Computerized cardiotocography analysis during labor – A state‐of‐the‐art review

Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a hig...

Full description

Saved in:
Bibliographic Details
Published inActa obstetricia et gynecologica Scandinavica Vol. 102; no. 2; pp. 130 - 137
Main Authors Ben M'Barek, Imane, Jauvion, Grégoire, Ceccaldi, Pierre‐François
Format Journal Article
LanguageEnglish
Published United States John Wiley & Sons, Inc 01.02.2023
John Wiley and Sons Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer‐aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state‐of‐the‐art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice. The use of advanced computerized systems based on the latest machine learning techniques, trained on large databases of cardiotocography data, clinical factors and fetal outcomes, has the potential to successfully assist practitioners in the labor ward and to improve neonatal outcomes.
AbstractList Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer‐aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state‐of‐the‐art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice. The use of advanced computerized systems based on the latest machine learning techniques, trained on large databases of cardiotocography data, clinical factors and fetal outcomes, has the potential to successfully assist practitioners in the labor ward and to improve neonatal outcomes.
Abstract Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer‐aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state‐of‐the‐art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice.
Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer‐aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state‐of‐the‐art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice.
Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer-aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state-of-the-art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice.Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine fetal wellbeing. The visual interpretation of the cardiotocography signals by the practitioners, following common guidelines, is subject to a high interobserver variability, and the efficiency of cardiotocography monitoring is still debated. Since the 1990s, researchers and practitioners work on designing reliable computer-aided systems to assist practitioners in cardiotocography interpretation during labor. Several systems are integrated in the monitoring devices, mostly based on the guidelines, but they have not clearly demonstrated yet their usefulness. In the last decade, the availability of large clinical databases as well as the emergence of machine learning and deep learning methods in healthcare has led to a surge of studies applying those methods to cardiotocography signals analysis. The state-of-the-art systems perform well to detect fetal hypoxia when evaluated on retrospective cohorts, but several challenges remain to be tackled before they can be used in clinical practice. First, the development and sharing of large, open and anonymized multicentric databases of perinatal and cardiotocography data during labor is required to build more accurate systems. Also, the systems must produce interpretable indicators along with the prediction of the risk of fetal hypoxia in order to be appropriated and trusted by practitioners. Finally, common standards should be built and agreed on to evaluate and compare those systems on retrospective cohorts and to validate their use in clinical practice.
Author Jauvion, Grégoire
Ben M'Barek, Imane
Ceccaldi, Pierre‐François
AuthorAffiliation 5 Department of Gynecology‐Obstetrics and Reproductive Medicine Hôpital Foch Suresnes France
1 Department of Obstetrics and Gynecology Assistance Publique Hôpitaux de Paris – Hôpital Beaujon Clichy La Garenne France
3 Health Simulation Department, iLumens Université Paris Cité Paris France
4 Genos Care Paris France
2 Université Paris Cité Paris France
AuthorAffiliation_xml – name: 1 Department of Obstetrics and Gynecology Assistance Publique Hôpitaux de Paris – Hôpital Beaujon Clichy La Garenne France
– name: 2 Université Paris Cité Paris France
– name: 4 Genos Care Paris France
– name: 5 Department of Gynecology‐Obstetrics and Reproductive Medicine Hôpital Foch Suresnes France
– name: 3 Health Simulation Department, iLumens Université Paris Cité Paris France
Author_xml – sequence: 1
  givenname: Imane
  orcidid: 0000-0002-2495-0292
  surname: Ben M'Barek
  fullname: Ben M'Barek, Imane
  email: imane.benmbarek@aphp.fr
  organization: Université Paris Cité
– sequence: 2
  givenname: Grégoire
  surname: Jauvion
  fullname: Jauvion, Grégoire
  organization: Genos Care
– sequence: 3
  givenname: Pierre‐François
  orcidid: 0000-0003-4716-9199
  surname: Ceccaldi
  fullname: Ceccaldi, Pierre‐François
  organization: Hôpital Foch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36541016$$D View this record in MEDLINE/PubMed
BookMark eNp9kt1qFDEUx4NU7LZ64wPIgDciTE0mHzO5EZZFa6HQCxUvw5kkM5tldrImMy3rVR9B8A37JGY6rdgi5iKfv_Pnn3POETrofW8ReknwCUnjHfg2nhDGZPUELYjAOMeMFAdogTEmuaBMHqKjGDfpVJSseoYOqeCMYCIW6NvKb3fjYIP7YU2mIRjnB699G2C33mfQQ7ePLmZmDK5vsw5qH7Kb61_ZMosDDPbm-qdv0jSspy2EIQv20tmr5-hpA120L-7WY_T144cvq0_5-cXp2Wp5nmtOWJU3uDGWi6KgBa4LbkDXNUBBQTSkpBgbziSzTNSSYWJKUxBgpOJAKefANKHH6GzWNR42ahfcFsJeeXDq9sKHViVTTndWCVxJa-skp3XKD61II8FQWdY1E7ysk9b7WWs31ltrtO2HAN0D0YcvvVur1l8qWVWSEpkE3twJBP99tHFQWxe17TrorR-jKkouRFlQgRP6-hG68WNI2Z6okqTP84ol6tXfjv5Yua9fAvAM6OBjDLZR2qWyOD8ZdJ0iWE0toqYWUbctkkLePgq5V_0nTGb4ynV2_x9SLS9OP88xvwENxNAM
CitedBy_id crossref_primary_10_1016_j_imu_2025_101636
crossref_primary_10_17816_MAJ568979
crossref_primary_10_1111_1471_0528_18097
crossref_primary_10_1155_2024_9779831
crossref_primary_10_1186_s12884_024_06322_4
crossref_primary_10_3389_fped_2023_1190441
crossref_primary_10_3390_ai5020026
crossref_primary_10_1016_j_compbiomed_2024_109448
crossref_primary_10_1016_j_ejogrb_2025_01_030
crossref_primary_10_1016_j_ajog_2024_04_022
crossref_primary_10_3389_fmedt_2024_1372358
Cites_doi 10.3389/fmed.2021.661226
10.1007/s10877-020-00535-6
10.1111/j.1471-0528.1982.tb04695.x
10.1038/s41598-021-92805-9
10.1109/ICoSP.2012.6491896
10.1016/S0140-6736(17)30568-8
10.1111/aogs.12828
10.1097/OGX.0b013e318213e644
10.17219/acem/111812
10.1515/jpme.1991.19.1-2.39
10.1503/cmaj.202538
10.1109/TETCI.2020.3020061
10.1186/s12884-020-2779-4
10.1016/j.ejogrb.2004.03.013
10.1016/j.ijgo.2015.06.020
10.1016/0002-9378(81)90673-6
10.1016/j.ajogmf.2020.100101
10.1088/2057-1976/aabc64
10.1016/j.ijgo.2010.03.011
10.1515/JPM.2008.030
10.1111/aogs.13136
10.1016/j.compbiomed.2019.103468
10.1186/s12938-017-0378-z
10.1016/0020-7101(90)90030-X
10.1016/j.eswa.2012.01.196
10.1016/j.ajog.2018.12.037
10.1111/aogs.13639
10.1097/FM9.0000000000000141
10.1007/s00404-019-05151-7
10.1016/j.ejogrb.2016.08.023
10.1111/j.1471-0528.2009.02204.x
10.1016/j.ebiom.2021.103275
10.1016/j.ajog.2022.04.037
10.1186/1471-2393-14-16
10.1097/AOG.0000000000001799
10.3389/fped.2021.661400
10.1145/3233547.3233667
10.1515/jpme.1991.19.1-2.47
10.1038/s41569-020-00503-2
10.3389/frai.2021.765210
10.3389/fped.2021.736834
10.3109/14767058.2016.1161750
10.1080/14767058.2018.1542676
10.1016/j.ejogrb.2022.06.017
10.1016/j.bspc.2011.06.008
10.1587/nolta.12.399
10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9
10.1111/jep.12368
10.1016/S0020-7292(98)00079-4
10.1016/j.bpobgyn.2015.02.009
10.1016/j.ajog.2009.11.033
10.1016/j.ejogrb.2022.04.004
10.3109/14767058.2016.1140740
10.1109/ACCESS.2019.2933368
10.1186/s12911-019-1007-5
10.1097/AOG.0b013e3181c51aeb
10.1097/AOG.0000000000004515
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
2022 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
– notice: 2022 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOA
DOI 10.1111/aogs.14498
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList

ProQuest Health & Medical Complete (Alumni)
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Ben M'Barek et al
EISSN 1600-0412
EndPage 137
ExternalDocumentID oai_doaj_org_article_6089eeb4e4cc412381f9ad397bb4657b
PMC9889319
36541016
10_1111_aogs_14498
AOGS14498
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
1OB
1OC
23M
24P
31~
33P
34G
36B
39C
3O-
3SF
4.4
50Y
50Z
52M
52O
52T
52U
52V
52W
53G
5GY
5HH
5RE
5VS
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
930
A01
A03
AAESR
AAEVG
AAHHS
AAKAS
AANHP
AAONW
AAPXX
AAYCA
AAZKR
ABCUV
ABJNI
ABPVW
ABTOO
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACGFS
ACMXC
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADCVX
ADEOM
ADIYS
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADPDF
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFEBI
AFFNX
AFGKR
AFKRA
AFKVX
AFPWT
AFZJQ
AHMBA
AI.
AIACR
AIJEM
AIURR
AIWBW
AJBDE
AJWEG
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DRFUL
DRMAN
DRSTM
DUUFO
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F21
F5P
FEDTE
FUBAC
FYUFA
G-S
GODZA
H.X
HF~
HMCUK
HVGLF
HZ~
IHE
KBYEO
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M44
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N04
N05
NF~
O66
OK1
OVD
OVEED
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
QB0
R.K
RIWAO
RJQFR
ROL
RPM
RX1
SAMSI
SUPJJ
TDBHL
TEORI
TFW
UKHRP
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WVDHM
WXSBR
X7M
YFH
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAYXX
AGQPQ
CITATION
GROUPED_DOAJ
AAMMB
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
WIN
7X8
5PM
ID FETCH-LOGICAL-c5148-f0fde5622320b25dacbbaa23a6f17300d5494e46b9401d7d21a4185a3355a4c13
IEDL.DBID DOA
ISSN 0001-6349
1600-0412
IngestDate Wed Aug 27 01:32:15 EDT 2025
Thu Aug 21 18:38:08 EDT 2025
Fri Jul 11 06:20:50 EDT 2025
Wed Aug 13 07:33:16 EDT 2025
Mon Jul 21 05:37:56 EDT 2025
Tue Jul 01 05:13:33 EDT 2025
Thu Apr 24 22:52:24 EDT 2025
Wed Jan 22 16:24:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords fetal heart rate monitoring
perinatal morbidity
cardiotocography deep learning
fetal hypoxia
cardiotocography machine learning
computerized cardiotocography
Language English
License Attribution-NonCommercial-NoDerivs
2022 The Authors. Acta Obstetricia et Gynecologica Scandinavica published by John Wiley & Sons Ltd on behalf of Nordic Federation of Societies of Obstetrics and Gynecology (NFOG).
This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5148-f0fde5622320b25dacbbaa23a6f17300d5494e46b9401d7d21a4185a3355a4c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4716-9199
0000-0002-2495-0292
OpenAccessLink https://doaj.org/article/6089eeb4e4cc412381f9ad397bb4657b
PMID 36541016
PQID 2771173584
PQPubID 1136361
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_6089eeb4e4cc412381f9ad397bb4657b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9889319
proquest_miscellaneous_2756672360
proquest_journals_2771173584
pubmed_primary_36541016
crossref_citationtrail_10_1111_aogs_14498
crossref_primary_10_1111_aogs_14498
wiley_primary_10_1111_aogs_14498_AOGS14498
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Reykjavik
– name: Hoboken
PublicationTitle Acta obstetricia et gynecologica Scandinavica
PublicationTitleAlternate Acta Obstet Gynecol Scand
PublicationYear 2023
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
– name: Wiley
References 1991; 19
2021; 66
2020; 20
2019; 98
2000; 9
1981; 141
2008; 36
2016; 30
2019; 19
2009; 116
2021; 35
2017; 30
2020; 2
2011; 205
2018; 4
2010; 115
2015; 131
2010; 110
2021; 193
2014; 14
2011; 66
2019; 114
2017; 129
2021; 9
2022; 276
2021; 8
2019; 7
2022; 274
2021; 5
2021; 4
1974; 32
2017; 2017
2012
2010; 202
2019; 300
2016; 95
2016; 205
2012; 39
2020; 33
1998; 62
2019; 220
1982; 89
2017; 96
2018; 2018
2021; 12
1990; 25
2021; 11
2022; 4
2017; 16
2021; 18
2021; 138
2015; 21
2015; 2015
2018
2016
2016; 29
2012; 7
2022; 227
2004; 117
2017; 389
2020; 29
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
American College of Obstetricians and Gynecologists (e_1_2_9_2_1) 1974; 32
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_60_1
Alfirevic Z (e_1_2_9_7_1) 2017; 2017
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Petrozziello A (e_1_2_9_15_1) 2018; 2018
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
Blackwell SC (e_1_2_9_4_1) 2011; 205
e_1_2_9_42_1
Neilson JP (e_1_2_9_52_1) 2015; 2015
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 117
  start-page: 174
  year: 2004
  end-page: 178
  article-title: Comparison of fetal heart rate baseline estimation by SisPorto 2.01 and a consensus of clinicians
  publication-title: Eur J Obstet Gynecol Reprod Biol
– volume: 29
  start-page: 33
  year: 2020
  end-page: 44
  article-title: Diagnostic equivalency of mobile CTG devices and remote analysis to conventional on‐site nonstress test
  publication-title: Adv Clin Exp Med
– volume: 9
  start-page: 736834
  year: 2021
  article-title: Detection of preventable fetal distress during labor from scanned Cardiotocogram tracings using deep learning
  publication-title: Front Pediatr
– volume: 29
  start-page: 3682
  year: 2016
  end-page: 3685
  article-title: Should national guidelines continue to recommend fetal scalp blood sampling during labor?
  publication-title: J Matern Fetal Neonatal Med
– volume: 4
  start-page: 765210
  year: 2021
  article-title: Challenges of developing robust AI for intrapartum fetal heart rate monitoring
  publication-title: Front Artif Intell
– volume: 18
  start-page: 465
  year: 2021
  end-page: 478
  article-title: Artificial intelligence‐enhanced electrocardiography in cardiovascular disease management
  publication-title: Nat Rev Cardiol
– start-page: 559
  year: 2018
  end-page: 560
– volume: 19
  start-page: 39
  year: 1991
  end-page: 45
  article-title: The advantages of computerized fetal heart rate analysis
  publication-title: J Perinat Med
– volume: 96
  start-page: 883
  year: 2017
  end-page: 891
  article-title: Computerized data‐driven interpretation of the intrapartum cardiotocogram: a cohort study
  publication-title: Acta Obstet Gynecol Scand
– volume: 8
  start-page: 661226
  year: 2021
  article-title: Non‐linear methods predominant in fetal heart rate analysis: a systematic review
  publication-title: Front Med (Lausanne)
– volume: 138
  start-page: 366
  year: 2021
  end-page: 373
  article-title: Relationship between umbilical cord gas values and neonatal outcomes: implications for electronic fetal heart rate monitoring
  publication-title: Obstet Gynecol
– volume: 30
  start-page: 62
  year: 2017
  end-page: 67
  article-title: SisPorto 4.0 ‐ computer analysis following the 2015. FIGO guidelines for intrapartum fetal monitoring
  publication-title: J Matern Fetal Neonatal Med
– volume: 2
  start-page: 100101
  year: 2020
  article-title: Wireless, remote solution for home fetal and maternal heart rate monitoring
  publication-title: Am J Obstet Gynecol MFM
– volume: 36
  start-page: 260
  year: 2008
  end-page: 264
  article-title: Omniview‐SisPorto 3.5 ‐ a central fetal monitoring station with online alerts based on computerized cardiotocogram+ST event analysis
  publication-title: J Perinat Med
– volume: 39
  start-page: 11846
  year: 2012
  end-page: 11860
  article-title: Computerized analysis of fetal heart rate signals as the predictor of neonatal acidemia
  publication-title: Expert Systems Applications
– volume: 33
  start-page: 2284
  year: 2020
  end-page: 2290
  article-title: Intrapartum cardiotocography with and without computer analysis: a systematic review and meta‐analysis of randomized controlled trials
  publication-title: J Matern Fetal Neonatal Med
– volume: 141
  start-page: 43
  year: 1981
  end-page: 52
  article-title: Numerical analysis of the human fetal heart rate: the quality of ultrasound records
  publication-title: Am J Obstet Gynecol
– year: 2018
– volume: 66
  start-page: 42
  year: 2011
  end-page: 46
  article-title: Cerebrospinal fluid leakage, an uncommon complication of fetal blood sampling: a case report and review of the literature
  publication-title: Obstet Gynecol Surv
– volume: 9
  start-page: 311
  year: 2000
  end-page: 318
  article-title: SisPorto 2.0: a program for automated analysis of cardiotocograms
  publication-title: J Matern Fetal Med
– volume: 114
  start-page: 103468
  year: 2019
  article-title: Fetal heart rate baseline computation with a weighted median filter
  publication-title: Comput Biol Med
– volume: 98
  start-page: 1207
  year: 2019
  end-page: 1217
  article-title: Computer‐based intrapartum fetal monitoring and beyond: a review of the 2nd workshop on signal processing and monitoring in labor (October 2017, Oxford, UK)
  publication-title: Acta Obstet Gynecol Scand
– volume: 7
  start-page: 112026
  year: 2019
  end-page: 112036
  article-title: Multimodal convolutional neural networks to detect fetal compromise during labor and delivery
  publication-title: IEEE Access
– volume: 110
  start-page: 1
  year: 2010
  end-page: 6
  article-title: Twenty‐five years after the FIGO guidelines for the use of fetal monitoring: time for a simplified approach?
  publication-title: Int J Gynaecol Obstet
– volume: 25
  start-page: 261
  year: 1990
  end-page: 272
  article-title: Computer analysis of antepartum fetal heart rate: 1
  publication-title: Baseline Determination Int J Biomed Comput
– volume: 202
  start-page: 546.e1
  year: 2010
  end-page: 546.e7
  article-title: Reduced prevalence of metabolic acidosis at birth: an analysis of established STAN usage in the total population of deliveries in a Swedish district hospital
  publication-title: Am J Obstet Gynecol
– volume: 95
  start-page: 16
  year: 2016
  end-page: 27
  article-title: ST waveform analysis versus cardiotocography alone for intrapartum fetal monitoring: a systematic review and meta‐analysis of randomized trials
  publication-title: Acta Obstet Gynecol Scand
– volume: 21
  start-page: 694
  year: 2015
  end-page: 702
  article-title: Agreement on intrapartum cardiotocogram recordings between expert obstetricians
  publication-title: J Eval Clin Pract
– volume: 2018
  start-page: 5866
  year: 2018
  end-page: 5869
  article-title: Deep learning for continuous electronic fetal monitoring in labor
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– volume: 19
  start-page: 286
  year: 2019
  article-title: DeepFHR: intelligent prediction of fetal Acidemia using fetal heart rate signals based on convolutional neural network
  publication-title: BMC Med Inform Decis Mak
– start-page: 1645
  year: 2012
  end-page: 1649
– volume: 4
  year: 2018
  article-title: Sparse learning for intrapartum fetal heart rate analysis
  publication-title: Biomed Phys Eng Express
– volume: 115
  start-page: 419
  year: 2010
  end-page: 420
  article-title: Perinatal hemorrhagic shock after fetal scalp blood sampling
  publication-title: Obstet Gynecol
– volume: 30
  start-page: 68
  year: 2016
  end-page: 78
  article-title: Computer analysis of foetal monitoring signals
  publication-title: Best Pract Res Clin Obstet Gynaecol
– volume: 389
  start-page: 1719
  year: 2017
  end-page: 1729
  article-title: Computerised interpretation of fetal heart rate during labour (INFANT): a randomised controlled trial
  publication-title: Lancet
– volume: 300
  start-page: 7
  year: 2019
  end-page: 14
  article-title: Use of artificial intelligence (AI) in the interpretation of intrapartum fetal heart rate (FHR) tracings: a systematic review and meta‐analysis
  publication-title: Arch Gynecol Obstet
– volume: 4
  start-page: 130
  year: 2022
  end-page: 140
  article-title: Computerized analysis of antepartum Cardiotocography: a review
  publication-title: Maternal‐Fetal Medicine
– volume: 89
  start-page: 270
  year: 1982
  end-page: 275
  article-title: Baseline in human fetal heart‐rate records
  publication-title: Br J Obstet Gynaecol
– volume: 11
  start-page: 13367
  year: 2021
  article-title: Deep neural network‐based classification of cardiotocograms outperformed conventional algorithms
  publication-title: Sci Rep
– volume: 116
  start-page: 1081
  year: 2009
  end-page: 1087
  article-title: Inter‐observer agreement in clinical decision‐making for abnormal cardiotocogram (CTG) during labour: a comparison between CTG and CTG plus STAN
  publication-title: BJOG
– volume: 66
  start-page: 103275
  year: 2021
  article-title: Evaluation of artificial intelligence systems for assisting neurologists with fast and accurate annotations of scalp electroencephalography data
  publication-title: EBioMedicine
– volume: 2015
  start-page: CD000116
  issue: 12
  year: 2015
  article-title: Fetal electrocardiogram (ECG) for fetal monitoring during labour
  publication-title: Cochrane Database Syst Rev
– volume: 227
  start-page: 265.e1
  year: 2022
  end-page: 265.e8
  article-title: The association of fetal acidemia with adverse neonatal outcomes at time of scheduled cesarean delivery
  publication-title: Am J Obstet Gynecol
– volume: 7
  start-page: 350
  year: 2012
  end-page: 357
  article-title: Using nonlinear features for fetal heart rate classification
  publication-title: Biomedical Signal Processing and Control
– volume: 5
  start-page: 882
  year: 2021
  end-page: 892
  article-title: Modelling segmented Cardiotocography time‐series signals using one‐dimensional convolutional neural networks for the early detection of abnormal birth outcomes
  publication-title: IEEE Trans Emerg Top Computational Intelligence
– volume: 205
  start-page: 91
  year: 2016
  end-page: 97
  article-title: Quantitative cardiotocography to improve fetal assessment during labor: a preliminary randomized controlled trial
  publication-title: Eur J Obstet Gynecol Reprod Biol
– volume: 32
  year: 1974
  article-title: Fetal heart rate monitoring: guidelines
  publication-title: ACOG Tech Bull
– volume: 131
  start-page: 13
  year: 2015
  end-page: 24
  article-title: FIGO intrapartum fetal monitoring expert consensus panel. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography
  publication-title: Int J Gynaecol Obstet
– volume: 12
  start-page: 399
  year: 2021
  end-page: 411
  article-title: Predicting high risk birth from real large‐scale cardiotocographic data using multi‐input convolutional neural networks
  publication-title: Nonlinear Theory and its Applications, IEICE
– year: 2016
– volume: 220
  start-page: 269.e1
  year: 2019
  end-page: 269.e8
  article-title: Computerized analysis of cardiotocograms and ST signals is associated with significant reductions in hypoxic‐ischemic encephalopathy and cesarean delivery: an observational study in 38,466 deliveries
  publication-title: Am J Obstet Gynecol
– volume: 205
  start-page: e1
  issue: 378
  year: 2011
  end-page: e5
  article-title: Interobserver and intraobserver reliability of the NICHD 3‐tier fetal heart rate interpretation system
  publication-title: Am J Obstet Gynecol
– volume: 19
  start-page: 47
  year: 1991
  end-page: 51
  article-title: System 8000: computerized antenatal FHR analysis
  publication-title: J Perinat Med
– volume: 9
  start-page: 661400
  year: 2021
  article-title: Systematic review of intrapartum fetal heart rate spectral analysis and an application in the detection of fetal Acidemia
  publication-title: Front Pediatr
– volume: 35
  start-page: 771
  year: 2021
  end-page: 777
  article-title: Fetal heart rate variability analysis for neonatal acidosis prediction
  publication-title: J Clin Monit Comput
– volume: 20
  start-page: 77
  year: 2020
  article-title: Home‐based telemonitoring versus hospital admission in high risk pregnancies: a qualitative study on women's experiences
  publication-title: BMC Pregnancy Childbirth
– volume: 16
  start-page: 89
  year: 2017
  article-title: Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms
  publication-title: Biomed Eng Online
– volume: 62
  start-page: 141
  year: 1998
  end-page: 147
  article-title: Objective computerized fetal heart rate analysis
  publication-title: Int J Gynaecol Obstet
– volume: 193
  start-page: E468
  year: 2021
  end-page: E477
  article-title: Effectiveness of intrapartum fetal surveillance to improve maternal and neonatal outcomes: a systematic review and network meta‐analysis
  publication-title: CMAJ
– volume: 274
  start-page: 40
  year: 2022
  end-page: 47
  article-title: Development of a comprehensive database for research on foetal acidosis
  publication-title: Eur J Obstet Gynecol Reprod Biol
– volume: 129
  start-page: 83
  year: 2017
  end-page: 90
  article-title: Central fetal monitoring with and without computer analysis: a randomized controlled trial
  publication-title: Obstet Gynecol
– volume: 276
  start-page: 1
  year: 2022
  end-page: 8
  article-title: Comparing apples and oranges? Variation in choice and reporting of short‐term perinatal outcomes of term labor: a systematic review of Cochrane reviews
  publication-title: Eur J Obstet Gynecol Reprod Biol
– volume: 2017
  year: 2017
  article-title: Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour
  publication-title: Cochrane Database Syst Rev
– volume: 14
  start-page: 16
  year: 2014
  article-title: Open access intrapartum CTG database
  publication-title: BMC Pregnancy Childbirth
– ident: e_1_2_9_36_1
  doi: 10.3389/fmed.2021.661226
– ident: e_1_2_9_32_1
  doi: 10.1007/s10877-020-00535-6
– ident: e_1_2_9_27_1
  doi: 10.1111/j.1471-0528.1982.tb04695.x
– ident: e_1_2_9_41_1
  doi: 10.1038/s41598-021-92805-9
– ident: e_1_2_9_29_1
  doi: 10.1109/ICoSP.2012.6491896
– ident: e_1_2_9_45_1
  doi: 10.1016/S0140-6736(17)30568-8
– ident: e_1_2_9_17_1
– ident: e_1_2_9_51_1
  doi: 10.1111/aogs.12828
– ident: e_1_2_9_62_1
  doi: 10.1097/OGX.0b013e318213e644
– ident: e_1_2_9_65_1
  doi: 10.17219/acem/111812
– ident: e_1_2_9_20_1
  doi: 10.1515/jpme.1991.19.1-2.39
– ident: e_1_2_9_60_1
  doi: 10.1503/cmaj.202538
– ident: e_1_2_9_39_1
  doi: 10.1109/TETCI.2020.3020061
– ident: e_1_2_9_64_1
  doi: 10.1186/s12884-020-2779-4
– ident: e_1_2_9_26_1
  doi: 10.1016/j.ejogrb.2004.03.013
– ident: e_1_2_9_3_1
  doi: 10.1016/j.ijgo.2015.06.020
– ident: e_1_2_9_31_1
  doi: 10.1016/0002-9378(81)90673-6
– ident: e_1_2_9_63_1
  doi: 10.1016/j.ajogmf.2020.100101
– ident: e_1_2_9_33_1
  doi: 10.1088/2057-1976/aabc64
– ident: e_1_2_9_18_1
  doi: 10.1016/j.ijgo.2010.03.011
– ident: e_1_2_9_9_1
  doi: 10.1515/JPM.2008.030
– ident: e_1_2_9_24_1
  doi: 10.1111/aogs.13136
– ident: e_1_2_9_28_1
  doi: 10.1016/j.compbiomed.2019.103468
– ident: e_1_2_9_40_1
  doi: 10.1186/s12938-017-0378-z
– volume: 2018
  start-page: 5866
  year: 2018
  ident: e_1_2_9_15_1
  article-title: Deep learning for continuous electronic fetal monitoring in labor
  publication-title: Annu Int Conf IEEE Eng Med Biol Soc
– ident: e_1_2_9_30_1
  doi: 10.1016/0020-7101(90)90030-X
– ident: e_1_2_9_38_1
  doi: 10.1016/j.eswa.2012.01.196
– ident: e_1_2_9_56_1
  doi: 10.1016/j.ajog.2018.12.037
– ident: e_1_2_9_55_1
  doi: 10.1111/aogs.13639
– ident: e_1_2_9_21_1
  doi: 10.1097/FM9.0000000000000141
– ident: e_1_2_9_48_1
  doi: 10.1007/s00404-019-05151-7
– ident: e_1_2_9_47_1
  doi: 10.1016/j.ejogrb.2016.08.023
– ident: e_1_2_9_6_1
  doi: 10.1111/j.1471-0528.2009.02204.x
– ident: e_1_2_9_13_1
  doi: 10.1016/j.ebiom.2021.103275
– ident: e_1_2_9_57_1
  doi: 10.1016/j.ajog.2022.04.037
– ident: e_1_2_9_10_1
  doi: 10.1186/1471-2393-14-16
– ident: e_1_2_9_46_1
  doi: 10.1097/AOG.0000000000001799
– ident: e_1_2_9_37_1
  doi: 10.3389/fped.2021.661400
– volume: 205
  start-page: e1
  issue: 378
  year: 2011
  ident: e_1_2_9_4_1
  article-title: Interobserver and intraobserver reliability of the NICHD 3‐tier fetal heart rate interpretation system
  publication-title: Am J Obstet Gynecol
– ident: e_1_2_9_54_1
  doi: 10.1145/3233547.3233667
– ident: e_1_2_9_19_1
  doi: 10.1515/jpme.1991.19.1-2.47
– ident: e_1_2_9_12_1
  doi: 10.1038/s41569-020-00503-2
– volume: 32
  year: 1974
  ident: e_1_2_9_2_1
  article-title: Fetal heart rate monitoring: guidelines
  publication-title: ACOG Tech Bull
– ident: e_1_2_9_16_1
  doi: 10.3389/frai.2021.765210
– ident: e_1_2_9_42_1
  doi: 10.3389/fped.2021.736834
– ident: e_1_2_9_25_1
  doi: 10.3109/14767058.2016.1161750
– volume: 2015
  start-page: CD000116
  issue: 12
  year: 2015
  ident: e_1_2_9_52_1
  article-title: Fetal electrocardiogram (ECG) for fetal monitoring during labour
  publication-title: Cochrane Database Syst Rev
– ident: e_1_2_9_49_1
  doi: 10.1080/14767058.2018.1542676
– volume: 2017
  year: 2017
  ident: e_1_2_9_7_1
  article-title: Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour
  publication-title: Cochrane Database Syst Rev
– ident: e_1_2_9_58_1
  doi: 10.1016/j.ejogrb.2022.06.017
– ident: e_1_2_9_35_1
  doi: 10.1016/j.bspc.2011.06.008
– ident: e_1_2_9_14_1
  doi: 10.1587/nolta.12.399
– ident: e_1_2_9_23_1
  doi: 10.1002/1520-6661(200009/10)9:5<311::AID-MFM12>3.0.CO;2-9
– ident: e_1_2_9_5_1
  doi: 10.1111/jep.12368
– ident: e_1_2_9_22_1
  doi: 10.1016/S0020-7292(98)00079-4
– ident: e_1_2_9_8_1
  doi: 10.1016/j.bpobgyn.2015.02.009
– ident: e_1_2_9_50_1
  doi: 10.1016/j.ajog.2009.11.033
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ejogrb.2022.04.004
– ident: e_1_2_9_59_1
  doi: 10.3109/14767058.2016.1140740
– ident: e_1_2_9_34_1
– ident: e_1_2_9_43_1
  doi: 10.1109/ACCESS.2019.2933368
– ident: e_1_2_9_44_1
  doi: 10.1186/s12911-019-1007-5
– ident: e_1_2_9_61_1
  doi: 10.1097/AOG.0b013e3181c51aeb
– ident: e_1_2_9_53_1
  doi: 10.1097/AOG.0000000000004515
SSID ssj0012748
Score 2.4250162
SecondaryResourceType review_article
Snippet Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to determine...
Abstract Cardiotocography is defined as the recording of fetal heart rate and uterine contractions and is widely used during labor as a screening tool to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 130
SubjectTerms Cardiology
Cardiotocography - methods
cardiotocography deep learning
cardiotocography machine learning
Childbirth & labor
Clinical medicine
computerized cardiotocography
Female
fetal heart rate monitoring
fetal hypoxia
Fetal Hypoxia - diagnosis
Fetuses
Heart rate
Heart Rate, Fetal - physiology
Humans
Hypoxia
Labor, Obstetric
Machine learning
Medical technology
Muscle contraction
Obstetrics
perinatal morbidity
Pregnancy
Prenatal Care
Retrospective Studies
Review
Uterus
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9YwFD7MCeLNcH5WN4nojUKhTfMmDXjzKm5DmAo63F1J0mQbSDv2vrvxaj9B8B_ul3hOmta9OAbehNKcQvPxtM_JyXkC8EoH65W0RS6U8VhYnRvL6zxobYxTFOqj5OT9T3LvQHw8nB2uwdsxF2bQh5gW3AgZ8XtNADd2cQXkpj9aUGhS17fgNuXWknI-F1-mGAL6W8N3GB1mWQmdxElpH8_fZ1d-R1G1_zqq-e-OyatMNv6Kdu7BRuKQbD4M-ias-e4-3NlPUfIH8H08quHkp2-ZiztOl71L4tTMJB0SNqQosjgP2OXFbzZnMb_o8uJXH7BAboglzi02JLg8hIOdD9_e7-XpAIXczWihMBSh9UhwkDUVls9a46w1hldGhpJ06lt0DoUX0mr0slrV8tKQlo2pkIQY4crqEax3feefAEOs-qq2BgkLFxV3dR3KMugaERxM62QGr8d-bFxSF6dDLn40o5dBfd7EPs_g5WR7OmhqXGv1joZjsiAd7HijPztqEqwaWdTae4uNcE6URD-CNi1yLGuFnCmbwdY4mE0C56LhSpXYfqReGbyYqhFWFCsxne_PyQZ5ruKVLDJ4PIz99CYVnZ2OVDkDtTIrVl51taY7OY7S3bpGfljqDN7E-XND85v5592v8erp_xg_g7scadiwr3wL1pdn534badPSPo_o-AP4hxem
  priority: 102
  providerName: Wiley-Blackwell
Title Computerized cardiotocography analysis during labor – A state‐of‐the‐art review
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faogs.14498
https://www.ncbi.nlm.nih.gov/pubmed/36541016
https://www.proquest.com/docview/2771173584
https://www.proquest.com/docview/2756672360
https://pubmed.ncbi.nlm.nih.gov/PMC9889319
https://doaj.org/article/6089eeb4e4cc412381f9ad397bb4657b
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BD4gLKv-BsjKCC0gRieO14-OCaCukAhJU9BbZjg2VqqSi20tPfQQk3rBPwoztrLpqBRcuVpT44IxnMt9kxt8AvNTBeiVtVQplPA5Wl8bytgxaG-MUpfrocPLeR7m7Lz4czA8utfqimrBED5wE90ZWrfbeCi-cEzU5mKBNj17UWiHnytLXF33eFEzl_AHGWukbjMGybITOxKRUw2PG7yeU0tTtmiuKjP3Xwcyr1ZKXUWx0Q9ubcCfjR7ZI674LN_xwD27t5Qz5ffg2tWk4PPM9c7HadDm6TEzNTOYgYel4Ios6wC7Of7MFi2eLLs5_jQEHxIU4onhYOtzyAPa33399t1vm5gmlm9NPwlCF3iO4QcRUWT7vjbPWGN4YGWriqO8xMEShSqsxwupVz2tDPDamQQBihKubh7AxjIN_DAzt1DetNQhWuGi4a9tQ4y60aL3B9E4W8GqSY-cyszg1uDjqpgiDZN5FmRfwYjX3OPFpXDvrLW3HagZxYMcbqBld1ozuX5pRwNa0mV02zJOOK1Xj-yPsKuD56jGaFOVJzODHU5qDGFfxRlYFPEp7v1pJQ33TESYXoNa0Ym2p60-Gwx-Rtlu3iA1rXcDrqD9_ef1u8WnnS7x68j8E8RRuc4RmqdZ8CzaWP0_9M4RSSzuDm1x8nkXbmcU_XX8AsYkg8Q
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BkaAXxGcJFDCCC0iREsdrx8cFURboFiRa0VtkO3apVCWo3V449Scg8Q_7S5hxvKErKiQuVrSZleKPl7zxzDwDvNDBeiVtkQtlPDZW58byOg9aG-MUhfqoOHm-I2d74sP-ZD_l5lAtzKAPMW64ETLi-5oAThvSF1Bu-oMTik3q-ipcE5IrwiUXn8cgAjpcw4sYPWZZCZ3USSmR589_V75HUbb_Mq75d8rkRSobv0Vbt-BmIpFsOsz6bbjiuztwfZ7C5Hfh6_KshsMfvmUuppwuepfUqZlJQiRsqFFkcSGw87NfbMpigdH52c8-YIPkEFtcXGyocLkHe1tvd9_M8nSCQu4mtFMYitB6ZDhImwrLJ61x1hrDKyNDSUL1LXqHwgtpNbpZrWp5aUjMxlTIQoxwZXUf1rq-8w-AIVh9VVuDjIWLiru6DmUZdI0QDqZ1MoOXy3FsXJIXp1Mujpqlm0Fj3sQxz-D5aPt9ENW41Oo1TcdoQULY8Yf--KBJuGpkUWvvLXbCOVES_wjatEiyrBVyomwGm8vJbBI6TxquVIn9R-6VwbPxNuKKgiWm8_0p2SDRVbySRQYbw9yPT1LR4enIlTNQK6ti5VFX73SH36J2t66RIJY6g1dx_fyj-83007sv8erh_xg_hRuz3fl2s_1-5-MjWOfIyYYk801YWxyf-sfIoRb2SUTKbwEEGxI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9VAFD7UCsWN1HfaqiO6UQjkMXcmA26urdf6aC1osbthnrUgSWlvN131Jwj-w_4Sz0wmsReL4GYIyQlkZs6XfCdnzjcAL4TXjjNd5JQrh40WudJVk3shlDI8pPpCcfLOLtvepx8OJgdL8Hqohen1IcYfbgEZ8X0dAH5s_RWQq-7wNKQmRXMDbsZsX9B1pntjDgHjrf49jAEzq6lI4qRhHc-fexc-R1G1_zqq-feKyatMNn6KZqtwO3FIMu0n_Q4sufYurOykLPk9-DZs1XB07iwxccXpvDNJnJqopENC-hJFEv2AXF78IlMS64suL352Hhvkhtiib5G-wOU-7M_eft3cztMGCrmZhB-FvvDWIcFB1lToamKV0VqpqlbMl0Gn3mJwSB1lWmCUZbmtShW0bFSNJERRU9YPYLntWvcICGLV1Y1WSFgqWlemaXxZetEggr2yhmXwchhHaZK6eNjk4occooww5jKOeQbPR9vjXlPjWqs3YTpGi6CDHU90J4cywUqyohHOaeyEMbQM9MMLZZFjaU3ZhOsMNobJlAmcp7LivMT-o8tk8Gy8jLAKuRLVuu4s2CDP5VXNigwe9nM_Pkkd9k5HqpwBX_CKhUddvNIefY_S3aJBfliKDF5F__lH9-X087sv8Wjtf4yfwsre1kx-er_7cR1uVcjI-iXmG7A8Pzlzj5FBzfWTCJTfSsoaRA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computerized+cardiotocography+analysis+during+labor+%E2%80%93+A+state%E2%80%90of%E2%80%90the%E2%80%90art+review&rft.jtitle=Acta+obstetricia+et+gynecologica+Scandinavica&rft.au=Ben+M%27Barek%2C+Imane&rft.au=Jauvion%2C+Gr%C3%A9goire&rft.au=Ceccaldi%2C+Pierre%E2%80%90Fran%C3%A7ois&rft.date=2023-02-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0001-6349&rft.eissn=1600-0412&rft.volume=102&rft.issue=2&rft.spage=130&rft.epage=137&rft_id=info:doi/10.1111%2Faogs.14498&rft_id=info%3Apmid%2F36541016&rft.externalDocID=PMC9889319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-6349&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-6349&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-6349&client=summon