1021_acsaelm_8b00113 crossref_primary_10_1002_aenm_201502094 crossref_primary_10_1039_C4CP01411A crossref_primary_10_1007_s10118_017_1898_5 crossref_primary_10_1038_nphoton_2013_82 crossref_primary_10_1002_adma_201501275 crossref_primary_10_1039_c3cp55075c crossref_primary_10_1021_acs_jpcb_5b00110 crossref_primary_10_1002_cssc_201501690 crossref_primary_10_1039_C5TA04243G crossref_primary_10_1063_1_4818726 crossref_primary_10_1134_S1990793117020038 crossref_primary_10_1039_C5TA04905A crossref_primary_10_1039_C5CP05161D crossref_primary_10_1039_C5TA08120C crossref_primary_10_1002_solr_201700158 crossref_primary_10_1007_s10854_013_1563_x crossref_primary_10_1021_acsenergylett_8b01400 crossref_primary_10_1002_cssc_201802939 crossref_primary_10_1039_C6TC03957J crossref_primary_10_1142_S1088424617500638 crossref_primary_10_1002_adma_201502773 crossref_primary_10_1038_nphoton_2015_128 crossref_primary_10_1007_s42452_019_0663_5 crossref_primary_10_1021_jacs_3c08451 crossref_primary_10_1039_C5TA09199C crossref_primary_10_1039_C5EE02641E crossref_primary_10_1039_C4NR00868E crossref_primary_10_1002_adom_201400542 crossref_primary_10_1016_j_progpolymsci_2013_07_010 crossref_primary_10_1039_C8NR01421C crossref_primary_10_1021_acs_chemmater_6b05194 crossref_primary_10_1021_am5066267 crossref_primary_10_1021_acs_macromol_5b01137 crossref_primary_10_1039_C6RA04746G crossref_primary_10_1007_s10895_021_02837_7 crossref_primary_10_1021_am508491v crossref_primary_10_1016_j_synthmet_2019_116112 crossref_primary_10_3762_bjoc_10_76 crossref_primary_10_1038_srep09321 crossref_primary_10_1021_sc500276u crossref_primary_10_1039_c3tc31235f crossref_primary_10_1021_acs_jpcc_5b04850 crossref_primary_10_1080_15421406_2014_933303 crossref_primary_10_1002_marc_202100828 crossref_primary_10_1021_cm5018147 crossref_primary_10_1039_D2ME00166G crossref_primary_10_1002_aenm_201602540 crossref_primary_10_1039_C4RA12184H crossref_primary_10_1039_C8TC00416A crossref_primary_10_1016_j_orgel_2020_105747 crossref_primary_10_1016_j_polymer_2013_07_053 crossref_primary_10_1063_1_5125438 crossref_primary_10_1002_adfm_201800627 crossref_primary_10_1039_C5EE03460D crossref_primary_10_1039_C7NR03789A crossref_primary_10_1039_c4pp00071d crossref_primary_10_1039_C4TA05101G crossref_primary_10_1002_adma_201603588 crossref_primary_10_1016_j_apsusc_2023_157140 crossref_primary_10_1016_j_synthmet_2016_07_022 crossref_primary_10_1039_C6TA10739G crossref_primary_10_4028_www_scientific_net_MSF_827_119 crossref_primary_10_1016_j_dyepig_2017_07_032 crossref_primary_10_1016_j_carbon_2015_04_011 crossref_primary_10_1088_0022_3727_48_29_295105 crossref_primary_10_1002_solr_201600003 crossref_primary_10_1021_acsami_6b10144 crossref_primary_10_1021_acsami_6b15678 crossref_primary_10_1021_acs_jpca_9b02768 crossref_primary_10_1039_C5TA07173A crossref_primary_10_1016_j_orgel_2016_01_028 crossref_primary_10_1002_aenm_201600660 crossref_primary_10_1021_acs_chemmater_8b00675 crossref_primary_10_1039_C4EE02004A crossref_primary_10_1021_acs_jpcc_7b03447 crossref_primary_10_1039_C6TC02001A crossref_primary_10_1021_jp5029905 crossref_primary_10_1016_j_solmat_2013_07_050 crossref_primary_10_1016_j_solmat_2013_08_007 crossref_primary_10_1039_C5TA10759H crossref_primary_10_1039_C9RA04036F crossref_primary_10_1007_s00396_014_3397_3 crossref_primary_10_1063_5_0096556 crossref_primary_10_1002_advs_201500250 crossref_primary_10_1039_D1QM00835H crossref_primary_10_1016_j_orgel_2016_12_046 crossref_primary_10_1021_am500074s crossref_primary_10_1039_C6TA08593H |
Cites_doi | 10.1016/j.orgel.2011.11.029 10.1021/ma201648t 10.1039/c0cc03962d 10.1021/ja200314m 10.1002/adfm.200900832 10.1002/ange.201005451 10.1016/j.synthmet.2005.07.189 10.1039/b617972j 10.1016/j.solmat.2010.04.059 10.1002/adma.200801283 10.1039/b924404b 10.1021/ar900041b 10.1063/1.3001802 10.1016/j.solmat.2010.12.013 10.1021/ja302935n 10.1126/science.332.6027.293 10.1002/pola.24882 10.1016/j.solmat.2011.05.013 10.1039/C0EE00536C 10.1016/j.orgel.2009.11.010 10.1002/anie.201005451 10.1002/aenm.201100182 10.1002/marc.201000133 10.1039/c2jm31882b 10.1021/cr900182s 10.1038/nmat1574 10.1126/science.1141711 10.1039/b903189h 10.1039/c1ee02279b 10.1002/anie.201101021 10.1021/ma0505934 10.1016/j.orgel.2012.05.015 10.1038/nphoton.2009.72 10.1016/j.solmat.2007.09.017 10.1016/j.solmat.2011.01.046 10.1021/jp809589n 10.1002/asia.201000506 10.1021/ma902206u 10.1016/j.solmat.2011.07.037 10.1002/adma.201103006 10.1021/cr078381n 10.1016/j.jpowsour.2010.09.118 10.1038/nphoton.2009.192 10.1002/ange.201101021 10.1016/j.sse.2011.12.009 10.1039/b822770e 10.1039/c1cc13827h 10.1002/adma.200501717 10.1166/jnn.2011.5311 10.1039/b806748a 10.1002/marc.201100643 10.1016/j.solmat.2008.01.003 10.1016/j.solmat.2011.02.018 10.1016/j.jiec.2008.01.014 10.1002/adma.200802559 10.1021/am800229p 10.1002/adma.200903528 10.1021/ja047768u 10.1039/c0cc01787f 10.1039/b918362k 10.1021/jp909786k 10.1021/am900244y 10.1039/c0jm00191k 10.1016/j.cplett.2005.09.052 10.1021/ja205977z 10.1021/ma201425d 10.1016/j.solmat.2006.09.007 10.1016/j.solmat.2010.08.001 10.1021/ar900061z 10.1021/ja1112595 10.1016/j.colsurfa.2007.04.162 10.1002/adma.201101274 10.1002/adma.200501825 10.1063/1.3626464 10.1021/cm102189g 10.1039/C0JM02668A 10.1021/ja204056m 10.1021/ja211597w 10.1038/nphoton.2011.317 10.1021/ol201770g 10.1002/adfm.200901473 10.1021/jp201742v 10.1002/adma.201001491 |
ContentType | Journal Article |
Copyright | Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.201200609 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 35 |
ExternalDocumentID | 2862473541 23288712 10_1002_cssc_201200609 CSSC201200609 ark_67375_WNG_W8NDC8T3_1 |
Genre | reviewArticle Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: National Science Council, Taiwan – fundername: Academia Sinica – fundername: Institute of Chemistry |
GroupedDBID | --- 05W 0R~ 1OC 29B 31~ 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAYOK AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZVAB BDRZF BFHJK BRXPI BSCLL CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7SR 8BQ 8FD JG9 K9. 7X8 |
ID | FETCH-LOGICAL-c5149-262e838cf09b65725d3d54b609ad89b7a7989eab54569a316074fe95c046d4c33 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 08:54:38 EDT 2025 Fri Jul 25 12:09:42 EDT 2025 Mon Jul 21 06:06:08 EDT 2025 Tue Jul 01 03:55:18 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Jan 22 16:19:44 EST 2025 Wed Oct 30 09:56:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5149-262e838cf09b65725d3d54b609ad89b7a7989eab54569a316074fe95c046d4c33 |
Notes | ArticleID:CSSC201200609 Institute of Chemistry ark:/67375/WNG-W8NDC8T3-1 National Science Council, Taiwan Academia Sinica istex:8E94D6472A9DF79BDAA0517B6056E0CA66CCF92A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
PMID | 23288712 |
PQID | 1268639957 |
PQPubID | 986333 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1273434148 proquest_journals_1268639957 pubmed_primary_23288712 crossref_citationtrail_10_1002_cssc_201200609 crossref_primary_10_1002_cssc_201200609 wiley_primary_10_1002_cssc_201200609_CSSC201200609 istex_primary_ark_67375_WNG_W8NDC8T3_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-01 January 2013 2013-01-00 2013-Jan 20130101 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | ChemSusChem |
PublicationTitleAlternate | ChemSusChem |
PublicationYear | 2013 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag – name: Wiley Subscription Services, Inc |
References | H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem. 2011, 123, 3051-3054 J. W. Choi, C. Kulshreshtha, G. P. Kennedy, J. H. Kwon, S. H. Jung, M. Chae, Sol. Energy Mater. Sol. Cells 2011, 95, 2069-2076. T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem. Commun. 2009, 1673-1675. T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Org. Electron. 2012, 13, 335-340. Y. Hayashi, H. Sakuragi, T. Soga, I. Alexandrou, G. A. J. Amaratunga, Colloids Surf. A 2008, 313-314, 422-425. J. Tang, E. H. Sargent, Adv. Mater. 2011, 23, 12-29. S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, ACS Appl. Mater. Interfaces 2009, 1, 804-810. Angew. Chem. Int. Ed. 2011, 50, 5519-5523. Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868-5923. C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062-10065 J. Peet, A. B. Tamayo, X. D. Dang, J. H. Seo, T. Q. Nguyen, Appl. Phys. Lett. 2008, 93, 163306. P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2012, 134, 9074-9077. H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607-632. A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932 Y. A. M. Ismail, T. Soga, T. Jimbo, Sol. Energy Mater. Sol. Cells 2010, 94, 1406-1411. N. Cooling, K. B. Burke, X. Zhou, S. J. Lind, K. C. Gordon, T. W. Jones, P. C. Dastoor, W. J. Belcher, Sol. Energy Mater. Sol. Cells 2011, 95, 1767-1774. S. J. Park, J. M. Cho, W. B. Byun, J. C. Le, W. S. Shin, I. N. Kang, S. J. Moon, S. K. Lee, J. Polym. Sci. Part A 2011, 49, 4416-4424. R. F. Service, Science 2011, 332, 293-293 C. E. Small, S. Chen, J. Subbian, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, Nat. Photonics 2012, 6, 115-120. J. N. de Freitas, I. R. Grova, L. C. Akcelrud, E. Arici, N. S. Sariciftcic, A. F. Nogueira, J. Mater. Chem. 2010, 20, 4845-4853. Y. C. Lai, T. Higashihara, J. C. Hsu, M. Ueda, W. C. Chen, Sol. Energy Mater. Sol. Cells 2012, 97, 164-170. G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, H. Takakura, Sol. Energy Mater. Sol. Cells 2008, 92, 371-373. W. J. Belcher, K. I. Wagner, P. C. Dastoor, Sol. Energy Mater. Sol. Cells 2007, 91, 447-452. D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, A. J. Heeger, Angew. Chem. 2011, 123, 5633-5637 Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang, X. Y. Hou, Chem. Phys. Lett. 2005, 416, 42-46. J. A. Mikroyannidis, P. Suresh, G. D. Sharma, Org. Electron. 2010, 11, 311-321. B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 2011, 23, 470-482. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135-138 J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 2011, 4, 842-857. K. B. V. Naidu, J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, S. H. Jin, Sol. Energy Mater. Sol. Cells 2008, 92, 397-401. Y. Kubo, Z. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T. Shoda, H. Ota, Org. Lett. 2011, 13, 4574-4577. M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, Adv. Mater. 2011, 23, 3315-3319 Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, Synth. Met. 2005, 152, 105-108. J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572-576. M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, Y. Tai, Sol. Energy Mater. Sol. Cells 2011, 95, 2621-2627. Z. X. Xu, V. A. L. Roy, K. H. Low, C. M. Che, Chem. Commun. 2011, 47, 9654-9656. J. H. Huang, M. Velusamy, K. C. Ho, J. T. Lin, C. W. Chu, J. Mater. Chem. 2010, 20, 2820-2825. S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys. Chem. C 2010, 114, 1343-1349. Angew. Chem. Int. Ed. 2011, 50, 2995-2998 J. Lee, M. H. Yun, J. Kim, J. Y. Kim, C. Yang, Macromol. Rapid Commun. 2012, 33, 140-145. E. Lim, S. Lee, K. K. Lee, Chem. Commun. 2011, 47, 914-916. M. Park, B. D. Chin, J. W. Yu, M. S. Chun, S. H. Han, J. Ind. Eng. Chem. 2008, 14, 382-386. J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, Adv. Mater. 2009, 21, 1521-1527. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649-653 S. H. Chan, C. S. Lai, H. L. Chen, C. Ting, C. P. Chen, Macromolecules 2011, 44, 8886-8891. B. C. Thompson, Y. G. Kim, J. R. Reynolds, Macromolecules 2005, 38, 5359-5362 M. Taukeer Khan, A. Kaur, S. K. Dhawan, S. Chand, J. Appl. Phys. 2011, 110, 044509. G. Itskos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, S. A. Choulis, Adv. Energy Mater. 2011, 1, 802-812. G. D. Sharma, S. P. Singh, M. S. Roy, J. A. Mikroyannidis, Org.Electron. 2012, 13, 1756-1762. T. Hasobe, A. S. D. Sandanayaka, T. Wada, Y. Araki, Chem. Commun. 2008, 3372-3374. L. Yang, H. Zhou, S. C. Price, W. You, J. Am. Chem. Soc. 2012, 134, 5432-5435. J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, A. Kumar, Y. K. Vijay, G. D. Sharma, Sol. Energy Mater. Sol. Cells 2010, 94, 2318-2327. S. Honda, H. Ohkita, H. Benten, S. Ito, Chem. Commun. 2010, 46, 6596-6598. R. Debnath, O. Bakr, E. H. Sargent, Energy Environ. Sci. 2011, 4, 4870-4881. H. Kim, M. Shin, Y. Kim, J. Phys. Chem. C 2009, 113, 1620-1623. J. A. Mikroyannidis, D. V. Tsagkournos, P. Balraju, G. D. Sharma, J. Power Sources 2011, 196, 2364-2372. H. Fu, M. Choi, W. Luan, Y. S. Kim, S. T. Tu, Solid-State Electron. 2012, 69, 50-54. J. Chen, Y. Cao, Acc. Chem. Res. 2009, 42, 1709-1718. P. Sonar, G. M. Ng, T. T. Lin, A. Dodabalapur, Z. K. Chen, J. Mater. Chem. 2010, 20, 3626-3636. T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, Nat. Photonics 2009, 3, 332-336. A. Tang, S. Qu, F. Teng, Y. Hou, Y. Wang, Z. Wang, J. Nanosci. Nanotechnol. 2011, 11, 9384-9394. M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec, P. Schilinsky, C. N. Hoth, Adv. Funct. Mater. 2010, 20, 338-346. P. Suresh, P. Balraju, G. D. Sharma, J. A. Mikroyannidis, M. M. Stylianakis, ACS Appl. Mater. Interfaces 2009, 1, 1370-1374. G. Adam, A. Pivrikas, A. M. Ramil, S. Tadesse, T. Yohannes, N. S. Sariciftci, D. A. M. Egbe, J. Mater. Chem. 2011, 21, 2594-2600. S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625-4631 G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323-1338. C. H. Chen, Y. J. Cheng, M. Dubosc, C. H. Hsieh, C. C. Chu, C. S. Hsu, Chem. Asian J. 2010, 5, 2483-2492. B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063-3069 J. Roncali, Acc. Chem. Res. 2009, 42, 1719-1730. S. S. Sharma, G. D. Sharma, J. A. Mikroyannidis, Sol. Energy Mater. Sol. Cells 2011, 95, 1219-1223. B. P. Karsten, J. C. Bijleveld, R. A. J. Janssen, Macromol. Rapid Commun. 2010, 31, 1554-1559. P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2011, 133, 14534-14537. C. H. Chen, C. H. Hsieh, M. Dubosc, Y. J. Cheng, C. S. Hsu, Macromolecules 2010, 43, 697-708. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197-203. T. Y. Chu, J. Lu, B. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250-4253 M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789-894. S. Honda, S. Yokoya, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. C 2011, 115, 11306-11316. T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, J. Mater. Chem. 2009, 19, 2298-2300. Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636-4643 R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 2007, 31, 496-501 F. Machui, S. Rathgeber, N. Li, T. Ameri, C. J. Brabec, J. Mater. Chem. 2012, 22, 15570-15577. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222-225. T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 1216-1228. 2011; 115 2010; 11 2007; 107 2009; 42 2005; 416 2011; 11 2009; 113 2011; 13 2011 2011; 123 50 2007; 31 2011; 196 2012; 13 2012; 97 2011; 110 2010; 22 2010; 20 2012; 134 2010; 114 2011; 21 2011; 23 2012; 69 2005; 38 2009; 19 2010; 5 2012; 22 2010; 31 2009; 21 2005; 152 2011; 1 2009 2008; 14 2008 2006; 5 2006; 18 2007; 91 2011; 4 2008; 92 2008; 93 2012; 33 2011; 332 2011; 133 2010; 43 2007; 317 2010; 46 2005; 127 2011; 95 2008; 313–314 2011; 44 2011; 47 2009; 3 2012; 6 2011; 49 2012; 45 2009; 109 2009; 1 2010; 94 e_1_2_7_5_2 e_1_2_7_3_2 e_1_2_7_9_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_17_2 e_1_2_7_83_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_13_2 e_1_2_7_41_2 e_1_2_7_62_2 e_1_2_7_11_2 e_1_2_7_43_2 e_1_2_7_64_2 e_1_2_7_85_2 e_1_2_7_45_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 e_1_2_7_28_2 e_1_2_7_71_2 e_1_2_7_50_2 e_1_2_7_25_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_73_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_56_2 e_1_2_7_79_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_37_2 e_1_2_7_39_2 e_1_2_7_4_2 e_1_2_7_2_2 e_1_2_7_8_3 e_1_2_7_8_2 e_1_2_7_6_2 e_1_2_7_18_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_12_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_84_2 e_1_2_7_84_3 e_1_2_7_10_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_48_2 e_1_2_7_27_2 e_1_2_7_29_2 e_1_2_7_72_2 e_1_2_7_70_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_51_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_53_2 e_1_2_7_74_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_57_2 e_1_2_7_78_2 e_1_2_7_38_2 e_1_2_7_59_2 |
References_xml | – reference: S. Honda, S. Yokoya, H. Ohkita, H. Benten, S. Ito, J. Phys. Chem. C 2011, 115, 11306-11316. – reference: J. W. Choi, C. Kulshreshtha, G. P. Kennedy, J. H. Kwon, S. H. Jung, M. Chae, Sol. Energy Mater. Sol. Cells 2011, 95, 2069-2076. – reference: J. Peet, A. B. Tamayo, X. D. Dang, J. H. Seo, T. Q. Nguyen, Appl. Phys. Lett. 2008, 93, 163306. – reference: Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, Adv. Mater. 2010, 22, E135-138; – reference: F. Machui, S. Rathgeber, N. Li, T. Ameri, C. J. Brabec, J. Mater. Chem. 2012, 22, 15570-15577. – reference: H. Fu, M. Choi, W. Luan, Y. S. Kim, S. T. Tu, Solid-State Electron. 2012, 69, 50-54. – reference: A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891-4932; – reference: Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C. S. Ha, M. Ree, Nat. Mater. 2006, 5, 197-203. – reference: T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, Chem. Commun. 2009, 1673-1675. – reference: J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science 2007, 317, 222-225. – reference: L. Yang, H. Zhou, S. C. Price, W. You, J. Am. Chem. Soc. 2012, 134, 5432-5435. – reference: Y. Hayashi, H. Sakuragi, T. Soga, I. Alexandrou, G. A. J. Amaratunga, Colloids Surf. A 2008, 313-314, 422-425. – reference: J. Roncali, Acc. Chem. Res. 2009, 42, 1719-1730. – reference: Y. Kubo, Z. Watanabe, R. Nishiyabu, R. Hata, A. Murakami, T. Shoda, H. Ota, Org. Lett. 2011, 13, 4574-4577. – reference: G. D. Sharma, S. P. Singh, M. S. Roy, J. A. Mikroyannidis, Org.Electron. 2012, 13, 1756-1762. – reference: Q. L. Song, F. Y. Li, H. Yang, H. R. Wu, X. Z. Wang, W. Zhou, J. M. Zhao, X. M. Ding, C. H. Huang, X. Y. Hou, Chem. Phys. Lett. 2005, 416, 42-46. – reference: M. Park, B. D. Chin, J. W. Yu, M. S. Chun, S. H. Han, J. Ind. Eng. Chem. 2008, 14, 382-386. – reference: B. Walker, C. Kim, T. Q. Nguyen, Chem. Mater. 2011, 23, 470-482. – reference: M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789-894. – reference: Y. J. Cheng, S. H. Yang, C. S. Hsu, Chem. Rev. 2009, 109, 5868-5923. – reference: R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 2007, 31, 496-501; – reference: W. J. Belcher, K. I. Wagner, P. C. Dastoor, Sol. Energy Mater. Sol. Cells 2007, 91, 447-452. – reference: Angew. Chem. Int. Ed. 2011, 50, 5519-5523. – reference: P. Sonar, G. M. Ng, T. T. Lin, A. Dodabalapur, Z. K. Chen, J. Mater. Chem. 2010, 20, 3626-3636. – reference: T. Y. Chu, J. Lu, B. Beaupré, Y. Zhang, J. R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, Y. Tao, J. Am. Chem. Soc. 2011, 133, 4250-4253; – reference: Y. Kim, S. Cook, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, Synth. Met. 2005, 152, 105-108. – reference: B. P. Karsten, J. C. Bijleveld, R. A. J. Janssen, Macromol. Rapid Commun. 2010, 31, 1554-1559. – reference: M. C. Chen, D. J. Liaw, Y. C. Huang, H. Y. Wu, Y. Tai, Sol. Energy Mater. Sol. Cells 2011, 95, 2621-2627. – reference: C. H. Chen, C. H. Hsieh, M. Dubosc, Y. J. Cheng, C. S. Hsu, Macromolecules 2010, 43, 697-708. – reference: T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, J. Mater. Chem. 2009, 19, 2298-2300. – reference: A. Tang, S. Qu, F. Teng, Y. Hou, Y. Wang, Z. Wang, J. Nanosci. Nanotechnol. 2011, 11, 9384-9394. – reference: R. Debnath, O. Bakr, E. H. Sargent, Energy Environ. Sci. 2011, 4, 4870-4881. – reference: G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist, K. L. Chopra, X. Mathew, H. Takakura, Sol. Energy Mater. Sol. Cells 2008, 92, 371-373. – reference: Z. X. Xu, V. A. L. Roy, K. H. Low, C. M. Che, Chem. Commun. 2011, 47, 9654-9656. – reference: Angew. Chem. Int. Ed. 2011, 50, 2995-2998; – reference: G. Adam, A. Pivrikas, A. M. Ramil, S. Tadesse, T. Yohannes, N. S. Sariciftci, D. A. M. Egbe, J. Mater. Chem. 2011, 21, 2594-2600. – reference: H. Zhou, L. Yang, W. You, Macromolecules 2012, 45, 607-632. – reference: H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat. Photonics 2009, 3, 649-653; – reference: T. Hasobe, A. S. D. Sandanayaka, T. Wada, Y. Araki, Chem. Commun. 2008, 3372-3374. – reference: N. Cooling, K. B. Burke, X. Zhou, S. J. Lind, K. C. Gordon, T. W. Jones, P. C. Dastoor, W. J. Belcher, Sol. Energy Mater. Sol. Cells 2011, 95, 1767-1774. – reference: K. B. V. Naidu, J. S. Park, S. C. Kim, S. M. Park, E. J. Lee, K. J. Yoon, S. J. Lee, J. W. Lee, Y. S. Gal, S. H. Jin, Sol. Energy Mater. Sol. Cells 2008, 92, 397-401. – reference: T. Rauch, M. Böberl, S. F. Tedde, J. Fürst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, O. Hayden, Nat. Photonics 2009, 3, 332-336. – reference: Y. C. Lai, T. Higashihara, J. C. Hsu, M. Ueda, W. C. Chen, Sol. Energy Mater. Sol. Cells 2012, 97, 164-170. – reference: J. N. de Freitas, I. R. Grova, L. C. Akcelrud, E. Arici, N. S. Sariciftcic, A. F. Nogueira, J. Mater. Chem. 2010, 20, 4845-4853. – reference: C. E. Small, S. Chen, J. Subbian, C. M. Amb, S. W. Tsang, T. H. Lai, J. R. Reynolds, F. So, Nat. Photonics 2012, 6, 115-120. – reference: J. A. Mikroyannidis, P. Suresh, G. D. Sharma, Org. Electron. 2010, 11, 311-321. – reference: S. Honda, T. Nogami, H. Ohkita, H. Benten, S. Ito, ACS Appl. Mater. Interfaces 2009, 1, 804-810. – reference: S. H. Chan, C. S. Lai, H. L. Chen, C. Ting, C. P. Chen, Macromolecules 2011, 44, 8886-8891. – reference: S. J. Park, J. M. Cho, W. B. Byun, J. C. Le, W. S. Shin, I. N. Kang, S. J. Moon, S. K. Lee, J. Polym. Sci. Part A 2011, 49, 4416-4424. – reference: R. F. Service, Science 2011, 332, 293-293; – reference: S. C. Price, A. C. Stuart, L. Yang, H. Zhou, W. You, J. Am. Chem. Soc. 2011, 133, 4625-4631; – reference: D. H. Wang, D. Y. Kim, K. W. Choi, J. H. Seo, S. H. Im, J. H. Park, O. O. Park, A. J. Heeger, Angew. Chem. 2011, 123, 5633-5637; – reference: J. Peet, M. L. Senatore, A. J. Heeger, G. C. Bazan, Adv. Mater. 2009, 21, 1521-1527. – reference: Z. He, C. Zhong, X. Huang, W. Y. Wong, H. Wu, L. Chen, S. Su, Y. Cao, Adv. Mater. 2011, 23, 4636-4643; – reference: J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 2011, 4, 842-857. – reference: J. A. Mikroyannidis, D. V. Tsagkournos, S. S. Sharma, A. Kumar, Y. K. Vijay, G. D. Sharma, Sol. Energy Mater. Sol. Cells 2010, 94, 2318-2327. – reference: S. Qu, W. Wu, J. Hua, C. Kong, Y. Long, H. Tian, J. Phys. Chem. C 2010, 114, 1343-1349. – reference: M. S. Su, C. Y. Kuo, M. C. Yuan, U. S. Jeng, C. J. Su, K. H. Wei, Adv. Mater. 2011, 23, 3315-3319; – reference: S. Honda, H. Ohkita, H. Benten, S. Ito, Chem. Commun. 2010, 46, 6596-6598. – reference: Y. A. M. Ismail, T. Soga, T. Jimbo, Sol. Energy Mater. Sol. Cells 2010, 94, 1406-1411. – reference: P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2012, 134, 9074-9077. – reference: H. Zhou, L. Yang, A. C. Stuart, S. C. Price, S. Liu, W. You, Angew. Chem. 2011, 123, 3051-3054; – reference: C. H. Chen, Y. J. Cheng, M. Dubosc, C. H. Hsieh, C. C. Chu, C. S. Hsu, Chem. Asian J. 2010, 5, 2483-2492. – reference: P. P. Khlyabich, B. Burkhart, B. C. Thompson, J. Am. Chem. Soc. 2011, 133, 14534-14537. – reference: M. Taukeer Khan, A. Kaur, S. K. Dhawan, S. Chand, J. Appl. Phys. 2011, 110, 044509. – reference: B. Walker, A. B. Tamayo, X. D. Dang, P. Zalar, J. H. Seo, A. Garcia, M. Tantiwiwat, T. Q. Nguyen, Adv. Funct. Mater. 2009, 19, 3063-3069; – reference: P. Suresh, P. Balraju, G. D. Sharma, J. A. Mikroyannidis, M. M. Stylianakis, ACS Appl. Mater. Interfaces 2009, 1, 1370-1374. – reference: S. S. Sharma, G. D. Sharma, J. A. Mikroyannidis, Sol. Energy Mater. Sol. Cells 2011, 95, 1219-1223. – reference: J. A. Mikroyannidis, D. V. Tsagkournos, P. Balraju, G. D. Sharma, J. Power Sources 2011, 196, 2364-2372. – reference: G. Itskos, A. Othonos, T. Rauch, S. F. Tedde, O. Hayden, M. V. Kovalenko, W. Heiss, S. A. Choulis, Adv. Energy Mater. 2011, 1, 802-812. – reference: G. Dennler, M. C. Scharber, C. J. Brabec, Adv. Mater. 2009, 21, 1323-1338. – reference: M. Koppe, H. J. Egelhaaf, G. Dennler, M. C. Scharber, C. J. Brabec, P. Schilinsky, C. N. Hoth, Adv. Funct. Mater. 2010, 20, 338-346. – reference: C. M. Amb, S. Chen, K. R. Graham, J. Subbiah, C. E. Small, F. So, J. R. Reynolds, J. Am. Chem. Soc. 2011, 133, 10062-10065; – reference: E. Lim, S. Lee, K. K. Lee, Chem. Commun. 2011, 47, 914-916. – reference: J. Chen, Y. Cao, Acc. Chem. Res. 2009, 42, 1709-1718. – reference: B. C. Thompson, Y. G. Kim, J. R. Reynolds, Macromolecules 2005, 38, 5359-5362; – reference: J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, A. J. Heeger, Adv. Mater. 2006, 18, 572-576. – reference: T. Hori, T. Masuda, N. Fukuoka, T. Hayashi, Y. Miyake, T. Kamikado, H. Yoshida, A. Fujii, Y. Shimizu, M. Ozaki, Org. Electron. 2012, 13, 335-340. – reference: J. Tang, E. H. Sargent, Adv. Mater. 2011, 23, 12-29. – reference: T. Hasobe, H. Imahori, P. V. Kamat, T. K. Ahn, S. K. Kim, D. Kim, A. Fujimoto, T. Hirakawa, S. Fukuzumi, J. Am. Chem. Soc. 2005, 127, 1216-1228. – reference: J. H. Huang, M. Velusamy, K. C. Ho, J. T. Lin, C. W. Chu, J. Mater. Chem. 2010, 20, 2820-2825. – reference: J. Lee, M. H. Yun, J. Kim, J. Y. Kim, C. Yang, Macromol. Rapid Commun. 2012, 33, 140-145. – reference: H. Kim, M. Shin, Y. Kim, J. Phys. Chem. C 2009, 113, 1620-1623. – volume: 3 start-page: 649 year: 2009 end-page: 653 publication-title: Nat. Photonics – volume: 44 start-page: 8886 year: 2011 end-page: 8891 publication-title: Macromolecules – volume: 20 start-page: 2820 year: 2010 end-page: 2825 publication-title: J. Mater. Chem. – volume: 97 start-page: 164 year: 2012 end-page: 170 publication-title: Sol. Energy Mater. Sol. Cells – volume: 93 start-page: 163306 year: 2008 publication-title: Appl. Phys. Lett. – volume: 33 start-page: 140 year: 2012 end-page: 145 publication-title: Macromol. Rapid Commun. – volume: 45 start-page: 607 year: 2012 end-page: 632 publication-title: Macromolecules – volume: 115 start-page: 11306 year: 2011 end-page: 11316 publication-title: J. Phys. Chem. C – volume: 21 start-page: 1323 year: 2009 end-page: 1338 publication-title: Adv. Mater. – volume: 127 start-page: 1216 year: 2005 end-page: 1228 publication-title: J. Am. Chem. Soc. – volume: 95 start-page: 1219 year: 2011 end-page: 1223 publication-title: Sol. Energy Mater. Sol. Cells – volume: 49 start-page: 4416 year: 2011 end-page: 4424 publication-title: J. Polym. Sci. Part A – volume: 1 start-page: 804 year: 2009 end-page: 810 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 5868 year: 2009 end-page: 5923 publication-title: Chem. Rev. – volume: 92 start-page: 371 year: 2008 end-page: 373 publication-title: Sol. Energy Mater. Sol. Cells – volume: 6 start-page: 115 year: 2012 end-page: 120 publication-title: Nat. Photonics – volume: 107 start-page: 4891 year: 2007 end-page: 4932 publication-title: Chem. Rev. – volume: 13 start-page: 1756 year: 2012 end-page: 1762 publication-title: Org.Electron. – volume: 69 start-page: 50 year: 2012 end-page: 54 publication-title: Solid‐State Electron. – volume: 313–314 start-page: 422 year: 2008 end-page: 425 publication-title: Colloids Surf. A – volume: 110 start-page: 044509 year: 2011 publication-title: J. Appl. Phys. – volume: 5 start-page: 2483 year: 2010 end-page: 2492 publication-title: Chem. Asian J. – volume: 19 start-page: 2298 year: 2009 end-page: 2300 publication-title: J. Mater. Chem. – volume: 152 start-page: 105 year: 2005 end-page: 108 publication-title: Synth. Met. – volume: 20 start-page: 4845 year: 2010 end-page: 4853 publication-title: J. Mater. Chem. – volume: 23 start-page: 470 year: 2011 end-page: 482 publication-title: Chem. Mater. – volume: 1 start-page: 1370 year: 2009 end-page: 1374 publication-title: ACS Appl. Mater. Interfaces – volume: 94 start-page: 1406 year: 2010 end-page: 1411 publication-title: Sol. Energy Mater. Sol. Cells – volume: 42 start-page: 1709 year: 2009 end-page: 1718 publication-title: Acc. Chem. Res. – volume: 416 start-page: 42 year: 2005 end-page: 46 publication-title: Chem. Phys. Lett. – volume: 4 start-page: 842 year: 2011 end-page: 857 publication-title: Energy Environ. Sci. – start-page: 1673 year: 2009 end-page: 1675 publication-title: Chem. Commun. – volume: 46 start-page: 6596 year: 2010 end-page: 6598 publication-title: Chem. Commun. – volume: 14 start-page: 382 year: 2008 end-page: 386 publication-title: J. Ind. Eng. Chem. – volume: 133 start-page: 4625 year: 2011 end-page: 4631 publication-title: J. Am. Chem. Soc. – volume: 94 start-page: 2318 year: 2010 end-page: 2327 publication-title: Sol. Energy Mater. Sol. Cells – volume: 1 start-page: 802 year: 2011 end-page: 812 publication-title: Adv. Energy Mater. – volume: 31 start-page: 496 year: 2007 end-page: 501 publication-title: New J. Chem. – volume: 21 start-page: 1521 year: 2009 end-page: 1527 publication-title: Adv. Mater. – volume: 5 start-page: 197 year: 2006 end-page: 203 publication-title: Nat. Mater. – volume: 20 start-page: 338 year: 2010 end-page: 346 publication-title: Adv. Funct. Mater. – volume: 123 50 start-page: 3051 2995 year: 2011 2011 end-page: 3054 2998 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 38 start-page: 5359 year: 2005 end-page: 5362 publication-title: Macromolecules – volume: 91 start-page: 447 year: 2007 end-page: 452 publication-title: Sol. Energy Mater. Sol. Cells – volume: 4 start-page: 4870 year: 2011 end-page: 4881 publication-title: Energy Environ. Sci. – volume: 31 start-page: 1554 year: 2010 end-page: 1559 publication-title: Macromol. Rapid Commun. – volume: 47 start-page: 914 year: 2011 end-page: 916 publication-title: Chem. Commun. – volume: 332 start-page: 293 year: 2011 end-page: 293 publication-title: Science – volume: 133 start-page: 14534 year: 2011 end-page: 14537 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3315 year: 2011 end-page: 3319 publication-title: Adv. Mater. – volume: 47 start-page: 9654 year: 2011 end-page: 9656 publication-title: Chem. Commun. – volume: 18 start-page: 789 year: 2006 end-page: 894 publication-title: Adv. Mater. – volume: 22 start-page: 15570 year: 2012 end-page: 15577 publication-title: J. Mater. Chem. – volume: 18 start-page: 572 year: 2006 end-page: 576 publication-title: Adv. Mater. – volume: 23 start-page: 12 year: 2011 end-page: 29 publication-title: Adv. Mater. – volume: 11 start-page: 311 year: 2010 end-page: 321 publication-title: Org. Electron. – volume: 13 start-page: 335 year: 2012 end-page: 340 publication-title: Org. Electron. – volume: 20 start-page: 3626 year: 2010 end-page: 3636 publication-title: J. Mater. Chem. – volume: 95 start-page: 1767 year: 2011 end-page: 1774 publication-title: Sol. Energy Mater. Sol. Cells – volume: 114 start-page: 1343 year: 2010 end-page: 1349 publication-title: J. Phys. Chem. C – volume: 133 start-page: 10062 year: 2011 end-page: 10065 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 1620 year: 2009 end-page: 1623 publication-title: J. Phys. Chem. C – volume: 123 50 start-page: 5633 5519 year: 2011 2011 end-page: 5637 5523 publication-title: Angew. Chem. Angew. Chem. Int. Ed. – volume: 23 start-page: 4636 year: 2011 end-page: 4643 publication-title: Adv. Mater. – start-page: 3372 year: 2008 end-page: 3374 publication-title: Chem. Commun. – volume: 95 start-page: 2621 year: 2011 end-page: 2627 publication-title: Sol. Energy Mater. Sol. Cells – volume: 92 start-page: 397 year: 2008 end-page: 401 publication-title: Sol. Energy Mater. Sol. Cells – volume: 21 start-page: 2594 year: 2011 end-page: 2600 publication-title: J. Mater. Chem. – volume: 95 start-page: 2069 year: 2011 end-page: 2076 publication-title: Sol. Energy Mater. Sol. Cells – volume: 3 start-page: 332 year: 2009 end-page: 336 publication-title: Nat. Photonics – volume: 133 start-page: 4250 year: 2011 end-page: 4253 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 9074 year: 2012 end-page: 9077 publication-title: J. Am. Chem. Soc. – volume: 43 start-page: 697 year: 2010 end-page: 708 publication-title: Macromolecules – volume: 22 start-page: 135 year: 2010 end-page: 138 publication-title: Adv. Mater. – volume: 134 start-page: 5432 year: 2012 end-page: 5435 publication-title: J. Am. Chem. Soc. – volume: 317 start-page: 222 year: 2007 end-page: 225 publication-title: Science – volume: 11 start-page: 9384 year: 2011 end-page: 9394 publication-title: J. Nanosci. Nanotechnol. – volume: 13 start-page: 4574 year: 2011 end-page: 4577 publication-title: Org. Lett. – volume: 42 start-page: 1719 year: 2009 end-page: 1730 publication-title: Acc. Chem. Res. – volume: 196 start-page: 2364 year: 2011 end-page: 2372 publication-title: J. Power Sources – volume: 19 start-page: 3063 year: 2009 end-page: 3069 publication-title: Adv. Funct. Mater. – ident: e_1_2_7_38_2 doi: 10.1016/j.orgel.2011.11.029 – ident: e_1_2_7_3_2 doi: 10.1021/ma201648t – ident: e_1_2_7_62_2 doi: 10.1039/c0cc03962d – ident: e_1_2_7_13_2 doi: 10.1021/ja200314m – ident: e_1_2_7_41_2 doi: 10.1002/adfm.200900832 – ident: e_1_2_7_8_2 doi: 10.1002/ange.201005451 – ident: e_1_2_7_21_2 doi: 10.1016/j.synthmet.2005.07.189 – ident: e_1_2_7_30_2 doi: 10.1039/b617972j – ident: e_1_2_7_51_2 doi: 10.1016/j.solmat.2010.04.059 – ident: e_1_2_7_1_2 doi: 10.1002/adma.200801283 – ident: e_1_2_7_42_2 doi: 10.1039/b924404b – ident: e_1_2_7_31_2 doi: 10.1021/ar900041b – ident: e_1_2_7_45_2 doi: 10.1063/1.3001802 – ident: e_1_2_7_50_2 doi: 10.1016/j.solmat.2010.12.013 – ident: e_1_2_7_68_2 doi: 10.1021/ja302935n – ident: e_1_2_7_7_2 doi: 10.1126/science.332.6027.293 – ident: e_1_2_7_64_2 doi: 10.1002/pola.24882 – ident: e_1_2_7_55_2 doi: 10.1016/j.solmat.2011.05.013 – ident: e_1_2_7_18_2 doi: 10.1039/C0EE00536C – ident: e_1_2_7_49_2 doi: 10.1016/j.orgel.2009.11.010 – ident: e_1_2_7_8_3 doi: 10.1002/anie.201005451 – ident: e_1_2_7_79_2 doi: 10.1002/aenm.201100182 – ident: e_1_2_7_43_2 doi: 10.1002/marc.201000133 – ident: e_1_2_7_61_2 doi: 10.1039/c2jm31882b – ident: e_1_2_7_5_2 doi: 10.1021/cr900182s – ident: e_1_2_7_22_2 doi: 10.1038/nmat1574 – ident: e_1_2_7_40_2 – ident: e_1_2_7_58_2 doi: 10.1126/science.1141711 – ident: e_1_2_7_71_2 doi: 10.1039/b903189h – ident: e_1_2_7_77_2 doi: 10.1039/c1ee02279b – ident: e_1_2_7_84_3 doi: 10.1002/anie.201101021 – ident: e_1_2_7_20_2 doi: 10.1021/ma0505934 – ident: e_1_2_7_47_2 doi: 10.1016/j.orgel.2012.05.015 – ident: e_1_2_7_78_2 doi: 10.1038/nphoton.2009.72 – ident: e_1_2_7_85_2 doi: 10.1016/j.solmat.2007.09.017 – ident: e_1_2_7_36_2 doi: 10.1016/j.solmat.2011.01.046 – ident: e_1_2_7_59_2 doi: 10.1021/jp809589n – ident: e_1_2_7_63_2 doi: 10.1002/asia.201000506 – ident: e_1_2_7_65_2 doi: 10.1021/ma902206u – ident: e_1_2_7_73_2 doi: 10.1016/j.solmat.2011.07.037 – ident: e_1_2_7_15_2 doi: 10.1002/adma.201103006 – ident: e_1_2_7_29_2 doi: 10.1021/cr078381n – ident: e_1_2_7_66_2 doi: 10.1016/j.jpowsour.2010.09.118 – ident: e_1_2_7_9_2 doi: 10.1038/nphoton.2009.192 – ident: e_1_2_7_84_2 doi: 10.1002/ange.201101021 – ident: e_1_2_7_81_2 doi: 10.1016/j.sse.2011.12.009 – ident: e_1_2_7_19_2 – ident: e_1_2_7_72_2 doi: 10.1039/b822770e – ident: e_1_2_7_37_2 doi: 10.1039/c1cc13827h – ident: e_1_2_7_57_2 doi: 10.1002/adma.200501717 – ident: e_1_2_7_75_2 doi: 10.1166/jnn.2011.5311 – ident: e_1_2_7_34_2 doi: 10.1039/b806748a – ident: e_1_2_7_46_2 doi: 10.1002/marc.201100643 – ident: e_1_2_7_6_2 – ident: e_1_2_7_24_2 doi: 10.1016/j.solmat.2008.01.003 – ident: e_1_2_7_52_2 doi: 10.1016/j.solmat.2011.02.018 – ident: e_1_2_7_83_2 doi: 10.1016/j.jiec.2008.01.014 – ident: e_1_2_7_2_2 doi: 10.1002/adma.200802559 – ident: e_1_2_7_25_2 doi: 10.1021/am800229p – ident: e_1_2_7_14_2 doi: 10.1002/adma.200903528 – ident: e_1_2_7_33_2 doi: 10.1021/ja047768u – ident: e_1_2_7_27_2 doi: 10.1039/c0cc01787f – ident: e_1_2_7_39_2 doi: 10.1039/b918362k – ident: e_1_2_7_44_2 doi: 10.1021/jp909786k – ident: e_1_2_7_48_2 doi: 10.1021/am900244y – ident: e_1_2_7_80_2 doi: 10.1039/c0jm00191k – ident: e_1_2_7_53_2 doi: 10.1016/j.cplett.2005.09.052 – ident: e_1_2_7_69_2 doi: 10.1021/ja205977z – ident: e_1_2_7_74_2 doi: 10.1021/ma201425d – ident: e_1_2_7_35_2 doi: 10.1016/j.solmat.2006.09.007 – ident: e_1_2_7_70_2 doi: 10.1016/j.solmat.2010.08.001 – ident: e_1_2_7_17_2 doi: 10.1021/ar900061z – ident: e_1_2_7_10_2 doi: 10.1021/ja1112595 – ident: e_1_2_7_54_2 doi: 10.1016/j.colsurfa.2007.04.162 – ident: e_1_2_7_12_2 doi: 10.1002/adma.201101274 – ident: e_1_2_7_23_2 doi: 10.1002/adma.200501825 – ident: e_1_2_7_82_2 doi: 10.1063/1.3626464 – ident: e_1_2_7_4_2 doi: 10.1021/cm102189g – ident: e_1_2_7_56_2 doi: 10.1039/C0JM02668A – ident: e_1_2_7_11_2 doi: 10.1021/ja204056m – ident: e_1_2_7_67_2 doi: 10.1021/ja211597w – ident: e_1_2_7_16_2 doi: 10.1038/nphoton.2011.317 – ident: e_1_2_7_32_2 doi: 10.1021/ol201770g – ident: e_1_2_7_60_2 doi: 10.1002/adfm.200901473 – ident: e_1_2_7_28_2 – ident: e_1_2_7_26_2 doi: 10.1021/jp201742v – ident: e_1_2_7_76_2 doi: 10.1002/adma.201001491 |
SSID | ssj0060966 |
Score | 2.4289405 |
SecondaryResourceType | review_article |
Snippet | Power conversion efficiencies in excess of 7 % have been achieved with bulk heterojunction (BHJ)‐type organic solar cells using two components: p‐ and n‐doped... Power conversion efficiencies in excess of 7% have been achieved with bulk heterojunction (BHJ)-type organic solar cells using two components: p- and n-doped... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20 |
SubjectTerms | absorption carrier mobility charge transfer Electric Power Supplies energy level Equipment Design Fullerenes - chemistry Metals - chemistry Photovoltaic cells Polymers - chemistry Quantum Dots solar cells Solar Energy |
Title | Materials for the Active Layer of Organic Photovoltaics: Ternary Solar Cell Approach |
URI | https://api.istex.fr/ark:/67375/WNG-W8NDC8T3-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201200609 https://www.ncbi.nlm.nih.gov/pubmed/23288712 https://www.proquest.com/docview/1268639957 https://www.proquest.com/docview/1273434148 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOcCF9yOlICMhOKVNbCe2uVWBUiFYIXar9mbZjlegVptqk5WAX8-M84BFICQ4OhnHjj0z_vz6hpBnAVCFF7ZOmQdzE8xlqVtCErmjCuZgjHPxtMWsPD4Rb8-Ks59u8ff8ENOCG1pG9Ndo4Na1Bz9IQ33bIgVhjnPieIMPD2whKvo48UfB87hZmatSpEXJ85G1MWMH29m3RqWr2MBffgc5txFsHIKObhI7Vr4_eXK-v-ncvv_2C6_j__zdLXJjwKf0sFeo2-RKWN0h16oxLNxdsnhvu15rKeBdCviRHkafSd9ZgO-0WdL-fqenHz41XQPur7OfffuSLnDpcf2VznE2TatwAcUMjOb3yMnR60V1nA6hGVIPCEunrGRBceWXmXZlIVlR87oQDqpqa6WdtFIrHaxDfKYtRxY7sQy68DAdr4Xn_D7ZWTWr8JBQXXuRKQniCiabuXbwfc9yL2WdcSuzhKRj1xg_8JZj-IwL0zMuM4NtZaa2SsiLSf6yZ-z4o-Tz2NOTmF2f4zk3WZjT2RtzqmavKrXgJk_I3qgKZjDx1uSsVAjvCpmQp9Nr6AzccbGr0GxQRnIBOEGohDzoVWgqDKAsOPicJYRFRfhLZU01n1dTavdfMj0i11kM5oELSHtkp1tvwmOAVJ17Es3mO0SAE_U |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5V7aFceD8CBYzE45Q2cV42EocqS9nS7QqxW7U313ayArXaoE1WUP4Vf4VfxExeaBEICakHjlYmzmNmPN9MnG8AnuaIKmyoM5dbdLeQG881MxwSd1TEDcY4U--2GMfDo_DtSXSyBt-6f2Eafoi-4EaeUa_X5OBUkN75yRpqy5I4CH1Kij3Z7qs8yC8-Y9ZWvtofoIqfcb73epoO3baxgGsRH0iXxzwXgbAzT5o4SniUBVkUGpxFZ0KaRCdSyFwbQhdSB8TBFs5yGVlMJrPQUg0UV_0NaiNOdP2D9z1jFU5Rfx71RRy6URz4HU-kx3dW73clDm6QSr_8DuSuYuY66O1dg-_d62r2upxtLyuzbb_-wiT5X73P63C1heBst_GZG7CWz2_CZtp1vrsF00NdNY7JENIzhMhstw4LbKQxQ2HFjDW_sFr27kNRFbjCV_qjLV-yKVVXFxdsQgUDlubneJmWtP02HF3KQ92B9Xkxz-8Bk5kNPZGguMB82pcG57fct0mSeYFOPAfczhaUbanZqUPIuWpIpbki3aheNw686OU_NaQkf5R8XptWL6YXZ7SVL4nU8fiNOhbjQSqmgfId2OpsT7WrWKl8HgtCsFHiwJP-MCqDPirpeV4sSSYJQoRCoXDgbmOz_cUQrWMM87kDvLa8v9ysSieTtB_d_5eTHsPmcHo4UqP98cEDuMLr3iVUL9uC9WqxzB8igqzMo9pnGZxetlH_ABdtb1g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VrQRceD8CBYzE45Q2cZzERuJQZVlaWlYVu1V7M7bjqFWr3WqTFZRfxV_hHzHOCy0CISH1wDHJJHEyM55vJs43AM8togrDVO5Tg-7GqA58XeCm446KqcYYp-vVFqNk-4C9P4qPVuBb9y9Mww_RF9ycZ9TztXPw87zY_EkaasrSURCGLicORLusctdefMakrXyzM0ANv6B0-HaSbfttXwHfIDwQPk2o5RE3RSB0Eqc0zqM8ZhqvonIudKpSwYVV2oELoSJHwcYKK2KDuWTOjCuB4qS_xvAE1yxi8LEnrMI99dfRkCfMj5Mo7GgiA7q5PN6lMLjmNPrldxh3GTLXMW94A753b6tZ6nK6saj0hvn6C5Hk__Q6b8L1FoCTrcZjbsGKnd6Gq1nX9-4OTD6oqnFLgoCeIEAmW3VQIHsK8xMyK0jzA6sh-8ezaobze6VOTPmaTFxtdX5Bxq5cQDJ7hrdpKdvvwsGlPNQ9WJ3OpvYBEJEbFvAUxTlm06HQeH1DQ5OmeRCpNPDA70xBmpaY3fUHOZMNpTSVTjey140Hr3r584aS5I-SL2vL6sXU_NQt5EtjeTh6Jw_5aJDxSSRDD9Y705PtHFbKkCbc4dc49eBZfxiV4T4pqamdLZxMGjEEQox7cL8x2f5miNUxgoXUA1ob3l8GK7PxOOu3Hv7LSU_hyv5gKPd2RruP4BqtG5e4Ytk6rFbzhX2M8LHST2qPJfDpsm36Byo8bgc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Materials+for+the+Active+Layer+of+Organic+Photovoltaics%3A+Ternary+Solar+Cell+Approach&rft.jtitle=ChemSusChem&rft.au=Chen%2C+Yung-Chung&rft.au=Hsu%2C+Chih-Yu&rft.au=Lin%2C+Ryan+Yeh-Yung&rft.au=Ho%2C+Kuo-Chuan&rft.date=2013-01-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=6&rft.issue=1&rft.spage=20&rft_id=info:doi/10.1002%2Fcssc.201200609&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2862473541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |